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ABSTRACT Magnetic resonance imaging (MRI) is a medical technology that uses powerful magnets,
radio waves, and a computer to produce images of the body’s internal organs. The patient should be
quiet and motionless during the scanning period, as unavoidable movements, such as breathing and heart
rate, cause motion artifacts in the image, which cause contrast instability and low-resolution MRI images.
Imaging in the clinical setting is performed at low resolution because the scanning time for high-resolution
MR imaging would be very long and cumbersome, and imaging is also very expensive. Learning-based
image superresolution methods can reconstruct MR images with optimal quality and resolution. However,
these methods have problems such as the inability to find the intrinsic relationship between low- and high-
resolution image patches in the training dictionary, specification of the proper amount of error in the training
and testing stage due to variability in MR image contrast, inability to reconstruct objects by smoothed edges,
and use of the backpropagation method in updating their weight vectors. In this paper, we propose a new
superresolution method according to competitive learning-based approaches to overcome the problems of
previous superresolution methods, which do not have the problems and complexities of those methods.
The proposed method includes self-organizing maps as a preprocessor, the nearest neighbor algorithm as
a classifier, and a high-frequency filter as a high-frequency image detail extractor. We constructed a single
external dictionary from a combination of low-resolution and high-resolution feature patches and trained
our SOM network. Next, we reconstruct the high-resolution image by converting the low-resolution input
image into feature patch vectors, and for each vector, we find all corresponding neurons in the network and
retrieve all their training feature vectors. Next, we train the nearest neighbor algorithm with the recovered
vectors plus the input vector and find the best similarity vector to the input vector. After finding all the best
similarity vectors to the input vectors, we reconstruct our high superresolution image. The proposed image
superresolution method in practical experiments was trained, tested, and evaluated by the Div2k dataset
and compared with other traditional and state-of-the-art image enhancement methods on various datasets,
such as SET5, SET14, BSDS100, and URBAN100, and presented better results with higher accuracy
and quality than traditional and state-of-the-art methods, both visually compared to each other by human
and computational benchmarks, such as the peak signal-to-noise ratio (PSNR) and structural similarity
index (SSIM), to compare image superresolution algorithms. This method is best for reconstructing high-
resolution magnetic resonance images that require high-frequency details and sharp edges with a smooth
slope of the imaging objects in their structures. The execution time of the proposed algorithm is slower than
that of the other algorithms, so we use GPU hardware and parallel programming techniques to increase the
algorithm speed.

INDEX TERMS Image Enhancement, MRI, Single-Image Superresolution, Self-organizing Maps,
K-nearest Neighbor, Medical Imaging
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I. INTRODUCTION

MAGNETIC resonance imaging (MRI) is a noninvasive
diagnostic test that takes detailed images of the body’s

soft tissues. Images are generated using a magnetic field,
radio waves, and a computer, unlike X-rays or CT scans. This
test allows physicians to view the brain or spine as sliced
layers and take a live picture of the target layer. They use
these images and analyze them to identify tumors, strokes,
and spinal discs [1]. MRI technology provides different in-
formation than other medical imaging techniques. The main
advantages of MRI are that it can characterize and distinguish
tissues based on their biochemical and physical properties,
such as water, fat, iron, and extravascular blood, and their
degradation products [2]. Imaging is performed at a low
resolution because the scan time for high-resolution MRI
images would be very long and impractical, and imaging is
also expensive [3]. However, MRI systems cannot achieve
sufficient sampling density in their images due to acquisition
constraints, such as limited acquisition time or unavoidable
movements, such as breathing and heart rate, which cause
motion artifacts in the pictures. There are several different
approaches to increasing the overall resolution of MRI scans.
Hardware enhancements directly increase the resolution of
acquired images, for example, by increasing the number of
coil receiver channels, increasing the main magnetic field
passing through the MRI core, and increasing the MRI signal
[2], [4]. These methods are very efficient in reconstructing
MRI images with good quality and fast scan time in clinical
applications, but the upgrade of MRI hardware is physics-
based, which leads to a long cycle time to realize its tech-
nological innovation and has a very high cost. Independent
of hardware enhancements, postacquisition image processing
techniques, such as image superresolution, are also used
to increase the resolution of MRI images. They have the
advantage that they can be applied on all MRI machinery and
in many practical applications without the need to purchase
new hardware equipment. The main advantage of superres-
olution imaging methods based on soft image processing
techniques is their ability to reconstruct high signal-to-noise
ratios and high-resolution object representations, which, due
to object motion, limited sampling time, or signal-to-noise
ratio considerations, can only be achieved at low resolu-
tion. Image superresolution is an IL-posed problem because
many high-resolution(HR) images can produce the same
low-resolution(LR) image. This problem can be solved by
assuming that the high-frequency information and details of
neighboring pixels are enough to recover the high-frequency
information of the lost pixel by downsampling [1]. In recent
years, several image superresolution algorithms have been
introduced to improve the quality and resolution of natural
and medical images [5]. These existing image superresolu-
tion methods can be classified into three main categories:
interpolation-based methods, reconstruction-based methods,
and learning-based methods [6]. Interpolation-based methods
are usually based on signal processing methods. They ex-
plore the relationship of pixel values within a single-image

FIGURE 1. The self-organization map neural network structure.

neighborhood and then predict subpixels based on these
selected pixels. These superresolution imaging methods are
very fast and do not have much computational complex-
ity [7]–[9]. However, these traditional methods often result
in excessive smoothing and do not introduce more high-
frequency and edge information into the new image. They
usually produce images with various effects along object
boundaries, such as aliasing, blurring, and zigzag edges [10].
Reconstruction-based algorithms reconstruct high-resolution
images by modeling the image creation sequence and usually
create a linear system for image reconstruction [11], [12].
These methods are better than interpolation techniques in
many image enhancement applications, and their perfor-
mance for reconstructing a high-resolution image is good.
However, the computational cost of this approach is very
high, the convergence time is slow, the real-time efficiency
is not high, and the image quality decreases as the scale
factor increases. In such cases, the result may be too smooth
with a lack of significant detail at high frequencies. Example-
based methods use the relationships between low-resolution
image patches and high-resolution image patches as prior su-
perresolution information. These methods can restore high-
resolution images with sharp edges with reasonable compu-
tational cost by learning the statistical relationships between
the low-resolution and high-resolution image patches from
a large training dataset [13]. In 2000, Becker and Kanade
[14] and Freeman and Pasztor [13] separately recommended
image enhancement algorithms based on patch dictionaries.

In the example-based method, the main idea is to learn
the corresponding relationship between low-resolution (LR)
patches and high-resolution (HR) patches in a dataset and
then select the most suitable HR patches in the dictionary
for each input patch (LR) as a result of the reconstruction.
Freeman and Pasztor used their proposed method and split an
entire image into multiple overlapping image patches. After
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FIGURE 2. Trajectory diagram of the winning neuron trajectory and its
neighborhoods to the input vector. (The solid black lines show the
neighborhood distance before the weight vector update, and the dashed black
lines show the neighborhood distance after the weight vector update).

that, they searched the dictionary for the low-resolution im-
age patches that most nearly matched the low-resolution in-
put patch. Next, they used the corresponding high-resolution
patches to construct a Markov random field. Next, they
obtained the high-resolution image by solving the Markov
random fields. In 2004, Chang, Yeung, and Xiong [15] pro-
posed the neighbor embedding method for image enhance-
ment, in which each input low-resolution image patch can
be represented by a linear combination of a series of image
patches within a dictionary neighborhood. This relationship
is mapped to the high-resolution space to reconstruct a high-
resolution image. Example-based superresolution methods
usually work well on low-resolution images containing du-
plicate features and textures; as such, they lack the richness
of image structures outside of the input image structure
and, therefore, cannot produce a successful representation for
other class images [16]. In 2010, Yang and his team [17]
proposed a new image superresolution method to improve
image resolution and called it the sparse dictionary learn-
ing method. The sparse-based method learns an overcom-
plete dictionary containing only a small number of atoms.
This technique identifies the linear combination of the low-
resolution dictionary atoms to represent each input patch.
Additionally, the high-resolution patch can be reconstructed
using the corresponding linear combination of atoms from
the high-resolution atom dictionary. This approach is very
useful for image reconstruction, and their learning dictionary
atoms are concise, but the extracted features and mapping
functions are not adaptive, which may not be optimal for
generating high-resolution images [18], [19]. Optimizing this
method was performed by Zeyde and his group [20] in 2010.
It includes training the low-resolution dictionary using the
K-SVD method, reduces the computational complexity by

using the principal component analysis algorithm, and solves
the sparse vector quickly by orthogonal matching analysis.
Li-Wei Kang and his group [21] optimized their method in
2015. They suggested learning sparse image representations
to model the relationship between low- and high-resolution
image patches in terms of the dictionaries learned for image
patches with and without blocking artifacts simultaneously.
In the new optimization method, image enhancement and
deblocking were achieved in simultaneous sparse representa-
tion and morphology-based image decomposition. Yang and
his research team [22] proposed a new image superresolution
method based on redundant compact dictionaries learned
from classified samples by K-means clustering to provide
each sample with a more appropriate dictionary for image re-
construction. Yang, in 2012, optimized the proposed method
by clustering the patterns and training multiple dictionaries
according to the geometric similarity of the training patterns
and then selecting a dictionary that has a similar geometric
structure to the input low-resolution patch to reconstruct the
high-resolution image patch [23]. Yang, in 2018, proposed an
improved fuzzy clustering and weighted schema reconstruc-
tion framework to solve a variety of image structures. In this
method, training patches are divided into multiple clusters by
jointly learning multiple dictionary pairs with an improved
fuzzy clustering method to minimize the error function.
Then, high-resolution patches are estimated according to
several more accurate dictionary pairs [24]. These methods
have better performance than previous image superresolution
methods. However, these methods cannot find the intrinsic
relationship of low-resolution and high-resolution patches,
and they cannot reconstruct the edges and borders of objects
in an image with a smooth slope. Artificial neural network-
based image superresolution approaches were proposed by
LeCun and his group in 1989. LeCun’s image superresolu-
tion method [25] involves a single network that learns the
entire recognition operation, from the normalized image of
the character to the final classification. This method uses a
backpropagation algorithm [26] to train its weight vectors
on large image databases. It has been successfully applied
to recognizing digits in handwritten zip codes by the U.S.
Postal Service. Dong and his team [27] proposed a deep
learning method for single-image superresolution in 2014.
Their image enhancement method directly learns an end-to-
end mapping between the low-resolution and high-resolution
images. The mapping is represented as a deep convolutional
neural network that takes the low-resolution image as input
and produces a high-resolution image as output. This paper
attempts to find the intrinsic relationship of low- and high-
resolution patches, which in the previous algorithms were
inaccessible, and to overcome the dictionary training meth-
ods according to the statistical calculation, which has uncer-
tainty in its calculations. Furthermore, to overcome the error
criteria-based training methods in the neural network-based
image superresolution methods that use backpropagation
methods to train their weight vectors, we proposed the new
image superresolution method according to the competitive
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approaches that do not have the problems and complexities
of the previous methods.

A. MOTIVATIONS AND CONTRIBUTIONS
The single-image superresolution (SISR) method is one of
the most controversial image processing techniques that at-
tempts to acquire high-resolution (HR) images from low-
resolution (LR) images by estimating and approximating all
missing high-frequency details such as magnetic resonance
images, which need high-frequency details and sharp edges
with a smooth slope of the image objects in their structures.
In this paper, we propose a hybrid single-image superreso-
lution to enhance magnetic resonance imaging (MRI) details
by using self-organizing neural maps [28] as a preprocessor,
the nearest neighbor algorithm [29] as a classifier and a
high-frequency filter as a high-frequency image detail ex-
tractor. The proposed image superresolution method uses a
single external dictionary to train and reconstruct the high-
resolution image. Although our proposed superresolution
method is more robust and accurate than most of the previous
learning-based methods, since the neural weight vectors are
automatically adjusted, there is also no need to perform
statistical calculations or manually adjust the error correction
of the proposed algorithm parameters. Our method uses the
nonparametric k-nearest neighbor algorithm for classifica-
tion, which classifies feature patch vectors according to their
similarity. The edges of the high-resolution image objects are
sharpened by a gentle slope, which results in an enhancement
of high-frequency image details. We increase the perfor-
mance and execution speed of the proposed algorithm using
CPU-GPU hardware technology and parallel programming.
We use CPU hardware and serial programming to create
the external dictionary, extract the feature patch vectors and
reconstruct the high-resolution output image. In addition, we
use GPU hardware and parallel programming to train the self-
organizing maps and nearest neighbor algorithm and locate
the high-resolution patch vector in the reconstruction stage.
The main contributions of this work are as follows:

• The unique external dictionary is built using high-
and low-resolution feature patch vectors from low- and
high-resolution MRI images.

• We construct our self-organizing neural network and
define its network parameters and initialize weight vec-
tors by values close to zero. Next, we train our neural
network by an external dictionary and store the neuron
label and the content of each neuron according to the
vector labels in another dictionary.

• We use the low-resolution input MRI image and make
it into feature patch vectors, and for each feature patch
vector, we locate the best matching neuron in the neural
network and retrieve all the feature vectors pertaining
to it from the training stage and all these vectors with
the input test feature vector used to train the k-nearest
neighbor algorithm and locate the best matching vector,
which is very similar to the input vector, and retrieve the
high-resolution patch from the dictionary. Then, after

locating all the high-resolution patches, we reconstruct
our high-resolution image.

• We simulate our proposed superresolution method with
medical MRI image datasets and ordinary ground-truth
datasets and compare the results with other traditional
and state-of-the-art image superresolution algorithms
for different upscaling factors.

• We use CPU-GPU hardware technology and parallel
programming to execute the proposed algorithm and
evaluate the performance of GPU hardware technology
and parallel programming for increasing the speed and
accuracy of the image superresolution algorithms.

The remaining chapters of the paper are organized as follows.
Section 2 describes the structure of the image model, the self-
organizing neural network, and the k-nearest algorithm. Sec-
tion 3 describes the proposed image superresolution method.
Section 4 shows the experimental results on various ground-
truth natural and MRI image data datasets to examine the per-
formance of the proposed method. Section 5 is the discussion,
and finally, Section 6 is the conclusion.

II. RELATED WORKS
A. FORWARD IMAGING SYSTEM MODEL
Modeling the imaging system accurately under mathematical
equations is an excellent step toward superresolution and
image recognition. The low-resolution image is the result
of the warping, blurring, and subsampling performed on the
high-resolution image x during the acquisition process. By
considering the above effects on modeling the imaging sys-
tem, the imaging system [30] can be represented by equation
(1).

y = DBMx+ n (1)

The low-resolution image y ∈ RN is a blurred, warped, and
subsampled version of the high-resolution image x ∈ RN,
where B, W and D represent the blur, warping, and subsam-
pling matrices, respectively. N is the number of images, and
n represents noise. The image superresolution reconstruction
approach can be an ill-posed problem due to ill-conditioned
defocus operators. Regularization is the procedure adopted
to stabilize the inverse of the ill-posed problem. It can be
achieved by applying prior knowledge about the solution.
There are two types of approaches: the deterministic ap-
proach and the stochastic approach. We can formulate the
problem of recovering x from y by solving the following
optimization problem by using the maximum a posteriori
estimation (MAP) approach:

min exp (− 1

2σ2
k

N∑
k=1

(||y −DBMx||)2) (2)

Several of the proposed regularization-based superresolution
methods incorporate the regularization term in the maxi-
mum estimate. Therefore, the superresolution optimization
problem can be overwritten by Equation (3), where (Ax) is
the regularization term that contains prior information about
the desired high-resolution image x, and the parameter λ
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FIGURE 3. Block diagram of the feature extraction and dictionary reconstruction procedure.

is the regularization factor that specifies the weight of the
regularization term [31].

min
1

2

N∑
k=1

(||y −DBMx||)2 + λAx (3)

In this paper, we use the first part of the equation of the
superresolution optimization problem through equation (4)
to reconstruct the high-resolution image without the regular-
ization part and use the 2-norm to calculate the Euclidean
distance.

min
1

2

N∑
k=1

(||y −DBMx||)2 (4)

B. THE ORGANIZATIONAL ARCHITECTURE OF
SELF-ORGANIZING MAPS.
Self-organizing maps (SOMs) or Kohonen maps are a par-
ticular class of artificial neural networks first introduced
in the 1980s by Teuvo Kohonen. They are unique types
of neural networks that use an unsupervised competitive
learning-based approach to update their weight vectors. This
network does not learn by stochastic gradient descent (SGD)
backpropagation like other artificial neural networks but uses
competitive learning. A self-organizing map [32] consists of
a set of neurons that are formed in a typical two-dimensional
lattice. The number of neurons in a neural network varies
depending on the application in which the neural network
is used. The self-organizing map has two layers: the first
is the input layer, and the second is the output layer or
feature map. Unlike other kinds of artificial neural networks,
the self-organizing map has no activation function for neu-
rons. Instead, the weights are passed directly to the output

layer without any further action. For each neuron in a self-
organizing map, the vector of weights has the same dimen-
sionality "d" as the input space [33]. The neurons in a lattice
of self-organizing maps are each connected by a connection
specified by the topology of the neural network, such as the
hexagonal lattice constructions illustrated in Figure 1. As
mentioned above, the self-organizing map does not use the
backpropagation method together with stochastic gradient
descent to update the weights, and this type of unsupervised
artificial neural network uses competitive learning to update
its weights. The competitive learning method is based on
three main approaches: competition, cooperation, and adap-
tation. In the competition stage, each neuron in the self-
organizing map is assigned an initial vector of weights with
a value close to zero in the same dimensionality as the input
space. In this case, each neuron in the output layer has a vec-
tor of weights W=[w1,w2,w3,......,wd] with dimensionality
"d". In each iteration of the training step, the self-organizing
map algorithm calculates the distance between each neuron
in the output layer and the input sampling data "X", and the
neuron with the smallest distance is the winner of the compe-
tition; then, this winning neuron is called the best matching
unit (BMU) according to Equation (6). The best matching
unit is the neuron in the neural network whose weight vectors
are very similar to the input vector X=[x1,x2,x3,....,xd]. The
Euclidean metric is often used to measure the distance of two
vectors by the Equation (5).

Edistance(X,W ) =

√
(x1 − w1)

2
+ (x2 − w2)

2
...(xd − wd)

2

(5)
WinningNeuron(c) = argmin

i
{||X −Wi||} (6)
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During the cooperation stage, when the BMU is success-
fully located, the self-organizing map algorithm updates the
weight vector of the winning neuron during the final adapta-
tion process, but it is not the only one; its neighbors are also
updated. We use the neighborhood kernel function to choose
the neighboring neurons of the winning neuron in the lattice
of the self-organizing map. The neighborhood kernel func-
tion depends on the distance between the winning neuron and
the other neurons and is inversely proportional: increasing
d(c, i) decreases h(t), the neighborhood radius, which in turn
depends on time and decreases as time increases, and this
causes the neighborhood kernel function to decrease as well.
In this paper, we use the Gaussian neighborhood function
according to Equation (7).

hc(X),i(t) = exp (−
d2(c,i)

2σ2(t)
) (7)

Since the number of neighbors of the winning neuron at
each stage of the algorithm implementation, as well as the
radius of the neighborhood of the winning neuron in time, is
reduced, in this case, the value of the standard deviation of
the Gaussian function is considered time-varying according
to Equation (8).

σ(n) = σ0 exp (−
n

τ1
)n = 0, 1, 2, .........max (8)

The parameter τ1 is the minimum number of iterations of the
SOM-neural network in the training stage. Another param-
eter that plays a vital role in computing the self-organizing
neural network algorithm is the learning rate of the neural
network. The learning rate determines how many times we
tune the neural network weights. The learning rate after
time t, which is almost infinitely positive, converges to zero,
so there is no update even for the winning neuron. The
parameter τ2 is the maximum number of iterations of the
SOM-neural network in the training stage. The learning rate
is estimated from Equation (9).

η(n) = η0 exp (−
n

τ2
) (9)

The weights of the winning neuron and all its neighboring
neurons are updated according to equation (10). However,
their weight vectors are not updated uniformly. The number
of the vector of neuron weights farther away from the input
vector is smaller. The trajectory of the winning neuron and
its neighbors to the input vector is shown in Figure 2.

Wi(n+ 1) = Wi(n) + η(n)hc(X),i(n)(X −Wi(n)) (10)

One of the critical parameters in neural network algorithm
calculations is the algorithm stopping condition. The closer
the stopping condition is to reality, the more accurate the
neural network will be in obtaining results. The stopping
condition of the self-organizing network is that any change in
the vector of weights is zero, i.e., the vector of weights from
the previous stage is equal to the vector of weights computed
in the next stage. In this paper, we use the stopping condition

FIGURE 4. The block diagram of the dictionary training procedure.

Algorithm 1 : The training procedure of the self-organizing
map
Input: X a set of P vectors of d components.
Data: W a set N of vectors with d-dimensions.

1: The weight vectors are all initialized with small values
close to zero.

2: Compute η(0);
3: Compute σ(0);
4: for n← 1 to nMax do
5: Choose i ∈ 1...........P randomly;
6: for k ← 1 to N do
7: dk ← 0;
8: for j ← 1 to P do
9: dk ← dk+(xij − wkj)

10: end for
11: c← arg mink d;
12: for k ← 1 to N do
13: hc,k ← exp (− d2

(c,k)

2σ2(n) );
14: for k ← 1 to N do
15: Wk(j) = Wk(j) +

η(n)hc,k(n)(Xi(j)−Wk(j));
16: end for
17: end for
18: end for
19: Decrease the η(n) learning rate.
20: Decrease σ(n) neighborhood radius.
21: end for

of Equation (11) for the training and testing stages of the self-
organizing neural network. To train the SOM-neural network,
samples were chosen as the feature vector of pattern "X" from
the input datasets, and the neural network algorithm started
according to Algorithm (1).
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If hc(X),i(t) ̸= 0⇒ ∀i, Et{hc,i(t)(X(t)−Wi(t))} = 0
(11)

W ∗ =

∑
t hc,i(t)X(t)∑

t hc,i(t)
(12)

To test the SOM-neural network, a random sample is selected
as the feature vector of the pattern "X" from the input dataset.
Then, the distances between it and all the weight vectors
of the network are calculated using the Euclidean distance
measurement criterion. Then, the unit with the best match is
selected using the minimum function, and we use the feature
vector of this neuron for classification in the future.

C. THE K-NEAREST NEIGHBOR ALGORITHM
STRUCTURE
The nearest neighbor algorithm is a simple and easy-to-
implement supervised machine learning approach that may
be used to solve classification and regression problems. The
supervised machine learning algorithm attempts to learn a
function to make predictions from new unlabeled data. Un-
like unsupervised learning, the supervised learning method
relies on labeled input data to learn a function that produces
an appropriate output when new unlabeled data are provided.
The k-nearest neighbor algorithm is based on the assumption
that similar patterns are close to each other, which means
that similar patterns are located near each other. This algo-
rithm involves the concept of similarity, which is sometimes
defined in terms of distance, closest similarity, and closest
proximity to each other, using mathematics to calculate the
distance between points in a data graph. There are many
methods for calculating the distance between two points,
and depending on the problem we decide to solve, one of
them may be preferable. However, the rectilinear distance,
also known as the Euclidean distance, is the most popular
and well-known option. To choose the correct value of k
for our data, we execute the k-nearest neighbor algorithm
many times at different values of k and then select the
value of k that reduces the number of errors encountered
while maintaining the algorithm’s ability to make accurate
predictions when given data it has not seen before. The "k"
nearest neighbor algorithm is executed in accordance with
the steps described in Algorithm 2. It is important to note
that if we decrease the value of k to one, the predictions we
make become less stable, and the k-nearest algorithm predicts
patterns incorrectly. However, as we increase the value of k,
due to majority voting or averaging, our predictions become
more stable, allowing us to make more accurate predictions
with higher probability to some extent. As time progresses,
we see an increasing number of errors. At this point, we
know that the value of k has been exceeded. In some cases
where a majority decision is made, such as the choice of
mode in a sorting problem between labels, we usually make
k an odd number to break the tie. The k-nearest-nearest
algorithm is uncomplicated and very easy to set up, and there
is no need to build a model, make various adjustments or
perform additional calculations. The k-nearest algorithm is

Algorithm 2 :The k-nearest neighbors algorithm
Input: Load the pattern data.
Data: Initialization k to the chosen number of neighbors.

1: for q ← 1 to Querysamples do
2: dk ← 0;
3: indxk ← 0;
4: for p← 1 to P do
5: Choose p ∈ 1...........P randomly;
6: dk ← dk+(xp − xq)
7: indxk ← indxk+1
8: end for
9: end for

10: Sort the ordered collection of dk and indxk from small-
est to largest in ascending order by the distances.

11: Select the first k entries from the sorted collection.
12: Get the labels of the selected k entries.
13: Return the mode of the k labels for classification.

FIGURE 5. SOM U-matrix.

FIGURE 6. SOM Component lattice diagram.

also multipurpose and is used for data sorting, regression, and
search algorithms.
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FIGURE 7. Best matching units (BMU) of SOM in the lattice diagram.

FIGURE 8. Typical best matching units (BMUs) of SOM and their six
neighborhoods in lattice diagrams.

III. PROPOSED IMAGE SUPERRESOLUTION METHOD
The proposed image superresolution method for reconstruct-
ing high-resolution images uses three stages: feature extrac-
tion and dictionary reconstruction, dictionary training, and
image reconstruction.

A. FEATURE EXTRACTING AND DICTIONARY
RECONSTRUCTION
We create a single overcomplete dictionary D(HL) contain-
ing two separate but related fields: the first is the feature patch
vector field, which at this point is called a key field, and
the second is the high-resolution patch vector, which at this
point is called a value field. The procedures for creating an
overcomplete dictionary and the associated field values can
be seen in Figure 3. Preprocessing procedures for preparing
low-resolution images from high-resolution images include
several of these steps. In the first step, the best high-resolution
images are selected from the high-resolution image dataset,
and in the second step, a specific amount of noise is added to
each image using a mean kernel to simulate the effects of the
probability density function of the imaging system. Finally,
the images are converted to low-resolution images with lower
quality according to the required magnification factor using
downsampling methods. The low-resolution images are indi-

vidually enlarged to their original high-resolution sizes with
the appropriate scaling factor using interpolation methods.
Then, each low-resolution image is used in two different
parts. In one portion, the low-resolution image is subtracted
from the high-resolution input image to extract the details
of the high-resolution image. The resulting image is used
as the high-resolution image to create high-resolution image
patches. In the second portion, the low-resolution image is
used to extract the "high-frequency details" by passing it
through a high-pass filter, and the result is a low-resolution
image, which is used to create low-resolution image patches.
The image patch extraction procedure is the same for high-
and low-resolution images and the only difference is the
kernel size. A 5-by-5 extraction kernel is used for low-
resolution imaging, and a 7-by-7 extraction kernel is used
for high-resolution imaging. The patches are extracted from
the high- and low-resolution images in a concentric manner
by overlapping the patches in all dimensions with a size of
one pixel and a stride length of one pixel. When the high-
resolution patches and their corresponding low-resolution
patches are each extracted with the above method, the fusion
feature vector of both patches, which is based on image
feature extraction using image intensity [34], is extracted
by converting the contents of the 7x7 matrix of the low-
resolution patch into a 49x1 column vector. Next, the con-
tents of the first row and first column of the 5x5 matrix
of the high-resolution image intensity patch are converted
into a 9x1 column vector, and its contents are added to the
end of the previous vector to obtain the 58x1 target feature
vector. Next, we remove the low-frequency details that do
not provide much information about the image from the
constructed vector and only consume the amount of storage
memory of the machine, using the normalization of the vector
by the mean function. We store all feature vectors as the key
fields and the entire contents of the intensity matrix of the
high-resolution patches as value fields in the dictionary for
the dictionary training stage.

B. THE DICTIONARY TRAINING
We label all input vectors and neurons in the self-organizing
neural network in terms of numbers. We reconstruct a two-
dimensional self-organizing neural network with the weight
vectors proportional to the input vector dimension, as shown
in Figure 4. The weight vectors of the self-organizing neural
network are initialized with initial and minimum values that
approach zero depending on the spacing of the input data
distributions. We configure the SOM-neural network using
the following parameters: The lattice network is a sheet
with a two-dimensional lattice space, the network topology
is a hexagon, the neighborhood function of the network is
Gaussian, the size of the neurons in the network is two-
dimensional [10 15], and it has two training stages. In the
first stage, called the coarse stage, the neuronal neighborhood
radius function decreases from 3 to approximately 0.5, and
the number of training epochs is 50. In the second stage,
called the fine stage, the neuronal neighborhood radius func-
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tion decreases from 1 to approximately 0.5, and the number
of training epochs is 10. We train the SOM-neural network
using the vectors from the training database and by Algo-
rithm 3. As shown in the U-matrix in Figure 5, the training
data distribution is smoothly distributed across the winning
neurons. This matrix shows a lattice of neurons with adjacent
distances between them in different colors depending on the
distribution of data between neurons. Figure 6 also shows
how the input vectors are distributed among the neurons
in the neural network. As can be seen in the figure, the
higher the number of vectors assigned to a winning neuron,
the lower and brighter the color density of that neuron, and
the lower the number of neurons assigned to a vector, the
thicker and darker the color. Figure 7 shows the distribution
of winning neurons in the neural network. In this figure,
the regions of the neural network where the distribution of
winning neurons is higher are identified and can be used
to estimate the efficiency and quality of the neural network
training. We then store all the best matching units and their
vector content in the second dictionary, which has two fields,
the neuron weight vectors, and the input vector labels.

C. THE SUPERRESOLUTION IMAGE
RECONSTRUCTION
The low-resolution input image is enlarged to the high-
resolution output image by an appropriate enlargement factor
through interpolation methods and is used in three different
application areas. The first application of the low-resolution
image is to extract low-resolution image patches from it using
the 7x7 kernel, and then these patches are used to create
a final feature vector along with a high-resolution image
patch. The second application of the low-resolution image
is the extraction of its high-frequency details by high-pass
filtering, where the output image from this step is subtracted
from the interpolated image, and the resulting image is added
to the output image at the end of the image reconstruction
algorithm. The third application of this image is at the end of
the algorithm to create a high-resolution output image. Since
we have no high-resolution image from the low-resolution
input image, we create the image with the dimensions of
the high-resolution output image with zero pixel intensity
values (M, N, d). We convert it into high-resolution patches
using a 5x5 patch extractor kernel. When the high-resolution
patches and their corresponding low-resolution patches are
extracted, the merging feature vector of both patches, which
is based on image feature extraction using image intensity,
is extracted by converting the contents of the 7x7 matrix of
the low-resolution patch into a 49x1 column vector. Next, the
contents of the first row and the first column of the 5x5 matrix
of the high-resolution image intensity patch are converted
into a 9x1 column vector, and its contents are added to the
end of the previous vector to obtain the 58x1 target feature
vector. Next, we remove from the constructed vector the low-
frequency details that do not provide much information about
the image and only consume the amount of storage memory
in the machine, using the normalization of the vector by

the mean function. We test the SOM-neural network using
Algorithm 4 for each experimental input vector to find the
best matching unit, then find all the neighbors of the winning
neuron, i.e., in this work, six neurons, as shown in Figure 8,
and then retrieve the vector labels from the winning neurons
plus six neighboring neurons. We use the nearest neighbor
algorithm and take the k best training feature vectors that
match this test feature vector, where k is 10 in this work. The
algorithm sorts them in ascending order according to their
distance to the input vector, selects the mode among them,
and finds the high-resolution image field that maps to this
key. Then, all the high-resolution test patches that best match
the input image are taken. We reconstruct the high-resolution
image as shown in Figure 9 by merging these three images:
the image reconstructed from the patches, the image resulting
from the difference of the high-pass filter output image, and
finally the interpolation image.

IV. PRACTICAL OUTCOMES
A. PREPARATION OF THE DATABASES
We used different image datasets to train, test, and validate
the proposed image superresolution method depending on the
application of the proposed image superresolution algorithm,
such as for reconstructing natural images or for reconstruct-
ing medical images. In the application to reconstruct natural
images, we used the natural images from known datasets
to train, test, and validate the proposed algorithm. To train,
test, and validate the proposed model using natural images,
we used the Div2K dataset [35], which contains 1,000 high-
quality 2k images divided into 100 images for validation,
800 images for training, and 100 images for testing the
proposed model. In the application for reconstructing clinical
diffusion-weighted and MRI images, we used 75 diffusion-
weighted images and 90 brain MRI images from the brain
development organization dataset in which each group of
images had different high-frequency details in their image
textures. In this paper, fifty images were used for training, 20
images for testing, and 5 images for validating the proposed
model from the set of diffusion-weighted images. In addition,
65 images were used for training, 15 images were used for
testing, and 10 images were used for validating the proposed
model from the set of MRI images. First, by preprocessing
the images and converting the high-resolution images to
low-resolution images using blurred noise for blurring, the
images were rotated under various angles, and the images
were subsampled with an appropriate scale factor to create
low-resolution DW and MR images. We used complete nat-
ural imaging datasets such as SET5 [36], which includes 5
color images, SET14 [20], which includes 14 color images,
BSDS100 [37], which includes 100 black and color images,
and URBAN100 [5], which includes 100 black and color
images, to evaluate the proposed superresolution imaging
algorithm against other superresolution imaging methods.
We also used a dataset of DW and MRI medical images
including several black images of the human brain in the
organization of human brain development to compare the

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3123119, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Algorithm 3 : The proposed superresolution training stage
Input: A set of HR and LR images.
Output: All BMU units and all vector labels contained in each neuron.

1: Upsampling of each LR image and passing through a high-pass filter to obtain a medium image (MR).
2: Calculates the difference between the HR input image and the interpolated image.
3: Divide HR and LR images into patches.
4: for (Each patch in the LR training set) do
5: Extract each patch feature vector and combine the HR and LR image patch vectors to construct the final vectors.
6: Normalize the vectors using the mean intensity of each patch (contrast normalization).
7: Store the vector as a value and its HR patch vector as a key in the training database.
8: end for
9: Train the proposed SOM-neural network with all the vectors of the training database.

10: All the parameters of the SOM, as well as all the best matching units of the network and the data vector labels belonging
to those units, are stored.

Algorithm 4 :The proposed image reconstruction stage
Input: A testing LR image.
Output: An HR reconstructed image.

1: Upsample the LR image and pass it through a high-pass filter to obtain a medium image (MR).
2: Calculates the difference between the MR image and the interpolated image
3: Divide the HR framework with zero intensity of each pixel and LR images into patches.
4: for (Each LR patch) do
5: Extract each patch feature vector and combine the HR and LR image patch vectors to construct the final vector.
6: Normalize the vector using the mean intensity of each patch (contrast normalization).
7: Run the SOM-neural network and enter the input vector.
8: Obtain the BMU neuron that matches the input vector.
9: Obtain six neighboring neurons for the BMU neuron.

10: Retrieve the training vectors of these seven neurons.
11: Run the K-nearest neighbor algorithm for this retrieved data and input vector.
12: Obtain the best training vector that matches the input vector.
13: Find the high-resolution training patch that belongs to this vector label and place it in its location on the high-resolution

output image.
14: end for
15: Reconstruct a high-resolution image by reconstructing the image from patches, a difference between the high-frequency

image and the interpolation image, and the interpolation image.

TABLE 1. Performance evaluation based on the benchmark for the DW-MRI dataset, Red is the best performance among all methods, and blue is the second-best
performance among all methods.

Algorithms Scale Parameters
Factore MSE PSNR SSIM GMSD MI FSIM NIQE

Bicubic x2 122.6 27.38 0.8746 0.0769 2.1069 0.8783 5.4412
RDN x2 0.281 43.08 0.9832 0.016 4.3721 0.9310 5.1389

CSFM x2 0.280 43.11 0.9838 0.013 4.3789 0.9388 5.1245
SRFBN x2 0.283 43.012 0.9830 0.015 4.3645 0.9299 5.1438

CFSRCNN x2 0.341 42.97 0.9813 0.019 4.2784 0.9201 5.1897
SOM-SR(Ours) x2 0.2717 43.218 0.9845 0.011 4.4897 0.9456 5

Bicubic x4 421.655 22.0423 0.6726 0.1716 1.6305 0.7734 6.5139
RDN x4 274.54 37.50 0.8189 0.751 3.8281 0.9082 5.4269

CSFM x4 273.87 37.65 0.8195 0.746 3.8285 0.9096 5.4256
SRFBN x4 277.03 37.34 0.8183 0.788 3.8140 0.9071 5.4283

CFSRCNN x4 278.92 37.26 0.8178 0.796 3.7982 0.9049 5.4388
SOM-SR(Ours) x4 260.684 38.4032 0.8282 0.689 3.8303 0.9164 5.2738

proposed superresolution imaging algorithm with other su-
perresolution imaging methods. We also used 25 DW images
and 30 MRI images in addition to the training images to
evaluate the proposed method with the other superresolution

imaging algorithms.
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FIGURE 9. The proposed block diagram for the reconstruction of high-resolution images.

TABLE 2. Performance evaluation based on the MRI spectroscopic dataset benchmark, red shows the best performance among all methods, and blue shows the
second-best performance among all methods.

Algorithms Scale Parameters
Factore MSE PSNR SSIM GMSD MI FSIM NIQE

Bicubic x2 86.3777 29.1952 0.8735 0.0668 1.8143 0.8819 5.6146
SRCNN x2 0.183 41.77 0.9510 0.0195 4.8734 0.9401 5.3850
SRGAN x2 0.174 41.99 0.9542 0.0185 4.9912 0.9412 5.3843
SRFBN x2 0.191 41.65 0.9497 0.204 4.8001 0.9392 5.3855

CFSRCNN x2 0.200 40.98 0.9488 0.264 4.6523 0.9299 5.4543
SOM-SR(Ours) x2 0.163 42.9 0.9667 0.0045 5.2771 0.9544 5.2939

Bicubic x4 297.1158 24.2542 0.704 0.1507 1.3629 0.7899 6.5151
SRCNN x4 192.03 33.33 0.8200 0.0982 2.6412 0.8851 6.0654
SRGAN x4 183.6 33.41 0.8212 0.0932 2.7645 0.8875 6.0001
SRFBN x4 188.2 33.21 0.8189 0.1001 2.5856 0.8822 6.0832

CFSRCNN x4 199.1 32.96 0.8132 0.1143 2.2895 0.8788 6.1432
SOM-SR(Ours) x4 162.8227 34.3214 0.8252 0.0865 3.0192 0.8927 5.9431

B. THE SIMULATION ENVIRONMENT
All simulations of the proposed method were performed with
MATLAB software version 2021a installed on Acer laptops
with an Intel(R) Core (TM) i7–9750H CPU at 2.60 GHz Ram
16.0 GB and Windows 10 64 bit operating system and an
Nvidia GeForce GTX 1650 graphics card with 4 GB GDDR5
Ram and 896 CUDA cores.

C. THE SIMULATION RESULTS
We performed experiments with traditional and state-of-the-
art image superresolution algorithms to improve the quality
and resolution of natural and medical magnetic resonance
images at different image magnifications. In this paper, we
present the evaluation results to compare the performance

and runtime of the algorithms on the reconstructed images.
Initially, in the preprocessing stage, low-resolution natural
and medical images were generated by subsampling the
selected high-resolution images by a factor that is equal
to the appropriate magnification factor. The low-resolution
images were then blurred using a low-pass Gaussian filter
(LPF) with a kernel size of 3x3 for sampling at Factor 2.
Likewise, the size of the low-pass Gaussian filter was set
to 3x3 for sampling at Factors 3 and 4. Next, to train a
shared dictionary, we extracted more than 1,050,000 pairs
of low- and high-resolution patches independently from each
training dataset, such as Div2k and MRI. We considered a
patch size of 5×5 with a one-pixel overlap between neigh-
boring patches for the high-resolution images and a patch
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(a) .OriginalImage (b) .DownsampleImage (c) .InterpolationImage (d) Difference between
interpolation and
original image

(e) Difference between
superresolution and
original image

(f) Superresolution
Image

FIGURE 10. Proposed image superresolution method for test images of different datasets with scale factor 2.

TABLE 3. Comparing the results of the proposed method with other algorithms for the complete databases with the image zoom factor 2. The numbers with a red
mark indicate the best results, and the numbers with a blue mark indicate the second-best results.

Algorithms SET 5 SET 14 BSDS 100 URBAN 100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403
A+ 36.54 0.9544 32.28 0.9056 31.21 0.8863 29.2 0.8938

RFL 36.54 0.9537 32.26 0.904 31.16 0.884 29.11 0.8904
SelfExSR 36.49 0.9537 32.22 0.9034 31.18 0.8855 29.54 0.8967

SCN 36.58 0.954 32.35 0.905 31.26 0.885 29.52 0.897
RED30 37.66 0.9599 32.94 0.9144 31.98 0.8974 30.91 0.9159
SRCNN 36.66 0.9542 32.42 0.9063 31.36 0.8879 29.5 0.8946

FSRCNN 37 0.9558 32.63 0.9088 31.53 0.892 29.88 0.902
VDSR 37.53 0.9587 33.03 0.9124 31.9 0.896 30.76 0.914
DRCN 37.63 0.9588 33.04 0.9118 31.85 0.8942 30.75 0.9133

LapSRN 37.52 0.959 33.08 0.913 31.8 -/- 30.41 0.91
DRRN 37.74 0.9591 33.23 0.9136 32.05 0.8973 31.23 0.9188

MemNet 37.78 0.9597 33.28 0.9142 32.08 0.8978 31.31 0.9195
CARN-M 37.53 0.9583 33.26 0.9141 31.92 0.896 3083 0.9233

RDN 38.24 0.9614 34.01 0.9212 32.34 0.901 32.89 0.9353
CSFM 38.26 0.9615 34.07 0.9213 32.37 0.9021 33.12 0.9366

SRFBN 38.11 0.9609 33.82 0.9196 32.29 0.901 32.62 0.9328
CFSRCNN 37.79 0.9591 33.51 0.9165 32.11 0.8988 32.07 0.9273

SOM-SR(Ours) 38.35 0.9881 34.6407 0.9265 32.45 0.9024 33.2 0.9377

size of 7 × 7 with a one-pixel overlap between neighbor-
ing patches for the low-resolution images. It is clear that
as the number of patches increased, the quality of the re-

constructed high-resolution image increased. Clearly, as the
number of patches increased, the quality and resolution of the
reconstructed high-resolution image increased. However, the
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TABLE 4. Comparing the results of the proposed method with other algorithms for the complete databases with the image zoom factor 3. The numbers with a red
mark indicate the best results, and the numbers with a blue mark indicate the second-best results.

Algorithms SET 5 SET 14 BSDS 100 URBAN 100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 30.39 0.8682 27.55 0.7742 27.21 0.7385 24.46 0.7349
A+ 32.58 0.9088 29.13 0.8188 28.29 0.7835 26.03 0.7973

RFL 32.43 0.9057 29.05 0.8164 28.22 0.7806 25.86 0.79
SelfExSR 32.58 0.9093 29.16 0.8196 28.29 0.784 26.44 0.8088

SCN 32.62 0.908 29.16 0.818 28.33 0.783 26.21 0.801
RED30 33.82 0.923 29.61 0.8341 28.92 0.7993 27.31 0.8303
HDRN 34.24 0.924 30.23 0.84 28.96 0.804 27.93 0.849

LSRCNN 34.05 0.9238 30.16 0.8384 28.94 0.8012 27.76 0.8424
FERN 34.36 0.9268 30.35 0.8422 29.1 0.8049 28.18 0.8521

SRCNN 32.75 0.909 29.28 0.8209 28.41 0.7863 26.24 0.7989
FSRCNN 33.16 0.914 29.43 0.8242 28.53 0.791 26.43 0.808

VDSR 33.66 0.9213 29.77 0.8314 28.82 0.7976 27.14 0.8279
DRCN 33.82 0.9226 29.76 0.8311 28.8 0.7963 27.15 0.8276

LapSRN 33.82 0.922 29.63 0.8269 28.82 0.798 27.07 0.828
DRRN 34.03 0.9244 29.96 0.8349 28.95 0.8004 27.53 0.8378
EDSR 34.37 0.927 30.28 0.8417 29.09 0.8025 28.15 0.8527

MemNet 34.09 0.9248 30 0.835 28.96 0.8001 27.56 0.8376
CARN-M 33.99 0.9255 30.08 0.8367 28.91 0.8 26.86 0.8263

RDN 34.71 0.9296 30.57 0.8468 29.26 0.8093 28.8 0.8653
CSFM 34.76 0.9301 30.63 0.8477 29.3 0.8105 28.98 0.8681

SRFBN 34.7 0.9292 30.51 0.8461 29.24 0.8084 28.73 0.8641
CFSRCNN 34.24 0.9256 30.27 0.841 29.03 0.8035 28.04 0.8496

SOM-SR(Ours) 31.04 0.91 24.1334 0.7699 29.11 0.7903 28.79 0.8672

TABLE 5. Comparing the results of the proposed method with other algorithms for the complete databases with the image zoom factor 4. The numbers with a red
mark indicate the best results, and the numbers with a blue mark indicate the second-best results.

Algorithms SET 5 SET 14 BSDS 100 URBAN 100
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Bicubic 28.42 0.8104 26 0.7027 25.96 0.6675 23.14 0.6577
A+ 30.28 0.8603 27.32 0.7491 26.82 0.7087 24.32 0.7183

RFL 30.14 0.8548 27.27 0.7451 26.75 0.7054 24.19 0.7096
SelfExSR 30.31 0.8619 27.4 0.7518 26.84 0.7106 24.79 0.7374

SCN 30.41 0.863 27.39 0.751 26.88 0.711 24.52 0.726
RED30 31.51 0.8869 27.86 0.7718 27.39 0.7286 25.35 0.7587
HDRN 32.23 0.896 28.58 0.781 27.53 0.737 26.09 0.787

LSRCNN 31.88 0.8907 28.43 0.7776 27.47 0.7321 25.78 0.7739
FERN 32.17 0.8944 28.59 0.7812 27.57 0.7364 26.11 0.7856

SRCNN 30.48 0.8628 27.49 0.7503 26.9 0.7101 24.52 0.7221
FSRCNN 30.71 0.8657 27.59 0.7535 26.98 0.715 24.62 0.728

SRDenseNet 32.02 0.893 28.5 0.778 27.53 0.733 26.05 0.781
VDSR 31.35 0.8838 28.01 0.7674 27.29 0.7251 25.18 0.7524
DRCN 31.53 0.8854 28.02 0.767 27.23 0.7233 25.14 0.751

SRGAN 29.46 0.838 26.6 0.718 25.74 0.666 24.5 0.736
LapSRN 31.54 0.885 28.19 0.772 27.32 0.728 25.21 0.756
ESPCN 29.1 0.851 26.4 0.744 25.5 0.696 24.02 0.726
DRRN 31.68 0.8888 28.21 0.772 27.38 0.7284 25.44 0.7638
EDSR 32.46 0.896 27.71 0.786 27.72 0.742 26.64 0.803

MemNet 31.74 0.8893 28.26 0.7723 27.4 0.7281 25.5 0.763
CARN-M 31.92 0.8903 28.42 0.7762 27.44 0.7304 25.63 0.7688

SR-RESNET 32.05 0.891 28.49 0.782 27.61 0.736 26.09 0.783
RDN 32.47 0.899 28.81 0.7871 27.72 0.7419 26.61 0.8028

CSFM 32.61 0.9 28.87 0.7886 27.76 0.7432 26.78 0.8065
SRFBN 32.47 0.8983 28.81 0.7868 27.72 0.7409 26.6 0.8015

CFSRCNN 32.06 0.892 28.57 0.78 27.53 0.7333 26.03 0.7824
SOM-SR(Ours) 25.1535 0.8202 20.5376 0.49054 21.43 0.603 22.43 0.6454

maximum efficient number of patches is finite, so increasing
the number of patches beyond the maximum number did
not affect the quality of the reconstructed images and only
consumed machine memory with useless data. In addition,
our attempts to extract more patches beyond the specific
patch limit only increased the algorithm’s execution time. By
creating the image patches for natural and medical images

from their image training datasets and training the dictionary
with feature vectors of the patches based on the desired
application, we tested the proposed image superresolution
algorithm with various natural and medical image datasets
and next compared the results with other traditional and
state-of-the-art image enhancement methods using quanti-
tative and qualitative criteria. We used six quantitative and
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TABLE 6. Comparison of the average execution time(seconds) of the different algorithms, where red shows the best performance among all methods and blue
shows the second-best performance among all methods.

Dataset Scale Bicubic A+ SelfExSR SCN VDSR MSLAPSRN SRCNN DRCN SOM-SR(Ours)

SET 5

2 0.0010 0.3525 83.866 1.1632 0.2345 0.2273 0.1805 0.2992 281.134
3 0.0009 0.3517 83.725 1.1606 0.2342 0.2270 0.1812 0.2987 281.092
4 0.0009 0.3520 83.585 1.1616 0.2340 0.2266 0.1852 0.2982 281.063
8 0.0009 0.3513 84.033 1.1592 0.2348 0.2278 0.1841 0.2998 282.156

SET 14

2 0.0016 0.6917 65.982 2.2826 0.1794 0.1789 0.3923 0.2354 363.867
3 0.0020 0.6912 66.066 2.2809 0.1796 0.1791 0.3926 0.2357 364.151
4 0.0017 0.6913 66.178 2.2812 0.1798 0.1794 0.3932 0.2361 364.202
8 0.0013 0.6924 66.122 2.2849 0.1797 0.1792 0.3926 0.2359 364.241

BSDS 100

2 0.0012 0.4603 90.845 1.5189 0.2482 0.2463 0.2315 0.3241 487.686
3 0.0012 0.4607 90.789 1.5203 0.2481 0.2461 0.2317 0.3239 487.541
4 0.0012 0.4615 90.901 1.5229 0.2483 0.2464 0.2361 0.3243 487.438
8 0.0012 0.4601 90.733 1.5183 0.2480 0.2460 0.2357 0.3237 487.239

URBAN 100

2 0.0038 0.5433 120.837 1.7928 0.3371 0.3276 0.3311 0.4311 617.98
3 0.0037 0.5426 121.005 1.7905 0.3374 0.3280 0.3305 0.4317 618.65
4 0.0035 0.5429 121.117 1.7915 0.3376 0.3283 0.3308 0.4321 618.50
8 0.0031 0.5430 120.977 1.7919 0.3373 0.3280 0.3315 0.4316 618.66

DW

2 0.0009 0.3365 80.672 1.1043 0.2188 0.2142 0.1769 0.2885 279.892
3 0.0007 0.3338 80.613 1.0881 0.2182 0.2131 0.1772 0.2889 279.888
4 0.0006 0.3302 80.603 1.0677 0.2177 0.2126 0.1764 0.2883 279.893
8 0.0006 0.3287 80.596 1.0598 0.2179 0.2127 0.1775 0.2878 279.796

MRI

2 0.0007 0.3327 80.312 1.0796 0.2147 0.2129 0.1745 0.2884 278.991
3 0.0007 0.3326 80.308 1.0787 0.2148 0.2127 0.1746 0.2877 278.987
4 0.0007 0.3228 80.310 1.0788 0.2145 0.2120 0.1747 0.2879 278.990
8 0.0006 0.3210 80.298 1.0774 0.2140 0.2122 0.1739 0.2770 278.983

(a) .Original LRImage (b) .GroundT
(PSNR/SSIM)

(c) .Bi-Cubic
(28.55/0.9066)

(d) .RESNET
(43.38/0.9487)

(e) .RDN
(44.24/0.9626)

(f) .CSFM
(44.26/0.9635)

(g) .SRFBN
(44.06/0.9628)

(h) .CFSRCNN
(43.65/0.9488)

(i) .Our SomSR
(44.98/0.9648)

FIGURE 11. Comparison of the proposed superresolution with other methods
for sample images in the DW-MRI database with magnification x2.

qualitative parameters to compare the results of the proposed
algorithm with other traditional and state-of-the-art image

(a) .Original LRImage (b) .GroundT
(PSNR/SSIM)

(c) .Bi-Cubic
(23.15/0.7364)

(d) .RESNET
(30.89/0.7843)

(e) .RDN(31.57/0.83) (f) .CSFM
(31.78/0.8302)

(g) .SRFBN
(31.56/0.8298)

(h) .CFSRCNN
(31.25/0.8288)

(i) .Our SomSR
(32.89/0.8457)

FIGURE 12. Comparison of the proposed superresolution with other methods
for sample images in the DW-MRI database with magnification x4.

superresolution methods. In addition to commonly used eval-
uation metrics, such as the mean squared error (MSE), peak
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(a) .Original LRImage (b) .GroundT
(PSNR/SSIM)

(c) .Bi-Cubic
(28.30/0.9031)

(d) .RESNET
(41.04/0.9488)

(e) .RDN
(42.83/0.9534)

(f) .CSFM
(42.85/0.9538)

(g) .SRFBN
(42.80/0.9530)

(h) .CFSRCNN
(41.35/9501)

(i) .Our SomSR
(42.98/0.9548)

FIGURE 13. Comparison of the proposed superresolution with other methods
for sample images in the spectroscopic MRI database with magnification x2.

signal-to-noise ratio (PSNR), and structural similarity index
(SSIM), we used some other benchmarks to evaluate med-
ical imaging enhancement approaches, such as the mutual
information (MI) measure, which measures the degree of
statistical dependence between two random variables [38];
the feature similarity index measurement (FSIM), which is
based on the measurement of phase congruence and gradient
magnitude to characterize local image quality [39]; gradient
magnitude similarity deviation (GMSD), which is based on
the exploration of the global variation in the local image
quality map based on the gradient for the prediction of the
global image quality [40]; and the natural image quality
evaluator, which determines the image quality by calculating
the local statistics of the input image (NIQE) [41]. We
considered several approaches to compare the performance
of the proposed image superresolution algorithm for medical
MR imaging compared to traditional and state-of-the-art
methods. Therefore, for better image superresolution recon-
struction, the values of PSNR, MSSIM, MI, FSIM should be
high, and MSE, GMSD, NIQE should be small.

1) The Medical Diffusion-Weighted MRI Image
Superresolution
We tested the proposed image superresolution algorithm and
other image superresolution methods on DW-MRI images,

(a) .Original LRImage (b) .GroundT
(PSNR/SSIM)

(c) .Bi-Cubic
(22.32/0.7134)

(d) .RESNET
(27.15/0.8802)

(e) .RDN
(27.57/0.8822)

(f) .CSFM
(27.65/0.8860)

(g) .SRFBN
(27.67/8866)

(h) .CFSRCNN
(29.08/0.897)

(i) .Our SomSR
(31.98/0.0.9138)

FIGURE 14. Comparison of the proposed superresolution with other methods
for sample images in the Spectroscopic MRI database with magnification x4.

and the corresponding results of the algorithms on DW-
MRI image reconstruction for visual comparison and image
comparison according to quantitative image benchmarks are
presented in Figure 11 for the scale factor of 2 and Figure
12 for the scale factor of 4. The proposed method in image
reconstruction successfully provided the best performance
in reconstructing object edges from images and also recon-
structed the edges of objects with a smooth slope and not
with a fast and steep slope, similar to other superresolution
algorithms, which can be seen in the figures. The proposed
method achieved an average improvement of approximately
0.7532 and 0.118 dB in PSNR over that of the CSFM method
for 4-factor and 2-factor scaling, respectively, as shown in
Table 1. For the proposed method, significant improvements
were observed in PSNR, SSIM, and many other reference
parameters. Because of the above results and careful analysis
of the results by expert clinical operators, it is evident that
for DW-MRI superresolution imaging, the proposed method
is much more effective than traditional and state-of-the-art
superresolution imaging techniques.

2) The Medical Spectroscopic MRI Image Superresolution
The results of the proposed method compared with other
image enhancement methods for spectroscopic MR images
are presented in Figure 13 and 14 for scale ratios of 2 and 4,
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(a) .Original LRImage (b) .GroundT
(PSNR/SSIM)

(c) .Bi-Cubic
(29.21/0.9598)

(d) .RESNET
(30.96/9600)

(e) .RDN
(31.96/0.9673)

(f) .CSFM
(31.97/0.9674)

(g) .SRFBN
(31.95/0.9669)

(h) .CFSRCNN
(31.80/0.9500)

(i) .Our SomSR
(32.00/0.9678)

FIGURE 15. Comparison of the proposed superresolution with other methods
for sample images in the real ground-truth database with magnification x2.

respectively. The proposed method provides a better visual
representation of the reconstructed image, with increased
edge and boundary details, compared to traditional and state-
of-the-art techniques. For most parameters, the proposed
method is superior to other methods. The proposed method
achieves an average improvement of approximately 0.91 and
0.9114 dB in PSNR over the CSFM method for 2-factor
and 4-factor scaling, respectively, as shown in Table 2. The
proposed method shows significant improvements in terms
of PSNR, SSIM, and several other parameters. It is deter-
mined that, in the case of MR superresolution spectroscopic
imaging, the proposed method is much more efficient than
traditional and modern superresolution imaging techniques.

3) The Real Ground-Truth Image Superresolution
We evaluated the performance of the proposed method both
quantitatively by image matching criteria and qualitatively by
visual comparison with traditional and state-of-the-art meth-
ods, including interpolation approaches (bicubic method),
dictionary-based image enhancement (A+ [37], RFL [42]),
self-similarity based methods [16], artificial neural network-
based methods (Ms-LapSR [43], MemNET [44], RED30
[45], CARN-M [46], CFSRCNNN [47], HDRN [48], LSR-
CNN [49], FERN [50], SRDenseNet [51], DRRN [44], SR-
GAN [52], ESPCN [53], SCN [54], FSRCN [55], SRCNN

(a) .Original LRImage (b) .GroundT
(PSNR/SSIM)

(c) .Bi-Cubic
(24.40/0.7511)

(d) .RESNET
(27.88/0.885)

(e) .RDN
(27.53/0.8818)

(f) .CSFM
(27.95/0.8997)

(g) .SRFBN
(27.96/0.88999)

(h) .CFSRCNN
(27.87/0.884)

(i) .Our SomSR
(24.18/0.7286)

FIGURE 16. Comparison of the proposed superresolution with other methods
for sample images in the real ground-truth database with magnification x4.

[56], DRCN [57], VDSR [58], LapSRN [5], EDSR [59], SR-
Resnet [60], RDN [61], CSFM [62], and SRFBN [63] for
a scale factor of 2, 3, and 4. We performed several com-
prehensive experiments on conventional datasets, of which
the SET5, SET14, and BSDS100 datasets consist of nat-
ural scenes, and the URBAN100 dataset includes images
of architecturally challenging scenarios with varying details
at different frequencies. These experimental results of the
proposed approach and other traditional and state-of-the-art
methods in terms of signal-to-noise ratio (PSNR) and struc-
tural similarity index (SSIM) criteria are shown in Table 3 for
scale Factor 2, Table 4 for scale Factor 3 and Table 5 for scale
Factor 4. The experimental results are presented in Table
3 and show the superiority and efficiency of the proposed
model for high-resolution image reconstruction compared to
other image superresolution methods. As a result, our method
with scale Factor 2 outperforms traditional and state-of-the-
art approaches, such as SRFBN and CSFM, on four datasets
and achieves a comparable result with the RDN method with
zoom Factor 2. In particular, compared with SRFBN, CSFM
achieves a remarkable gain of almost the same PSNR and
SSIM for zoom Factor 2. The proposed method achieves an
average improvement of approximately 0.14 dB at SET5,
0.57 dB at SET14, 0.08 dB at BSDS100, and 0.13 dB at
URBAN100 at PSNR over the CSFM method for the zoom
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FIGURE 17. Running time versus PSNR of the proposed algorithm and other image enhancement algorithms on MRI images with a scale Factor x2. The method
with the maximum PSNR is marked in green, and methods with a fast algorithm running time are marked in red.

scale of 2. The proposed method achieves at least an average
improvement of approximately 0.0266 in SET5, 0.0052 in
SET14, 0.0003 in BSDS100, and 0.0011 in URBAN100 in
SSIM over the CSFM method for a scaling of 2. Moreover, as
shown in Tables 4 and 5, the proposed method achieves weak
results for scaling Factors 3 and 4. All these tables show that
our image enhancement approach that is based on the SOM-
KNN technique can present better results than traditional
and some state-of-the-art image enhancement techniques and
achieve reasonable PSNR and moderate SSIM at scale Factor
2. In practice, several experiments were performed with
all image superresolution algorithms, the results of which,
presented in Figures 15 and 16, show that our method is better
than several others in reconstructing all details of an image,
such as edges and lines. However, to present the best results
in natural image reconstruction, the proposed method needs
a very large training database, and the similarity of image
details in the database should be higher.

4) Comparison of computing times

We used the existing state-of-the-art and traditional algorithm
codes to compare the running time of our method with these
algorithms, and the results of the average running time on
various image datasets are shown in Table 6. We can see in
Table 6 that our proposed method has a much lower running

time speed than other image enhancement algorithms. The
execution speed of the proposed algorithm is much slower
than that of other image enhancement algorithms due to the
use of all three image color components in the algorithm’s
calculations, i.e., the R, G, and B components. As a result,
the computational time is more than three times longer than
that of other algorithms that use YCbCr space and employ
only one image component, such as the Y component, in
their calculations. The use of three color components in-
creases the number of image patches up to three times,
and as a result, the image patch feature vectors have more
attributes. The proposed algorithm easily finds the correct
high-resolution patches. Therefore, the proposed algorithm
provides higher-quality images than those produced by other
image enhancement algorithms. Figure 17 shows the peak
signal-to-noise ratio values of the different superresolution
imaging algorithms as a function of the execution speed of
each algorithm over time. Our method is much slower than
the other methods but has the maximum peak signal-to-noise
ratio over that of other algorithms.

5) Serial and parallel processing in the CPU-GPU
environment

In this work, we used both series programming on the CPU
hardware and parallel programming on the GPU hardware to
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execute the proposed image superresolution algorithm. We
used CPU hardware and serial programming for image up-
and downsampling with a predefined zoom factor, filtered
images with different kernels, and extracted patches with
multiple kernel numbers. We also used it for vectorization,
vector normalization, and at the end of the algorithm, for
high-resolution image reconstruction. We used GPU hard-
ware and parallel programming to train the SOM algorithm,
the k-nearest neighbor algorithm, the high-resolution image
patch, and high-resolution image reconstruction at the end of
the algorithm.

V. DISCUSSIONS
In this paper, to increase the quality and resolution of medical
images, we introduced an image enhancement method and
presented the results obtained in improving the quality and
resolution of natural and medical images. Such a method
is based on a dictionary learning-based medical image re-
construction approach. In recent years, several dictionary-
based image superresolution algorithms have been used to
reconstruct high-resolution images from low-resolution im-
ages based on a single dictionary. However, due to the
complexity of high-frequency details and texture information
present in real images, a single dictionary cannot success-
fully recover image details. Single dictionary-based image
superresolution algorithms did not present good performance
in reconstructing real images. Image enhancement methods
based on regression and clustering using multiple dictio-
naries achieved better results in high-resolution image re-
construction than image enhancement methods using single
dictionaries, but these methods did not find the inherent
relationship between LR and HR patches. Deep neural net-
work learning-based methods can reconstruct high-resolution
images significantly better than clustering and regression-
based methods, but estimating the amount of error is the
major problem for these methods. In addition, they use the
backpropagation technique to update their weight vectors.
These weight vector update processes are time-consuming,
which increases the execution time of the image enhancement
algorithm in the training stage. However, all of the above
methods for reconstructing object boundaries and edges in
images with smoothed slopes are weak. This is especially
true in medical images, which have spatially changing pixel
intensities throughout an image and considerable variations,
unlike natural images, whose pixel intensities throughout an
image are almost uniform and hardly change. We attempted
to solve the three main problems of the previous methods,
such as the intrinsic relationship between low- and high-
resolution patches, the limitation of image detail acquisition,
the omission of updating the neural network weight vectors
by the backpropagation approach, and the estimation of the
optimal and minimum error values for calculating the neural
network weight vectors in the new model. The proposed
image superresolution method uses self-organizing maps as a
preprocessor, and this neural network works as the tree search
block in the regression and classification methods. Thus,

by using this preprocessor, we achieved the accuracy and
speed of artificial neural networks in the single dictionary-
based image reconstruction methods that work according
to the classification and regression methods by using this
preprocessor. Moreover, the proposed image superresolution
method can reconstruct high-resolution images with better
quality from a single dictionary, unlike the previous image
superresolution method based on a single dictionary, which
cannot present high-quality images. In addition, we used
the nearest neighbor algorithm as a classifier to classify the
feature patch vectors that previously belonged to the neurons
of the neural network in the training stage. In particular,
the vectors corresponding to the neurons at the boundary
of the neural network, since these neurons, depending on
the network topology, have incomplete neighbors. Therefore,
the algorithm can accurately reconstruct the high-frequency
details and texture information of the reconstructed images
by unsupervised learning approaches and effectively remove
the artifact and blocking effects of the reconstructed high-
resolution images by classifying the input feature vectors
into the correct categories. In addition, it can reconstruct
the boundaries and edges of objects in images with good
quality. We trained our model with 800 images from the
Div2K dataset after preprocessing and processing the images.
We then tested the model with 100 images from the Div2K
dataset, and our model test results were satisfactory. We
validated the algorithm with 100 images from the Div2K
dataset with acceptable validation results. In addition, to
train, test, and validate the proposed model with medical MRI
and DW images, we used the medical imaging dataset from
the brain development organization. All training, testing, and
validation processes for medical imaging with the same as
the previous training for natural imaging. We compared the
results of the proposed method with those of other tradi-
tional and state-of-the-art image superresolution methods on
natural and medical image datasets. Figure 10 shows the
resulting images reconstructed by our image enhancement
method from various image datasets for scale Factor x2. We
can see in these images that the image details, such as edges
and boundaries, were reconstructed very well. As seen in
Column (e) of the figure, which shows the high-frequency
difference between the output image of the proposed algo-
rithm and the original high-resolution image, the proposed
algorithm reconstructed all the details of the high-frequency
image, and all images in this column are black and do
not contain any remaining high-frequency image detail. We
compared images reconstructed by the proposed algorithm
in different image databases with images reconstructed by
other image enhancement algorithms, both in terms of quality
by expert persons and quantitatively using numerical image
comparison criteria. The proposed image reconstruction al-
gorithm is superior to other image enhancement methods
for both natural and medical images with a zoom factor of
2. However, as the image zoom factor increases, the pro-
posed algorithm gradually loses its advantage compared to
other image enhancement algorithms in reconstructing high-
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quality images because it only uses a single high-frequency
filter to process the input image, unlike the other algorithms
that use several image feature extractor filters, such as edge,
Gradian, Laplace, high-frequency and angular filters. As
seen in the results presented in the tables for the different
datasets, the results of the proposed method on the datasets
are very different from each other, which is due to the use
of trial and error methods in estimating the size of high-
and low-resolution image patches. In addition, higher texture
similarity in the input images leads to the reconstruction of
more details in the output images. The proposed method is
more capable of reconstructing human faces and medical
magnetic resonance images with the best resolution, as these
images have many similar details in their structures. The
ability of the method to reconstruct natural images, such as
landscapes and forests, which do not have many similar tex-
tures, is reduced. We also estimated the running time of the
algorithms in the reconstruction of existing images by testing
the proposed algorithm, as well as other existing image en-
hancement algorithms, on images with dimensions of 64x64,
256 x 256, 512 x 512, and 1024 x1024. The results showed
that the execution time of the proposed algorithm is high
compared to other methods because the proposed algorithm
uses three components R, G, and B of the color image, so the
computational time is three times longer than other image
enhancement methods. We also used MATLAB software to
run the algorithm, which is much slower than the C and
Python programming languages used by other algorithms.
However, despite the slowness of the algorithm compared to
other image enhancement methods, it is surprisingly effective
in reconstructing the details of image objects, such as edges
and contours, with a very smooth slope, especially in clinical
images. In the future, we will use gradient kernels to improve
the resolution of these images.

VI. CONCLUSION
In this paper, we proposed a novel hybrid single-image
superresolution method for magnetic resonance image en-
hancement based on a self-organizing neural network as a
preprocessor, the nearest neighbor algorithm as a classifier,
and the use of a high-pass filter as a high-frequency image
detail extractor. Unlike other image enhancement methods,
our method uses a single overcomplete external dictionary
to train the proposed method. We resolved the intrinsic re-
lationship problem between low- and high-resolution image
patches in the training dictionary by defining feature vectors
that directly contain the low- and high-resolution patches.
In addition, we solved the difficulty of specifying the ap-
propriate amount of error at the training and testing stages
due to the variability of MR image contrast. We also solved
the use of backpropagation methods in updating the neural
network weight vectors by competitive learning that does not
require error correction. Since MRI images of internal body
parts and organs of people are very similar in appearance and
differ only in size, our method of reconstructing such images
is very effective. This method’s success lies in its ability to

reconstruct the boundaries and edges of the objects in the
image with a smooth slope without the need to perform any
statistical calculations or adjust the regularization parame-
ters. Practical experiments on the proposed superresolution
method compared with other methods illustrate that our im-
age reconstruction method achieves high performance. Under
limited computational resources, our method achieves better
evaluation criteria among all traditional and state-of-the-art
benchmarks. It also achieves more reliable performance and
resolution on images with different scale factors. We used
CPU-GPU hardware and parallel programming to train and
test the proposed algorithm and obtain better performance in
algorithm speed and execution time.
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