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Abstract 24 

Antibody epitope mapping of viral proteins plays a vital role in understanding immune system 25 

mechanisms of protection. In the case of class I viral fusion proteins, recent advances in cryo-26 

electron microscopy and protein stabilization techniques have highlighted the importance of 27 

cryptic or ‘alternative’ conformations that expose epitopes targeted by potent neutralizing 28 

antibodies. Thorough epitope mapping of such metastable conformations is difficult, but is critical 29 

for understanding sites of vulnerability in class I fusion proteins that occur as transient 30 

conformational states during viral attachment and fusion. We introduce a novel method 31 

Accelerated class I fusion protein Epitope Mapping (AxIEM) that accounts for fusion protein 32 

flexibility to significantly improve out-of-sample prediction of discontinuous antibody epitopes. 33 

Harnessing data from previous experimental epitope mapping efforts of several class I fusion 34 

proteins, we demonstrate that accuracy of epitope prediction depends on residue environment and 35 

allows for the precise prediction of conformation-dependent antibody target residues. We also 36 

show that AxIEM can to identify common epitopes and provide structural insights for the 37 

development and rational design of vaccines. 38 
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Author Summary 40 

Efficient determination of neutralizing epitopes of viral fusion proteins is paramount in the 41 

development of antibody-based therapeutics against rapidly evolving or undercharacterized viral 42 

pathogens. Advances in the determination of viral fusion proteins in multiple conformations with 43 

‘cryptic epitopes’ during attachment and fusion has highlighted the importance of epitope 44 

accessibility due to viral fusion protein flexibility, a physical trait not accounted for in previous B-45 

cell epitope prediction methods. Given the relatively limited number of viral fusion proteins that 46 

have been determined in multiple conformations that also have been extensively subjected to 47 

epitope mapping techniques, , which are predominantly class I fusion proteins, we chose a limited 48 

feature set in combination with a low-complexity Bayesian classifier model to avoid overfitting. 49 

We show that this model demonstrates higher accuracy in out-of-sample performance than 50 

publicly available epitope prediction methods. Additionally, due to limited structural annotation 51 

of neutralizing epitope residues, we provide examples of how our model better discerns 52 

conformation-specific epitopes, which is critical for subunit vaccine design, and how this may 53 

provide a novel approach to assess the structural changes of antigenicity of viral fusion protein 54 

homologues.   55 

  56 
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Introduction 57 

Successful structure-based vaccine design relies on the identification of antigenic 58 

determinants that are most likely to elicit a humoral immune response, which can be achieved 59 

through the process of epitope mapping(1).  Given the time and cost of experimental methods used 60 

for epitope mapping, computational B-cell epitope prediction may provide a more practical starting 61 

point to narrow the search for commonly conserved or novel epitope targets. Although B-cell 62 

epitopes are typically defined as a spatially clustered set of residues with a surface area of 600 Å2 63 

to 1,000 Å2,(2) the precise definition of both an epitope’s size and residue composition are not 64 

always readily known. Therefore, the major challenge of B-cell epitope prediction is making a 65 

precise and accurate distinction between residues that are or are unlikely to contact an antibody 66 

and whether epitope residues are contiguous in sequence or not. 67 

Data collections for structural epitopes, especially residue-specific data, have increased in 68 

the past several years through the curation of databases such as the Immune Epitope Data Base 69 

(iedb.org). This availability of data has permitted more accurate epitope prediction models, such 70 

as those provided by publicly available Discotope or Ellipro discontinuous epitope prediction 71 

servers(3,4). Even so, these epitope prediction models are limited to predicting epitopes of a single 72 

protein structure or even a single protein chain, which hinders the prediction of quaternary B-cell 73 

epitopes. Moreover, proteins are dynamic, i.e., they assume more than one conformation, and a 74 

single conformation of a protein may not be sufficient to predict all possible epitopes. For instance, 75 

the stabilization of the respiratory syncytial virus (RSV) fusion (F) protein in its meta-stable 76 

prefusion conformation coincided with the identification of a broadly-neutralizing epitope 77 
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designated Site Ø, which is surface-inaccessible in the more stable postfusion F protein 78 

conformation(5). 79 

The innate flexibility of class I viral fusion glycoproteins facilitates the entropy-driven 80 

process of membrane fusion to achieve cellular entry and host infection despite distinct fusion 81 

mechanisms. Compared to other proteins with antigenic determinants within a viral quasispecies, 82 

fusion proteins are more frequently targeted by broadly neutralizing antibodies, and therefore are 83 

prime candidates for rational structure-based viral vaccine design (so-called ‘reverse 84 

vaccinology’). As most viral fusion proteins are oligomeric and flexible, computational B-cell 85 

epitope prediction for these targets faces unique challenges. For thorough epitope mapping and 86 

prediction, the model should account for not only the prefusion quaternary structure of the target 87 

antigen, but also the changes in quaternary structure during attachment and fusion. Recent 88 

advances in experimental design and cryogenic electron microscopy (cryo-EM) allow discovery 89 

of cryptic epitopes in ‘alternative’ conformations of viral fusion proteins. It is now feasible to 90 

identify residue-specific epitope accessibility changes during the fusion process, albeit with great 91 

effort for each antibody-antigen interaction. 92 

We developed a machine learning approach designated Accelerated class I fusion protein 93 

Epitope Mapping (AxIEM) that harnesses evolutionary and structural features to classify whether 94 

a residue will reside within an epitope depending on the conformation of the fusion protein. We 95 

applied AxIEM to seven class I viral fusion proteins for which structures have been determined in 96 

at least two conformations and have been extensively subjected to experimental epitope mapping 97 

techniques. We show that AxIEM enables a much higher out-of-sample success rate in defining 98 

viral fusion epitopes than previous methods and provides a computational tool to identify antigenic 99 

determinants of novel or under-characterized viral fusion proteins. 100 
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Results 101 

Description of AxIEM Dataset 102 

The dataset used to build the training and test sets of the AxIEM model included seven class I 103 

fusion proteins (S1 Table), where each trimeric protein included at least two conformations of 104 

greater than 2.00 Å root mean square deviation (RMSD) and no two conformations of less than 105 

1.00 Å RMSD(6–26). For all 46,710 residues within the dataset, each residue possessed an 106 

expected classifier label that indicates the residue as an experimentally determined residue to be 107 

part of an epitope or not, plus a feature set of four metric values that account for the conformation 108 

and associated energetic changes each residue undergoes during various stages of attachment and 109 

fusion (Fig 1). Three of the four features were calculated to describe the residue alone in terms of 110 

its relative surface exposure, stability, and contact changes within the protein ensemble by using 111 

the metrics Neighbor Vector (NV)(27), the Rosetta-based per-residue total energy score (REU) 112 

(28), and contact proximity root mean square deviation (CPRMSD)(29), respectively. Comparison 113 

by a Welch’s two-tailed t-test for each residue-specific feature indicated that the mean value 114 

differed significantly between residues that have and have not been experimentally determined to 115 

form an antibody (Ab) binding interaction, with p < 1.00 × 10-4  for all three features (S1 Fig). 116 

Under the assumption that a residue is more likely to form an epitope if its surrounding residues 117 

are also likely to do so, we created the Neighbor Sum (NS) metric to estimate the antigenicity of 118 

the volume surrounding a single residue as a cosine-weighted linear sum of a residue’s own and 119 

surrounding NV, REU, and CPRMSD values, which increased the separation of epitope and non-120 

epitope scores with a Welch’s paired t-test p < 1.00 × 10-10  (S2 Fig). Please refer to Methods and 121 
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supplementary information for the detailed description of each metric and definition of epitope 122 

residues.  123 

 Given the significant differentiation of epitope from non-epitope residues using each 124 

metric, we calculated a multivariate Gaussian distribution for each training data’s feature sets and 125 

used a Bayes classifier to build a probability model to test for out-of-sample performance on the 126 

left-out protein ensemble(30). Performance accuracy relied on the definition of a true positive (TP) 127 

as a residue with a prediction score above a certain threshold value and also was designated as an 128 

expected epitope residue given a specific conformation with a classifier label of ‘1’ prior to 129 

building the model. A true negative (TN) is a residue with opposite characteristics of a TP, although 130 

this definition is not as rigid given the possibility of unidentified or incomplete characterization of 131 

antigenic sites. A false negative (FN) or false positive (FP) is any residue that scores incorrectly 132 

below or above, respectively, of a given threshold. 133 

 134 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

8 

 

Fig 1 135 

Overview of AxIEM. For each residue within the dataset, a set of four features was calculated that 136 

included three residue-specific features (outlined in red) and one environment feature (outlined in 137 

dark yellow). Two of the residue specific features that measured relative solvent exposure (as 138 

Neighbor Vector) and stability (as Rosetta Energy Unit) are unique to that residue as a part of a 139 

single protein conformation. The feature measuring local displacements (as Contact Proximity 140 

RMSD) quantifies a residue’s contact changes within an ensemble, and relies on at least two 141 

conformations of aligned sequence for calculation. The environment feature (as Neighbor Sum) 142 

approximates the relative antigenicity of an area surrounding the residue of interest. A classifier 143 

label is assigned to each residue’s calculated feature set for six of the seven protein ensembles. For 144 
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training the Bayes classifier, the distribution of each of the four features is transformed into a 145 

multivariate gaussian distribution, from which a Bayes classifier model is trained to minimize 146 

classification error given the training data. For simplicity, only the kernel density estimates of two 147 

features are shown. Afterwards, the trained Bayes classifier model is used to predict classification 148 

of the left-out protein ensemble. The bottom right panel depicts AxIEM positive predictions for 149 

the HIV-1 Env trimer PDB ID 6CM3. 150 

 151 

Accuracy of epitope prediction depends on environment score and protein size 152 

 We initially chose the metrics that calculated per-residue properties to avoid making 153 

assumptions about epitope size or total antigenic surface area. Even though the mean per-residue 154 

metric values were significantly different between epitope and non-epitope residues for NV, REU, 155 

and CPRMSD, the overlapping coefficient η(31) was high with values of 0.733, 0.685, or 0.792, 156 

respectively, indicating that each residue-specific feature has a relatively weak predictive value. 157 

With the metric Neighbor Sum (NS), we found that increasing the radius size of the neighboring 158 

residues’ contributions to the NS value of a single residue resulted in a further separation of mean 159 

NS values between experimentally determined epitope and non-epitope residues up to η = 0.333 at 160 

a radius of 40 Å.  Evaluation of the receiver operator characteristic (ROC) area under the curve 161 

(AUC) values for each viral protein ensemble, however, indicated non-uniform maximal AUC 162 

values given the upper boundary radius used to calculate NS, despite that cumulative maximal 163 

performance converged when using an upper boundary radii greater than 32 Å (Fig 2). We found 164 

that maximal performance was strongly determined by the number of amino acids within each 165 

conformation, with R2 = 0.76  and p = 0.011 (S3 Fig). Using the linear regression model described 166 

by the correlation of protein amino acid number n and maximal upper boundary performance u, 167 
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with u = 15.1 + 0.0147n to determine the optimal upper boundary radius to calculate NS for each 168 

protein ensemble, overall performance of the AxIEM method significantly outperformed existing 169 

discontinuous epitope prediction methods, Discotope and Ellipro, as summarized in  Table 1. 170 

 171 

Table 1 172 

Performance evaluation summary of cumulative predictions.  173 

For methods AxIEM1 out and AxIEM2 out, one or two of the per-residue features were excluded in 174 

the feature set and also from the environment NS calculations. The AxIEMenviron method excludes 175 

all AxIEM per-residue features. Note (*), evaluation of Discotope does not include SARS-CoV S 176 

protein epitope predictions.  177 
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 178 

Fig 2 179 
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Performance comparison of discontinuous epitope prediction methods. A) Comparison of AUC 180 

values by virus. Each panel represents the determined AUC value for an individual test set given 181 

the employed method. Black indicates that the feature set {NV, REU, CPRMSD, NSu} was used to 182 

train a Bayes classifier model, with u as the upper boundary radius listed along the x axis. Light 183 

grey represents a negative control for which each residue was assigned a random value for each of 184 

the features, NV, REU, and CPRMSD from a normal Gaussian distribution as determined by the mean 185 

and standard deviation of each feature’s original values for a single protein. AUC values of Ellipro 186 

and Discotope are also listed by protein ensemble test set. Note that Discotope was not able to 187 

evaluate predictions for SARS-CoV and SARS-CoV-2 S proteins due to protein size and server 188 

time limits. B) Comparison of ROC curves by method. Light to dark gray represents increasing 189 

upper boundary conditions when used to determine the environment (Envir) feature NSu. In both 190 

panel B and C, the x axis represents the false positive rate calculated as FP/(FP+TN), and the y 191 

axis represents the true positive rate calculated as TP/(TP+FN). C) Comparison of AxIEM to 192 

publically available discontinuous epitope prediction methods. The method AxIEM uses the 193 

feature set {NV, REU, CPRMSD, NSu} where u is determined as u = 15.1 + 0.0147n, with n being 194 

the number of residues of a single protein conformation. 195 

 196 

AxIEM clarifies conformation specificity of common epitopes 197 

Correct assignment of a classifier label, or in other words, what range and combination of feature 198 

values the model is instructed to classify as an epitope or not, is crucial in assessing model 199 

accuracy. In the case of SARS-CoV or SARS-CoV-2 Spike (S) proteins, most available structures 200 

of Ab-antigen interactions exist as fragment Ab and receptor binding domain (RBD) complexes, 201 

which disallows the certainty of classifier assignment of experimentally determined epitope 202 
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residues to any one or more S protein trimeric conformation species. Given the experimental 203 

information available and the definition of an epitope residue used for the curation of the AxIEM 204 

dataset, the closed conformations of both SARS-related S proteins were labelled to be antigenic, 205 

while only the 2- or 3-RBD up or open conformations of the SARS-CoV-2 S protein were labelled 206 

to be antigenic. Although the AUC values of S protein-specific predictions were relatively high 207 

for SARS-CoV and SARS-CoV 2, with values of 0.759 and 0.908, up to 65.3% of false prediction 208 

assessment types could possibly be attributed to incorrect  classifier label assignment, suggesting 209 

that the feature set used by AxIEM is sufficient to discern relevant conformations that will also 210 

give rise to an antigenic response (Fig 3 and Table 2). More importantly, AxIEM allows for the 211 

comparison of antigenic sites between homologs, since the AxIEM feature set is agnostic to 212 

sequence identity. Sequence alignment of predicted positives indicated only eleven aligned 213 

predicted positive residues between S protein monomers are structurally available to form an Ab-214 

antigen interaction when in the up or open conformation (Fig. 3B). Geographically speaking, 215 

aligned ‘up’-conformation positives share a relative constellation pattern, but differ in their relative 216 

orientation to each other by a root mean squared difference in pairwise distances of 19.4 Å (as 217 

calculated in Equation 7. Of the eleven aligned positives, only six residues share the same 218 

sequence identify with a root mean squared difference in epitope residues’ pairwise distances of 219 

3.64 Å (S2 Table), indicating that RBD epitope similarity is relatively low between SARS-related 220 

S proteins. Besides predicting experimentally determined RBD epitopes, AxIEM also predicted a 221 

novel common site of vulnerability within the N-terminal domain (NTD) of the S1 subunit for both 222 

SARS-CoV-2 and SARS-CoV S proteins, although the sequence identity and alignment differed 223 

for all predicted NTD epitope residues (Fig. 3C). Given these data, identification of a broadly-224 

neutralizing Ab against multiple SARS-related S proteins is constrained not only by sequence 225 
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similarity, but also conformation similarity and availability as metastable up or open 226 

conformations. 227 

 228 

Fig 3 229 

Overview of AxIEM predictions of coronavirus Spike protein epitopes. A) Predictions mapped to 230 

conformation models. Side and top views are shown for each protein and conformation. Black 231 

indicates alignment of positive predictions. B) Alignment of common RBD epitopes.  Highlighted 232 
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area represents all residues that are within 16 Å of the geometric centroid of identified common 233 

epitopes. The models used to represent the SARS-CoV-2 (top) or SARS-CoV (bottom) include 234 

PDB models 7CAK and 6NB7.  Black indicates alignment of positive predictions sharing the same 235 

sequence identity. Blue and yellow indicate sequence position alignment only. C) Alignment of 236 

novel NTD epitopes. Highlighted areas, model representation, and coloring are the same as in 237 

panel B. 238 

 239 

  240 

𝐹𝑃𝐹𝑃↔𝐹𝑁 and 𝐹𝑁𝐹𝑃↔𝐹𝑁 represents the fraction of FP and FN, respectively, where for each residue 241 

within an ensemble, the residue was labeled as an expected negative for one conformation and 242 

predicted to a positive, while also labeled as an expected positive in another conformation that was 243 

predicted to be a negaitive. 𝐹𝑁𝐹𝑁→𝑇𝑃 represents the fraction of FN that were not labeled as 244 

Table 2 

Summary of false predictions.  
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expected positives for additional conformations, while in other other conformations that residue 245 

was correctly predicted as a positive with no FP. 246 

 247 

Discussion 248 

AxIEM provides a low complexity solution to epitope mapping  249 

For this study, we chose a final model that employs a Bayes classifier, which has been shown to 250 

optimally minimize classification error (32), in conjunction with a limited feature set to avoid 251 

overfitting from the experimentally validated dataset. Despite its low complexity, the AxIEM 252 

model improves prediction of tertiary and quarternary epitopes of class I viral fusion proteins 253 

compared to the IEDB sponsored discontinuous epitope prediction methods, Ellipro and Discotope 254 

2.0. The limited computational requirements of AxIEM, either to use as is or retrain, provides an 255 

accessible tool for vaccine development strategies such as screening for novel or cryptic antigenic 256 

sites of newly determined class I viral fusion proteins, comparing fusion protein homologues as 257 

demonstrated in Fig 3, or employing AxIEM within subunit vaccine design platforms. The further 258 

use of AxIEM as a computational epitope mapping strategy, however, requires further 259 

consideration of aspects of viral structural biology and poses future challenges to generalize 260 

epitope prediction, as discussed in the following sections.  261 

 262 

Blocking the moving target requires dynamic precision 263 

To model viral fusion protein flexibility, AxIEM requires at least two conformations to represent 264 

major conformation populations during fusion protein-mediated cellular entry and relies on the 265 

coarse-grained flexibility metric CPRMSD to estimate cumulative local residue displaced contacts 266 
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as previously described.  Almost certainly, two conformations are insufficient to fully summarize 267 

the biophysical changes of viral entry in terms of representing the major subpopulations, dynamics, 268 

and various other gradients like pH when entering the host cell.. Exclusion of CPRMSD from the 269 

AxIEM feature set insignificantly affected overall performance (Table 1), and therefore could be 270 

excluded when only a single conformation is known. However, AxIEM exceeds in classifying 271 

protein antigenic residues when prefusion conformation heterogeneity is more thoroughly 272 

represented, such as in the case of ebola glycoprotein, HIV Env, or SARS-CoV-related S proteins 273 

that have multiple prefusion conformations included in the datasets. In these cases, the diverging 274 

overlap of epitope and non-epitope residue feature distributions is more pronounced, with η < 275 

0.300 for all AxIEM features, compared to the cumulate NS feature overlap of η = 0.333.  276 

Conversely, the AxIEM model overestimates the probability of antigenicity of postfusion 277 

and membrane-proximal external region (MPER) protein surfaces regardless of conformation, as 278 

displayed in S4-8 Fig, possibly due to the fact that these regions are not truly surface-accessible to 279 

an antibody in a cellular environment. This is supported by the findings summarized in Table 1, 280 

where exclusion of NV had no effect on AxIEM’s AUC with De Long’s p = 0.684, and explains 281 

the poor individual performance of predicting RSV and influenza H3 stem epitopes due to the 282 

large fraction of surface-accessible residues within each represented protein ensemble. However, 283 

in the case of HIV Env MPER, antibodies like 10E8 require HIV Env to ‘tilt’ in relation to the 284 

lipid bilayer to gain surface accessibility (33), and it is possible that similar regions may present 285 

true sites of vulnerability. Further validation would require either  identification of novel 286 

neutralizing antibodies like 10E8 or better quantification of membrane or protein crowding. 287 

Furthermore, any information regarding glycosylation patterns was not included in the AxIEM 288 

model due to the lack of high resolution (< 3.0 Å) determination of most glycosylation sites, and 289 
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therefore any predictions made by AxIEM would need to be supplemented with glycosylation 290 

modeling to further assess validity of any initial AxIEM predictions. Overall,  AxIEM’s 291 

performance and other computational epitope prediction methods would likely benefit from 292 

modeling of protein target dynamics and major subpopulation states to better interrogate how 293 

protein flexibility affects antigenicity and which major subpopulation states are most likely to 294 

illicit a strong neutralizing response.  295 

 296 

Subunit vaccine design may improve by considering protein size 297 

 Subunit vaccines rely on the adaptive immune response to produce antibodies against a protein 298 

domain or scaffold, which can subsequently elicit a neutralizing antibody response during natural 299 

infection. Sites of vulnerability are viral protein surfaces that have been shown to form more than 300 

one neutralizing antibody binding interaction and are prime candidates for serving as antigen 301 

targets for subunit vaccines. Rather than assuming that proximity features for antigenicity 302 

prediction are constrained by the surface area of an antibody binding footprint like Ellipro or 303 

Discotope 2.0, AxIEM improves epitope residue classification prediction by employing 304 

physicochemical proximity features in relation to the total number of residues within a fusion 305 

protein ( Fig 2). Given that AxIEM positive predictions tend to be clustered within local domains, 306 

many of which are known to form epitope-paratope interactions with multiple neutralizing 307 

antibodies, AxIEM may be better suited for the task of identifying conformation-specific sites of 308 

vulnerability than the task of B-cell epitope prediction. In this case, subunit vaccine design 309 

strategies might benefit from the construction of antigens that account for the relative structural 310 

antigenicity of a fusion protein rather than the highly specific identification of a potential epitope 311 

region. .   312 
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 313 

Methods 314 

Explanation of epitope predictors 315 

Neighbor Vector (NV) The per-residue solvent-accessible surface area (SASA) metric 𝑁𝑉 316 

approximates the proximity and spatial orientation of surrounding residues to estimate relative 317 

surface exposure of a residue, as previously described(27). In brief, NV  employs the Contact 318 

Proximity (CP) and Neighbor Count (NC) algorithms to calculate the sum of each surrounding 319 

residue’s Cβ-Cβ distance (d) unit vector weighted by its likelihood to make a contact with the 320 

reference residue, calculated as CP (Equation 1), and is normalized by the sum of all possible 321 

contacts within the residue’s vicinity, calculated as NC (Equation 2). In other words, for a highly 322 

buried residue, the weighted d unit vectors of all Cβ-Cβ distances will be directed outwards in many 323 

directions so that its NV score ≈ ≅ 0, whereas a highly exposed residue’s weighted 𝑑 unit vectors 324 

will be directed uniformly so that its NV score ≅ 1. We use the lower and upper boundaries of 4.00 325 

Å and 12.8 Å, respectively, because 4.00 Å was shown to be the optimal lower boundary to 326 

accurately assess per-residue SASA using 𝑁𝐶 and 12.8 Å is the maximum length of a Cβ-Cβ 327 

distance where any atom of one amino acid’s side chain has been shown to make a direct 328 

interaction with another amino acid’s side chain (Equation 3). 329 

Equation 1 330 

𝐶𝑃 =  

{
 
 

 
 1, 𝑖𝑓 𝑑 ≤ 4.00 Å 

0, 𝑖𝑓 𝑑 ≥ 12.8 Å

1

2
[cos (

𝑑 − 4.00 Å

12.8 Å − 4.00 Å
× 𝜋) + 1] , 𝑖𝑓 4.00 Å < 𝑑 <  12.8 Å

 331 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

20 

 

Where d is the geometric distance between two Cβ atoms of two residues. In the case of glycine, a 332 

dummy Cβ atom was used in place of its hydrogen.   333 

Equation 2 334 

𝑁𝐶𝑖 = ∑𝐶𝑃𝑗(𝑑(𝑖, 𝑗), 𝑙𝑜𝑤𝑒𝑟, 𝑢𝑝𝑝𝑒𝑟) 335 

Where CPj is the evaluated CP score of the jth residue in relation to the residue of interest i given 336 

the lower boundary of 4.00 Å and the upper boundary of 12.8 Å. 337 

 Equation 3 338 

𝑁𝑉𝑖 =
∑ (𝑣𝑖𝑗⃗⃗ ⃗⃗  ‖𝑣𝑗𝑖⃗⃗⃗⃗ ‖⁄ × 𝐶𝑃𝑗)
𝑗
𝑖=1

𝑁𝐶𝑖
 339 

where  𝑣𝑖𝑗⃗⃗ ⃗⃗  ‖𝑣𝑗𝑖⃗⃗⃗⃗ ‖⁄  is the unit vector of the jth residue multiplied by the CP score of the jth residue, 340 

both terms in relation to the ith residue. 341 

Per-residue Rosetta Energy Unit (REU) The relative stability for each residue of a minimized 342 

single protein conformation was calculated with the Rosetta ref2015 energy function and using the 343 

jd2_scoring application to estimate the single body and pairwise interaction energies of a residue 344 

as the Rosetta per-residue total energy score, which is reported in Rosetta Energy Units (REU).  345 

Contact Proximity Root Mean Square Deviation (CPRMSD) The metric CPRMSD has previously 346 

been used to estimate the relative local side chain contact changes of a single residue experiences 347 

as part of a protein ensemble, and was calculated as the sum of all root mean square deviations of 348 

likely contacts a single residue will form (Equation 4)(29). This was estimated by CP for each 349 

Cβ-Cβ distance, again using 4.00 Å and 12.8 Å as the lower and upper boundaries.  350 

Equation 4 351 

𝐶𝑃𝑅𝑀𝑆𝐷(𝑖) =∑√
1

𝑛
∑(𝐶𝑃(𝑗𝑖)̅̅ ̅̅ ̅̅ ̅̅ − 𝐶𝑃(𝑗𝑖)𝑛)

2
 

𝑛

𝑗=1

 352 
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where 𝑖 is the residue of interest, j is another residue in the same protein conformation, n is the 353 

number of protein conformations within the protein ensemble, and (𝐶𝑃(𝑗𝑖)̅̅ ̅̅ ̅̅ ̅̅ − 𝐶𝑃(𝑗𝑖)𝑛)
2
 is the 354 

variance of the CP value of residue j with respect to residue i within n conformations. In the case 355 

where only two conformations were used, only the mean CP  value was calculated. 356 

Neighbor Sum (NS) The NS metric was calculated as a weighted linear sum of NV, REU, and 357 

CPRMSD (Equation 5). In the Results section, we reported NS using a fixed lower boundary of 358 

4.00 Å and adjusted the upper boundary to test for epitope radius size as noted (Equation 6). We 359 

also tested for adjusting the lower boundary to 6.00 Å and 8.00 Å  as well as using a linear weighted 360 

function instead of a cosine weighted function and found an increase in classification overlap of 361 

NS values provided that the same upper boundary condition was used. 362 

Equation 5 363 

𝑁𝑆𝑢(𝑖) =∑𝑤∑𝑁𝑉(𝑗) + 𝑅𝐸𝑈(𝑗) + 𝐶𝑃𝑅𝑀𝑆𝐷(𝑗)

𝑗

𝑖=1

 364 

where i is the residue of interest, j is another residue in the same protein conformation, u is the 365 

upper boundary radius at which surrounding residues contribute to i residue’s NS value, and j 366 

residue’s weighted contribution w to residue i is determined in Equation 6.  367 

Equation 6 368 

𝑤 = 

{
 

 
1, 𝑖𝑓 𝑑 ≤ 𝑙𝑜𝑤𝑒𝑟
0, 𝑖𝑓 𝑑 ≥ 𝑢𝑝𝑝𝑒𝑟

1

2
[cos (

𝑑 − 𝑙𝑜𝑤𝑒𝑟

𝑢𝑝𝑝𝑒𝑟 − 𝑙𝑜𝑤𝑒𝑟
× 𝜋) + 1] , 𝑖𝑓 𝑙𝑜𝑤𝑒𝑟 < 𝑑 < 𝑢𝑝𝑝𝑒𝑟

  369 

 370 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

22 

 

Definition of conformation-specific epitopes 371 

All residues classified as an “epitope” have been listed within a publicly available online database 372 

as experimentally validated discontinuous B-cell epitopes, whose database identifications have 373 

been listed in Online Methods. The definition of an epitope was further refined as any residue 374 

identified as a discontinuous epitope that also retained a structural similarity to the conformation 375 

of the antigen experimentally determined to interact with a specific antibody and that the binding 376 

orientation of the antibody did not occupy the same space, or intersect, with any part of the full-377 

length viral protein in that conformation when aligned using PyMOL. Residues that did not fit 378 

these criteria were classified as a “non-epitope”. 379 

 380 

Model preparation 381 

Protein structures were downloaded from the Protein Data Bank (PDB; rcsb.org) and aligned using 382 

Clustal Omega (www.ebi.ac.uk/Tools/msa/clustalo/) to identify residues that were structurally 383 

determined for all equivalent chains and in all conformations of each viral protein. Residues that 384 

were not determined as such were manually removed using PyMOL (https://pymol.org/2/) to 385 

generate an aligned pdb file. Since some structural models contained mutations for stabilization, 386 

the consensus sequence was used to replace the initial sequence. The consensus sequence was 387 

obtained by performing a multiple sequence alignment of all available full-length sequences with 388 

Clustal Omega and using the EMBOSS cons package (ftp://emboss.open-bio.org/pub/EMBOSS) 389 

to identify the consensus sequence. The Rosetta partial_thread application was used to thread, or 390 

replace, each residue with the corresponding consensus sequence. Afterwards, the threaded 391 

structures were subjected to a constrained relax using the Rosetta FastRelax application to generate 392 

100 models for each protein. From the generated models, the model with the combined lowest 393 
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energy and lowest structural RMSD to the respective aligned structure was selected as the final 394 

model used to evaluate NV, REU, CPRMSD, and NS. For a complete guide to which residues and 395 

methods were used for model generation, please refer to the Online Methods section. 396 

 397 

Statistical Information 398 

A DeLong’s test was used to compute significance in differences of AUC between AxIEM 399 

performance  and other method , where a 𝑧 𝑠𝑐𝑜𝑟𝑒 =  
𝐴𝑈𝐶𝐴−𝐴𝑈𝐶𝐵

(𝜎𝐴
2+𝜎𝐵

2−2𝐶𝑜𝑣(𝐴𝐵))
0.5. Youden’s J statistic was 400 

measured as max (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 − 1). A Matthew’s correlation coefficient (MCC) 401 

was calculated for each threshold along a ROC curve where 𝑀𝐶𝐶 =402 

𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
. The maximum MCC value is reported along with the associated 403 

threshold value in Table 1. The overlapping index η represents the overlap of prediction scores of 404 

expected classifications. Root mean square differences of pairwise epitope geometric distances, 405 

denoted as rmsdp in Equation 7, represents the average difference in geometric distance d 406 

(Equation 8) of each aligned residue i to all other residues j between epitopes a and b containing 407 

equal number of n residues. For a complete description of library and package dependencies and 408 

software versions, please see the supplementary protocol capture. All scripts and curated datasets 409 

for the development of AxIEM are available at https://github.com/mfsfischer/AxIEM/. 410 

Equation 7 411 

𝑟𝑚𝑠𝑑𝑝 =
1

𝑛
√∑|∑𝑑𝑎(𝑖, 𝑗) − 𝑑𝑏(𝑖, 𝑗)

𝑛

𝑗=1

|

𝑛

𝑖=1

 412 

Equation 8 413 
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𝒅 = (𝒙𝒋 − 𝒙𝒊)
𝟐
+ (𝒚𝒋 − 𝒚𝒊)

𝟐
+ (𝒛𝒋 − 𝒛𝒊)

𝟐
 414 

Computational resources  415 

 All calculations were performed on a Core i9-9980HK laptop with 16 GB RAM and 416 

Gentoo Linux operating system. Transformation of the feature set to a multivariate Gaussian 417 

distribution and training of Bayes classifier models were implemented in Python using the 418 

pomegranate package(30). Statistical analysis for ROC curves, AUC values, DeLong’s test(34), 419 

Youden’s J index(35), maximal Matthews correlation coefficient(36) and the associated threshold 420 

was performed using Python. Conductance of the Welch’s two-tailed t-test, Pearson’s correlation 421 

(to determine R2, p value, and linear model to determine optimal upper boundary radii), and 422 

calculation of the distribution-free overlapping index η were performed in R. All datasets, code, 423 

and documentation used for this study are publicly available at 424 

https://github.com/mfsfischer/AxIEM.  425 

Acknowledgements 426 

We thank Dr. Axel Fischer for his helpful insights. 427 

Author contributions 428 

M.F. curated the structure-based epitope data set, implemented code, conducted analysis, and 429 

wrote the manuscript. J.M and J.C. contributed to the review of the manuscript. 430 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

25 

 

Bibliography 431 

1.  JE C. Principles of Broad and Potent Antiviral Human Antibodies: 432 

Insights for Vaccine Design. Cell Host Microbe. 2017 Aug 433 

9;22(2):193–206.  434 

2.  Sela-Culang I, Kunik V, Ofran Y. The structural basis of antibody-435 

antigen recognition. Frontiers in Immunology. 2013;  436 

3.  Kringelum JV, Lundegaard C, Lund O, Nielsen M. Reliable B Cell 437 

Epitope Predictions: Impacts of Method Development and Improved 438 

Benchmarking. Peters B, editor. PLoS Computational Biology. 2012 439 

Dec 27;8(12):e1002829.  440 

4.  Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, et al. 441 

ElliPro: A new structure-based tool for the prediction of antibody 442 

epitopes. BMC Bioinformatics. 2008 Dec 2;9(1):514.  443 

5.  McLellan JS, Chen M, Chang JS, Yang Y, Kim A, Graham BS, et al. 444 

Structure of a major antigenic site on the respiratory syncytial virus 445 

fusion glycoprotein in complex with neutralizing antibody 101F. J 446 

Virol. 2010;84(23):12236–44.  447 

6.  Lee JE, Fusco ML, Hessell AJ, Oswald WB, Burton DR, Saphire EO. 448 

Structure of the Ebola virus glycoprotein bound to an antibody from a 449 

human survivor. Nature. 2008;  450 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

26 

 

7.  Wang H, Shi Y, Song J, Qi J, Lu G, Yan J, et al. Ebola Viral 451 

Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1. 452 

Cell. 2016 Jan;164(1–2):258–68.  453 

8.  Bornholdt ZA, Ndungo E, Fusco ML, Bale S, Flyak AI, Crowe JE, et 454 

al. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 455 

Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing 456 

Antibodies. Palese P, editor. mBio. 2016 Mar 2;7(1).  457 

9.  Bullough PA, Hughson FM, Skehel JJ, Wiley DC. Structure of 458 

influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 459 

Sep 1;371(6492):37–43.  460 

10.  Weis WI, Brunger AT, Skehel JJ, Wiley DC. Refinement of the 461 

influenza virus hemagglutinin by simulated annealing. J Mol Biol. 462 

1990/04/20. 1990;212(4):737–61.  463 

11.  Yang H, Chen LM, Carney PJ, Donis RO, Stevens J. Structures of 464 

Receptor Complexes of a North American H7N2 Influenza 465 

Hemagglutinin with a Loop Deletion in the Receptor Binding Site. Rey 466 

FA, editor. PLoS Pathogens. 2010 Sep 2;6(9):e1001081.  467 

12.  Turner HL, Pallesen J, Lang S, Bangaru S, Urata S, Li S, et al. Potent 468 

anti-influenza H7 human monoclonal antibody induces separation of 469 

hemagglutinin receptor-binding head domains. PLoS Biology. 2019;  470 

13.  Schommers P, Gruell H, Abernathy ME, Tran MK, Dingens AS, 471 

Gristick HB, et al. Restriction of HIV-1 Escape by a Highly Broad and 472 

Potent Neutralizing Antibody. Cell. 2020 Feb;180(3):471-489.e22.  473 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

27 

 

14.  Gorman J, Chuang GY, Lai YT, Shen CH, Boyington JC, Druz A, et al. 474 

Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex 475 

with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex 476 

Recognition. Cell Reports. 2020 Apr;31(1):107488.  477 

15.  Simonich CA, Doepker L, Ralph D, Williams JA, Dhar A, Yaffe Z, et 478 

al. Kappa chain maturation helps drive rapid development of an infant 479 

HIV-1 broadly neutralizing antibody lineage. Nature Communications. 480 

2019 Dec 16;10(1):2190.  481 

16.  Yang Z, Wang H, Liu AZ, Gristick HB, Bjorkman PJ. Asymmetric 482 

opening of HIV-1 Env bound to CD4 and a coreceptor-mimicking 483 

antibody. Nature Structural & Molecular Biology. 2019 Dec 484 

2;26(12):1167–75.  485 

17.  Wang H, Barnes CO, Yang Z, Nussenzweig MC, Bjorkman PJ. 486 

Partially Open HIV-1 Envelope Structures Exhibit Conformational 487 

Changes Relevant for Coreceptor Binding and Fusion. Cell Host & 488 

Microbe. 2018 Oct;24(4):579-592.e4.  489 

18.  Swanson KA, Settembre EC, Shaw CA, Dey AK, Rappuoli R, Mandl 490 

CW, et al. Structural basis for immunization with postfusion respiratory 491 

syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing 492 

antibody titers. Proceedings of the National Academy of Sciences. 2011 493 

Jun 7;108(23):9619–24.  494 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

28 

 

19.  McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB, Yang 495 

Y, et al. Structure-based design of a fusion glycoprotein vaccine for 496 

respiratory syncytial virus. Science (1979). 2013;342(6158):592–8.  497 

20.  Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM 498 

structures of MERS-CoV and SARS-CoV spike glycoproteins reveal 499 

the dynamic receptor binding domains. Nature Communications. 2017 500 

Apr 10;8(1):1–9.  501 

21.  Walls AC, Xiong X, Park YJ, Tortorici MA, Snijder J, Quispe J, et al. 502 

Erratum: Unexpected Receptor Functional Mimicry Elucidates 503 

Activation of Coronavirus Fusion (Cell (2019) 176(5) (1026–504 

1039.e15), (S0092867418316428), (10.1016/j.cell.2018.12.028)). Vol. 505 

183, Cell. Cell Press; 2020. p. 1732.  506 

22.  Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. 507 

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike 508 

Glycoprotein. Cell. 2020 Apr 16;181(2):281-292.e6.  509 

23.  Henderson R, Edwards RJ, Mansouri K, Janowska K, Stalls V, Gobeil 510 

SMC, et al. Controlling the SARS-CoV-2 spike glycoprotein 511 

conformation. Nature Structural & Molecular Biology. 2020 Oct 512 

22;27(10):925–33.  513 

24.  Cao Y, Su B, Guo X, Sun W, Deng Y, Bao L, et al. Potent Neutralizing 514 

Antibodies against SARS-CoV-2 Identified by High-Throughput 515 

Single-Cell Sequencing of Convalescent Patients’ B Cells. Cell. 2020 516 

Jul;182(1):73-84.e16.  517 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

29 

 

25.  Chi X, Yan R, Zhang J, Zhang G, Zhang Y, Hao M, et al. A neutralizing 518 

human antibody binds to the N-terminal domain of the Spike protein of 519 

SARS-CoV-2. Science (1979). 2020 Aug 7;369(6504):650–5.  520 

26.  Lv Z, Deng YQ, Ye Q, Cao L, Sun CY, Fan C, et al. Structural basis 521 

for neutralization of SARS-CoV-2 and SARS-CoV by a potent 522 

therapeutic antibody. Science (1979). 2020 Sep 18;369(6510):1505–9.  523 

27.  Durham E, Dorr B, Woetzel N, Staritzbichler R, Meiler J. Solvent 524 

accessible surface area approximations for rapid and accurate protein 525 

structure prediction. Journal of Molecular Modeling. 2009 Feb 526 

21;15(9):1093–108.  527 

28.  Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park 528 

H, et al. The Rosetta All-Atom Energy Function for Macromolecular 529 

Modeling and Design. Journal of Chemical Theory and Computation. 530 

2017;  531 

29.  Sauer MF, Sevy AM, Crowe JE, Meiler J. Multi-state design of flexible 532 

proteins predicts sequences optimal for conformational change. PLoS 533 

Computational Biology. 2020;  534 

30.  Schreiber J. Pomegranate: fast and flexible probabilistic modeling in 535 

python. Journal of Machine Learning Research. 2017;18(164):1–6.  536 

31.  Pastore M, Calcagnì A. Measuring Distribution Similarities Between 537 

Samples: A Distribution-Free Overlapping Index. Frontiers in 538 

Psychology. 2019 May 21;10:1089.  539 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/


 

30 

 

32.  Theodoridis S, Koutroumbas K. Chapter 2 - Classifiers Based on Bayes 540 

Decision Theory. In: Theodoridis S, Koutroumbas K, editors. Pattern 541 

Recognition (Fourth Edition) [Internet]. Boston: Academic Press; 2009. 542 

p. 13–89. Available from: 543 

https://www.sciencedirect.com/science/article/pii/B978159749272050544 

0049 545 

33.  Rantalainen K, Berndsen ZT, Antanasijevic A, Schiffner T, Zhang X, 546 

Lee WH, et al. HIV-1 Envelope and MPER Antibody Structures in 547 

Lipid Assemblies. Cell Rep [Internet]. 2020 Apr 28;31(4):107583. 548 

Available from: https://pubmed.ncbi.nlm.nih.gov/32348769 549 

34.  DeLong E R, DeLong D M, Clarke-Pearson D L. Comparing the areas 550 

under two or more correlated receiver operating characteristic curves: a 551 

nonparametric approach - PubMed. Biometrics. 1988;44(3):837–45.  552 

35.  Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.  553 

36.  Matthews BW. Comparison of the predicted and observed secondary 554 

structure of T4 phage lysozyme. BBA - Protein Structure. 1975 Oct 555 

20;405(2):442–51.  556 

  557 

 558 

 559 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2022. ; https://doi.org/10.1101/2022.05.23.493016doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.23.493016
http://creativecommons.org/licenses/by/4.0/

