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FEATURES OF METAHEURISTIC METHODS
Summary. The essence of tasks and classification, as well as the necessity of fulfillment of conditions and 
relations on the set are analyzed. The properties of the equivalence relation are specified. As elementa-
ry fragments are analyzed all edges of the graph. The conditions of attachment of an edge are the next: 
this edge is a ray of an existing star or has no common vertices with already constructed stars of cover-
age. Emphasis is placed on the lack of optimality of such a solution. The aim of this work is to construct 
metaheuristics for finding a suboptimal classification defined by a tolerance relation on a finite set. This 
approach allows one to construct partitions close to optimal sets in accordance with the relation of “prox-
imity” of elements. Moreover, this relationship of proximity is not transitive. The proposed algorithms 
can find wide application in applied problems related to the problem of object classification by a number 
of attributes. Such problems often arise in the economic, social and technical sciences. The urgency of the 
fragmentary structure of the problem was emphasized. Specifies the ability to build classes by looking at 
the entire list of objects that are classified in a specific order. On the basis of fragmentary structure it is 
proposed to use evolutionary algorithm. The prospect of using a genetic algorithm to find the best classi-
fications was evaluated. The step-by-step sequence of operations of the genetic algorithm with examples 
is shown: selection, crossing, mutation, selection. Examples of key operators are given, named crossovers 
and mutations. A detailed algorithm of the evolutionary model is clearly illustrated. The principle of action 
of the evolutionary fragmentary algorithm is described in detail. As a set of feasible solutions, a subset 
of maximal fragments on a given fragmentary structure is considered. The mechanism of checking the 
quality of the genetic algorithm on a fragmentary structure, which reduces to a lot of variants, is defined. 
The problem of finding optimal classifications on a finite set is investigated. It is shown that the problem 
of finding the optimal classification generated by the tolerance relation on a finite set is reduced to the 
problem of optimization on the set of permutations. A modification of the method of mixed jumping frogs 
for finding suboptimal solutions of the classification problem is proposed.
Keywords: classification, optimal classification, discrete set, evolutionary algorithm, genetic algorithm, 
method of mixed jumping frogs.
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ОСОБЛИВОСТІ МЕТАЕВРИСТИЧНИХ МЕТОДІВ
Анотація. Проаналізовано особливості оптимальної класифікації на дискретній множині. Зазначено 
властивості відношення еквівалентності. Проаналізовано всі ребра як елементарні фрагменти графу. 
Визначено наступні умови кріплення ребра: ребро – це промінь існуючої зірки або воно не має спільних 
вершин з уже побудованими зірками покриття. Акцент робиться на відсутності оптимальності такого 
рішення. Розглянуто метаеврістіки для пошуку субоптимальності класифікації, визначеної ставленням 
толерантності на кінцевій множині. Такий підхід дозволяє будувати близькі до оптимальних розбиття 
множини відповідно до відношення «близькості» елементів. Причому це відношення близькості не є 
транзитивним. Запропоновані алгоритми можуть знайти широке застосування в прикладних задачах, 
пов'язаних з проблемою класифікації об'єктів за рядом ознак. Визначено, що подібні завдання часто 
виникають в економічних, соціальних і технічних науках. Наголошено на актуальності фрагментарної 
структури. Запропоновано використовувати еволюційний алгоритм на основі фрагментарної структури. 
Було оцінено перспективу використання генетичного алгоритму для пошуку найкращих класифікацій. 
Показано поетапну послідовність операцій генетичного алгоритму на прикладах: відбір, схрещуван-
ня, мутація, відбір. Наведено приклади ключових операторів, названих кросоверів та мутацій. Чітко 
проілюстровано детальний алгоритм еволюційної моделі. Детально описано принцип дії еволюційно-
го фрагментарного алгоритму. Як набір можливих рішень розглядається підмножина максимальних 
фрагментів на даній фрагментарній структурі. Визначено механізм перевірки якості генетичного алго-
ритму на фрагментарній структурі, який зводиться до безлічі варіантів. Досліджено проблему пошуку 
оптимальних класифікацій на кінцевій множині. Показано, що завдання пошуку оптимальної класифі-
кації, яку породжено ставленням толерантності на кінцевій множині зводиться до задачі оптимізації на 
множині перестановок. Запропоновано модифікацію методу перемішаних стрибаючих жаб для пошуку 
субоптимальних рішень задачі класифікації.
Ключові слова: класифікація, оптимальна класифікація, дискретна множина, еволюційний алгоритм, 
генетичний алгоритм, метод перемішаних стрибаючих жаб. 
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Introduction. One of the most common math-
ematical problems of today is classification. It 

arises in the analysis of research results, in the design 
and forecasting, in the evaluation and decision-mak-
ing. In general, it is quite complex and contradictory.

An effective approach to the problem of classi-
fication based on the theory of fragmentary struc-
tures is found [2]. Like every metaheuristic the 
fragmentary approach is inferior to the classical 
approximate algorithms and cannot guarantee the 
closeness of the solution with its help to the optimal 
one. Simplicity of implementation and high speed 
of convergence allows finding with this method 
good approximate solutions of many complex opti-
mization problems [3-5].

This paper discusses the use of a combination 
of fragmentary and evolutionary algorithms to find 
optimal classifications and compares results with 
other metaheuristic methods.

The basic idea of finding a “good” classification 
is to introduce an optimality criterion. In this case, 
the classification problem is reduced to the problem 
of finding the optimal solution for some set of feasi-
ble solutions. Then all kinds of optimization meth-
ods start to work.

Analysis of recent research and publica-
tions. Nowadays, a large number of different clas-
sification methods are known, the effectiveness of 
which depends substantially on the specifics of the 
domain in which this task is formulated, and the 
peculiarities of the source information.

In the works [3–5] examples of theoretical appli-
cation of genetic algorithms for solving classifica-
tion problems are considered.

Formal problem statement. The problem of 
classification on the set X is the problem of splitting 
the set X into disjoint classes, that is, the task of 
finding such a family of subsets X�� � of the set X for 
which the following requirements are fulfilled:

1) X X Xu u� � �, ;
2) � �X X� ;
3) X X� � � �.
The requirement of class emptiness is irrele-

vant. We will consider the same classifications, 
which differ only by empty elements.

Recall that an equivalence relation on the set X 
called and any binary reflexive, symmetric relation 
on this set (the ratio "~"), which is defined by the 
following properties:

1. � � �x X x x� ;
2. � � � � �x y X x y y x, � � � ;
3. 2. � � � � � �x y z X x y y z x z, , ,� � � .
Each classification generates a natural equiva-

lence relation on the set X. Two elements are equiv-
alent, if and only if they belong to the same class.

The article purpose is to analyze the main 
features of metaheuristic methods.

The main material. An example of the classifi-
cation problem that will be considered in this paper 
is the problem of covering a star graph, which oc-
curs in many economic applications.

Suppose a graph whose edges are weighted by 
nonnegative numbers. The task is to find a set of 
stars in this graph that contain all vertices of the 
graph and the total weight of the edges is minimal. 
This task is in fact a classification task. The class in 

this case is all the vertices of the star. And in each 
class a representative – the center of the star.

The stars are arranged in an arbitrary manner. 
The next step in the algorithm is to select the first 
star in the sequence of stars that has no vertices in 
common with the fragments already found.

The idea of a fragmentary algorithm is the 
following: Every feasible solution to a problem is 
a fragment, which is represented as the union of 
indivisible parts – elementary fragments. A plu-
rality of fragments is subjected to a join operation 
that allows one to obtain a new fragment by adding 
one of the elementary fragments to an existing one. 
A fragmentary algorithm is an algorithm for find-
ing the maximum for the inclusion of a fragment.

Lets study it more strictly:
a) Determines the set of fragments {f} and the ex-

ternal operation ⊕ combining the fragments. Each fea-
sible solution to the problem consists of a finite number 
of fragments combined by an external operation.

b) Set a series of linear order {} relationships on 
a plurality of fragments, and an efficient ordering of 
fragments, which allows the ordering of fragments 
in different order according to the rules chosen.

c) Specify the conditions of attachment of the 
fragment, which can be both deterministic and dy-
namic, which change at each step. For an already se-
lected subset of fragments, an effective procedure for 
checking the possibility of joining a fragment that 
does not belong to the selected subset is specified.

Thus, the fragmentary algorithm allows us 
to construct a feasible solution of the problem for 
a linear number of fragments of time.

We show that the problem of covering a graph 
with stars has a fragmentary structure and, ac-
cordingly, any feasible solution to the problem can 
be obtained by applying a fragmentary algorithm.

As elementary fragments are all edges of the 
graph. The conditions of attachment of an edge – this 
edge is a ray of an existing star or has no common 
vertices with already constructed stars of coverage. It 
is easy to show that by applying a fragmentary algo-
rithm to a certain choice of the sequence of edges, any 
set of stars in a graph can be obtained, that is, any 
valid solution to the classification problem. However, 
such a solution is not necessarily optimal. In order to 
find the optimal solution, we describe a combination 
of evolutionary and fragmentary algorithms.

Evolutionary (genetic) algorithms have been con-
sidered in detail in numerous publications. Genetic 
algorithms are an optimal method based on the evo-
lution of a population of individuals. In 1975 the book 
John Holland, “Adaptation in Natural and Artificial 
Systems,” in which a genetic algorithm was proposed.

For a number of optimization problems, we have 
been able to offer sufficiently effective procedures for 
finding optimal solutions based on the application 
of evolutionary algorithms. To implement the evo-
lutionary algorithm, it is necessary to distinguish 
a number of objects and procedures, the set of which 
will be called the evolutionary model. The main com-
ponents of the evolutionary model are the following:

– base set of solutions – set of admissible solu-
tions X on which the optimal solution of the prob-
lem is sought;

– operator of initial population construction: a 
procedure that allows to set on set of all admissible 
solutions its subset Y ⊆ X for the next evolution;
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– selection criterion – an algorithm that allows 

you to compare the quality of the solution within a 
given population;

– crossover operator that allows for two valid 
parent solutions to build a new descendant solution 
from the set of valid solutions; 

– a selection operator that separates multiple 
pairs in Y to perform the crossover operation;

– operator of evolution, allowing to build new 
populations from many parents and offspring;

is a stop rule that determines the stop condition 
of an evolutionary algorithm.

Let us briefly describe the principle of evolution-
ary algorithm. In the initial step, a set of solutions 
Y0 is constructed with the help of the initial popu-
lation operator. At each next step, a certain set of 
valid solutions is predicted – the current popula-
tion. The first step is the set Y = Y0. The value of the 
selection criterion is calculated for each element of 
the set Y. Further, by using the selection in the 
current population Y is chosen set of pairs for the 
crossover. A crossover operator is applied to each 
pair of the selected set of pairs, and then a muta-
tion operator is applied to the crossover result. In 
this way there are many elements – descendants.

The intermediate population Y ∪ Ỹ, which is the 
union of the current population and the set of off-
spring, is applied by an evolution operator, which 
allocates a new current population on that set. The 
process of evolution is repeated until the condition 
of stopping the evolutionary algorithm is fulfilled. 

The properties of fragmentary structures allow 
us to construct a special class of evolutionary algo-
rithms on fragmentary structures – EVF algorithms.

The EVF algorithm is a combination of evolu-
tionary and fragmentary algorithm. We describe 
the evolutionary model and principle of operation 
of such an algorithm.

As a set of feasible solutions, a subset of max-
imal fragments on a given fragmentary structure 
is considered. Each fragment from this subset is 
defined as the result of the fragmentary algorithm 
operation with some given permutation of elemen-
tary fragments. Thus, any admissible solution cor-
responds to a definite permutation of the numbers 
1,2, ..., N , where N is the number of elementary 
fragments. The value of the objective function is de-
fined for each valid solution.

Basic set of X evolutionary model – a set of  
SN = {i1, i2,..., iN} all permutations of the numbers 
1, 2, ..., N . The operator selects constructing initial 
population subset given power Q from the set X.

The rule for calculating the selection criterion 
is arranged as follows: by the given permutation 
of fragments using the fragmentary algorithm, the 
maximum allowed fragment is constructed. The 
value of the task objective function for this frag-
ment is calculated.

We describe the crossover operator y.
Let be U u u uN� � ��1 2, , ,  and V v v vN� �� �1 2, , ,  two ran-

dom permutations. The descendant permutation 
is constructed as follows: the U and V sequences 
are viewed from the beginning. At the k-th step, the 
smallest of the first elements of the sequence is se-
lected and added to the new offspring. This element 
is then removed from the two parent sequences. 
For example,
K ((2,3,4,7,8,1,6,5), (3,4,6,2,1,5,8,7)) = (2,3,4,6,1, 5,7,8) (1)

The mutation operator M performs a random 
transposition (replacement of two elements) in the 
permutation.

The selection operator randomly selects a set of 
pairs from a given number of pairs in the multiple 
permutations of the current population.

The evolution operator arranges elements of the in-
termediate population into a sequence by decreasing 
the value of the selection criterion. As the new current 
population elected the first Q elements of the sequence.

Average usually stop – number of generations 
has reached the limits L. The best value for the se-
lection criterion is the permutation from the last 
constructed population that determines the ap-
proximate solution to the problem.

Mixed jumping frogs method. The algorithm of 
the method of mixed jumping frogs is simple to under-
stand and implement, has a small number of param-
eters, and has been successfully used to solve combi-
natorial and continuous optimization problems [5; 6].

The essence of the jumping frog algorithm for 
finding the optimal permutation is reduced to the 
following sequence of steps.

Step 1. Initialize the initial frog population as 
a set of points in the permutation space with Ken-
dall's metric Sn. 

Step 2. Calculate the value of the optimality crite-
rion for each permutation from the initial population. 

Step 3. Arrange the solutions in descending or-
der of the optimality criterion value. 

Step 4. Divide virtual frogs (solutions) into 
memplex blocks in such a way that the first virtual 
frog in the sorted list falls into the first memplex, 
the second is entered into the second memplex, etc. 

Step 5. Find the best sk1  and worst sk 2  solution in 
each memplex k K∈{ , ,..., }1 2 .

Step 6. Try to improve the position of the worst 
virtual frog by randomly moving it in the direction 
of the best frog s Cross s sk k= ( , )2 1 .

Step 7. If the previous operation does not im-
prove the solution, then try to improve the position 
of the worst virtual frog by moving it towards the 
globally better frog s Cross s sk= ( , )2 11 . 

Step 8. If the last operation does not improve the 
position of the virtual frog, then instead of it, randomly 
create a new frog in the search area – a permutation. 

Step 9. Combine virtual frogs of all memplexes 
into one group. 

Step 10 . If the conditions for the completion of 
the algorithm are not met, then go to Step 3. 

Step 11. The last globally best virtual frog corre-
sponds to a suboptimal problem solution. 

Let us now describe this algorithm formally, 
taking into account the parameters.

The method parameters are as follows:
1) the number of classes of frogs Q Q  ( )≥ 2 ; 
2) the number of elements r in each class (it is 

assumed that the sizes of the classes are the same 
and r ≥ 2); 

3) the maximum number of steps K of the algorithm; 
4) the number D of the best frogs in the class, 

and 0 < <D r. 
In accordance with the specified parameters, 

the size N of the frog population (the set of feasible 
solutions) is determined by the formula N Qr= . In 
the initial step of the algorithm creates the initial 
population of frogs by generating random permuta-
tions s i i ij

j j jn= ( , ,.., )1 2 , j N=1 2, ,..., .
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The best permutation of the vertices in terms 
of the goal function is selected, which defines the 
permutation s i i in* ( , ,..., )= 1 2 , and the value of the ob-
jective function is calculated F x( *) on this permu-
tation:

Step k (1≤ ≤k K ). The set is ordered P k( )−1  
by the value of the objective function, that is 
F s F s k Nk k( ) ( ), , ,...,� � ��1 2 3 1. The population P k( )−1  is 
divided into Q classes of the same cardinality r
P s s x j q i Q i r q qq
k qi qi j( ) ( ) ( ){ | , ( ) , , ,.., , , ,..., }� � � � � � � �1 1 1 2 1 2 .

The best solution s s* = 1  is determined by the 
value of the objective function for the entire popu-
lation. In each class Pq k( )−1 , the “best” s q( )1  and “worst” 
s qr( ) are determined by the value of the objective 
function of the solution. In each class Pq k( )−1 , the po-
sitions (sequences of traversing the vertices of the 
graph) of frogs change with numbers from D +1 to r. 
For each value of the index i D r� �{ , ,..., }1 2  a new po-
sition of the i-th frog (the sequence of traversing the 
vertices) in the class with number q is determined 
according to the following rule: a random permuta-
tion sc is calculated from the interval between the 
permutations s q( )1  and s qr( ) in the Kendall metric. 

The permutation on the segment between s q( )1  and 
s qr( ) is built according to the rule: sequences s q( )1  and 
s qr( ) are viewed from left to right. At the next step, 
the smallest of the first elements of the sequences 
is selected and added to the new permutation. Then 
this element is removed from the permutations s q( )1  
and s qr( ). For example, applying this operation to the 
permutations (2,4,7,6,1,3,5,8) and (5,8,1,3,4,2,6,7) 
gives the permutation (2,4, 5,7,6,1,3,8). 

If F s F sc qi( ) ( )( )< , then we assume s sqi c( ) = . If 
F s F sc qi( ) ( )( )≥ , then a random permutation sc is 
chosen in the segment between s qr( ) and s *. If 
F s F sc qi( ) ( )( )<  then we assume s sqi c( ) = . Otherwise, 
we choose a randomly generated permutation s qi( ).

We assume P Pk
q
k

q

Q
( ) ( )� �

�

1

1


 and go to the next step 
of the algorithm.

The algorithm ends when the specified number 
of steps has been completed. The current permuta-

tion s * determined at the last step is taken as the 
optimal solution to the problem.

Note that description is, the above algorithm s 
Resch was the problem of finding the optimal per-
mutations of n elements in the set of all permuta-
tions with the objective function F s( ) which is de-
fined on the set of permutations. In this case, the 
specific type of the objective function does not mat-
ter. Therefore, the above algorithm can be used to 
find suboptimal solutions to optimization problems 
on a set of permutations with arbitrary objective 
functions.

Numerical experiment. The weights of the 
graph edges were chosen randomly in the range 
[1,100]. These weights were considered as a meas-
ure of proximity for the respective vertices. The set 
of vertices of the graph was considered as a set of 
elements to be classified. A positive number was 
chosen randomly in the interval [0,1]. Linear or-
ders (permutations) on the set of vertices were not 
adjusted using the Fisher-Yates shuffle algorithm. 

The problems were solved using a local search 
algorithm, a random search method, evolutionary 
algorithms, and the method of mixed jumping frogs.

The comparison of algorithms was carried out in 
the following directions:

Record is the number of problems in a series 
where the algorithm turned out to be the best 
among the tested. Bord rating is the sum of the 
number of points scored on each problem in the 
series. For the first place in comparison, 5 points 
were assigned, for the second 4, for the third 3.

The results of the algorithm comparison are pre-
sented on Table 1. 

Conclusions. In this article, a method for finding 
optimal β-classifications based on two well-known 
metaheuristics was considered. A numerical ex-
periment showed good results of the proposed algo-
rithms in comparison with local and random search. 
This approach can be transferred practically with-
out changes to other types of classifications, which 
are based on the concept of proximity of elements.

Table 1
Results of applying different approaches

Series 
(number  

of vertices )
Number 
of tasks

Algorithm search 
loc. Random Search Evolutionary 

algorithm
Jumping frog 

method
Record Rating Record Rating Record Rating Record Rating

A 50 100 44 286 88 468 100 500 100 500
B 100 100 ten 221 0 348 100 500 100 500
H 500 100 0 212 0 280 94 394 100 500
D 1000 100 0 118 0 201 92 392 100 500
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