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ABSTRACT Semi-supervised video object segmentation (semi-VOS) is required for many visual applica-
tions. This task is tracking class-agnostic objects from a given segmentation mask. Various approaches have
been developed and achieved high accuracy in this field, but these previous models are hard to be utilized
in real-world applications due to slow inference time and tremendous complexity. To significantly speed up
inference while reducing performance gaps from those previous models, we introduce a fast segmentation
model based on a template matching method and auxiliary loss with a transition map. Our template matching
method consists of short-term and long-term matching. The short-term matching enhances target object
localization by focusing on neighboring frames, while long-term matching improves fine details and handles
object shape-changing by considering long-range frames. However, since both matching processes generate
each template based on the previously estimated masks, this incurs error propagation for tracking objects in
the next frames. To mitigate this problem, we add auxiliary loss with a newly proposed transition map for
encouraging correction power to create accurate masks of the target object. Our model obtains 81.1% J&F
score at the speed of 78.3 FPS on the DAVIS16 benchmark and achieves 1.4× faster speed and 11.3% higher
accuracy than SiamMask, one of the fast semi-VOS models.

INDEX TERMS Semi-supervised video object segmentation, video object segmentation, video object
tracking, deep learning.

I. INTRODUCTION
Video object segmentation (VOS) is an essential technique
to precisely identify the shape of target objects under various
conditions in every video frame. This technique is necessary
for many applications such as autonomous driving, video
editing, and surveillance systems. In this paper1, we focus on
the semi-supervised video object segmentation (semi-VOS)
task, which is to track a target in a pixel-wise resolution from
a given annotated mask for the first frame.

Semi-VOS is a challenging task because we need to
embed information about a target regardless of its class
and have to consider the shape-changing of the target over
time. Many methods are proposed to resolve these problems,
but it is hard to be used in real-world environments due
to tremendous computation. For example, online-learning
fine-tunes model parameters using the given frame image

The associate editor coordinating the review of this manuscript and

approving it for publication was Victor Sanchez .
1This work is an extended version of TTVOS [1].

FIGURE 1. The speed (FPS) vs accuracy (J&F score) on the
DAVIS2016 validation set. Our proposed model achieves high accuracy
with small complexity.

and the corresponding ground truth mask [2]–[8]. This strat-
egy makes the model’s parameters more specialized in each
target object, but it requires additional time and memory
for fine-tuning at the inference stage. Other approaches,
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matching methods [9]–[11], [13], [14], construct target infor-
mation as a template and match it to the current frames for
finding the target. This method does not need extra-training
in inference stage, but it is not fast enough for real-world
applications. For example, the required memories of target
information increase over time in some models for handling
shape variation of the target, or a lot of computation is needed
for the process of matching or updating templates at every
frame.

Another challenge for semi-VOS is temporal consistency
of masks across frames. There are two perspectives regarding
temporal consistency. Firstly, a sequence of masks changes
smoothly across frames. In other words, the target object’s
movements in consecutive frames are plausibly connected.
Secondly, the target mask of the entire frame should exclude
the non-target region, even if there is shape-changing in
the target object across frames. This is a more challenging
issue in a template matching method since the template is
maintained based on previous results for the next frame’s
prediction. It can incur some risk: prediction failures started
in a certain frame may accumulate over time and eventually
lead the entire estimation in the wrong direction, resulting
in the final mask containing a completely different region
irrelevant from the target object.

Optical flow is one of the popular methods to resolve
the mentioned problems for diverse video applications by
correctly estimating pixel-wise movement vectors or trajec-
tories. In semi-VOS tasks, it propagates a given mask or
features across frames to re-align the information for current
frames [18]–[21]. However, even though the optical flow is
only a part of the entire process, it needs huge resource to
provide too much information for the segmentation tasks. For
example, RAFT [22] is one of fast models in this field but it
needs 550 ms per frame on 1080p (1088× 1920) video from
DAVIS, and this slows down both training and inference.
We believe that it is sufficient to know the binary information
of whether a pixel is changed to foreground or background.
Therefore, we propose a more efficient method which trains
the model how to correct wrong predictions without needs
of optical flow. We use newly-defined ground truth which
guarantees temporal consistency. The ground truth guides the
model to learn in a direction that reduces error propagation
and improves coherence regarding prediction masks.

Our approach complements the existing video object seg-
mentation approaches by proposing an adaptive template
matching method and a novel transition map to improve
temporal consistency. Our contributions can be summarized
as follows:

• We propose a new lightweight VOS model based on
two template matching methods: short-term matching
for localization and long-term matching for fine mask
generation to achieve fast inference time and to reduce
the accuracy gap from previous heavy models.

• Our template is adaptively updated to manage shape
variation of target objects without heavy computation
and occupying additional memory.

• We propose a concept of transition map for auxiliary
loss to learn how to correct mis-estimated pixels from
previous frames for current frames to prevent error
propagation.

II. RELATED WORK
Here, we discuss various approaches for semi-supervised
video object segmentation (semi-VOS) as shown in Table 1.

A. VOS BASED ON ONLINE-LEARNING
The online-learning method is training the model with new
data in each inference iteration [2]–[4]. In the semi-VOS task,
model parameters are fine-tuned in the inference stage with
a given input image and a corresponding mask. Therefore,
the model is specialized for the given condition [5]–[7]. How-
ever, fine-tuning causes additional computation in inference
time. Robinson et al. [8] resolve this issue by dividing the
model into two sub-networks. One is a lightweight network
that is fine-tuned in the inference stage for making a coarse
score map. The other is a heavy segmentation network with-
out the need for fine-tuning. This network enables fast opti-
mization and relieves the burden of online-learning.

B. VOS BASED ON TEMPLATE MATCHING
Template matching is one of the traditional methods in the
tracking task. It generates a template and calculates sim-
ilarity with input as a matching operation. A-GAME [9]
designs a target distribution by a mixture of Gaussian in
embedding space, and it predicts posterior class probabilities
for matching. RANet [10] applies a ranking system to the
matching process between multiple templates and input for
extracting reliable results. FEELVOS [11] calculates distance
map by local and global matching for better robustness.
SiamMask [12] uses a depth-wise operation for fast matching.
This model show better speed than other model, but the
accuracy is lower than others. Recently, memory-query based
models improve accuracy a lot. STM [13] constructs multiple
memories for embedding target information, and finding tar-
get by matching between memories and input frame as key-
value-query concept. However, it requires lots of resources

TABLE 1. Summary of various approaches for semi-supervised video object segmentation.
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FIGURE 2. The overall architecture for real-time video object segmentation (VOS). A backbone feature is shared in all the processes of VOS for
efficiency. The two types of template matching (short-term and long-term) generate rough attention map for tracking object, and then the
refinement network makes accurate final mask. The heatmaps Ht − n : t − 1 and position information P are applied as attention clue. The
long-term matching takes both information, but the short-term matching use only heatmaps. The transition map π̂t is computed only in the
training phase for enhancing temporal consistency. Finally, the template is updated with a current prediction and a adaptive weight.

because the amount of memory is increased over time and
the size of memory is the square of the resolution of an input
feature map. To lower this huge complexity, GC [14] does not
stack memory at each time frame, but accumulates them into
one, which has smaller size than an unit memory of STM.

C. OPTICAL FLOW FOR TEMPORAL CONSISTENCY
Consistency loss is widely used for improving performance
in semi-supervised learning by artificial perturbation to input
[15]–[17]. In many VOS tasks, the meaning of consistency is
temporal consistency which represents smooth changing of
segmentation masks while excluding non-target region about
consecutive frames. To enhance this temporal consistency,
optical flow is applied in such a way that it re-aligns with
the differences between masks or features of adjacent frames
by estimated flow vectors of moving objects.

CRN [20] generates coarse masks of moving objects based
on optical flow and refines themwith the following networks.
In many works, optical flow is used to convey additional
information to guide the segmentation network for refine-
ment [6], [23]. Similarly, FAVOS [18] leverages optical flow
to warp previous predictions and uses them with current
predictions to generate accurate ground truthmasks for online
learning. Segflow [21] designs end-to-end networks with two
sub-networks complementing each other for image segmen-
tation and optical flow, respectively, to estimate target masks.
However, optical flow is difficult to apply to real-time appli-
cations because it requires a huge amount of computation.
Instead of using optical flow, we propose a method based on
binary information of whether pixels change from foreground
to background, and vice versa.

III. THE PROPOSED METHOD
In this section, we present our semi-VOSmodel. Section III-A
introduces the whole model architecture and how to manage
multi-object VOS. Section III-B describes short-term and
long-term template matching methods how to calculate the
correlation between templates and frames for finding targets.

Section III-C explains the details of generating and updating
a template for long-term matching. Finally, Section III-D
demonstrates our concept of a transition map to enhance
temporal consistency by L2 loss with newly-defined ground
truth for mitigating error propagation between neighboring
frames.

A. OVERALL ARCHITECTURE
We propose a new architecture for VOS as shown in Figure 2.
Our model consists of feature extraction, template matching,
generation of transition map, refinement network, and tem-
plate update with adaptive weight. In the feature extraction
stage, we extract feature maps of multiple sizes from the
current frame for the other modules.

We perform template matching in two ways: short-term
and long-term with attention clue. In short-term matching,
we compute the similarity between the short-term template
and the current feature map. Here, the short-term template is
generated from the feature map of the previous frame t − 1
and we use small feature maps to reduce the computation.
However, this incurs two problems: 1) Utilizing only feature
maps from the previous frames t−1 causes too much depen-
dency on previous results in the output masks. 2) Matching
results from small feature maps are not sufficient to obtain a
fine target shape.

To resolve these problems, we also propose long-term
matching by using long-range information. The long-term
template contains the entire frame’s information as a global
template to avoid over-dependence on the previous frame’s
information. In this module, we use larger feature maps to get
more detailed information sufficient for generating accurate
masks. After then, two matching results are combined to
produce an attention map At . The backbone generates fea-
tures of various sizes fNt , where fNt denotes a feature map
of the current frame It with a 1/N -sized width and height
compared to the input. The short-term matching uses f 16t ,
and the long-term template matching uses f 8t for producing
each similarity map. The details are in Section III-B.
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After then, our model generates the final segmentation
mask by refinement network. In the refinement network,
we apply ConvTranspose to At and other feature maps for
upsampling. We conduct PixelShuffle [24] in the last layer
to prevent the grid-effect on the final segmentation heatmap
Ĥt and the detail is described in Section III-E. Also, a scalar
value as weight wt is calculated for updating the long-term
template, and wt adaptively decides how much current infor-
mation is added to the template for the next frame. Finally,
f 16t and current heatmap Ĥt are used for replacing short-term
template matching for next frames. In the case of long-term
template, f 8t , Ĥt and wt are utilized to update for the next
template matching as described in following Section III-C.
At only training time, the model estimates a transition map
π̂t fromAt . The transitionmap estimates pixel-wise transition
information between background and foreground from frame
t − 1 to frame t to induce correction power and to encourage
temporal consistency for the current results, and the detail is
explained in Section III-D.

1) MULTI OBJECT CASE
All the backbone features are also shared in a multi-object
scenario. However, the other remained stages are conducted
separately for each object. All the heatmaps of objects have
two channels for the probability of background and fore-
ground, and we use these heatmaps to produce the final
segmentation mask ŷt by the soft-aggregation method in the
inference time fallowing [9], [25]. In single object case,
we directly use Ĥt as the final segmentation mask ŷt .

2) IMPROVEMENT FROM THE PREVIOUS WORK [1]
In our previous work, we used different attention clue for tem-
plate matching. In this paper, we use multiple heatmaps and
coordinate information for new attention clue. Also, we pro-
pose adaptive weight module for updating the long-term
template. In our previous work, we used only a previous
heatmap Ht−1 and fixed the weight decay parameter by 1/t .

B. TEMPLATE MATCHING
In tracking objects, object localization and fine segmentation
mask generation are critical to improving accuracy. Local-
ization means that the model finds where the target object
is, even if there are other similar objects in the same frame.
Fine segmentation mask is generated by handling a target’s
shape-changing from the first given image and corresponding
mask. To tackle the above problems, we make two assump-
tions based on empirical observation. Firstly, the position
of the object in the current frame t is close to that in the
previous frame t − 1. Secondly, we can extract common
factors encompassing long-range frames, even if the shape
of the object changes across frames. Therefore, we devise
short-term matching for localization from the first assump-
tion and long-term matching for accurate masks from the
second assumption.

FIGURE 3. (a) Structure of generating short-term template STt and
matching process (b) Structure of process of long-term matching by using
long-term template LTt .

1) ATTENTION CLUE
Not all vectors in a feature map of frame contain the informa-
tion of target objects since most vectors are generated from
background pixels, and only a few vectors are involved in
the target objects. To mitigate the inflow of non-object infor-
mation, we give attention clue from previous information.
We set n as 3 for Ĥt−n:t−1 (i.e. Ĥt−3, Ĥt−2, and Ĥt−1) under
empirical observation as previous information. Each heatmap
consists of two channels containing the probability of back-
ground and foreground, respectively. We also add three types
of coordinate layers P to enhance position information on
heatmaps for the long-term template. P consists of coordinate
values along the x-axis and y-axis, and radial distance from
the center.

2) SHORT-TERM MATCHING
First, f 16t−1 and attention clue are concatenated together,
and the concatenated feature map is forwarded by several
convolution layers to embed short-term template STt as
shown in Figure 3 (a). Finally, the latest updated short-term
template STt and the current feature map f 16t are con-
catenated to compute similarity between both features as
SSTt by a single convolution layer and a single ReLU
layer.
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FIGURE 4. (a) The detailed structure of template update. An operation
(a,b,c) denotes the input channel, output channel, and kernel size of
convolution operation, respectively. (b) Process in updating long-term
template and matching the template with query. Here, a red (blue) color
means a high (low) similarity between two information. The size of f (X ′t )
and g(Xt ) is finally reshaped to clt ×HW , but we draw feature maps as
clt ×H ×W for the sake of convenient understanding.

3) LONG-TERM MATCHING
Long-term template matching consists of 1) generating a cor-
relationmap Zt by comparing the query q(Xt ) to the long-term
template LTt 2) blending Zt and f 8′t , the modified feature map
of the current frame, to produce long-term similarity SLTt as
shown in Figure 3 (b). To generate query q(Xt ), the back-
bone feature map f 8t is concatenated with attention clue to
suppress information far from target object location of the
previous frames, and the concatenated feature is forwarded to
convolution layers. Zt is produced by matrix multiplication
between the template LTt ∈ RNlt×clt and the query feature
map q(Xt ) ∈ Rclt×HW as follows:

Zt = LTt × q(Xt ). (1)

Here LTt is a template matrix consisting of Nlt vectors
with clt dimensions describing the common factor of the
target object. In other words, each row of LTt is one template
vector which is generated across long-range frames following
Section III-C, and the number of columns Nlt means that
the model extracts Nlt types of common factor. Each column
vector of q(Xt ) is a feature vector in the particular position
(h,w). The row vector from LTt and the column vector of
q(Xt ) are compared using the inner product for calculating
correlation. Therefore, if the resultant value from Eq. (1) is

high at the certain (h,w) position, there is high possibility
that the (h,w) position be included in the target, and vice
versa. After then, the long-term correlation map Zt and mod-
ified feature map f 8′t are concatenated to make the final
feature map by blending both results as shown in the bottom
of Figure 3(b).
To reduce computational cost while retaining a large recep-

tive field, we use group convolution (group size of 4) with
a large kernel size of 5 × 5 of kernel for generating q(·).
Although depth-wise convolutions has less FLOPs than group
convolutions, we do not use them because the larger number
of groups in convolutions adversely affects the model exe-
cution time [26]. We select LeakyReLU as the non-linearity
to avoid the dying ReLU problem. We use a point-wise
convolution first then apply the group convolution due to the
group size for convolution.

C. UPDATE LONG-TERM TEMPLATE
We conjecture that pixels inside a target object have a dis-
tinct embedding vector distinguished from non-target object
pixels. Our model is designed to embed this vector by
self-attention while removing the irrelevant information of
the target object. Each current embedding vector updates
a previous long-term template by adaptive weight at each
frame, and finally the template represents common factor
describing target object. The updated template is used to find
the target object in the next frame by generating similarity
map as shown in Figure 4.
For constructing the current embedding vector, the back-

bone feature f 8t and attention clue are concatenated to gen-
erate X ′t while suppressing information far from the target
object. Here, heatmaps Ĥt−n+1:t in attention clue consist of
Ĥt−2, Ĥt−1, and Ĥt . The concatenated feature map X ′t is
forwarded to two separate branches f (·) and g(·), making
f (X ′t ) ∈ RNlt×H×W and g(X ′t ) ∈ Rclt×H×W like embedding
key and value function as shown in Figure 4 (a). After then,
the feature maps are reshaped to Nlt × HW and clt × HW
andmultiplied to generate an embeddingmatrix about current
information Ic as follows:

Ic = σ (f (X ′t )× g(X
′
t )
T ) ∈ RNlt×clt . (2)

Here, σ is a softmax function applied row-wise. This oper-
ation is similar to global pooling and region-based operation
[27] in terms of making one representative value I i,jc . In detail,
if the hexagon in Figure 4 (b) indicates the enhanced region by
attention clue, and the information outside of the hexagon is
suppressed. Therefore, we can compare a ith channel of f (X ′t )
and a jth channel of g(X ′t ) regarding target information along
thewholeHW plane. If the two channels are similar, the resul-
tant value of I i,jc will be high (red pixel in Figure 4(b));
otherwise, it will be low (blue pixel). In other words, I i,jc is
the (i, j) element of Ic, and it represents the jth information
of the ith factor describing target’s property. Finally, we have
Nlt factor which consist of clt dimension about current target
object.
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FIGURE 5. ((a)-(d)) Frame t − 1 and t from top to bottom. (a) Input image. (b) Ground truth. (c) Our result. (d) Estimated mask with color
marking. Blue color means wrong segmentation result, and the blue region in frame t is corrected from frame t − 1. (e) Visualizing πt,2.
Top: Ht −Ht−1, Bottom: Ht − Ĥt−1. Ht −Ht−1 cannot remove false positive region in the top of (c).

TABLE 2. The complexity and accuracy comparison between GC and ours
when the input image size is 480× 853. Segmentation and Update mean
the requirement of FLOPS for executing segmentation without refinement
stage, and updating a memory or a template. Our method reduces lots of
computations for update process.

The final long-term template LTt+1 is updated by adaptive
weightwt , the embedding matrix Ic and the previous template
LTt as below:

LTt+1 =
1

1+ wt
LTt +

wt
1+ wt

Ic. (3)

The wt determines how much the template is updated by
current information, and it is calculated through the convo-
lution block as shown in Figure 2. The convolution block
for adaptive weight consists of average-pooling, convolution
layer f and sigmoid function σ as follow:

wt = σ (f2(AvgPool(f1(At ))), (4)

Here, we only apply ReLU activation function to f1. When
the template vector is similar to the input frame’s query fea-
ture q(Xt+1), the resultant SLTt+1 value will be high (red pixel
in Figure 4 (b)). Otherwise, it will be low (blue in Figure 4(b))
as mention in Section III-C.
The method of updating long-term template has some

similarity to GC, but ours is computationally much cheaper
by using attention clue. Specifically, GC re-extracts back-
bone features again from a new input which consists of
current frame ft and estimated mask M̂t for updating target
information. However, re-extracting feature is huge burden
for executing in real-time environment. In detail, when GC
updates their memory, they need similar computation to con-
ducting whole segmentation process as shown in Table 2. Our
template method just combines the feature map and attention
clue to mitigate inflow of irrelevant information, and thus our
model can reuse the already produced backbone feature for
updating process with simple calculation.

1) INITIALIZATION FOR LT0
In initialization stage, we generates LT0 with a frame and a
corresponding ground truth mask. We use same method for
P, and fill zero for Ĥt−2, and Ĥt−1. For Ĥ0, we utilize ground
truth mask. As following Eq 2, we construct Ic and take it
as LT0.

D. TRANSITION MAP FOR TEMPORAL CONSISTENCY
Our templates are constructed based on estimated results
along the entire executed frames. Therefore, when the tem-
plate is updated with incorrect results, it will gradually lead
to incorrect tracking. In this case, if the model obtains the
proper transition information on how to modify the wrong
estimation of the previous frame to the true estimation for the
current frame, the model can alleviate this error propagation
problem. For this reason, we calculate a transition map π̂t ,
which contains pixel-wise conversion between background
and foreground from At as shown in Figure 2. The model
simply produces the transition map with a single convolution
layer from At . We add L2 loss as Ltm by using the transition
map π̂t to encourage correction power and achieve consis-
tency between neighboring frames:

πt = Ht − Ĥt−1, Ltm = (π̂t − πt )2. (5)

As a new learning target, we make a novel transition map
from ground truth heatmap Ht and previous estimated mask
heatmap Ĥt−1 as in Eq. (5). Note that the first and the second
channel of Ht are the probability of background and fore-
ground from the ground truth mask of frame t , respectively.
By Eq. (5), the range of all values of πt becomes (−1, 1),
and πt also consists of two channel feature map indicating
transition tendency from t − 1 to t . In detail, the first channel
contains the transition tendency of the background, while
the second is for the foreground. For example, πh,wt,2 means
a value of πt in the (h,w) position of second channel. If it
is close to 1, it helps the estimated class at position (h,w) to
change into foreground from frame t − 1 to t . On the other
hand, if it is close to −1, it prevents the estimated class from
turning to the foreground. Finally, when the value is close to
0, it keeps the originally estimated class of frame t − 1 for a
frame t result.
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FIGURE 6. Structure of refinement network. 
 indicates concatenation of
feature maps.

The reason why we use Ĥt−1 instead of Ht−1 is illustrated
in Figure 5. Figure 5 (b) shows ground truth masks, and (c) is
the estimated masks at frame t − 1 (top) and t (bottom). First
row of Figure 5 (e) is a visualization of (Ht−Ht−1) that guides
the estimation to maintain the false positive region from the
frame t−1 to t . Second row of Figure 5 (e) is a visualization of
(Ht−Ĥt−1) that guides the estimation to remove false positive
region of the frame t − 1. Figure 5 (d) is marked by blue
color for denoting false estimation results comparing between
(b) and (c). As shown in Figure 5 (d), the transition map πt
helps reducing the false positive region from frame t− 1 to t .
With Ltm, the overall loss becomes:

Loss = CE(ŷt , yt )+ Ltm, (6)

CE denotes the cross entropy between the pixel-wise
ground truth yt at frame t and its predicted value ŷ.

E. REFINEMENT NETWORK
The refinement network produces a final heatmap of
the target object by repeatedly using ConvTranspose and
PixelShuffle as shown in Figure 6. Here, ConvTranspose and
PixelShuffle are two of the widely used upsampling methods.
ConvTranspose pads or inserts zeros into the input feature
map to carry out convolutions for upsampling. PixelShuffle
rearranges the shape of the input feature map from (C,H ,W )
to (C/r2,H × r,W × r), where C,H ,W and r are the
number of channels, the height and the width of the input
feature map, and an upscaling factor, respectively. Firstly, At
is forwarded by upsampling block which consists of single
convolution layer, ReLU and ConvTranspose to produce R4t .
Secondly, R4t is concatenated with f 4t for adding more
detailed local information to generate R′4t . We also add S ′STt ,
which is upsampled by ConvTranspose from SSTt , for enhanc-
ing localization information. Finally, R4t , R′4t , and S ′

ST
t are

concatenated together and upsampled by ConvTranspose for
changing the number of channels and by PixelShuffle for
avoiding the grid-effect problem. Then, a heatmap of target
object is produced by calculating probability of background
and foreground. In single object tracking scenario, we use
the heatmap for final segmentation map, but in multiple
object tracking case, we apply soft-aggregation to merge
every heatmap for making the final segmentation map as
follow [9], [13], [28].

IV. EXPERIMENT
Here, we show various evaluations by using DAVIS bench-
marks [38], [39]. DAVIS16 is a single object task consist-
ing of 30 training videos and 20 validation videos, while
DAVIS17 is a multiple object task with 60 training videos
and 30 validation videos. We evaluate our model by using
official benchmark code.2 The DAVIS benchmark reports
model accuracy by average of mean Jaccard index J and
mean boundary score F . J index measures overall accuracy
by comparing estimatedmask and ground truth mask.F score
focuses on more contour accuracy by delimiting the spatial
extent of the mask.
Implementation Detail: We use HRNetV2-W18-Small-v1

[40] for a lightweight backbone network and initialize it from
the pre-trained parameters of the official code.3 We freeze
every backbone layer except the last block. The size of the
smallest feature map is 1/32 of the input image.We upsample
the feature map and concatenate it with the second smallest
feature map whose size is 1/16 of the input image. We use
ADAM optimizer for training our model. Firstly, we pre-train
our model with synthetic video clips from image dataset,
after then we train it with video dataset with single GPU
following [9], [11]–[14].
Pre-Train With Images: We follow [10], [13], [14]

pre-training method, which applies a random affine trans-
formation to a static image for generating synthetic video
clips. We use the saliency detection dataset MSRA10K [41],
ECSSD [42], and HKU-IS [43] for various static images.
Synthetic video clips consisting of three frames with a size of
240× 432 are generated. We train 100 epochs with an initial
learning rate of 2e−4 and a batch size of 48.
Main-Train With Videos: We use a two-stage training

method; for the first 100 epochs, we only use Youtube-VOS
[29], [30] with 240 × 432 image. We then train on the
DAVIS17 [38], [39] dataset with 480 × 864 image for an
additional 100 epochs. In both trainings, we use 8 consecutive
frames for each batch, and the initial learning rate does not
change. We set a batch size of 24 and an initial learning rate
to 3e−4 for Youtube-VOS, and we use a batch size of 8 and
an initial learning rate to 1e−4 for DAVIS.

A. DAVIS BENCHMARK RESULT
1) COMPARISON TO STATE-OF-THE-ART
We compare our method with other recent models as shown
in Table 3. We report backbone models and training datasets
of each model for clarification because each model has
a different setting. Our model shows better or competi-
tive accuracy among fast models with more than 30 FPS
speed for real-time applications. Specifically, SiamMask,
which uses depth-wise style template matching method,
is the fastest model among the previously proposed methods.
Our model has better accuracy and speed than SiamMask

2https://github.com/davisvideochallenge/davis2017-evaluation
3https://github.com/HRNet/HRNet-Semantic-Segmentation
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FIGURE 7. Example of three videos. Each first row is the input overlapped with the ground truth mask. Each second row is the estimated
transition map πt . Here, white region means there are high possibility that the pixel has to change foreground and vice versa. Each third row
is the activation map of blended results with two template matching At Each fourth row is estimated mask of the video frame.

on both DAVIS16 and DAVIS17 benchmarks. Also, our
model achieves better performance than FAVOS, OSMN,
and RGMP. Also, in the DAVIS16 single video tracking
case, ours show competitive accuracy with FRTM-VOS,
A-GAME, and FEELVOS. The performance gap is 2.4%,
1.0%, and 0.6%, but our model’s speed becomes 3.6×,
5.5×, and 10.2× faster, respectively. Therefore, our method
achieves favorable performance among fast VOS models

and reduces the performance gap from the online-learning
and memory network-based models. Figure 7 shows various
example for qualitative evaluation with activation map of
blended feature map from two template matching results At ,
transition map π̂t and estimated mask ŷt . The transition map
results match the predicted mask, which shows that the tran-
sition map guides the model’s training to improve temporal
consistency.
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TABLE 3. Quantitative comparison on DAVIS benchmark validation set. DAVIS17 is a multi-object scenario and DAVIS16 is a single-object scenario. YTB is
using Youtube-VOS [29], [30] for training. Seg is segmentation dataset for pre-training by pascal [31] or COCO [32]. Synth is using saliency dataset for
making synthetic video clip by affine transformation. Segflow uses customized feature extractor and additional dataset with KITTI [33], SIntel [34] and
scene flow [35] dataset for a optical flow branch.

TABLE 4. Ablation study on DAVIS16 and DAVIS17. Short-term M, Long-term M means using short-term matching and long-term matching. Update
long-term represents updating long-term template at every frame, and adaptive weight means whether using adaptive weight. Attention clue is using
multiple of heatmaps and coordinate layers as clue, and × indicates not using any attention clue but re-extracts feature again with previous mask.
Transition map means using auxiliary loss.

B. ABLATION STUDY
To prove our proposed methods, we perform an ablative
analysis on DAVIS16 and DAVIS17 benchmark as shown
in Table 4 and visualize the efficacy of several methods as
shown in Figure 8. Short-term M, and Long-term M mean
using short-termmatching and long-termmatching.Whenwe
do not use the short-term or long-term matching, we replace
the original matching method by concatenating the previous
mask heatmap and the current feature map. After then the
concatenated featuremap is forwarded by several convolution
layers.Update Long-term represents updating long-term tem-
plate at every frame, and if not used, the model never updates
the long-term template. Adaptive Weight means whether
using adaptive weight or using decaying weight at a fixed rate
as like GC for updating long-term template. Attention Clue
means our proposed clue by using multiple heatmaps and
coordinate layers, and if not used, the model uses only previ-
ous heatmap Ĥt−1 as clue. Also, × indicates that model does
not use any attention clue but re-extracts feature again with
previous mask for updating long-term template. In detail,
the model extracts feature from predicted mask with a single
convolution layer, batch-normalization and ReLU for making
a feature map of same size as a backbone feature map. After
then, the two feature maps are added together for enhancing

only nearby regions from previous target locations like STM.
Finally, the merged feature map is forwarded into remained
layers to end feature extraction stage. Transition Map denotes
adding auxiliary loss for improving temporal consistency.
Figure 8 shows several examples of each module’s efficacy
with three videos (1st-2nd rows, 3th-4th rows, 5th-6th rows).
Each video’s first row is the early frame of the video and
the second row is the later frame of the video.

We find that each matching method has a different respon-
sibility for what we desire. The short-term matching helps
maintain objects ID from localization clue, and long-term
matching improves mask quality by enhancing the fine
details. For example, Exp1 keeps object ID but fails to
make an accurate mask for rider and motorbike, as shown
in Figure 8 (c) 5th-6th rows. On the contrary, Exp2 makes
an accurate shape but loses green-object ID (motorbike) as
shown in Figure 8(d) 6th row. Exp2 shows performance
degradation on multi-object tracking task (DAVIS17) due to
failure in maintaining object ID, even it generates more accu-
rate masks than Exp1. Even Exp2 fails to keep green-object
ID in the early frame as shown in 8(d) the first row (human)
and the third row (box). Therefore, Exp1 achieves better
performance in DAVIS17, and Exp2 shows high accuracy in
DAVIS16 as shown in Table 4. Exp3 gets every advantage
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FIGURE 8. Three examples of video regarding various ablation study with early frames and later frames in video. 1st and 2nd rows soapbox
example of ablation study for frame 3 and 78 from top to bottom. 1st and 2nd rows loading example of ablation study for frame 4 and 41 from top
to bottom. 1st and 2nd rows motocross-jump example of ablation study for frame 1 and 35 from top to bottom. (a) Input frame. (b) Ground truth.
(c) Using only short-term matching (Exp1). (d) Using only long-term matching (Exp2). (e) Without attention clue for updating long-term template
(Exp7). (f) Our proposed method (Exp8).

FIGURE 9. (a) Scatter plot about foreground (FG) ratio versus scale of weight. (b) and (c) are the plots about FG ratio and weight at each frame.
The size of object is decreased in (b), but the size of object is increased in (c) over time.

from both template matching methods, and Exp44 uses aux-
iliary loss with transition map to improve both accuracies.

Exp5-Exp7 explain the importance of updating method for
the long-term template. Exp5 is using the long-term tem-
plate, but the template is never updated, and Exp6 conducts
an update stage at every frame without adaptive weight.
In detail, the update weight is decayed with fixed rate
over time following the proposed method in GC. Firstly,

4This is result of previous work TTVOS [1].

even though Exp5 does not update the long-term template,
the performance of DAVIS17 is increased a lot by 3.2% than
Exp4with the proposed attention clue. However, the accuracy
of DAVIS16 is lower than Exp4, and it means the model fails
to generate an accurate mask. In the case of Exp6, using naive
update weight shows improving DAVIS16 accuracy with a
similar performance of DAVIS17 from Exp5. In the case of
Exp6, using naive updating weight improves DAVIS16 accu-
racy, while it shows similar performance in DAVIS17 from
Exp5. Therefore, we can deduce two characteristics.
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TABLE 5. DAVIS17 and DAVIS16 results by additionally applying auxiliary
loss with transition map.

TABLE 6. Additional experiments with using different backbone.
MobileV3L denotes MobileNetV3-Large. DV17 and DV16 are DAVIS17 and
DAVIS16, respectively. #FLOPs and #Param indicate the number of FLOPs
and parameters.

First, using multiple heatmaps and position information as
attention clue is helpful to enhance the localization power of
model. Second, updating the long-term template can handle
an object’s shape-changing to generate a more accurate mask.
Accuracy degradation in Exp7 proves that concatenating
attention clue is an adequate method for maintaining a proper
template without heavy computation of re-extracting fea-
tures. We follow the STM method, which extracts features
again, but the result is lower than ours. Also, re-extracting
feature increases FLOPs a lot, and this incurs tricky problem
to apply real-environments. Finally, ours (Exp8) does not lose
object ID and generate delicate masks with high performance
on both benchmarks.

C. ANALYSIS OF ADAPTIVE WEIGHTS
We conduct further analysis about adaptive weight. We find
that the scale of weight is inversely proportional to the ratio
of foreground (FG) region in the input frame. Figure 9 (a) is
a scatter plot about the FG ratio versus the scale of the first
frame’s weight, which shows an negative correlation between
two factors. Figure 9 (b) and (c) are scale of FG ratio and
weight for each frame. The weight for the first frame is
significantly higher than the weights of other frames. The
trend of weight is different depending on the change in the
FG ratio. The ratio of FG is gradually getting smaller over
time as shown on Figure 9 (b), but the ratio in Figure 9 (c) is
progressively larger over time. Therefore, the scale of weight
in Figure 9 (b) is steadily increased, but the scale of weight
in Figure 9 (c) behaves inversely. We conjecture that the
amount of suppression about feature vectors is far from the
FG region by attention clue. We conjecture that the amount
of suppression, which is for feature vectors not activated by
attention clue, is related to the scale of weight. In detail, when
the object is small, the quantity of information is smaller
than the large object case. To make balanced quantity across
frames, the model derives a large scale of weight for ampli-
fying current information.

D. IMPROVING ACCURACY BY TRANSITION MAP
We conduct further experiments for proving the efficacy
of our auxiliary loss by transition map with FRTM-
VOS, which is one of the fast online-learning methods,
using ResNet101 and ResNet18 for the backbone network.
We implement our proposed loss function based on
FRTM-VOS official code5 and follow their training strat-
egy. Our proposed loss is more useful in the lightweight
backbone network (ResNet18) as shown in Table 5. When
we apply our loss to the ResNet101 model, the accuracy on
DAVIS17 decreased slightly by 0.1%, but it increased 1.7%
on DAVIS16. In the ResNet18 model, we improve the accu-
racy a lot on both DAVIS17 and DAVIS16. We conjecture
that using our loss not only improves mask quality but also
resolves a problem of overfitting due to fine-tuning by a given
condition.

E. DIFFERENT BACKBONE EXPERIMENTS
We conduct further experiments with multiple backbone
networks (ResNet18, ResNet50, MobileNetV3-Large) to
compare accuracy and complexity as shown in Table 6.
We initialize the backbone network from the pre-trained
model and freeze every block except the last block of each
backbone network. For ResNet50, we do not use the orig-
inal four-block structure but use only a three-block struc-
ture like STM and GC. Ours with ResNet50 shows lower
accuracy by 12.3 (DAVIS17) and 6.2 (DAVIS16), but ours
has 6× faster speed than STM. Similarly, this model has
lower accuracy by 1.9 (DAVIS17) and 3.5 (DAVIS16) but
achieves 1.5× faster thanGC. The ResNet18model has better
performance than HRNet, and even it takes a large number of
FLOPs. We conjecture that the HRNet has a multiple-branch
structure, and the structure is usually harmful to real model
speed and not friendly to GPU parallel computing. Like-
wise, the MobileNetV3-Large model has fewer FLOPs than
HRNet, but the model is slow. Most layers in MobileNet
consist of depth-wise separable convolution. This has fewer
FLOPs than standard convolution, but it has slow executed
time due to not friendly structure for GPU computation.

V. CONCLUSION
Many semi-VOS methods have improved accuracy, but they
are hard to utilize in real-world applications due to tremen-
dous complexity. To resolve this problem, we propose a
novel lightweight semi-VOS model consisting of short-term
and long-term matching modules. The short-term matching
enhances localization, while long-term matching improves
mask quality by handling an object’s shape-changing with
adaptive weight. However, using previously estimated results
incurs an error-propagation problem. To mitigate this prob-
lem, we also devise auxiliary loss, which guides the
model to learn correction of false estimated regions with

5https://github.com/andr345/frtm-vos
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transition maps. Finally, Our model achieves fast inference
time while reducing the performance gap from heavy models.

One of the limitations of the proposed method is that a tar-
get may be lost when the target is occluded from other objects
for a long time. When the target object disappears due to
occlusion, many regions in the previous mask become zeros.
It implies that we cannot give attention clues for the next
frame, and the model has to find the target in a broader range.
We observe that it may cause performance degradation. One
of our research directions might be designing a more robust
method to handle this problem in environments with severe
occlusions.
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