
Received March 1, 2021, accepted March 29, 2021, date of publication April 16, 2021, date of current version April 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3073859

Detection of Concurrency Errors in Multithreaded
Applications Based on Static
Source Code Analysis
DAMIAN GIEBAS AND RAFAŁ WOJSZCZYK
Faculty of Electronics and Computer Science, Koszalin University of Technology, 75-453 Koszalin, Poland

Corresponding author: Rafał Wojszczyk (rafal.wojszczyk@tu.koszalin.pl)

ABSTRACT Computer systems that allow multithreaded execution of applications have become extremely
common, even small portable devices operate in multithreaded mode. This is undoubtedly very convenient
for users, but for programmers it is associated with many unwanted errors, which can occur after writing
application code. These errors include race condition, deadlock, atomicity violation and order violation.
The subject of this work is related to the detection of these errors in the process of static software analysis.
The paper presents the author’s model, which was then used to detect the above-mentioned occurrences,
additionally each error has been discussed in detail. A tool supporting the detection of errors in multithreaded
applications was also developed and the results of this tool were presented.

INDEX TERMS Parallel programming, parallel processing, multithreading.

I. INTRODUCTION
C is one of high-level programming languages and appli-
cations written in it characterize with low memory demand
and high stability. It was designed to facilitate the creation
of the kernel of Unix operating system, thanks to which C
enables calling of low-level procedures and functions, even
though it is a high-level language. Owing to the existence
of GCC and clang compilers, programming in C is available
for the vast majority of operating systems. In many areas,
said language has been ousted by its successor, C++, which,
in turn, is being outpaced in numerous fields by languages
such as Java, Python and C#. Nevertheless, C is still highly
popular and is commonly utilized to create e.a. device drivers,
operating systems and software from the domain of the Inter-
net of Things [75].

In the ‘90s, C was extended to the POSIX Threads
library (pthreads), which allows programmers to create
multi-threaded software using this programming language.
However, pthreads library is not the only one bringing
multi-threading to C and another and still very popular one
is OpenMP, which is based upon compiler directives and
environment variables. In contrast, pthreads uses functions
and structures of C language, thanks to which code can be

The associate editor coordinating the review of this manuscript and

approving it for publication was Theofanis P. Raptis .

more transparent and clear than in the case of the usage of
compiler directives.

Along with the emergence of the possibility of creation
of multi-threaded software written in C, errors such as race
condition, deadlock, atomicity violation and order violation
came to existence. Errors of aforementioned kind had already
been known in distributed systems, as evidenced by the
number of dissertations on said subject published before the
dissemination of multi-threaded programming.

However, if the comparison of race condition errors in
distributed systems and the kernel of the operating system
was to be performed, it would be easily discernible that
the environment of these errors would be differing to the
extent that would make the designing of a method facilitating
detection of errors of this kind in all programs unfeasible.

In Linux systems, pthreads library is mainly utilized for
creation of applications destined to run in user space. For
the creation of threads in the kernel, a different library is
used. Nevertheless, in case of real-time operating systems
with so-calledmicro-kernel, e.g. in the QNX system, pthreads
library is used in each program. It is done so because the
architecture of the QNX micro-kernel was designed with the
assumption that all programs should be run in user space.

The usage of pthreads library results in noticeable growth
of performance and simultaneously causes insignificant
rise in the utilization of remaining resources [76]. In this

61298 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6302-1306
https://orcid.org/0000-0003-4305-7253
https://orcid.org/0000-0002-2906-584X

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

FIGURE 1. Graph showing the classification of computer programs with
important nodes marked in the field of embedded applications and IoT.

approach, the class of computer programs considered in the
paper (Fig. no. 1) applies to utility applications implemented
on an energy-efficient device, based on languages supporting
multithread programming (e.g. C and pthreads library). In
this context, the problem addressed in this paper concerns
the error detection in multithreaded applications. However,
these errors can also be found in other classes of applications,
where asynchronous operation occurs, e.g. in distributed
systems.

This work is a continuation of [11], [19], [38], [39], where
the theoretical basis for the detection of these errors is pre-
sented. This paper will present the final version of the model,
theorems and evidence, as well as the unification of error
detection conditions, resulting in the development of a tool to
detect these error classes in the process of static code analysis.

The structure of the work is as follows: the chapter II dis-
cusses various models and methods known in the literature to
detect or prevent the above-mentioned errors, then the chap-
ter III presents the proposed model and the way of building
a model instance, then a formal description of error detection
in the IV model instance is presented. In the penultimate
chapter, V, the results of verification of the proposed solution
using the proprietary tool are presented, while the chapter VI
is a summary of the work.

II. LITERATURE OVERVIEW
The commonly used POSIX Threads (Pthreads) standard
enables the creation of threads within a single application and

secures their synchronization using mechanisms of mutual
exclusion, the so-called mutexes. Currently, the POSIX
Threads standard is implemented in the form of libraries
for C/C ++ languages (pthreads for POSIX-compatible sys-
tems and pthreads-win32 for Microsoft systems), PHP or the
increasingly popular Go language.

C language (used in devices with low computing power -
Internet of Things or Automotive), has several independent
implementations of the POSIX Threads standard (pthreads-
emb, pthreads-win32 _winec7, lib-pthread-embedded) as
well as very similar libraries, e.g. Oracle Solaris libthread.
These libraries allow to create multi-threaded applications,
including for devices fromTexas Instruments, Sony (PSPOS)
or Oracle, which at the same time strongly supports the work
on the POSIX Thread standard and its popularization, e.g.
by publishing guides [3], [77].

In Automotive class solutions, multi-threading is ensured
by, among others, Autosar software (Adaptive Platform pack-
age). The Autosar software package provides an operating
system that complies with the POSIX standard, and with
it a library that provides the POSIX Threads interface for
multithreading [3].

On the other hand, in Internet of Things solutions, the offi-
cial implementation of the POSIXThreads standard for C lan-
guage is most often used as an element of the operating
system of devices such as RaspberryPi or Odroid.

With multithreaded programming, a new category of errors
has also appeared. In this case, an error should be understood
as a fragment of the application code, the operation of which
differs from the scenario assumed by the programmer, and
the effect of such code may be unexpected termination of
the application, incorrect algorithm result, data destruction or
even destruction of the device.

Errors belonging to the new category are most often caused
by:
• insufficient number of mutexes - the so-called race con-
dition,

• too few operations in the critical section (not all key
operations were covered by the critical section) or too
many small critical sections - the so-called atomicity
violation,

• placing operations in parallel threads that must be per-
formed in a given order - the so-called order violation,

• the use of incorrect types of mutexes or the wrong
arrangement of operations for setting and releasing
mutexes - the so-called deadlock and livelock.

Based on the origin of error, errors specific to multithreaded
applications can be divided into two categories, i.e. race-type
errors and deadlock-type errors. Race-related errors include
those that cause, among others, errors such as race condition,
atomicity violation and order violation. The second category
of errors includes those that cause, e.g. a deadlock. These
errors most often arise as a result of an incorrect attempt to
phase out race-related errors.

Despite the numerous advantages of multithreading, pro-
grammers often resign from using this solution due to the

VOLUME 9, 2021 61299

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

lack of effective mechanisms protecting applications against
the occurrence of the above-mentioned errors. The reason
for this is that multithreaded applications are seemingly non-
deterministic, making them expensive and time consuming
to test [16]. It is sometimes impossible to identify errors due
to the fact that the operation of the application is affected by
the state of the operating system in which the application is
launched. In such cases, the analysis of all possible applica-
tion operation scenarios (and thus the identification of errors)
exceeds the time capacity of the available testing tools.

The methods currently used are mainly based on dynamic
error identification (analysis of various application ‘‘behav-
ior’’ scenarios). However, these methods are very invasive,
as not only the pthreads library implementation or application
implementation, but also the elements of the operating sys-
tem are often changed. Additionally, some of the developed
tools (using methods of dynamic error identification) need
a database to operate, in order to store data, which will be
processed only in the analysis after the end of the application
life cycle. Moreover, due to the use of many different C
compilers, the process of testing such an application must be
repeated for different platforms and hardware configurations.

These limitations do not exist in tools for static code anal-
ysis, which allow the identification of errors based solely on
its structure. However, the effective identification of errors
is conditioned by the possibility of mapping all necessary
relations between the threads and resources used. Building
a model of the code structure of a multithreaded application
program, enabling the identification of errors such as: race
condition, atomicity violation, order violation, deadlock is the
main purpose of the work.

A. CHARACTERISTICS OF SELECTED METHODS
The error detection issue discussed in this chapter is still open.
This is because these errors can occur not only in a single
application, but also between a set of communicating pro-
grams. Generally speaking, race condition, deadlock, atomic-
ity violation, order violation, etc. are errors that occur in any
system with asynchronicity, which is visualized in Fig. no. 2.
Due to the differences between e.g. multithreaded programs
and distributed systems, methods developed for distributed
systems may not be used in multithreaded applications. As a
result, after over 30 years of research on this issue, no meth-
ods that would allow a simple and unambiguous identification
of errors in multithreaded applications are available yet. This
is because research related to this subject is very challenging
for many reasons. These include the multitude of program-
ming languages and the programming paradigms supported
by these languages, various libraries and tools that provide
multithreading, as well as hardware properties, and all this
effectively prevents the development of one comprehensive
method. It should also be added that not all errors related to
multithreading can be easily classified and then reproduced
for repair [5]. Therefore, in practice, it is possible to locate a
number of errors such as race condition, atomicity violation,
order violation and deadlock, but also those that do not fit

FIGURE 2. The errors in question are the common set of software where
asynchronous calls occur.

into the category of race-related errors or the deadlock-type
errors [1].

The literature divides error detection methods into
3 categories: static, dynamic and mixed. Static methods are
methods that use the design or source code of the tested
application [65] in the analysis process. Dynamic methods
are based on the process of studying the behavior of the
application in the runtime environment and the errors occur-
ring inside it, which is carried out during the run of the
application [65]. Mixedmethods, on the other hand, are based
on selecting parts of the application in the process of static
analysis, and then observing the processes taking place in
the application for which selected fragments of code are
responsible.

The static methods include, among others the method dis-
cussed in this article, which is based on the proprietaryMulti-
threaded Application Source Code Model (MASCM). At the
same time, research on dynamic methods is also underway,
for example on the method implemented in the Ewha COn-
currency Detector (ECO) tool [4] or the SDRacer tool [8]. In
the 1990s, it was believed that mixed methods were the best
options for identifying race condition-type errors [69].

Each group of methods has some limitations, resulting
from what is being studied: source code of the program
or binary files (obtained after compilation). Within static
methods, the identification of errors is based on the source
code of the program. The disadvantages of these methods
include the possibility of reporting the so-called false-positive
error, i.e. indicating an error pattern in a piece of code where
there is no such error [37], [70]. Static methods are very
often limited to one language or a group of programming
languages based on the same programming paradigms. On
the other hand, dynamic methods, due to the fact that the
application behavior is tested (e.g. by examining application
binary files) are independent of the programming language.
However, very often their application is limited to selected
operating systems or hardware platforms. In addition, these

61300 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

methods may slow down the application’s operation through
their parallel operation or, in the worst cases, they may even
generate new errors.

One of the biggest challenges in researching race-type
errors (and probably not only this group) was indicated in [9].
Currently, there is no official database of known errors,
as well as methods to assess the effectiveness of available
tools and developedmethods. The paper [9] proposes a DRIn-
jector tool, which allows injecting the appropriate code with
a known error into an existing C/C++ application in order to
conduct research to identify it.

It should also be mentioned that a lot of research on
the errors discussed in this work concerns their occurrence
between different processes and even different systems work-
ing in different environments. The difference between threads
and processes, e.g. in Linux, is insignificant because threads
running within one process share the entire address space and
other resources, while processes have their own resources and
their own address spaces [20]. Sharing resources between
processes is slower and more difficult to implement than
sharing resources between threads, where it is enough to refer
to a variable. In order to achieve the same effect between
processes, it is necessary to use systemmechanisms that have
an internal mechanism of mutual exclusion, which prevents,
for example, race condition.

One of the features of methods based on static code anal-
ysis is the close cooperation of tools implementing these
methods with compilers. This is because compilers are very
often a collection of different applications, which are respon-
sible for compilation stages performed concurrently. Such
an approach allows e.g. to transform the source code into a
form of Abstract Syntax Tree, which can be subject to further
analysis. For example, a tool that uses MASCM to convert
source code to a MASCM instance uses the GCC compiler
and the syntax trees generated by it. A similar procedure was
used when building the DR-Frame tool, which uses the parser
from the LLVM project and the clang compiler [32] to test
network applications. The use of intermediates obtained dur-
ing the compilation process (e.g. the aforementioned AST or
debugging support files) guarantees that the data they contain
is fully compatible with the application’s boot environment.
This reduces the occurrence of new errors that could occur
during manual code parsing and interpreting.

Therefore, tools for static code analysis are often not inde-
pendent, and their results are affected by tools included in
compilers.

B. ERRORS IN MULTITHREADED APPLICATIONS
1) RACE CONDITION
As mentioned in the previous subsection, errors in multi-
threaded applications are divided into 2 groups: race-type,
deadlock-type group. The most characteristic error of this
group is race condition, an error resulting from incorrect
application of synchronization mechanisms or from their
complete omission. In other words, race condition is an error

that occurs when several threads are simultaneously access-
ing and acting on the same data so that the result depends on
the order in which the data [18] was accessed.

In 2007, Microsoft filed a patent for software using the
dynamicmethod to detect a race condition error [6]. However,
the method described in this patent proved to be ineffective
and work on tools using it was abandoned.

A year later, in 2008, a document describing the method
of static source code analysis for the detection of race con-
dition [7] was sent to the American Patent Office. The
method described in this patent is very similar to the method
described in this article. The source code written using the
object-oriented paradigm is converted to an indirect represen-
tation, in which the features indicating the presence of race
condition in the application code are sought. The authors of
the method indicate that it is dedicated for ANSI C and ANSI
C++ languages, however, they indicate that it can be used
with other languages as long as these can be reduced to an
indirect representation.

The method described in [8], on the basis of which the
SDRacer framework was created, was designed to detect
and eliminate race condition errors in modern embedded
systems. Modern embedded systems can also include IoT
class systems (this framework was developed for the uClinux
operating system currently integrated with the main branch
of the Linux kernel). SDRacer was used to test 9 appli-
cations written in C language for uClinux. These applica-
tions, however, are not multithreaded applications, and their
race condition errors are caused by the use of an interrupt
service routine (ISR) in these applications, which enables
asynchronous operations on selected memory areas.

One of the most common languages for investigating
race condition errors is Java [14], [15], [78]. This is due
to the fact that this language supports only one paradigm,
i.e. an object oriented paradigm, which makes the grammar
of this language very orderly, significantly facilitating the
creation of tools for source code analysis of this language.
These tools can be easily connected with IDE for Java. Exam-
ple SWORD, static data race detector is implemented as a
plugin in the Eclipse IDE [78].

Another tool for detecting race condition in Java pro-
grams is called Chord [81]. Chord uses Binary Decision Dia-
grams (BDDs) in scaling whole-program context sensitive
analyses to detect concurrency errors. Results of research on
Chord shows it is more efficient tool than RacerX described
below. High efficiency of the Chord is a result of form
of context sensitivity called k-object sensitivity that treats
abstract contexts and abstract objects uniformly by defining
the abstract contexts of an instance method as the abstract
objects.

As it turns out, however, the grammar of programming lan-
guages is not a significant obstacle in order to develop tools
for detection of race condition errors. To detect race condi-
tion, the RELAY [29] and RacerX [30] tools were developed,
which were used to analyze source code written in C, e.g.
the source code of the Linux system kernel. It is also worth

VOLUME 9, 2021 61301

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

mentioning that although a race condition error in almost all
applications is an error that needs to be fixed, it does not
always happen. As an example of the desired occurrence of
a race condition error, let’s use [10], where this error is used
to develop a true random number generator (TRNG). In other
words, the randomness associated with the occurrence of a
race condition error can be used to replace commonly used
pseudo-random number generators by generators with higher
entropy, which will allow building better cryptographic tools.

The Race condition error can also be identified by graph-
ical representations of multithreaded applications [11]. One
of the graphical representations that allow locating race con-
dition in the code of a multithreaded application is Petri Net-
work (PN). The natural phenomenon in PN is the concurrency
of performed actions; therefore, they are most often used for
modeling concurrent systems [12] (including multithreaded).
Despite many advantages, it is very difficult to use them to
analyze the source code structure of multithreaded applica-
tions. This is due to the ambiguity of the received models,
i.e. for a single multithreaded application one can build many
network models [11], out of which not every application
reproduces an error. The second graphic representation that
allows locating the occurrence of race condition errors is the
System of Concurrent Processes (CP). Although CP allows
locating the race condition error, they were not developed
with multithreaded applications in mind, and thus presenting
complex multithreaded applications in them may be difficult
or even impossible, because to present even a simple applica-
tion, the CP notation had to be extended [11].

The [79] work proposes a method that uses Concurrent
Control Flow Graph. Control Flow Graph as a model for
searching concurrent errors was described in paper [80]. CFG
is not sufficient to detect other concurrency errors, it cannot
be used tomodel operations and resources as separate entities,
and also did not include time intervals as one of the variables.

Another tool where CFG is used is LOCKSMITH [82].
LOCKSMITH is a static analysis tool for applications writ-
ten in C. CFG used to capture operations in the program
together with label flow graph is a core of for data race
detection process. Authors of LOCKSMITH proposed two
types of analysis context-insensitive and context-sensitive.
Context-sensitive analysis reduces false positives but also
limits LOCKSMITH’s overall scalability.

In addition to the PN and the MASCM model discussed
in this paper, attempts were made to build tools for graphical
representation of race-type errors, e.g. an application created
for this purpose called Bauhaus, which proved to be ineffi-
cient due to the time-consuming process of building graphic
representation as well as a very large number of false-positive
errors [31]. It is worth noting, however, that a good graphic
representation is easier for a human being to perceive than
long reports, and in the era of rapidly developing AI it may
also turn out that such a form of representation will prove
more effective over time.

The errors of the race condition class have been described
in great detail in the [13] work for concurrency delivered

through the fork/join mechanism by extending Cilc [17].
This mechanism was actually a precursor of the pthreads
library, where the fork function is used to create a fork, i.e.
a child process that simultaneously executes the specified
code fragment. The result of the child process is attached
to the parent process using the join function. Semaphores,
which are similar but much simpler mechanisms to mutexes,
have been used as a mechanism of process synchronization.
Netzer in his work [13] used temporal ordering graph to
detect race-condition errors, which he used to show relations
between the child processes and the parent process, so they
are not suitable to present the source code structure.

It is worth noting that in multithreaded applications written
in C using the pthreads library, a race condition error occurs
when at least one of the threads working in the selected period
of time has writing to resource operation that is not in the
critical section, or the critical section of one thread is created
by a set of mutexes not used by all others. This property
can be used to identify race condition errors by verifying
that all critical sections have at least one common mutex -
this property has been further used to develop a race condi-
tion error detection condition. It is also worth remembering
that removing a race condition error does not guarantee the
correctness of the application. Elimination of race condition
may result in deadlock, atomicity violation or order violation
errors [27], [28].

2) DEADLOCK
Deadlock-type error is manifested by the inability to gain
control over the mechanism of mutual exclusion e.g. mutex,
used to avoid race condition and other race-type errors [19].
The inability to gain control over the mutex most often results
from the wrong order of occurrence of the operations per-
formed within the thread, the lack of the operation to release
the mutex, or placing the release operation in the wrong place
in relation to the operation locking the mutex [19].

In the basics operating systems manual, a deadlock-type
error is defined as a situation where several processes are
waiting infinitely for an event that can only be started by one
of them [18].

One of the models that allow to identification of dead-
locks in multithreaded applications [71] is the previously
mentioned PN. However, a directed graph [18] and Gadara
Nets [21] were also used for this task, which are a variation
of PN.

Deadlocks fall into two categories: resource deadlock and
communication deadlock [24]. Resource deadlock occurs
when threads need a certain group of shared resources to run,
and each thread has reserved only a fraction of them, which
results in indefinitely waiting for itself [25].

Communication deadlock errors are more abstract and
more general than resource deadlock errors. They appear
both in distributed systems, in interprocess communication,
as well as in multithreaded applications, in which a wait
cycle is created that causes a deadlock error [19]. Due to
the high complexity of errors in the communication deadlock

61302 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

group ([24], [26]), further considerations are limited to the
resource deadlock group only.

For a deadlock error to occur, four conditions must be
met [18], [58]:

1) Mutual exclusion: At least one resource must be indi-
visible; that is, this resource can only be used by one
thread at a time. If another thread requests access to
a resource, it must be delayed until the resource is
released.

2) Holding and waiting: There must be a thread to which
at least one resource has been allocated, and which is
waiting for an additional resource to be allocated, just
held by another thread.

3) No expropriation: The resource is not subject to expro-
priation, which means that the resource can only be
released at the initiative of the thread holding it, once
the thread has been completed.

4) Recurringwait: Theremust be a set of T0,T1, . . . ,Tn of
awaiting threads such that T0 is waiting for a resource
being held by thread T1. T1 waits for the resource
held by thread T2, . . . ,Tn−1 waits for the resource held
by thread Tn, and Tn waits for the resource held by
thread T0.

The above necessary condition is also annotated that for a
deadlock class error to occur, all four conditions must be met.
It was also noted that the cyclical waiting conditions implies
the holding and waiting condition, so the four conditions
mentioned are not completely independent.

There are four scenarios where a deadlock error occurs in
a multithreaded application [19], [27]:

1) mutual exclusion of pairs of mutexes,
2) omitting the operation of releasing the mutex, e.g. as a

result of a control instruction,
3) a renewed attempt to create the mutex as a result of:

a) operation of the loop,
b) recurrent call of the function.

To detect errors belonging to the deadlock class in applica-
tions from the cloud computing domain, a positive attempt
was made to use UML activity diagrams [33]. However,
the authors of the solution emphasize that the method they
are developing is at an early stage of research, and its users
must learn to use CSP algebra as the basic semantic domain
for activity diagrams.

One of the solutions that allow eliminating the occurrence
of deadlock class errors is a project called Gadara [21],
[59], [60], which used the previously mentioned Gadara nets.
These nets are used in the state machine, which is built during
the compilation process based on the application’s source
code, and then built on the basis of this net, the supervisor is
injected into the application. The way the supervisor works
is based on Discrete Event Dynamic Systems and consists of
forcing the correct state of the application when the applica-
tion wants to go to a state unknown to the supervisor’s state
machine.

The disadvantages of the solution include the fact that the
implementation of the supervisor may have its own errors,
which may affect the operation of the supervised application.
As a result, additional elements may affect the application in
an unforeseen way, which may result in failures as serious in
consequences as deadlock class errors.

An additional supervisor in a multithreaded application
also means higher processor memory and time consump-
tion, as additional operations must be performed. However,
the presence of a supervisor in the program still does not
eliminate the error present in the application code. This code
can be compiled with a compiler other than the one from
Gadara project and then used by an unaware user.

In 2014, a paper was published on a method for automatic
fixing deadlock errors [22], but these methods have met with
much criticism [23]. The most serious drawbacks of these
solutions include the low quality of patches, which results
from creating them based on a limited group of tests, not
necessarily properly matched to the code to be fixed [23].

It was also undertaken to create general methods for detect-
ing deadlocks. One of them included searches in C/C++
applications written using pthreads library or Qt framework
and in Java applications [34]. In order to use it, one first needs
to provide the modified pthreads library modified OpenJDK
and modified Qt framework. Then we need to download and
install the NoSQL Redis database, in which the information
will be placed, and which also needs to be changed. The
results of this database can be found in the Eclipse and QtCre-
ator plugins. As a result, the developed method is limited
to two IDEs, for which the appropriate plugins have been
created. However, this method turns out to be highly useless
in practice, as it requires constant development of patches
with required changes and its application in environments
without UI is impossible e.g. in CI\CD process.

DeadLock Analysis Models (lams) [35], [36] were devel-
oped and used to detect deadlocks in multithreaded appli-
cations. This model is used to detect errors caused by a
thread that has already created a mutex, e.g. by using loop or
recurrence. Developed on the basis of the lams model and the
Petri Net, the method of static code analysis allows detecting
only two out of four cases of deadlock error (a re-creation of
mutex by the loop or recurrence).

Of course, apart from the methods listed in this section,
there are also other methods that are used to avoid these
errors, e.g. in operating systems or automation systems.
These methods, however, very often require information spe-
cific to the fields in which they are used, so they cannot be
used in the field of multithreaded applications.

3) ATOMICITY VIOLATION
The atomicity violation is one of the race errors and accounts
for nearly 70% of all reported errors in this group [37]. This
error consists in a disruption of the sequence relationship that
connects two operations from two different critical sections
of one thread that use a shared resource, and the disruption
of which caused by another thread’s operations on the same

VOLUME 9, 2021 61303

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

TABLE 1. Scenarios of the atomicity violation. Source [40].

shared resource causes undefined operation of the algorithm,
which includes these operations [38].

The four scenarios presented in table no. 1 come from [40]
on Kivati, which was limited to detecting atomicity violations
in Linux and x86 programs. This tool uses a mixed method
by supervising the so-called atomic regions in the process
of the application’s operation, which are obtained by prior
analysis of the application’s code. The method used in the
Kivati program has not received wider recognition and no
further research is being done on it.

Two patents have been filed for atomicity violation error
detection. The first is to analyze the processor instructions
and simulate selected [41] scenarios. The main objections
to this method are that it is limited to one type of syn-
chronization mechanism and a large number of false-positive
errors [42]. The authors of the patent do not indicate which
synchronizationmechanism is to be used, however, they force
programmers to use specific, predefined structures, which
require uniform synchronization mechanisms.

The second patent for the detection of atomicity violation
uses a method called access interleaving invariants (AII) [43].
The method described there was originally implemented in
AVIO [44] and SVD [45] tools, and a few years later it was
also used in the CTrigger [37] test framework. AII is one
of the dynamic methods, based on multiple analyses of the
results of the application in search of the scenarios mentioned
above. However, this method turned out to be ineffective, and
work on these tools was suspended. Using CTrigger requires
a lot of computational and time resources [37].

Java, due to its unflagging popularity, is still one of the
most popular languages used in research on these errors.
The paper [46] presents an algorithm called AeroDrome,
which was implemented in the RAPID tool, which is used for
dynamic analysis of applications written for JRE (Java Run-
time Environment) to detect atomicity violation. Research
on the algorithm is at an early stage of development and its
authors indicate that it is not good enough and should be used
as part of a hybrid method.

Solutions based on the analysis of the application dur-
ing its operation, in order to locate the cause of atomicity
violation, are used to develop methods independent of the
language in which the program is written. With the growing
popularity of JavaScript [47], this language has been applied
in Node.js runtime environment for writing server applica-
tions. This environment creates applications with the help
of the event-driven programming paradigm, in which many
operations are performed in parallel in different threads [48].

However, this environment does not provide tools for mark-
ing operations as atomic [48]. Such a guarantee is also not
provided by Rust [49], created for safe multithreading and
published in 2010.

The works on the method of static analysis of Java code
include a paper discussing the search for causes of atomicity
violation based on the grammar of the language. The method
described in the paper entitled ‘‘The method of static analysis
of Java code’’ is based on locating in the definition of classes
of methods having in the declaration the keyword synchro-
nized, whose structure is then analyzed for the occurrence
of patterns that guarantee the occurrence of atomicity vio-
lation [50]. The disadvantage of this method is that it is not
possible to translate it into languages that differ in similarity
to Java, including C.

The method called Hybrid Atomicity Violation Explorer
(HAVE) [51], which is based on the use of Static Summary
Tree, was also developed with Java in mind. Based on the
created trees, the work of selected fragments of the appli-
cation is simulated, and the effects of the simulation and
the trees are the basis for building hybrid trees, which are
then analyzed using the proprietary algorithm. The result of
the algorithm work is information about potential conflicts
causing atomicity violation and race condition. The authors
of this method mention the occurrence of a false-positive
error in the results of their method and further work on their
elimination. They also indicate the further development of
static code analysis as one of the most important elements
of the developed method.

4) ORDER VIOLATION
Order violation is caused by a reordering of at least a pair of
operations that have access to two (or more) memory areas
(i.e., operation A should always be called before B, but the
order is not preserved during execution) [1], [39]. This is
another bug after race condition and atomicity violation of
the race-type [1], [52], [53] the repair of which may result in
a deadlock error.

Out of all the errors discussed in this paper, the order
violation error is the least studied one, which is why it is also
the most frequently misclassified error (often mistaken for
atomicity violation) [39]. Research conducted in 2017 shows
that both programmers and testers are usually unable to
provide the correct sequence of thread execution [5], i.e.
knowledge of the scenario predicted by the architect or pro-
grammer implementing the indicated functionality is some-
times negligible among other team members. The analysis
of error reports showed that the largest number of reported
order violations was classified into the Minor group, i.e. the
fourth group on a scale from 1 to 5, where 5 are the least
significant errors and 1 are the most significant errors. The
data on the working time needed to fix various types of
bugs were also analyzed and it shows that repairing errors
in multithreaded applications took an average of 82 days,
while repairing errors in single-threaded applications takes
an average of 66 days [5]. Combined with the fact that very

61304 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

often the first codemodification does not resolve the [5] error,
it can be concluded that the average time spent by developers
fixing bugs in multithreaded applications is too short.

The literature proposed 5 strategies to eliminate the order
violation error [1]: using control instructions, changing the
sequence of operations, changing the structure of the source
code, changing the location of operations that create and
release mutexes, as well as other solutions not matching any
of the previous groups.

Order violation errors are also mentioned in research on
the testing technique called fuzzing. ConFuzz using this
technique, and other techniques designed to analyze mul-
tithreaded applications, including static code analysis [55].
ConFuzz reduces the application code to bytecode using the
llvm compiler, and then using the ThreadSanitizer tool imple-
mentation for llvm, this code is subjected to a fuzzing process,
in which ConFuzz collects information about the program’s
operation, as well as information from the tool ThreadSan-
itizer. Consequently, the ConFuzz results consist of 3 data
sets, i.e. the application input data, the ThreadSanitizer report,
and the application progress report. This process, performed
for a pre-set period of time, ends with a report containing
information on localized errors.

Three applications were tested with ConFuzzer: pbzip2,
pigz, pixz. The analysis time for each of these applications
is over 12 hours of operation. ConFuzz’er work was com-
pared to another DumbFuzzer implementation of the fuzzing
technique. These tools showed similar results when analyzing
pbzip2 and pigz in favor of ConFuzzer. Pixz analysis showed
no errors for both tools. Unfortunately, the results of the work
do not include division into individual types of errors.

5) CONVOIDER - UNIFIED ELIMINATION OF THE DESCRIBED
ERRORS
A solution for detecting all the above-mentioned errors is
a tool called Convoider [54], [56]. It uses a mechanism
called software transactional memory (STM). According to
the creators of Convoider, the use of their tool guarantees
the elimination of all deadlock, race condition, and atomicity
violation errors from the application.

Software transactional memory is a software concurrency
control mechanism that programmers can use to break down
code into transactions and ensure that each transaction runs
atomically and is isolated from the rest of the [56]. A software
concurrency control mechanism should be understood as a
mechanism that turns threads into separate processes, elimi-
nates the mechanisms of mutual exclusion, and completely
changes the mechanism of allocation and deallocation of
resources. This solution, although very attractive, has three
limitations that make its common application difficult. The
first limitation is the high cost of introducing the transaction
mechanism by developers, as this requires the introduction
of low-level API STM calls [56]. These are then used by
Convoider in the automatic transactionalization of binary
files. The second is the poor compatibility with operating
system kernel I\O calls [56]. The third limitation is very low

compatibility with condition variables, which can lead to e.g.
lost signal errors [56]. The authors of the tool also mention
only the implementation of this tool for applications written
in C and C ++ for Linux.

The biggest problem for Convoider is preventing an
order violation error, because despite extensive research
on this issue, the probability of preventing it is still
only 0.5% [54], [56].

Convoider is a tool extending the method used in the aban-
doned tool Grace [57]. As a result, Convoider, like Grace,
affects the speed of the application and increased memory
consumption, and at the moment it is possible to use it only
in systems with Linux kernel.

Convoider is tested on applications collected from projects
STAMP, PARSEC, SPLASH2 and Phoenix [56]. Exam-
ple applications from the last one were described in V-D as a
part of the experiment on MASCM model.

C. SUMMARY OF SELECTED SOLUTIONS
The 2 table summarizes selected methods related to the
research issue. The above-mentioned methods have been
compiled in relation to the method of performed analysis
(static, dynamic, mixed) and the errors detected. A direct
comparison of the presented methods, e.g. on a benchmark
basis, is not possible because:

• methods differ in the language of destination - despite
the similarities between C and Java, the results returned
by the methods could be incorrect,

• there are no tools to implement the methods or only
proposals / ideas have been presented in the literature,

• in the case of direct comparison, an objective evaluation
criterion should be adopted, e.g. the accuracy of the
results or the cost of using the method, unfortunately,
in the case of many methods, the above-mentioned cri-
teria will be opposite to each other, e.g. methods that are
expensive to use may not be accurate,

• most methods detect only one error.

Considering the above, this paper compares the available
methods in relation to the characteristics that make it impos-
sible to meet the requirements set out in the introduction to
the work:

• the restriction of use only to high-level object ori-
ented languages, which often requires high-performance
devices and reduces battery life: [30], [48], [50], [66],
[69], [74], [78], [81].

• limited to a specific operating system only, which
excludes the application of the method to applications
based on microcontrollers: [4], [30], [40], [54], [56],
[57], [69], [72].

• interference into the compiler, object code, or applica-
tion execution, which may interfere with the previously
selected IoT hardware: [21], [54], [56].

• the need to perform simulations or, in extreme cases,
a complete review, which does not allow the result to
be obtained within a few minutes: [37], [44], [45], [51].

VOLUME 9, 2021 61305

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

TABLE 2. List of selected methods.

• the requirement to learn new, unpopular programming
languages, which increases the costs of using the
method: [33], [74], [83].

• the ambiguity in the transformation of the program code
to other formal representations, e.g. multiple PN struc-
tures correspond to one code fragment: [31], [51], [73].

Most of the methods do not meet at least one of the
requirements, and the use of several methods simultaneously
(to ensure the detection of four errors) increases the cost of
use.

None of the methods or tools described in the previous
subsection can be used to verify the results of the rdao
detector tool described later. Methods and tools for errors
prevention do not inform about places where errors occur.
Part of detection methods have to be excluded because they
cannot be used with C language or POSIX Thread library.
Also, some part of methods and tools are abandoned because

of low quality, some part is no available anymore and some
part is on the early phase of development. In other words,
none of tools and methods described meet the requirements
to make a comparison with rdao detector.

III. MASCM MODEL
A. MOTIVATION
The conclusion from the previous section prompted the
authors of this paper to search for new solutions enabling
the identification / detection of a given class of errors (race-
condition, deadlocks, atomicity violation, and order viola-
tion) in multithreaded applications. The methods based on
dynamic software analysis are limited to selected operating
systems and / or programming language cases. This disad-
vantage is devoid of methods based on static software analy-
sis, which, in turn, are time-ineffective (in many cases code
analysis requires a complete review). In addition, the analysis

61306 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

of the source code equivalent expressed using known repre-
sentations, e.g. CFG or Petri net does not provide information
about many characteristics important for detecting errors in
a multithreaded application (e.g. execution time intervals
of individual threads [11]). Knowing the characteristics of
various types of software analysis, work was undertaken to
develop a newmodel dedicated tomultithreaded applications.
During the development, key assumptions were made for the
model to have the following characteristics:
• explicitness of the code to model transformation,
• emphasizing the elements that are important for identi-
fying a given error class,

• simplification of selected code elements,
• applicable to different programming languages.

Previous research shows [11], [19], [38], [39] that the imple-
mentation of these characteristics will significantly improve
the detection of errors in multithreaded applications while
reducing the time of analysis. Additionally, static analysis of
the code using the proposed model may be one of the stages
of the hybrid method, in which other solutions will also be
used.

It is important to support C programmers who write a lot of
C applications for medical, automotive, or energy industries.
The huge number of devices used there do not contains
GPU’s but do contain CPU’s with multithreading support.
A lot of software cannot be tested on the target devices,
so programmers use emulators and static analysis tools to
improve the quality of software. The testing process can be
long and expensive even with emulators, so to reduce costs
programmers use static analysis tools to find bugs in a short
time during development. As an example for QNX operating
system software is mostly create on Linux and cross compiled
for target devices. QNX is used on embedded devices where
there are no GPU’s but CPU’s supported multithreading.

B. FORMAL DESCRIPTION OF THE MODEL
The structure of the model allows for the mapping of a
multithreaded computer program in the form of a tuple:

CP = (TP,UP,RP,OP,QP,FP,BP) (1)

where:
1) P is the program index,
2) TP = {ti|i = 0 . . . α}, (α ∈ N) is the set of all threads ti

of CP, where t0 is the main thread, |TP| > 1,
3) UP = (ub|b = 1 . . . β), (β ∈ N+) is a sequence of sets

ub ⊆ TP containing threads working in the same time
frame in the program CP, whereas β > 1, u1 = {t0}
and uβ = {t0},

4) RP = {rc|c = 1 . . . γ }, (γ ∈ N+) is a family of shared
resources rc = {v1, v2, . . . , vη} of the program CP,
where ‘‘v’’ are the names of variables,

5) OP = {oi,j|i = 1 . . . δ, j = 1 . . . ε}, (δ, ε,∈ N+) is a set
of all atomic operations of the program CP. An atomic
operation is an instruction or function defined in
a programming language that cannot be divided.

The i index indicates the number of the thread in which
the operation is executed and the j index is the order
number of operations working within the thread ti,

6) QP = {qs|s = 1 . . . κ}, (κ ∈ N+) - the set of mutexes
qs = (ws, xs), available in the program, defined as the
pair variable, mutex type, where the type is one of the
set values (PMN, PME, PMR, PMD), where the values
correspond to the mutex types from the library pthread,

7) FP = {fn|n = 1 . . . ι} and FP ⊆ (OP × OP) ∪ (OP ×
RP) ∪ (RP × OP) ∪ (OP × QP) ∪ (QP × OP), (ι ∈ N+)
- the set of edges:

a) transition edges defining the order of operations:
fn = (oi,j, oi,k), where the operation oi,j is per-
formed prior to the operation oi,k , oi,j, oi,k ∈ OP,

b) resource-indicating edges rc, that change during
the operation oi,j: fn = (oi,j, rc), oi,j ∈ OP,
rc ∈ RP,

c) relationship edges indicating operations oi,j
depending on the current value of one of the
resources rc: fn = (rc, oi,j), rc ∈ RP, oi,j ∈ OP,

d) the edges of the mutex creation indicating the
operation oi,j creation selected mutex qs: fn =
(qs, oi,j), qs ∈ QP, oi,j ∈ OP,

e) mutex release edges indicating the operation oi,j
releasing selected mutex qs: fn = (oi,j, qs),
qs ∈ QP, oi,j ∈ OP,

8) BP = (BFWDP ,BBWDP ,BSYMP) - sequence of sets:

• BFWDP set of pairs of operations related by a forward
relationship: BFWDP = {(oi,j, oa,b); oi,j, oa,b ∈ OP};
operation execution oi,j forces the execution of
the operation oa,b, while oa,b of operation is not
conditioned by the earlier implementation of the
operation oi,j. Later in the work, this relation will
be marked with the symbol oi,j→ oa,b;

• BBWDP set of pairs of operations related by a for-
ward relationship: BBWDP = {(oi,j, oa,b); oi,j, oa,b ∈
OP}; operation execution oi,j from the pair does
not force the operation oa,b, while the execution
of the operation oa,b is conditioned by the ear-
lier execution of the operation oi,j. Later in the
work, this relation will be marked with the symbol
oi,j← oa,b;

• BSYMP a set of pairs of operations linked by a sym-
metrical relation: BSYMP = {(oi,j, oa,b); oi,j, oa,b ∈
OP}; execution of the operation oi,j forces the
execution of oa,b and conversely, the execution
of oa,b requires prior execution of oi,j. Later in
the work, this relation will be marked with the
symbol oi,j ↔ oa,b.

C. MODEL INSTANCE BUILDING METHOD
The source code model for multithreaded applications was
developed for the C language and pthreads library (the
official implementation of the POSIX Threads standard
for C language). An example of an application

VOLUME 9, 2021 61307

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

FIGURE 3. The algorithm for building a model instance by the application
mascm_generator.

mascm_generator transforming the source code of any C
multithreaded application to be represented according to the
developedCP (1) can be found in the repository rdao detector
(https://github.com/PKPhdDG/rdao_detector).

It was assumed that the CP (1) representation is built
indirectly fromAST syntax trees generated byGCC compiler.
The advantage of using syntax trees is their widespread use
in compilers and parsers, which potentially enables easier
integration of the developed tool with existing compilers. The
disadvantages include the fact that two different compilers
can generate different member trees for the same source code,
which can result in keeping two different CP representa-
tions. The idea of mascm_generator application is illustrated
in Fig. 3. Determining the CP representation for a given P
application requires 6 stages:

1) Build AST - build AST from the source code and vali-
date the code performed by the compiler.

2) Find operations and resources - analysis of AST nodes
to extract operations and resources.

3) Assign operations to threads - assign the operations you
have previously extracted to the corresponding threads.

4) Assign thread to time units - create time intervals based
on AST nodes and add threads to those time intervals.

5) Create edges - analyze a set of operations and create
relations/edges of the model.

6) Find relations - analyze the operation set and AST tree
to detect related operation pairs.

The most difficult stage of determining the CP representa-
tion is stage no. 4. To detect every time unit source code has to
be analyzed to find every call of functions pthread_create and
pthread_join. Calling the first one is equivalent to creating
a new time unit, calling the second one with the end of the
time unit. When few calls of the pthread_create follow one
another then all of these calls are treaded as one. The same
rule applies to the pthread_join function. If between two calls

of functions pthread_create or pthread_join exist call of other
function then a new time unit is created for this function.

D. SAMPLE MODEL INSTANCES
The process shown in Fig. 3 was used to derive the represen-
tation of CEG1 (1) of the following program EG1:

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
void *thread_start(void *args)
{

int *i = (int*)args; // o1,1
*i = 100; // o1,2
return (void*)NULL; // o1,3

}

int main()
{

int i = 0; // o0,1
pthread_t thandler; // o0,2
pthread_create(&thandler, NULL, thread_start,

(void*)&i); // o0,3
pthread_join(thandler, NULL); // o0,4
printf(‘‘I value is equal %d’’, i); // o0,5
return 0; // o0,6

}

The collection of EG1 threads includes main thread t0
and thread t1 created with pthreads. All operations of the
main function belong to the t0 thread, and operations in the
thread_start function belong to the t1 thread. The shared
resource set includes the i variable, to which the indicator is
passed as a parameter to the t1 thread function. The resource
set is therefore R = {r1 = {args, i }}. Projection operations,
address download, and extraction operations are skipped, for
example, ‘‘(void∗)&and’’. There are three time intervals for
thread execution. The thread t0 is executed in the first u1 and
the last u3 of the time interval, while the thread t1 is executed
in the interval u2. The sequence of time intervals is as follows
U = ({t0}, {t1}, {t0}).
The set of edges includes transition edges that indicate the

order of operations and usage edges that indicate resource
utilization. There are no mutexes in the application, soQ is an
empty set, just like B, because there are no relations between
operations in the application.

Ultimately, the CEG1 model for the EG1 application looks
as follows:

TEG1 = {t0, t1}

UEG1 = ({t0}, {t1}, {t0})

REG1 = {r1 = {args, i}}

OEG1 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o1,1, o1,2,

o1,3}

QEG1 = {∅}

FEG1 = {(o0,1, o0,2), (o0,2, o0,3), (o0,3, o0,4),

(o0,4, o0,5), (r1, o0,5), (o0,5, o0,6), (o1,1, o1,2),

(o1,2, r1), (o1,2, o1,3)}

BEG1 = {∅}

61308 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

FIGURE 4. Graphic representation of the EG1 application model instance.

Agraphic representation of the aboveCEG1 model is shown
in Fig. 4. As it can be seen, the operations of both threads are
performed in different mutually exclusive time intervals. This
means that the resource r1 is used by at most one thread at any
time. The program is therefore free from errors such as race
condition, deadlock, atomicity violation, order violation. The
presented model (as well as its graphic representation) allows
for the development of conditions meeting which allows for
the detection of the considered errors. The construction of
such conditions is the subject of the next chapter.

IV. ERROR DETECTION
A. TEST APPLICATION DESCRIPTION
For the purposes of this article, the homesoftserver appli-
cation (https://github.com/PKPhdDG/homesoftserver) was
developed, enabling the collection of data from IoT devices
such as cameras, motion sensors, water sensors, smoke detec-
tors, and heat sensors. It is a multithreaded application in
which one of the modules simulates the work of a device
receiving commands from an external environment, then exe-
cuted in separate threads. Depending on the command, calcu-
lation results are saved to shared resources. Delegating work
to separate threads allows the listening thread to continuously
accept new commands. In addition to the task threads and the
command listening thread, there is also a log handling thread
that places the application logs in a file that other threads can
also access by properly designed API. The homesoftserver
application has been designed so that its architecture corre-
sponds to the architecture of applications such as Apache
or Nginx. The application repository on the GitHub portal,
in the main branch, contains the application code free from
the errors discussed below. These errors can be put into the
application by applying patches in the bug_patches directory.

B. RACE CONDITION
A race condition error occurs when several threads con-
currently access and act on the same resources so that the
result depends on the order in which the resources were
accessed [18]. In general, the race condition detection prob-
lem can be formulated as follows:

Problem 1: There is a P multithreaded application whose
code is written in C using the pthreads library. I am looking
for an answer to the question: Is there a race condition error
in the P application?

In the context of the introduced CP model, the answer to
the above question comes down to the search for conditions,
the fulfillment of which will enable the identification of
operations (and related threads), the implementation of which
may cause a race condition.

An example of a very simple application with a race
condition (RC1) is available at https://bit.ly/2YKk4vr. The
presented application is a textbook example in which two
threads working in parallel change the value of a global
variable in an uncontrolled manner. TheCP representation for
the RC1 application is as follows:

TRC1 = {t0, t1, t2}

URC1 = ({t0}, {t1, t2}, {t0})

RRC1 = {{r1}}

ORC1 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o0,7, o0,8,

o0,9, o1,1, o1,2, o1,3, o1,4, o1,5, o1,6, o2,1, o2,2, o2,3,

o2,4, o2,5, o2,6}

QRC1 = {∅}

FRC1 = {(o0,1, o0,2), (o0,2, o0,3), (r1, o0,3),

(o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (o0,6, o0,7),

(o0,7, o0,8), (r1, o0,8), (o0,8, o0,9), (o1,1, o1,2),

(o1,2, o1,6), (o1,2, o1,3), (o1,3, o1,4), (o1,4, r1),

(o1,4, o1,5), (o1,5, o1,2), (o1,5, o1,6), (o2,1, o2,2),

(o2,2, o2,6), (o2,2, o2,3), (o2,3, o2,4), (o2,4, r1),

(o2,4, o2,5), (o2,5, o2,2), (o2,5, o2,6)}

BRC1 = {∅}

It is worth noting that the race condition can be caused by
operations of threads working in a common time interval - in
the RC1 application, it is the u2 range, containing the threads:
t1 and t2. Within the thread t1, the operation o1,4 is performed
to change the shared resource r1. Similarly, in the thread t2
the resource r1 is changed by the operation o2,4. None of
these operations is preceded by the operation of creating the
qw mutex, ensuring their mutual exclusion when accessing
the r1 resource. This means that both operations are not in
critical sections which leads to a race condition. In the graphic
representation of CP, this is manifested by the acyclic nature
of threads using a common resource.

This observation leads to the claim, the definition of which
requires entering the concept of thread path ti.
Definition 1: Let λP,i be the set of all paths that can be

created from the operations and mutexes used by the ti thread
starting from the oi,1 operation. Formally, the a-th path of λP,i

VOLUME 9, 2021 61309

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

is defined as a sequence:

λP,ia = (λP,ia,1, λ
P,i
a,2, . . . , λ

P,i
a,b, . . . , λ

P,i
a,q),

where

λ
P,i
a,1 = oi,1, λ

P,i
a,b ∈ OP ∪ QP,

(λP,ia,k , λ
P,i
a,k+1) ∈ FP, λ

P,i
a,k 6= λ

P,i
a,l for k 6= l, l, k = 1 . . . q

In this section, the following form was adopted:
• λ

P,i
a,b G λ

P,i
a if the element λP,ia,b is part of the path λ

P,i
a

• λ
P,i
a,b 7 λP,ia if the element λP,ia,b is not part of the path λ

P,i
a .

In addition, the path λP,ia is assumed to be cyclical if the
condition: ∃

λ
P,i
a,bGλ

P,i
a
λ
P,i
a,b = λ

P,i
a,q, b 6= q. The set of cyclic paths

of the ti thread is denoted by CλP,i ⊆ λP,i

Theorem 1: LetOP = {om,j, . . . , oi,j, . . . , oa,b} denote the
set of operations performed within the threads of the set ub ∈
UP, which use a common resource: rc ∈ RP (i.e. there are
(om,j, rc) ∈ FP or (rc, om,j) ∈ FP, . . . , or (oa,b, rc) ∈ FP or
(rc, oa,b) ∈ FP).
If there is an operation oi,j ∈ OP using the resource rc that:
• is not an element of the cyclic path λP,ia ∈ CλP,i (i.e.
oi,j 7 λP,ia) or

• is an element of the cyclic path λP,ia ∈ Cλ
P,i (i.e. oi,j G

λP,ia) but not preceded by the mutex locking operation qn
the operation causes race condition.

Proof: The proof of the theorem follows directly from
the definition of race condition. Operation access OP =
{om,j, . . . , oi,j, . . . , oa,b} to resource rc inRP in the mutual
exclusion mode is conditional on their implementation within
the critical section of the previously assumed (for each
operation) qn mutex. The operations of setting and releas-
ing the qn mutex always make up a cyclic path: λP,ia =

(. . . , qn, . . . , oi,j, . . . , qn) ∈ CλP,i, where qn precedes oi,j.
The lack of such paths in the CλP,i set means the existence of
the oi,j operation which has ‘‘free’’ access to the rc resource,
which leads to a race condition.

c.k.d.
The listing below shows the homesoftserver application

code with another example of race condition. This fragment
is part of the mechanism responsible for recording events
from the application (so-called logs). The enable_logger
function runs in a separate thread and causes an asyn-
chronous display of logs downloaded from the buffer using
the add_log function. The operation of the logging mech-
anism in the enable_logger function is secured by the
log_m and buf _index_m mutexes. The first one protects
the logger .buffer component, while the second one protects
the logger .index component. However, in the add_log func-
tion, none of the operations involving the logger .buffer and
logger .index variables were secured with a mutex, which
leads to race condition.

void* enable_logger(void *args)
{

...
pthread_mutex_lock(&log_m);
pthread_mutex_lock(&buf_index_m);
for (int i = 0; i <= logger.index; ++i

)

FIGURE 5. Fragment of the homesoftserver application model instance
with race condition.

{
if (logger.buffer[i] != (char*)

NULL)
{

const size_t log_lvl_str_index
= (size_t)logger.
log_levels[i] - 1;

printf(‘‘LOG:%s:%s\n’’,
log_lvl_str[
log_lvl_str_index], logger
.buffer[i]);

free(logger.buffer[i]);
logger.buffer[i] = (char*)NULL

;
}

}
logger.index = -1;
pthread_mutex_unlock(&buf_index_m);
pthread_mutex_unlock(&log_m);

...
}

void add_log(const char *log, enum LogLevel level)
{

char *llog = (char*)malloc(sizeof(char)*strlen
(log));

strcpy(llog, log);
if (logger.index >= BUFFER_SIZE || log_level >

level) return;

++logger.index;
logger.buffer[logger.index % BUFFER_SIZE] =

llog;
logger.log_levels[logger.index % BUFFER_SIZE]

= level;
logger.index = logger.index % BUFFER_SIZE;

}

The picture no. 5 includes a representation of CP of the
application homesoftserver in a graphic form that corre-
sponds to the presented fragment of the program code. Oper-
ations from the tj thread correspond to the code fragment
from the add_log function, while operations from the ti thread
correspond to the enable_logger function. According to the
adopted notation, the CP representation has the following
form:

THSSRC = {t0, . . . , ti, tj, . . .}

UHSSRC = ({t0}, . . . , {ti, tj, . . .}, . . . , {t0})

RHSSRC = {{logger .index}, {logger .buffer},

61310 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

{logger .levels}, . . .}

OHSSRC = {oi,12, oi,13, oi,14, . . . , oi,18, oi,19,

oi,20, oi,21, oi,22, . . . , oi,24, oi,25, . . . , oj,11, oj,12,

oj,13, oj,14, . . .}

QHSSRC = {(log_m,PMD),

(buf _index_m,PMD), . . .}

FHSSRC = {. . . , (q1, oi,12), (oi,12, oi,13),

(q2,oi,13),(oi,13,oi,14),. . ., (oi,18, r3), (oi,18,oi,19),

(r2, oi,19), (oi,19, oi,20), (oi,20, r2), (oi,20, oi,21),

(oi,21, r2), (oi,21, oi,22), (oi,22, r1), . . . , (oi,24, q2),

(oi,24,oi,25),(oi,25, q1),. . . ,(oj,11,r1), (oj,11,oj,12),

(r1, oj,12), (oj,12, r2), (oj,12, oj,13), (oj,13, r3),

(oj,13, oj,14), (oj,14, r1), . . .}

BHSSRC = {. . .}

As it is easy to notice, in the program under consideration
there are no operations assuming mutexes in the thread tj.
This means that the operations of the tj thread have free
access to the resources r1, r2, r3. According to the introduced
theorem 1, the highlighted operations of the tj thread are not
an element of cyclic paths (containing mutex creation and
release operations). Therefore, the application will have a
race condition error.

In order to eliminate the detected race condition, the code
should be supplemented with operations that create and
release mutexes. One of the popular practices to avoid race
condition is to assign each of the shared resources one mutex,
whose task will be to watch over all operations performed on
that resource. It is possible for the application code to have
two or more resources that are closely related and changing
one of them changes the others. For groups of closely related
resources, a single mutex is used instead of multiple mutexes.
However, the improper use of mutexes can lead to a deadlock
or atomicity violation.

C. DEADLOCK
The first error that may occur as a result of the incorrect oper-
ation of mechanisms aimed at eliminating the race condition
error is deadlock. Deadlock has been defined as a situation
where several threads wait indefinitely for an event that can
only be started by one of the waiting threads [18]. This error
is strongly related to mutex creation and release operations,
which can be one of four types:
• PTHREAD_MUTEX_NORMAL (PMN)
• PTHREAD_MUTEX_ERRORCHECK (PME)
• PTHREAD_MUTEX_RECURSIVE (PMR)
• PTHREAD_MUTEX_DEFAULT (PMD)
For a deadlock to occur, four conditions must be

met [18], [58]:
• mutual exclusion,
• holding and waiting,
• no expropriation,
• cyclical waiting.

The above conditions are met in the following scenarios [19]:
• mutex pairs mutually exclusive (scenario S1),
• no operation of removing the mutex as a result of control
instructions (scenario S2),

• re-calling the mutex of the loop result (scenario S3),
• re-calling of the creation of a mutex of a non-PMR type
as a result of calling a recurrent function (scenario S4).

The problem of locating deadlocks in multithreaded appli-
cations can be defined as follows.
Problem 2: There is a Pmultithreaded application written

in C using the pthreads library. We are looking for an answer
to the question: Is there a deadlock in the P application?

In the context of the introduced CP model, the answer to
the above question comes down to determining the conditions
enabling the identification of program elements responsi-
ble for the occurrence of one of the above-defined S1-S4
scenarios.

Mutually exclusive pairs of mutexes (S1). For exam-
ple, code for an application with a deadlock error due
to mutually exclusive pairs of mutexes can be found at
https://bit.ly/2D7ANBk (DL0). The CP representation for a
DL0 application is as follows:

TDL0 = {t0, t1, t2}

UDL0 = ({t0}, {t1, t2}, {t0})

RDL0 = {{counter}}

ODL0 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o0,7, o0,8,

o0,9, o1,1, o1,2, o1,3, o1,4, o1,5, o1,6, o2,1, o2,2, o2,3,

o2,4, o2,5, o2,6}

QDL0 = {(m,PMN), (n,PMN)}

FDL0 = {(o0,1, o0,2), (o0,2, o0,3), (r1, o0,3),

(o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (o0,6, o0,7),

(o0,7, o0,8), (r1, o0,8), (o0,8, o0,9), (q1, o1,1),

(o1,1, o1,2), (q2, o1,2), (o1,2, o1,3), (o1,3, r1),

(o1,3, o1,4), (o1,4, q2), (o1,4, o1,5), (o1,5, q1),

(o1,5, o1,6), (q2, o2,1), (o2,1, o2,2), (q1, o2,2),

(o2,2, o2,3), (o2,3, r1), (o2,3, o2,4), (o2,4, q1),

(o2,4, o2,5), (o2,5, q2), (o2,5, o2,6)}

BDL0 = {∅}

From the above representation it is easy to read that in the
thread t1 mutexes are created in the order (q1, q2), the reverse
of that in the thread t2: (q2, q1). Both these threads run in the
same u2 time frame. The reverse order of the mutex setting
causes the threads to wait for each other - a deadlock error
occurs.
This observation was used to develop a condition enabling

the identification of deadlock S1 errors in the program code.
Definition 2: Let the path λP,il have two such operations:

oi,a G λ
P,i
l and oi,b G λ

P,i
l within which the qc and qd mutexes

are created respectively (i.e. in FP there are (oi,a, qc) and
(oi,b, qd)) edges.

VOLUME 9, 2021 61311

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

The qc mutex is said to precede the qd mutex on λP,il if oi,a
precedes oi,b (oi,a ≺ oi,b). This relationship is denoted by
qc ≺li qd .

The above definition leads to the following lemma:
Lemma 1: Two threads ti and tj of application P are given,

and the sets of paths λP,i are known. In both threads there are
operations setting up qc and qd mutexes.

If there is such a pair of paths: λP,il , λ
P,i
k for which the

condition is met: (qc ≺li qd)
∧
(qd ≺kj qc) or (qc ≺kj

qd)
∧
(qd ≺li qc) then in the source code of the P application

there will be a deadlock (S1) with threads ti and tj.
Proof: Based on the instance of the DL0 application

model, the necessary condition for a deadlock error of type S1
(mutex pair exclusion) between two threads ti and tj there are
sequences of mutex setting up qc and qd in reverse order each
of these threads. This condition is therefore fulfilled when in
the thread ti the qc mutex precedes the qb mutex (according to
def. 2) and the thread tj the qb mutex precedes the qc mutex
(qc ≺li qd)

∧
(qd ≺kj qc) or reversely (qc ≺kj qd)

∧
(qd ≺li

qc). c.k.d.
No mutex release operation (S2) / re-creation of mutex

operation (S3). For a sample application code with a dead-
lock based on S2 scenario, see https://bit.ly/32tiBKY (DL1).
The CP representation for a DL1 application is as follows:

TDL1 = {t0, t1, t2}

UDL1 = ({t0}, {t1, t2}, {t0})

RDL1 = {{counter}, {args, i, t2arg}}

ODL1 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o0,7, o0,8,

o0,9, o0,10, o1,1, o1,2, o1,3, o1,4, o2,1, o2,2, o2,3, o2,4,

o2,5, o2,6, o2,7, o2,8, o2,9}

QDL1 = {(m,PMN)}

FDL1 = {(o0,1, o0,2), (o0,2, o0,3), (r1, o0,3),

(o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (o0,6, o0,7),

(o0,7, o0,8), (o0,8, o0,9), (r1, o0,9), (o0,9, o0,10),

(q1, o1,1), (o1,1, o1,2), (o1,2, r1), (o1,2, o1,3),

(o1,3, q1), (o1,3, o1,4), (q1, o2,1), (o2,1, o2,2),

(o2,2, o2,3), (r2, o2,3), (o2,3, o2,4), (o2,4, o2,7),

(o2,4, o2,5), (o2,5,r1), (o2,5, o2,6), (o2,6, q1),

(o2,6, o2,9), (o2,7, o2,8), (o2,8, r1)}

BDL1 = {∅}

Sample application code with S3 deadlock can be found
at https://bit.ly/3lAFAwL (DL2). The CP representation for
DL1 application is as follows:

TDL2 = {t0, t1}

UDL2 = ({t0}, {t1}, {t0})

RDL2 = {{counter}, {args, i, t1arg}}

ODL2 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o0,7, o1,1,

o1,2, o1,3, o1,4, o1,5, o1,6}

QDL2 = {(m,PMN)}

FDL2 = {(o0,1, o0,2), (r1, o0,2), (o0,2, o0,3),

(o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (r1, o0,6),

(o0,6, o0,7), (o1,1, o1,2), (o1,2, o1,5), (o1,2, o1,3),

(q1, o1,3), (o1,3, o1,4), (o1,4, o1,2), (o1,4, r1),

(o1,4, o1,5), (o1,5, q1), (o1,5, o1,6)}

BDL2 = {∅}

When analyzing variants of DL1 application execution,
it is easy to find a scenario in which the operation (start-
ing from the (q1, o2,1) edge and then going through the
(o2,4, o2,7) edge) omits the o2,6 operation responsible for
releasing the previously created q1 mutex - a deadlock (S2)
occurs. A similar situation is present in the DL2 appli-
cation. A scenario is acceptable where the execution of
the operation (from the (q1, o1,3) edge, then through the
(o1,3, o1,4), (o1,4, o1,2) edge to the (o1,2, o1,3) edge), leads
to the operation of re-setting up the q1 mutex - a deadlock
(S3) occurs. The above observations were used to develop
a condition to identify S2 and S3 deadlock errors in the
program code.
Lemma 2: If in the set of λP,i of application P there is a

path that contains the mutex qs G λP,i and it is not a cyclic
path with the element λP,ia,q = qs, then an error occurs in the
application P of deadlock class, type S2 and S3.

Proof:The necessary condition for an error of the S2 and
S3 deadlock class in the thread ti is the existence of a sequence
of operations which result in the lack of release of the previ-
ously created mutex qs. This condition is therefore fulfilled
when there is a path in the λP,i of application P that starts with
qs (mutex setting) and does not return to qs (mutex release) -
a path that is not cycle. c.k.d.

Re-calling the operation of setting up a mutex type
other than PMR (S4).

For an example of an application with an S4-compatible
deadlock, see https://bit.ly/34J63lu (DL3). The CP represen-
tation for a DL3 application is as follows:

TDL3 = {t0, t1}

UDL3 = ({t0}, {t1}, {t0})

RDL3 = {{counter}, {args, i, t1arg}}

ODL3 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o0,7, o1,1,

o1,2,o1,3, o1,4,o1,5,o1,6,o1,7, o1,8, o1,9, o1,10, o1,11,

o1,12, o1,13, o1,14, o1,15, o1,16, o1,17, o1,18}

QDL3 = {(m,PMN)}

FDL3 = {(o0,1, o0,2), (r1, o0,2), (o0,2, o0,3),

(o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (r1, o0,6),

(o0,6, o0,7), (o1,1, o1,2), (q1, o1,2), (o1,2, o1,3),

(o1,3, o1,10), (o1,3, o1,4), (o1,4, r2), (o1,4, o1,5),

(o1,5, r2), (o1,5, o1,6), (o1,6, r1), (o1,6, o1,7),

(o1,7, o1,8), (o1,8, o1,9), (q1, o1,9), (o1,9, o1,17),

(o1,10, o1,11),(o1,11, r2),(o1,11, o1,12), (o1,12, r2),

(o1,12, o1,13),(o1,13, r1),(o1,13, o1,14), (o1,14, o1,15),

61312 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

(o1,15,q1), (o1,15, o1,16),(o1,16, o1,1), (o1,17,q1),

(o1,17, o1,18), (o1,18, o1,1)}

BDL3 = {∅}

In the adopted model, recursive functions are represented by
edges, leading again to the operation calling the recursive
function. In the case of DL3 applications, these are the edges
of (o1.16, o1.1) and (o1.18, o1.1). Such edges appear in the
model if the return keyword is used in the program code.
The allowedmutex type for recursive functions is PTHREAD
_MUTEX _RECURSIVE. Another type of mutex results in
an S4 deadlock.

The above assumption leads to the following lemma.
Lemma 3: If the thread ti of the P application calls a

recursive function that does not use PMR mutex, a deadlock
error (S4) occurs.

Proof: The lemma is a direct consequence of the
assumptions made to call recursive functions.

General condition. The examples presented above allow
us to make the following theorem:
Theorem 2: Let TP = {t0, . . . , tα} denote a set of threads

using mutexes QP = (q1, . . . , qκ) of application P. The S1-
S4 deadlock error will occur if there is a pair of threads ti,
tj inTP for which the lemma no. 1 is met or there is a thread
tk ∈ TP for which any of the lemmas no. 2 and 3 is met.

As mentioned earlier, deadlock errors most often occur
when trying to eliminate race condition, and the case for the
homesoftserver application is included in the listing below.
void* enable_logger(void *args)
{

...
pthread_mutex_lock(&log_m);
pthread_mutex_lock(&buf_index_m);
for (int i = 0; i <= logger.index; ++i

)
{

if (logger.buffer[i] != (char*)
NULL)

{
const size_t log_lvl_str_index

= (size_t)logger.
log_levels[i] - 1;

printf(‘‘LOG:%s:%s\n’’,
log_lvl_str[
log_lvl_str_index], logger
.buffer[i]);

free(logger.buffer[i]);
logger.buffer[i] = (char*)NULL

;
}

}
logger.index = -1;
pthread_mutex_unlock(&buf_index_m);
pthread_mutex_unlock(&log_m);

...
}

void add_log(const char *log, enum LogLevel level)
{

...
pthread_mutex_lock(&buf_index_m);
pthread_mutex_lock(&log_m);
++logger.index;
logger.buffer[logger.index % BUFFER_SIZE] =

llog;

FIGURE 6. Fragment of the homesoftserver application model instance
with a deadlock error.

logger.log_levels[logger.index % BUFFER_SIZE]
= level;

logger.index = logger.index % BUFFER_SIZE;
pthread_mutex_unlock(&buf_index_m);
pthread_mutex_unlock(&log_m);

}

The following is a representation ofCP of a selected fragment
of the homesoftserver application (it has a deadlock error),
which is shown in Fig. no. 6.

THSSDL = {t0, . . . , ti, tj, . . .}

UHSSDL = ({t0}, . . . , {ti, tj, . . .}, . . . , {t0})

RHSSDL = {{logger .index}, {logger .buffer},

{logger .levels}, . . .}

OHSSDL = {oi,12, oi,13, oi,14, . . . , oi,18, oi,19, oi,20,

oi,21, oi,22, . . . , oi,24, oi,25, . . . , oj,11, oj,12,

oj,13, oj,14, oj,15, oj,16, . . .}

QHSSDL = {(log_m,PMD),

(buf _index_m,PMD), . . .}

FHSSDL = {. . . , (q1, oi,12), (oi,12, oi,13),

(q2,oi,13),(oi,13,oi,14), . . . ,(oi,18,r3),(oi,18, oi,19),

(r2, oi,19), (oi,19, oi,20), (oi,20, r2), (oi,20, oi,21),

(oi,21, r2), (oi,21, oi,22), (oi,22, r1), . . . , (oi,24, q2),

(oi,24,oi,25),(oi,25, q1),. . . ,(q2,oj,11),(oj,11, oj,12),

(q1, oj,12), (oj,12, oj,13), (oj,13, r1), (oj,13, oj,14),

(r1, oj,14), (oj,14, r2), (oj,14, oj,15), (oj,15, r3),

(oj,15, oj,16), (oj,16, r1), . . .}

BHSSDL = {. . .}

The error identification in the discussed fragment of the
homesoftserver application requires checking the fulfillment
of Theorem no. 2. In the considered application, Lemma no. 1
is fulfilled: the order of setting mutex pairs in the threads ti
and tj is different. In the thread ti mutexes are created in the
order (q1, q2), while in the thread tj the order is reversed, i.e.
(q2, q1) which indicates a deadlock error (S1).

VOLUME 9, 2021 61313

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

FIGURE 7. Edges reflecting the relationship between operations.

In summary, the modification of the code that introduces a
fix that eliminates the race condition type error may, among
other things, lead to a deadlock class error. Preventing dead-
lock failures is as complicated as preventing race condition
failures. It should be noted that too many mutexes can lead
to a significant drop in the speed of the application. When
setting up groups of mutexes, one of the practices used is the
use of dedicated locking and unlocking functions for entire
groups of mutexes or dedicated macros.

D. ATOMICITY VIOLATION
Atomicity violation is the second error that could be intro-
duced as a result of changes to race condition elimination.
This error is the result of an inconsistent order in which
the data was accessed [61]. It consists of placing linked
operations (logically together) in at least two different critical
sections of one thread, which allows code to be executed in
parallel, which may change the state of the shared resources
used in the previously mentioned critical sections. Operations
can be linked with one of the following relations, which has
been additionally visualized in the figure 7:
• forward - relation in which after the execution of the
operation a, the execution of the operation bmust always
take place,

• backward - relation in which the execution of the oper-
ation a must always precede the execution of the opera-
tion b,

• symmetric - a relation in which the execution of the
operation a must always precede the execution of the
operation b, and the execution of the operation b must
always follow the execution of the operation a.

In the review of the literature and technical documentation,
no mechanism has been found so far in the programming
languages by means of which it is possible to declare the
relations presented above. The solution to this problem is
to use encapsulation. Two operations that are connected to
each other are closed in one function so that an operation
that cannot be performed by itself is not possible to be called
from outside. However, in order to properly encapsulate the
operations logically connected to each other, it is necessary
to anticipate this already at the application design stage.
Unfortunately, it is not possible that the whole process of
application design and development is supervised by a spe-
cialist in multithreading.

Taking into account the mentioned gap in the literature,
it is worth providing the following definition of atomicity
violation:
Definition 3: Atomicity violation is an error where

between two operations of a single oi,α, oi,β thread using

a common rc resource, there is a sequential relationship
belonging to one of the sets of sequences BP, whose dis-
ruption caused by the oj,ε operation of another thread on the
same resource (an unexpected change of the resource) causes
undefined actions of the algorithmwhich these operations are
part of.

Taking into account the above definition, the problem of
atomicity violation detection can be formulated as follows:
Problem 3: There is a multithreaded P application, written

in C using the pthreads library, in which pairs of operations
are known to be in one of the contractual relationships with
each other. An answer is being sought to the question: Is it
possible to detect an error of the atomicity violation type?

For an example of an application with an atomicity viola-
tion error, see https://bit.ly/2QBlVOC (AV1). The CP repre-
sentation for the AV1 application is as follows:

TAV1 = {t0, t1, t2}

UAV1 = ({t0}, {t1, t2}, {t0})

RAV1 = {{r1}}

OAV1 = {o0,1, o0,2, o0,3, o0,4, o0,5, o0,6, o0,7, o0,8,

o0,9, o1,1, o1,2, o1,3, o1,4, o1,5, o1,6, o1,7, o1,8, o1,9,

o1,10, o1,11, o1,12, o2,1, o2,2, o2,3, o2,4, o2,5, o2,6,

o2,7, o2,8, o2,9, o2,10, o2,11, o2,12}

QAV1 = {(m,PMN)}

FAV1 = {(o0,1, o0,2), (o0,2, o0,3), (r1, o0,3),

(o0,3, o0,4), (o0,4, o0,5), (o0,5, o0,6), (o0,6, o0,7),

(o0,7, o0,8), (r1, o0,8), (o0,8, o0,9), (o1,1, o1,2),

(o1,2, o1,12), (o1,2, o1,3), (o1,3, o1,4), (q1, o1,4),

(o1,4, o1,5), (o1,5, r1), (o1,5, o1,6), (o1,6, q1),

(o1,6, o1,7), (o1,7, o1,8), (q1, o1,8), (o1,8, o1,9),

(r1, o1,9), (o1,9, o1,10), (o1,10, q1), (o1,10, o1,11),

(o1,11, o1,2), (o1,11, o1,12), (o2,1, o2,2), (o2,2, o2,12),

(o2,2, o2,3), (o2,3, o2,4), (q1, o2,4), (o2,4, o2,5),

(o2,5, r1), (o2,5, o2,6), (o2,6, q1), (o2,6, o2,7),

(o2,7, o2,8), (q1, o2,8), (o2,8, o2,9), (r1, o2,9),

(o2,9, o2,10), (o2,10, q1), (o2,10, o2,11), (o2,11, o2,2),

(o2,11, o2,12)}

BBWDAV1 = {(o1,5, o1,9), (o2,5, o2,9)}

The presentedAV1 application has two backward relations,
which is a reason for possible atomicity violation error. To
locate the atomicity violation error, the first step is to check
if the operations of each pair from the B set are located in
two different critical sections. The o1.5 operation using the
r1 resource is located in the first critical section between
the o1.4 mutex creation operation and the o1.6 mutex release
operation. The second operation, that is o1.9, is between
the operations o1.8 and o1.10. This means that both of these
operations are in two different critical sections. However, this
is not yet the same as atomicity violation errors. In the next

61314 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

step, it should be checked whether there is an operation in
the parallel thread that can use the r1 resource. However,
in the second thread there are two such operations, i.e. o2.5
and o2.9, which proves that atomicity occurs between the fol-
lowing three operations (o1,5, o1,9, o2,5) and (o1,5, o1,9, o2,9).
The same should be done in the case of the second pair of

operations from the B set. The search results are the following
threes (o2.5, o2.9, o1.5) and (o2.5, o2.9, o1,9).
The approach presented above can be reduced to the veri-

fication of the following statement:
Theorem 3: There are operations oi,α andoi,β , related to

each other by any of the contractual sequential relations.
If there is a cyclic path in λP,i of the P application that
includes the mutex qs G λP,i and only one operation from
{oi,α, oi,β} then there is an atomicity violation error between
these operations.

Proof: The proof results directly from the definition
of atomicity violation. If there is a cyclic path in λP,i of
the P application that includes the mutex qs G λP,i and only
one operation from {oi,α, oi,β} it means that the operations
oi,α, oi,β do not belong to one critical section. This means
that it is allowed to perform the operation oi,ε of another
thread (t) on the same resource between operations oi,α, oi,β
i.e.: oi,α ≺ oj,ε ≺ oi,β . Thus, it is permissible to violate
the atomicity of oi,α, oi,β operations by performing the oj,ε
operation.

The code of the homesoftserver application including the
modification to eliminate the race condition, which also intro-
duces the atomicity violation is presented below.

void* enable_logger(void *args)
{

...
pthread_mutex_lock(&log_m);
pthread_mutex_lock(&buf_index_m);
for (int i = 0; i <= logger.index; ++i

)
{

if (logger.buffer[i] != (char*)
NULL)

{
const size_t log_lvl_str_index

= (size_t)logger.
log_levels[i] - 1;

printf(‘‘LOG:%s:%s\n’’,
log_lvl_str[
log_lvl_str_index], logger
.buffer[i]);

free(logger.buffer[i]);
logger.buffer[i] = (char*)NULL

;
}

}
logger.index = -1;
pthread_mutex_unlock(&buf_index_m);
pthread_mutex_unlock(&log_m);

...
}

void add_log(const char *log, enum LogLevel level)
{

...
pthread_mutex_lock(&log_m);
pthread_mutex_lock(&buf_index_m);
++logger.index;

logger.buffer[logger.index % BUFFER_SIZE] =
llog;

logger.log_levels[logger.index % BUFFER_SIZE]
= level;

pthread_mutex_unlock(&buf_index_m);
pthread_mutex_unlock(&log_m);

pthread_mutex_lock(&log_m);
pthread_mutex_lock(&buf_index_m);
logger.index = logger.index % BUFFER_SIZE;
pthread_mutex_unlock(&buf_index_m);
pthread_mutex_unlock(&log_m);

}

In this example, there may be a situation where the
incorrect state of the logger .index variable will cause the
enable_logger function to malfunction, which will lead to
errors in the application’s operation.

FIGURE 8. Fragment of the homesoftserver application model instance
with atomicity violation.

The representation of CP of the considered fragment of the
homesoftserver application is presented below, the graphic
form of which is shown in the figure 8.

THSSAV = {t0, . . . , ti, tj, . . .}

UHSSAV = ({t0}, . . . , {ti, tj, . . .}, . . . , {t0})

RHSSAV = {{logger .index}, {logger .buffer},

{logger .levels}, . . .}

OHSSAV = {oi,12, oi,13, oi,14, . . . , oi,18, oi,19, oi,20,

oi,21, oi,22, . . . , oi,24, oi,25, . . . , oj,11, oj,12, oj,13,

oj,14, oj,15, oj,16, oj,17, oj,18, oj,19, oj,20, . . .}

QHSSAV = {(log_m,PMD),

(buf _index_m,PMD), . . .}

FHSSAV = {. . . , (q1, oi,12), (oi,12, oi,13),

(q2,oi,13),(oi,13,oi,14),. . . , (oi,18,r3),(oi,18, oi,19),

(r2, oi,19), (oi,19, oi,20), (oi,20, r2), (oi,20, oi,21),

(oi,21, r2), (oi,21, oi,22), (oi,22, r1), . . . , (oi,24, q2),

(oi,24,oi,25),(oi,25,q1),. . . ,(q1,oj,11), (oj,11,oj,12),

(q2, oj,12), (oj,12, oj,13), (oj,13, r1), (oj,13, oj,14),

(r1, oj,14), (oj,14, r2), (oj,14, oj,15), (oj,15, r3),

(oj,15, oj,16), (oj,16, q2), (oj,16, oj,17), (oj,17, q1),

VOLUME 9, 2021 61315

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

(oj,17, oj,18), (q1, oj,18), (oj,18, oj,19), (q2, oj,19),

(oj,19, oj,20), (oj,20, r1), . . .}

BFWDHSSAV = {(oj,13, oj,20)}

This is a more extensive example than the two previous
fragments as there are more operations that need to be con-
sidered for atomicity violation, and there is also a forward
relationship edge. According to the introduced theorem, this
error occurs because there are two operations connected with
each other by the edge of the forward relationship, and these
operations are located in two different critical sections [38]. In
other words, between a pair of operations (oj,13, oj,20) there
is an atomicity violation, because these are not in the same
critical section, and the resource r1 that is used by these
operations is also shared by the oi,22 operation.
In summary, code modifications aimed at elimination of

e.g. race condition, can lead to atomicity violation. Correct
identification of the atomicity violation error is conditioned
by the information about relations between the operations.
This knowledge is usually beyond the reach of software
designers and programmers. This is due to the property of the
C language, which has no mechanisms to include this infor-
mation in the source code, and the programmers repeatedly
omit it when developing documentation and commenting on
the code. Some good practices can be mentioned for prevent-
ing atomicity violation:
• properly designed application architecture in such a way
that pairs of operations that are connected by any of the
contractual relations should be encapsulated,

• development of full documentation in which informa-
tion about these relations will be included,

• transferring information about these relationships to
all developers who work on the code for such an
application.

E. ORDER VIOLATION
The order violation is the least researched of the errors
described in this paper, it is confirmed by a small number of
publications that address this problem. Additionally, the order
violation is repeatedly confused with the atomicity violation.
An order violation is caused by reversing the order of access
to two (or more) memory areas (i.e. ‘‘A’’ should always be
called before ‘‘B’’, but the order is not maintained during
execution) [1].

The reversal of the order of operations most often results
from placing both operations in two different threads and
allowing these threads to work in the same time frame. Detec-
tion of the order violation is therefore conditional on the
knowledge of contractual relations of the order of operations
(similarly as in the case of atomicity violation). Taking into
account these relations is connected with the new definition
of order violation, which is as follows:
Definition 4: An order violation is an error where,

between two operations of two different threads (or groups of
operations), there is a sequence relationwhose reversal causes

the algorithm to malfunction and an undefined state of shared
resources that have been used by this algorithm.

Taking into account the above definition, the problem of
order violation detection can be formulated as follows:
Problem 4: The source code of the Pmultithreaded appli-

cation is given, written in C using the pthreads library. In
this application there are sequential relations between the
operations of two threads and at least one pair of operations
connected by a sequential relation is executed in the same
interval. The answer to the question is sought: Is it possible
to detect an order violation?

The described order violation cases can be found in the
paper [1], which is a study of errors occurring in open-source
multithreaded applications. The simplest example of an order
violation is an attempt to execute operations on a resource by
using an indicator to that resource, which has not yet been
properly initialized. As a result, the resource has no memory
space assigned to it (due to an uninitialized indicator), and any
operations performed on it result in the unexpected closing of
the application.

An example of an order violation application can be found
at https://bit.ly/31DpGJU. The representation of the CP of
OV1 application is as follows:

TOV1 = (t0, t1, t2)

UOV1 = ({t0}, {t1, t2}, {t0})

ROV1 = {(string)}

OOV1 = {o0,1, o0,2, o0,3, o0,4, o0,5,

o0,6, o1,1, o1,2, o1,3, o1,4, o2,1, o2,2,

o2,3, o2,4, o2,5, o2,6}

QOV1 = {(n,PMD)}

FOV1 = {(o0,1, o0,2), (o0,2, o0,3), (o0,3, o0,4),

(o0,4, o0,5), (o0,5, o0,6), (q1, o1,1), (o1,1, o1,2),

(o1,2, r1), (o1,2, o1,3), (o1,3,q1), (o1,3, o1,4),

(o2,1, o2,2), (o2,2, o2,3), (q1, o2,3), (o2,3, o2,4),

(o2,4, r1), (o2,4, o2,5), (o2,5, q1), (o2,5, o2,6)}

BSYMOV1 = {(o1,2, o0,5)}

BBWDOV1 = {(o1,2, o2,4)}

In the OV1 application, there is a pair of operations
(o1,2, o2,4), which is connected by the backward relation-
ship and these operations belong to two different threads
performed in the same time interval u2. Both operations use
a shared resource which is the string indicator variable. This
means that, in the application, it is allowed to perform these
operations in any order - an order violation error occurs.

In order to identify the order violation, the following theo-
rem was developed:
Theorem 4: Let P be a multithreaded application free of

errors such as race condition, deadlock and atomicity viola-
tion. Let BξP = BFWDP ∪BBWDP ∪BSYMP be a set of pairs of opera-
tions that are in sequence with each other, and i,jBξP ⊆ BξP will
be a subset containing such pairs of operations (oi,α, oj,β),

61316 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

the first of which is executed in the ti thread and the second
in the tj thread. If {ti, tj} ⊆ ub then the order of execution of
operations (oi,α, oj,β) will be violated.

Proof: Proof is a direct consequence of the order
violation definition. If the {ti, tj} threads are executed in
a common time frame, i.e., {ti, tj} ⊆ ub it is thus
allowed to carry out the operation (oi,α, oj,β) concurrently.
It also means that any order of execution of the opera-
tion is possible, i.e: oi,α → oj,β , oi,α ← oj,β , oi,α ↔
oj,β . It is therefore acceptable to violate the set order of
operations (oi,α, oj,β).

The considered example of the main function code from
the listing below:
int main() {

pthread_t logger_thread,
command_listener_thread,
initialize_devices_thread;

log_level = INFO;

initilize_logger();
pthread_create(&initialize_devices_thread,

NULL, initialize_devices, NULL);
pthread_create(&logger_thread, NULL,

enable_logger, NULL);
pthread_create(&command_listener_thread, NULL,

command_listener, NULL);

pthread_join(initialize_devices_thread, NULL);
pthread_join(command_listener_thread, NULL);
pthread_join(logger_thread, NULL);

return 0;
}

void initialize_camera(camera_t* camera, const
char* id, int x, int y, int z)

{
...
camera->x_angle = x;
camera->y_angle = y;
camera->z_angle = z;
...

}

void change_camera_angles(camera_t* camera, int x,
int y, int z)

{
...
camera->x_angle = x;
camera->y_angle = y;
camera->z_angle = z;

}

The homesoftserver application assumes that device initial-
ization in the initialize_devices function can be delegated to
a separate thread. It was expected that the thread would be
executed in its entirety always before the thread listening to
commands using command_listener . However, it is possible
that the device initialization thread will be delayed. During
this time, the thread listening to the commands may receive,
for example, a command with a change of camera angle.
However, before the cameras are properly set, the delayed
initialization thread will overwrite the submitted settings and
the camera will return to the original settings.

The following is a representation of CP of the source code
under consideration whose graphic form is illustrated by the

FIGURE 9. Fragment of the homesoftserver application model instance
with the order violation.

figure 9 showing the graphic representation.

THSSOV = {t0, . . . , tg, th, . . .}

UHSSOV = ({t0}, . . . , {tg, th, ..}, . . . , {t0})

RHSSOV = {. . . , {camera.x_angle},

{camera.y_angle}, {camera.z_angle}, . . .}

OHSSOV = {. . . , og,4, og,5, og,6, . . . , oh,4, oh,5,

oh,6, . . .}

QHSSOV = {. . .}

FHSSOV = {. . . , (og,4, r4), (og,4, og,5), (og,5, r5),

(og,5, og,6), (og,6, r6), . . . , (oh,4, r4), (oh,4, oh,5),

(oh,5, r5), (oh,5, oh,6), (oh,6, r6), . . .}

BBWDHSSOV = {. . . , (og,4, oh,4), (og,5, oh,5),

(og,6, oh,6), . . .}

For the case under consideration, Theorem no. 4 is ful-
filled. There are three pairs of operations causing the order
violation in the application - each of the pairs is connected
backwards, and the operations of these pairs are performed
in one time interval. As a result, delegating initialization to
a separate thread resulted in not one, but three order viola-
tions. Prevention of order violation is similar in difficulty to
atomicity violation prevention. It is best practice to always put
logically linked operations in one thread. However, as with
atomicity violation, this is not always possible. Sometimes
more complicated mechanisms such as conditional variables
are used. However, their use may lead to an error called
‘‘lost signal’’, the symptoms of which may be similar to
deadlock [62].

V. VERIFICATION OF METHOD BASED ON MASCM
A. TOOL SUPPORTING THE METHOD
The rdao detector application was used to detect the errors
described above, which is the first implementation of the error
detection method discussed in this paper. The application has
105 unit tests that allow to verify of the correctness of the
generated models, locate specific errors and verify the correct
operation of specific application mechanisms. All the tests of

VOLUME 9, 2021 61317

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

TABLE 3. Results of homeoftserver application analysis obtained with
rdao detector application.

the generated models and the tests of the location of errors
use a set of files with the source code of many different
applications, which is designed to prevent regression errors
in the rdao detector tool. Tests are also used to verify the
correctness of previously made theorems.

B. OCCURRENCE OF FALSE POSITIVE ALARMS
The rdao detector tool reports false-positive errors [37], [70]
due to the method used.

For the application version that is free from the errors
described above, the following false-positive errors are
reported:
• 3 race condition,
• 4 deadlock,
• 1 atomicity violation,
• 3 order violation.

However, the report is much larger, with far more entries than
the 11 listed above. After analysis, it turns out that many of
them are copies of the same notification. Their number results
from two reasons. First of all, apart from the two threads
and the main thread, the remaining threads are created in
a loop, so each of the so created threads is considered as
a pair of two identical threads for each of the 4 possible
tasks, which gives a total of 8 dynamically created threads
working in the same time unit plus 2 threads created by
the programmer responsible for displaying logs and creating
threads dynamically. As a result, as many as 10 threads are
considered to work in one time interval. Secondly, all threads
created dynamically use the mechanism of passing a variable
number of arguments. Thanks to this approach the application
code is consistent with ‘‘don’t repeat yourself’’ principle.
Unfortunately, the rdao detector does not have any vari-
able tracking mechanism implemented at the moment, taking
into account the variable number of arguments. As a result,
some errors reported by the application are false-positive
errors.

C. ANALYSIS OF THE HOMEOFTSERVER APPLICATION
CODE
Table 3 shows the results of detecting previously presented
errors from the homesoftserver application using the rdao
detector. Based on the results from the table it can be con-
cluded that the implementation of the method based on the
Multithreaded Application Source Code Model in the rdao
detector application has only managed to find two of the four
errors.

The search time for race condition is the lowest and almost
20 seconds shorter than the analysis of the applicationwithout
these errors. This is because the searched error is due to
the lack of mutexes creation and release, which is connected
with the reduced number of operations that the rdao detector
application must perform. The application correctly reported
race condition for all operations of the add_log function,
which should be protected with mutexes.

The second error that was found is the previously described
deadlock. The time of searching for it was very similar to the
time of analyzing the application without these errors because
the number of elements and operations was the same, how-
ever, the two operations had changed the order. The reported
error has all the necessary information to locate the cause of
the deadlock.

Locating both the race condition and deadlock errors was
successful because both of these errors result directly from
the C-language code architecture and all necessary elements
were in the generated model instance.

Locating atomicity violation and order violation requires
additional information about the relationship between oper-
ations. Additional information was provided, but as a result
of an error noticed during research in rdao detector, it was
not possible to locate atomicity and order violation in the
code of the homesoftserver application. The error in the rdao
detector application occurs in the model instance generation
algorithm, which is due to the lack of support for the variable
number of arguments in the current, first version of the rdao
detector, which has been further explained.

The time of application analysis to detect atomicity viola-
tion is higher than the time of application analysis without
these errors. The increased analysis time is influenced by the
fact that the number of operations of creating and removing
mutexes in the application with atomicity violation is higher
than in the correct version.

In case of order violation, the analysis time is only 5 sec-
onds longer than the analysis time of the application without
the mentioned errors. Here, however, the comparison is not as
simple as in the case of other errors, because the introduction
of the order violation required a change in the application
architecture of the homesoftserver.

To sum up, the rdao detector application in its current
version as a tool to support the work of programmers con-
tains several imperfections that prevent it from being used
in commercial software development. First of all, it failed
to locate atomicity violation and order violation, however,
solving this problem is one of the most important plans.
The time of application analysis is also unsatisfactory, as it
oscillates around one minute and is strongly linked to the
number of mutexes and operations related to them. As a
result, the application requires further work on improving
model instance generation algorithms and accelerating the
error detection algorithm. However, it is worth emphasizing
100% effectiveness in detecting race condition and deadlock
errors. All errors of this type that occurred in the homesoft-
server application were located.

61318 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

D. ANALYSIS OF SAMPLE APPLICATIONS OF THE
PHOENIX PROJECT
The Phoenix project described in [63] is based on Google’s
MapReduce model, and the sample applications provided in
the project have become a kind of benchmark for methods
that allow eliminating these errors through the transactional
memory mechanism [54], [56], [57], [64]. Unfortunately,
among the static methods presented earlier, none were used to
analyze sample applications of the Phoenix project. However,
they will be used to check the effectiveness of rdao detector
applications. A computer with the following parameters was
used for the experiment:
• Processor: AMD Ryzen 5 1500X, 3.5 GHz,
• RAM: Corsair Vengeance LPX, DDR3, 32GB,
3000MHz, CL15,

• Disc: SSD Samsung 970 Evo 1 TBM.2 2280, Sequential
Read 3400 MB/s.

The computer worked under Windows 10 and the rdao detec-
tor application was run with the Python 3.8.0 parser and the
results are presented on the following pages. In the code of
the histogram program, using the rdao detector application,
81 places where race condition could occur were located.
A manual analysis showed that 15 reports were false and
45 of the remaining reports were duplicates. The remaining
21 reports concern parallel operations on one shared resource
(or its components) by 4 threads working in the same time
interval, and none of these operations is protected with a
mutex.

The analysis of the kmeans source code resulted in locating
141 places where race condition may occur. After deduct-
ing duplicates and false-positive errors from this number,
there are 21 places where race condition errors occur. Sim-
ilar results were given for the reverse_index analysis results
showed 147 places, 19 of which are actually places where
race condition occurs. In results for both applications is easy
to see near 50% of reported issues are false positives.

The kmeans application also reported 26 places where the
order violation would occur. All these reports were related to
the malloc and free functions and turned out to be false.

This result shows how hard is locate order violation in the
static analysis process. Also, it was hard to verify this result
manually because there was a need to completely understand
what application do.

Analysis of the pca application source code showed as
many as 226 sites with a potential race condition. Only
58 of all entries are places where race condition occurs. The
remaining 168 reports were false-positive errors and dupli-
cates. Two places where an order violation occurs were also
reported in the pca application. However, these reports turned
out to be false.

Word_count analysis resulted in reporting only one order
violation, which turned out to be false, whereas the analysis
of the linear_regression, matrix_multiply, and string_match
applications showed no errors. It does not mean these appli-
cations is bugs free, however, it is possible to write mul-
tithread applications using Phoenix project which contains

concurrent bugs. Phoenix project is probably written in the
best way it is possible however programmers still can use it
in an incorrect way which leads to concurrent errors.

Programs from Phoenix projects analyzed in this section
consist of at least 1500 lines of code. However, program
source code length has no as much impact as a number of
different threads. In the future the rdao_detector will be used
to detect errors in programs with thousands of lines of code,
and for such cases, a linear increase in the running time of
the program is expected. Before this can happen, however,
significant optimizations and improvements need to be made.
Most important is to reduce false positives and to speed
up of algorithm, especially part responsible for deadlocks
localization.

E. CONCLUSION FROM VERIFICATION
The table no. 4 (4) shows the results obtained from the
analysis of the Phoenix project. Unfortunately, based on these
results and the literature, the effectiveness of the proposed
solution cannot be clearly determined. It can be assumed that
in the case of race condition and deadlock error detection
the effectiveness is close to 100%. This is due to a review
of the Phoenix project code, where no errors were found that
rdao detector application would not show. However, it is not
clear whether there are more errors in the Phoenix project.
A special case here is the atomicity violation, as it cannot
be deduced from the application code that the two functions
defined by the programmer are in relation to each other.
The programs described are unreported and poorly com-
mented, which effectively prevents such information from
being extracted even if the applications are subjected to very
thorough analysis.

The situation is similar to locating an order violation,
although in this case, the rdao detector reported several
potential locations where an order violation may occur. How-
ever, after analysis, these reports turned out to be false alarms.
False-positive errors in such cases are very common. This is
because some of the functions of the standard C library are
in relation to each other, which by default are checked by
the rdao detector and in which case it is very easy to get a
structure that resembles the one expected by the rdao detector
algorithm responsible for locating the order violation.

Summarizing the analysis of sample applications from the
Phoenix project we can say that the current implementation
ofMASCMdetection in rdao detector application needs to be
refined. However, there are indications that with the develop-
ment of rdao detector or other MASCM implementation it
will be possible to get an efficient and reliable tool for static
code analysis to detect these errors.

In order to increase the effectiveness of the application,
the number of test scenarios in which the application should
work based on the results of the tests should be increased.
It is also necessary to analyze the existing application code
to make sure that no errors were made anywhere during the
implementation of error finding algorithms.

VOLUME 9, 2021 61319

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

TABLE 4. Results of the analysis of sample applications of the Phoenix project obtained using the application rdao detector.

It was also mentioned earlier that a mechanism should
be developed to track arguments to handle functions with a
variable number of arguments. The implementation of this
type of mechanisms is very difficult because C language
allows passing parameters through value and indicator. In
C language, it is also possible to operate on indicators, which
should also be taken into account when tracking resources,
e.g. the process of projecting an indicator from one type to
another, does not affect in any way the state of the resource
placed under the indicated address, but only the way it is
interpreted. The omission of such important details as the one
mentioned with the projection affects the number of reported
false-positive errors.

F. MODEL ALTERNATIVE APPLICATIONS
The Multithreaded Application Source Code Model dis-
cussed in this paper was developed to locate errors in mul-
tithreaded applications based on their architecture. In other
words, this model is used to check whether the application
architecture allows for the probability of one of these errors.

The application of the developed model in other areas
without making changes in the model structure may prove
impossible. However, any process whose architecture allows
parallel execution of tasks, while limiting access to selected
resources to only a selected unit at the same time, can be
reduced to a model instance based on MASCM. As an exam-
ple, let’s use a laboratory, where there is a limited number
of rooms allowing to perform very dangerous tests (let their
number be N). Due to the high priority of these tests, many
teams work in the laboratory in parallel (let their number be
M) and these teams have to work alternately in the laboratory
(M > N). In this process, however, there are no specially
designated working hours in the laboratory, so access to the
laboratory is random and queued. In the example shown,
the laboratory corresponds to the resources and the teams
to the threads. The equivalent of mutexes, here the safety
mechanisms of such a laboratory, e.g. doors, may be used.

Of course, working in such a laboratory may be more
complicated, i.e. one team may need to occupy not one but
three rooms in such a way that none of them can be accessible
to another team at that time. Specialized tools, or even whole
sets of them, may also be a resource to carry out compli-
cated research processes. In the case of tool sets, poor tool

allocation can lead to the blocking of each team that received
an incomplete tool set. In many cases, such as the division
of tools, groups of people can solve the problem in a natural
collaborative process or through the decision of a supervisor.
However, if these teams weren’t made of humans, but robots,
they wouldn’t necessarily be able to solve such problems in a
human-like manner. Therefore, the architecture of the process
of using laboratories and tools must be very precise so as not
to lead to an accident or blocking the work of groups.

VI. SUMMARY
This work contains a complete description of the previously
developedmultithreaded application source codemodel. This
model was developed to detect race condition, deadlock,
atomicity violation, and order violation errors in multi-
threaded applications written in C language using pthreads
library. The errors sought were described in detail, exam-
ples of applications containing these errors were presented,
and then mechanisms for detecting them using MASCM
were developed. The theorems and proof for locating these
errors using the developed model were also worked out. This
allowed to develop a tool, i.e. a rdao detector application,
which is a sample implementation of an automatic mecha-
nism of locating the discussed errors in the source code of
the application.

The effectiveness of this application was also investigated
using it to analyze sample multithreaded applications of the
Phoenix project. The outcome of the analysis obtained as a
result of rdao detector was manually verified in the process
of source code review of the tested applications. This process
showed that the effectiveness of the tool in the case of race
condition and deadlock is estimated at 100%, while pointing
out that this value may be different in reality, because the
actual state of errors in the tested applications is not known.
In case of order violation and atomicity violation errors,
the tool’s effectiveness is also affected by the presence of
an error located in the application during testing, namely the
lack of a resource tracking mechanism for functions with a
variable number of arguments.

The subject of research presented in this paper is not yet
closed. First of all, the method presented in this paper should
be confronted with other methods that allow to locate the
same group of errors, or with a group of tools, the results of

61320 VOLUME 9, 2021

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

which together will allow to effectively evaluate rdao detector
results. However, the literature has not found such a tool set
that could be used for this purpose. The developed tools for
static analysis focus on race condition and deadlock errors,
so the process can only be carried out for two types of errors.
In other cases, the only solution is to confront the results with
the results of mixed and dynamic methods if they are able
to clearly indicate the place in the application code where
the error occurs. An alternative solution is to build a team
of programmers with varying degrees of knowledge of C and
multithreaded programming, as well as software architects.
This team would be divided into a group of architects and
programmers, with the former focusing on the development
of application architectures containing the identified bugs and
evaluation of their implementation, while the latter would
focus on the implementation of the developed scenarios. The
result of the work of such a team should be a set of many
well-documented applications in which the errors discussed
in this study would occur. The documentation would include
a detailed description of the application and the errors in
them so that the description would leave no doubt as to
where the bug is. Only on this basis, it would be possible
to evaluate the existing solutions and further improve them.
Continuous development of such a set of applications and its
documentation, in order to provide as many different types of
scenarios as possible, would be very good material for further
research.

Future studies should be carried out taking into account
state space explosion, control flow sensitivity, and pointer
analysis to avoid false positives. Research into all these areas
will allow the developed method to be improved in few areas:
reducing memory usage, speeding up error detection, and
reducing false positives. Currently, rdao detector algorithm
basis on 105 tests and most of them use small C programs
which allow do not introduce regression bugs.

REFERENCES
[1] S. Lu, S. Park, E. Seo, and Y. Zhou, ‘‘Learning from mistakes: A compre-

hensive study on real world concurrency bug characteristics,’’ in Proc. 13th
Int. Conf. Architectural Support Program. Lang. Operating Syst. (ASP-
LOS). New York, NY, USA: Association Computing Machinery, 2008,
vol. 43, no. 3, pp. 329–339, doi: 10.1145/1346281.1346323.

[2] Linux Programmer’s Manual. Accessed: Apr. 10, 2021. [Online]. Avail-
able: https://www.man7.org/linux/man-pages/man7/pthreads.7.html

[3] A. Koltsidas and O. Peterson, ‘‘Virtual AUTOSAR environment on
Linux-evaluation study on performance gains from running ECU appli-
cations on POSIX threads,’’ Dept. Comput. Sci. Eng., Chalmers
Univ. Technol. Univ. Gothenburg, Gothenburg, Sweden, Tech. Rep.,
2016. Accessed: Apr. 10, 2021. [Online]. Available: http://publications.
lib.chalmers.se/records/fulltext/238391/238391.pdf

[4] J. Park, B. Choi, and S. Jang, ‘‘Dynamic analysis method for concur-
rency bugs in multi-process/multi-thread environments,’’ Int. J. Parallel
Program., vol. 48, no. 6, pp. 1032–1060, Dec. 2020, doi: 10.1007/s10766-
020-00661-3.

[5] S. A. Asadollah, D. Sundmark, S. Eldh, and H. Hansson, ‘‘Concurrency
bugs in open source software: A case study,’’ J. Internet Services Appl.,
vol. 8, no. 1, pp. 1–15, Dec. 2017, doi: 10.1186/s13174-017-0055-2.

[6] K. B. Pierce and H.-Y. Chau, ‘‘Tools and methods for discovering
race condition errors,’’ U.S Patent US 7 174 554 B2, Feb. 6, 2007.
Accessed: Apr. 10, 2021. [Online]. Available: https://patentimages.storage.
googleapis.com/80/e3/9c/9e41ad7da9b31e/US7174554.pdf

[7] R. J. Berg, L. Rose, J. Peyton, J. J. Danahy, R. Gottlieb, and
C. Rehbein, ‘‘Method and system for detecting race condition vulner-
abilities in source code,’’ U.S. Patent US 7 398 516 B2, Jul. 8, 2008.
Accessed: Apr. 10, 2021. [Online]. Available: https://patentimages.storage.
googleapis.com/2b/ca/ca/746ba6a3ed9914/US7398516.pdf

[8] Y.Wang, F. Gao, L.Wang, T. Yu, J. Zhao, and X. Li, ‘‘Automatic detection,
validation and repair of race conditions in interrupt-driven embedded
software,’’ IEEE Trans. Softw. Eng., early access, Apr. 20, 2020, doi: 10.
1109/TSE.2020.2989171.

[9] H. Liang, M. Li, and J. Wang, ‘‘Automated data race bugs addi-
tion,’’ in Proc. 13th Eur. Workshop Syst. Secur. New York, NY, USA:
Association Computing Machinery, Apr. 2020, pp. 37–42, doi: 10.
1145/3380786.3391401.

[10] J. S. Teh, M. Alawida, and A. Samsudin, ‘‘Generating true random num-
bers based on multicore CPU using race conditions and chaotic maps,’’
Arabian J. Sci. Eng., vol. 45, no. 12, pp. 10019–10032, Dec. 2020, doi: 10.
1007/s13369-020-04552-0.

[11] D. Giebas and R. Wojszczyk, ‘‘Graphical representations of multithreaded
applications,’’ Appl. Comput. Sci., vol. 14, no. 2, pp. 20–37, 2018, doi: 10.
23743/acs-2018-10.

[12] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and Val-
idation of Concurrent Systems. Berlin, Germany: Springer-Verlag, 2009,
doi: 10.1007/b95112.

[13] R. Netzer, ‘‘Race condition detection for debugging shared-memory par-
allel programs,’’ Dept. Comput. Sci., Univ. Wisconsin-Madison, Madison,
WI, USA, Tech. Rep. 1039, 1991.

[14] C. Flanagan and S. N. Freund, ‘‘Type-based race detection for Java,’’ in
Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI).
New York, NY, USA: Association Computing Machinery, 2000, vol. 35,
no. 5, pp. 219–232, doi: 10.1145/349299.349328.

[15] M. Abadi, C. Flanagan, and S. N. Freund, ‘‘Types for safe locking: Static
race detection for Java,’’ ACM Trans. Program. Lang. Syst., vol. 28, no. 2,
pp. 207–255, Mar. 2006, doi: 10.1145/1119479.1119480.

[16] A.M.Alghamdi and F. E. Eassa, ‘‘OpenACC errors classification and static
detection techniques,’’ IEEE Access, vol. 7, pp. 113235–113253, 2019,
doi: 10.1109/ACCESS.2019.2935498.

[17] A. Veidenbaum, K. Joe, H. Amano, and H. Aiso, High Performance Com-
puting. Berlin, Germany: Springer-Verlag, 2003, doi: 10.1007/b14207.

[18] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts,
7th ed. Hoboken, NJ, USA: Wiley, 2005.

[19] D. Giebas and R.Wojszczyk, ‘‘Deadlocks detection inmultithreaded appli-
cations based on source code analysis,’’ Appl. Sci., vol. 10, no. 2, p. 532,
Jan. 2020, doi: 10.3390/app10020532.

[20] M. Mitchell, J. Oldham, and A. Samuel, Advanced Linux Program-
ming. USA: New Riders Publishing Jun. 2001. [Online]. Available:
http://www.cse.hcmut.edu.vn/~hungnq/courses/nap/alp.pdf

[21] Y. Wang, H. Liao, S. Reveliotis, T. Kelly, S. Mahlke, and S. Lafortune,
‘‘Gadara nets: Modeling and analyzing lock allocation for deadlock avoid-
ance in multithreaded software,’’ in Proc. 48h IEEE Conf. Decis. Control
(CDC) Held Jointly 28th Chin. Control Conf., Dec. 2009, pp. 4971–4976,
doi: 10.1109/CDC.2009.5399950.

[22] Y. Lin and S. S. Kulkarni, ‘‘Automatic repair for multi-threaded programs
with deadlock/livelock using maximum satisfiability,’’ in Proc. Int. Symp.
Softw. Test. Anal. (ISSTA). New York, NY, USA: Association Computing
Machinery, 2014, pp. 237–247, doi: 10.1145/2610384.2610398.

[23] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, ‘‘Is the cure worse than
the disease? Overfitting in automated program repair,’’ in Proc. 10th Joint
Meeting Found. Softw. Eng. New York, NY, USA: Association Computing
Machinery, Aug. 2015, pp. 532–543, doi: 10.1145/2786805.2786825.

[24] K.M. Chandy, J. Misra, and L.M. Haas, ‘‘Distributed deadlock detection,’’
ACM Trans. Comput. Syst., vol. 1, no. 2, pp. 144–156, May 1983, doi: 10.
1145/357360.357365.

[25] A. Ho, S. Smith, and S. Hand, ‘‘On deadlock, livelock, and for-
ward progress,’’ Comput. Lab., Univ. Cambridge, Cambridge, U.K.,
Tech. Rep. UCAM-CL-TR-633, 2005. Accessed: Apr. 10, 2021. [Online].
Available: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-633.pdf

[26] M. Singhal, ‘‘Deadlock detection in distributed systems,’’ Computer,
vol. 22, no. 11, pp. 37–48, Nov. 1989, doi: 10.1109/2.43525.

[27] G. Jin, L. Song, W. Zhang, S. Lu, and B. Liblit, ‘‘Automated atomicity-
violation fixing,’’ in Proc. 32nd ACM Sigplan Conf. Program. Lang.
Design Implement.New York, NY, USA: Association Computing Machin-
ery, 2011, vol. 46, no. 6, pp. 389–400, doi: 10.1145/1993498.1993544.

VOLUME 9, 2021 61321

http://dx.doi.org/10.1145/1346281.1346323
http://dx.doi.org/10.1007/s10766-020-00661-3
http://dx.doi.org/10.1007/s10766-020-00661-3
http://dx.doi.org/10.1186/s13174-017-0055-2
http://dx.doi.org/10.1109/TSE.2020.2989171
http://dx.doi.org/10.1109/TSE.2020.2989171
http://dx.doi.org/10.1145/3380786.3391401
http://dx.doi.org/10.1145/3380786.3391401
http://dx.doi.org/10.1007/s13369-020-04552-0
http://dx.doi.org/10.1007/s13369-020-04552-0
http://dx.doi.org/10.23743/acs-2018-10
http://dx.doi.org/10.23743/acs-2018-10
http://dx.doi.org/10.1007/b95112
http://dx.doi.org/10.1145/349299.349328
http://dx.doi.org/10.1145/1119479.1119480
http://dx.doi.org/10.1109/ACCESS.2019.2935498
http://dx.doi.org/10.1007/b14207
http://dx.doi.org/10.3390/app10020532
http://dx.doi.org/10.1109/CDC.2009.5399950
http://dx.doi.org/10.1145/2610384.2610398
http://dx.doi.org/10.1145/2786805.2786825
http://dx.doi.org/10.1145/357360.357365
http://dx.doi.org/10.1145/357360.357365
http://dx.doi.org/10.1109/2.43525
http://dx.doi.org/10.1145/1993498.1993544

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

[28] P. Liu and C. Zhang, ‘‘Axis: Automatically fixing atomicity violations
through solving control constraints,’’ in Proc. 34th Int. Conf. Softw. Eng.
(ICSE), Jun. 2012, pp. 299–309, doi: 10.1109/ICSE.2012.6227184.

[29] J. W. Voung, R. Jhala, and S. Lerner, ‘‘RELAY: Static race detection
on millions of lines of code,’’ in Proc. 6th Joint Meeting Eur. Softw.
Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng. (ESEC-FSE), 2007,
pp. 205–214.

[30] D. Engler and K. Ashcraft, ‘‘RacerX: Effective, static detection of race
conditions and deadlocks,’’ ACM SIGOPS Operating Syst. Rev., vol. 37,
no. 5, pp. 237–252, Dec. 2003, doi: 10.1145/1165389.945468.

[31] N. Koutsopoulos, M. Northover, T. Felden, and M. Wittiger, ‘‘Advanc-
ing data race investigation and classification through visualization,’’ in
Proc. IEEE 3rd Work. Conf. Softw. Visualizat. (VISSOFT), Sep. 2015,
pp. 200–204, doi: 10.1109/VISSOFT.2015.7332437.

[32] D. Qi, N. Gu, and J. Su, ‘‘Detecting data race in network applications using
static analysis,’’ in Proc. Int. Conf. Netw. Netw. Appl. (NaNA), Oct. 2019,
pp. 313–318, doi: 10.1109/NaNA.2019.00061.

[33] L. Lima, A. Tavares, and S. C. Nogueira, ‘‘A framework for verifying
deadlock and nondeterminism in UML activity diagrams based on CSP,’’
Sci. Comput. Program., vol. 197, Oct. 2020, Art. no. 102497, doi: 10.
1016/j.scico.2020.102497.

[34] J. Li, X. Liu, L. Jiang, B. Liu, Z. Yang, and X. Hu, ‘‘An intelligent
deadlock locating scheme for multithreaded programs,’’ in Proc. 3rd Int.
Conf. Intell. Syst., Metaheuristics Swarm Intell., Mar. 2019, pp. 14–18,
doi: 10.1145/3325773.3325781.

[35] C. Laneve, ‘‘A lightweight deadlock analysis for programswith threads and
reentrant locks,’’ Sci. Comput. Program., vol. 181, pp. 64–81, Jul. 2019,
doi: 10.1016/j.scico.2019.06.002.

[36] E. Giachino and C. Laneve, ‘‘Deadlock detection in linear recursive pro-
grams,’’ in Proc. Int. School Formal Methods Design Comput., Com-
mun. Softw. Syst. Cham, Switzerland: Springer, 2014, pp. 26–64, doi: 10.
1007/978-3-319-07317-0_2.

[37] S. Park, S. Lu, and Y. Zhou, ‘‘CTrigger: Exposing atomicity violation
bugs from their hiding places,’’ in Proc. 14th Int. Conf. Architectural
Support Program. Lang. Operating Syst. (ASPLOS). New York, NY,
USA: Association Computing Machinery, 2009, vol. 44, no. 3, pp. 25–36,
doi: 10.1145/1508244.1508249.

[38] D. Giebas and R. Wojszczyk, ‘‘Atomicity violation in multithreaded appli-
cations and its detection in static code analysis process,’’ Appl. Sci., vol. 10,
no. 22, p. 8005, Nov. 2020, doi: 10.3390/app10228005.

[39] D. Giebas and R. Wojszczyk, ‘‘Order violation in multithreaded applica-
tions and its detection in static code analysis process,’’ Appl. Comput. Sci.,
vol. 16, no. 4, pp. 103–117, 2020, doi: 10.23743/acs-2020-32.

[40] L. Chew and D. Lie, ‘‘Kivati: Fast detection and prevention of atomicity
violations,’’ in Proc. 5th Eur. Conf. Comput. Syst. (EuroSys). New York,
NY, USA: Association ComputingMachinery, 2010, pp. 307–320, doi: 10.
1145/1755913.1755945.

[41] Y. Yang, A. Gringauze, D. Wu, and H. K. Rohde, ‘‘Detecting data
race and atomicity violation via typestate-guided static analysis,’’
U.S. Patent 8 510 722, Aug. 13, 2013. Accessed: Apr. 10. 2021. [Online].
Available: https://patentimages.storage.googleapis.com/32/aa/55/
04a49ec0118682/US8510722.pdf

[42] J. Fiedor, B. Křena, Z. Letko, and T. Vojnar, ‘‘A uniform classification
of common concurrency errors,’’ in Computer Aided Systems Theory—
EUROCAST 2011. Berlin, Germany: Springer, 2011, pp. 519–526, doi: 10.
1007/978-3-642-27549-4_67.

[43] Y. Zhou, S. Lu, and J. A. Tucek, ‘‘Atomicity violation detection using
access interleaving invariants,’’ U.S. Patent 8 533 681, Sep. 10, 2013.
Accessed: Apr. 10, 2021. [Online]. Available: https://patentimages.
storage.googleapis.com/1c/46/35/4c85f52a086a2f/US8533681.pdf

[44] S. Lu, J. Tucek, F. Qin, andY. Zhou, ‘‘AVIO:Detecting atomicity violations
via access interleaving invariants,’’ ACM SIGOPS Operating Syst. Rev.,
vol. 40, no. 5, pp. 37–48, 2006, doi: 10.1145/1168917.1168864.

[45] M. Xu, R. Bodík, and M. D. Hill, ‘‘A serializability violation detector for
shared-memory server programs,’’ ACM SIGPLAN Notices, vol. 40, no. 6,
pp. 1–14, Jun. 2005, doi: 10.1145/1064978.1065013.

[46] U. Mathur and M. Viswanathan, ‘‘Atomicity checking in linear time using
vector clocks,’’ in Proc. 25th Int. Conf. Architectural Support Program.
Lang. Operating Syst. New York, NY, USA: Association Computing
Machinery, Mar. 2020, pp. 183–199, doi: 10.1145/3373376.3378475.

[47] TIOBE Index. Accessed: Jul. 4, 2020. [Online]. Available: https://www.
tiobe.com/tiobe-index/

[48] X. Chang, W. Dou, Y. Gao, J. Wang, J. Wei, and T. Huang, ‘‘Detect-
ing atomicity violations for event-driven Node.Js applications,’’ in Proc.
IEEE/ACM 41st Int. Conf. Softw. Eng. (ICSE), May 2019, pp. 631–642,
doi: 10.1109/ICSE.2019.00073.

[49] Z. Yu, L. Song, and Y. Zhang, ‘‘Fearless concurrency? Understand-
ing concurrent programming safety in real-world rust software,’’ 2019,
arXiv:1902.01906. [Online]. Available: http://arxiv.org/abs/1902.01906

[50] M. Roberson and C. Boyapati, ‘‘A static analysis for automatic detection
of atomicity violations in Java programs,’’ Dept. Elect. Eng. Comput.
Sci., Univ. Michigane, Ann Arbor, MI, USA, Tech. Rep. CSE-TR-569-
11, 2011. Accessed: Apr. 10, 2021. [Online]. Available: https://www.eecs.
umich.edu/eecs/etc/research/techreports/cse_tr/database/reports.cgi?11

[51] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller, ‘‘HAVE: Detecting atom-
icity violations via integrated dynamic and static analysis,’’ in Proc. Int.
Conf. Fundam. Approaches Softw. Eng. Berlin, Germany: Springer, 2009,
pp. 425–439, doi: 10.1007/978-3-642-00593-0_30.

[52] C. T. Lopez, S. Marr, E. G. Boix, and H. Mössenböck, ‘‘A
study of concurrency bugs and advanced development support
for actor-based programs,’’ in Programming With Actors: State-
of-the-Art and Research Perspectives. Cham, Switzerland:
Springer, 2018, pp. 155–185, doi: 10.1007/978-3-030-00302-
9_6.

[53] D. Chen, Y. Jiang, C. Xu, X. Ma, and J. Lu, ‘‘Testing multithreaded
programs via thread speed control,’’ in Proc. 26th ACM Joint Meet-
ing Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng. New York, NY,
USA: Association Computing Machinery, Oct. 2018, pp. 15–25, doi: 10.
1145/3236024.3236077.

[54] Z. Yu, Y. Zuo, and W. C. Xiong, ‘‘Concurrency bug avoiding based
on optimized software transactional memory,’’ Sci. Program., vol. 2019,
pp. 1–19, Feb. 2019, doi: 10.1155/2019/9404323.

[55] N. Vinesh, S. Rawat, H. Bos, G. Herbert, C. Giuffrida, and
M. Sethumadhavan, ‘‘ConFuzz—A concurrency fuzzer,’’ in Proc.
1st Int. Conf. Sustainable Technol. Comput. Intell. Singapore: Springer,
2020, pp. 667–691, doi: 10.1007/978-981-15-0029-9_53.

[56] Z. Yu, Y. Zuo, and Y. Zhao, ‘‘Convoider: A concurrency bug avoider
based on transparent software transactional memory,’’ Int. J. Parallel
Program., vol. 48, no. 1, pp. 32–60, Feb. 2020, doi: 10.1007/s10766-019-
00642-1.

[57] E. D. Berger, T. Yang, T. Liu, and G. Novark, ‘‘Grace: Safe multithreaded
programming for C/C++,’’ in Proc. 24th ACM SIGPLAN Conf. Object
Oriented Program. Syst. Lang. Appl. (OOPSLA) New York, NY, USA:
Association Computing Machinery, 2009, vol. 44, no. 10, pp. 81–96,
doi: 10.1145/1640089.1640096.

[58] C.-S. Shih and J. A. Stankovic, ‘‘Survey of deadlock detection in dis-
tributed concurrent programming environments and its application to real-
time systems and Ada,’’ Dept. Comput. Inf. Sci., Univ. Massachusetts,
Shrewsbury, MA, USA, Tech. Rep. UM-CS-1990-069, 1990.

[59] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke, ‘‘Gadara:
Dynamic deadlock avoidance for multithreaded programs,’’ inProc. OSDI,
vol. 8, 2008, pp. 281–294.

[60] S. Lafortune, Y. Wang, and S. Reveliotis, ‘‘Eliminating concurrency bugs
in multithreaded software: An approach based on control of Petri nets,’’ in
Proc. Int. Conf. Appl. Theory Petri Nets Concurrency. Berlin, Germany:
Springer, 2013, pp. 21–28, doi: 10.1007/978-3-642-38697-8_2.

[61] C. V. Praun and T. R. Gross, ‘‘Static detection of atomicity violations in
object-oriented programs,’’ J. Object Technol., vol. 3, no. 6, pp. 103–122,
2004.

[62] K. M. Kavi, A. Moshtaghi, and D.-J. Chen, ‘‘Modeling multithreaded
applications using Petri nets,’’ Int. J. Parallel Program., vol. 30, no. 5,
pp. 353–371, 2002, doi: 10.1023/A:1019917329895.

[63] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
‘‘Evaluating MapReduce for multi-core and multiprocessor systems,’’ in
Proc. IEEE 13th Int. Symp. High Perform. Comput. Archit., Feb. 2007,
pp. 13–24, doi: 10.1109/HPCA.2007.346181.

[64] H. K. Pyla and S. Varadarajan, ‘‘Avoiding deadlock avoidance,’’ in
Proc. 19th Int. Conf. Parallel Archit. Compilation Techn. (PACT), 2010,
pp. 75–85.

[65] P. Louridas, ‘‘Static code analysis,’’ IEEE Softw., vol. 23, no. 4, pp. 58–61,
Jul. 2006, doi: 10.1109/MS.2006.114.

[66] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller, ‘‘Automated
type-based analysis of data races and atomicity,’’ in Proc. 10th ACM
SIGPLAN Symp. Princ. Pract. Parallel Program. (PPoPP). New York,
NY, USA: Association Computing Machinery, 2005, pp. 83–94, doi: 10.
1145/1065944.1065956.

[67] C. Wang, R. Limaye, M. Ganai, and A. Gupta, ‘‘Trace-based symbolic
analysis for atomicity violations,’’ in Proc. Int. Conf. Tools Algorithms
Construct. Anal. Syst. Berlin, Germany: Springer, 2010, pp. 328–342,
doi: 10.1007/978-3-642-12002-2_27.

61322 VOLUME 9, 2021

http://dx.doi.org/10.1109/ICSE.2012.6227184
http://dx.doi.org/10.1145/1165389.945468
http://dx.doi.org/10.1109/VISSOFT.2015.7332437
http://dx.doi.org/10.1109/NaNA.2019.00061
http://dx.doi.org/10.1016/j.scico.2020.102497
http://dx.doi.org/10.1016/j.scico.2020.102497
http://dx.doi.org/10.1145/3325773.3325781
http://dx.doi.org/10.1016/j.scico.2019.06.002
http://dx.doi.org/10.1007/978-3-319-07317-0_2
http://dx.doi.org/10.1007/978-3-319-07317-0_2
http://dx.doi.org/10.1145/1508244.1508249
http://dx.doi.org/10.3390/app10228005
http://dx.doi.org/10.23743/acs-2020-32
http://dx.doi.org/10.1145/1755913.1755945
http://dx.doi.org/10.1145/1755913.1755945
http://dx.doi.org/10.1007/978-3-642-27549-4_67
http://dx.doi.org/10.1007/978-3-642-27549-4_67
http://dx.doi.org/10.1145/1168917.1168864
http://dx.doi.org/10.1145/1064978.1065013
http://dx.doi.org/10.1145/3373376.3378475
http://dx.doi.org/10.1109/ICSE.2019.00073
http://dx.doi.org/10.1007/978-3-642-00593-0_30
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1007/978-3-030-00302-9_6
http://dx.doi.org/10.1145/3236024.3236077
http://dx.doi.org/10.1145/3236024.3236077
http://dx.doi.org/10.1155/2019/9404323
http://dx.doi.org/10.1007/978-981-15-0029-9_53
http://dx.doi.org/10.1007/s10766-019-00642-1
http://dx.doi.org/10.1007/s10766-019-00642-1
http://dx.doi.org/10.1145/1640089.1640096
http://dx.doi.org/10.1007/978-3-642-38697-8_2
http://dx.doi.org/10.1023/A:1019917329895
http://dx.doi.org/10.1109/HPCA.2007.346181
http://dx.doi.org/10.1109/MS.2006.114
http://dx.doi.org/10.1145/1065944.1065956
http://dx.doi.org/10.1145/1065944.1065956
http://dx.doi.org/10.1007/978-3-642-12002-2_27

D. Giebas, R. Wojszczyk: Detection of Concurrency Errors in Multithreaded Applications

[68] J. Yang, B. Jiang, and W. K. Chan, ‘‘HistLock+: Precise memory access
maintenance without lockset comparison for complete hybrid data race
detection,’’ IEEE Trans. Rel., vol. 67, no. 3, pp. 786–801, Sep. 2018,
doi: 10.1109/TR.2018.2832226.

[69] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
‘‘Eraser: A dynamic data race detector for multithreaded programs,’’
ACM Trans. Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov. 1997,
doi: 10.1145/265924.265927.

[70] T. Liu, J. Zhou, S. Silvestro, and H. Liu, ‘‘Defeating deadlocks
in production software,’’ U.S. Patent 16 159 234, Feb. 9, 2021.
Accessed: Apr. 10, 2021. [Online]. Available: https://patentimages.
storage.googleapis.com/e4/41/2f/1a383b1e8541b4/US10915424.pdf

[71] K. Lautenbach and H. A. Schmid, ‘‘Use of Petri nets for proving correct-
ness of concurrent process systems,’’ in Proc. IFIP Congr. Amsterdam,
The Netherlands: North-Holland, 1974, pp. 187–191.

[72] K. Serebryany and T. Iskhodzhanov, ‘‘ThreadSanitizer: Data race
detection in practice,’’ in Proc. Workshop Binary Instrum. Appl. (WBIA).
New York, NY, USA: Association Computing Machinery, 2009,
pp. 62–71, doi: 10.1145/1791194.1791203.

[73] A. Tehrani, M. Khaleel, R. Akbari, and A. Jannesari, ‘‘DeepRace: Finding
data race bugs via deep learning,’’ 2019, arXiv:1907.07110. [Online].
Available: http://arxiv.org/abs/1907.07110

[74] C. Flanagan and S. N. Freund, ‘‘Atomizer: A dynamic atomicity checker
for multithreaded programs,’’ ACM SIGPLAN Notices, vol. 39, no. 1,
pp. 256–267, Jan. 2004, doi: 10.1145/982962.964023.

[75] M. Åsrud. (2017). A Programming Language for the Internet of Things.
Accessed: Apr. 10, 2021. [Online]. Available: https://www.duo.uio.
no/handle/10852/56894

[76] R. S. Engelschall, ‘‘Portable multithreading,’’ in Proc. USENIX
Annu. Tech. Conf., San Diego, CA, USA, 2000, pp. 1–12. Accesed:
Apr. 10, 2021. [Online]. Available: https://static.usenix.org/event/
usenix2000/general/full_papers/engelschall/engelschall.pdf

[77] Oracle. (2012). Multithreaded Programming Guide. Accessed:
Apr. 11, 20220. [Online]. Available: https://docs.oracle.com/cd/
E26502_01/pdf/E35303.pdf

[78] Y. Li, B. Liu, and J. Huang, ‘‘SWORD: A scalable whole program
race detector for Java,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.,
Companion Proc. (ICSE-Companion), May 2019, pp. 75–78, doi: 10.
1109/ICSE-Companion.2019.00042.

[79] V. Kahlon, N. Sinha, E. Kruus, andY. Zhang, ‘‘Static data race detection for
concurrent programs with asynchronous calls,’’ in Proc. 7th Joint Meeting
Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw. Eng. Eur.
Softw. Eng. Conf. Found. Softw. Eng. Symp. (ESEC/FSE), 2009, pp. 13–22,
doi: 10.1145/1595696.1595701.

[80] D. Giebas and R. Wojszczyk, ‘‘Multithreaded application model,’’
in Proc. Int. Symp. Distrib. Comput. Artif. Intell. Cham, Switzerland:
Springer, 2020, pp. 93–103, doi: 10.1007/978-3-030-23946-6_11.

[81] M. Naik, A. Aiken, and J. Whaley, ‘‘Effective static race detection for
Java,’’ in Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement.
(PLDI). New York, NY, USA: Association Computing Machinery, 2006,
pp. 308–319, doi: 10.1145/1133981.1134018.

[82] P. Pratikakis, J. S. Foster, and M. Hicks, ‘‘LOCKSMITH: Practical static
race detection for C,’’ ACM Trans. Program. Lang. Syst., vol. 33, no. 1,
pp. 1–55, Jan. 2011, doi: 10.1145/1889997.1890000.

[83] M. Ben-Ari, ‘‘Tool presentation: Teaching concurrency and model
checking,’’ in Proc. Int. SPIN Workshop Model Checking Softw.
Cham, Switzerland: Springer, 2009, pp. 6–11, doi: 10.1007/978-3-642-
02652-2_5.

DAMIAN GIEBAS received the M.Sc. degree
from the Faculty of Electronics and Computer Sci-
ence, Koszalin University of Technology, where
he is currently pursuing the Ph.D. degree with
the Faculty of Electronics and Computer Science.
Since 2013, he has been working for several soft-
ware companies. His research interests include the
design of parallel performance tools and parallel
programming.

RAFAŁ WOJSZCZYK received the Ph.D. degree
from the Faculty of Electronics and Computer Sci-
ence, Koszalin University of Technology, in 2018.
He is currently an Assistant Professor with the
Faculty of Electronics and Computer Science. His
research interests include software engineering,
and object oriented designing and programming.
Since 2015, he has been a Mentor to a Scientific
Club ‘‘.NET Team.’’ Moreover, he taught classes
in such subjects as the Internet of Things, python,
and Microsoft Kinect.

VOLUME 9, 2021 61323

http://dx.doi.org/10.1109/TR.2018.2832226
http://dx.doi.org/10.1145/265924.265927
http://dx.doi.org/10.1145/1791194.1791203
http://dx.doi.org/10.1145/982962.964023
http://dx.doi.org/10.1109/ICSE-Companion.2019.00042
http://dx.doi.org/10.1109/ICSE-Companion.2019.00042
http://dx.doi.org/10.1145/1595696.1595701
http://dx.doi.org/10.1007/978-3-030-23946-6_11
http://dx.doi.org/10.1145/1133981.1134018
http://dx.doi.org/10.1145/1889997.1890000
http://dx.doi.org/10.1007/978-3-642-02652-2_5
http://dx.doi.org/10.1007/978-3-642-02652-2_5

