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Abstract

Multiple sequence alignment is essential for many biological down-
stream analyses. Yet, accurate alignments on large datasets are challeng-
ing and can require very long running times; since new sequence data are
frequently and regularly obtained, this calls for methods that can add
sequences into large alignments rather than requiring the re-estimation
from scratch. In addition, sequence datasets exhibiting substantial se-
quence length heterogeneity are also difficult to align with high accu-
racy. Methods, such as UPP, have been able to provide good accuracy
and operate by extracting a subset of the sequences deemed to be full
length, aligning that subset (thus producing a “backbone alignment”),
and then adding the remaining sequences into the backbone alignment.
There are also standalone methods, such as MAFFT—-add, that can add
sequences into backbone alignments, but the best version of this method
(which uses —linsi) is computationally intensive. Because adding sequences
into alignments is a basic and important step in bioinformatics analyses,
the development of new approaches with high scalability and accuracy
is important. In this study, we present a new sequence-adding method,
eMAFFTadd, that achieves high accuracy and scalability. In essence,
eMAFFTadd is a way of scaling MAFFT-linsi-add to large datasets. We
show that eMAFFTadd is more accurate than UPP, can run on datasets
too large for MAFFT-linsi-add, and is fast enough to use on very large se-
quence datasets. Our software for eMAFFTadd is available in open source
shape at https://github.com/c5shen/eMAFFTadd.
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1 Introduction

Multiple sequence alignment (MSA) is a crucial precursor to many downstream
biological analyses, such as phylogeny estimation [13], RNA structure prediction
[16], protein structure prediction [5], etc. Obtaining an accurate MSA can be
challenging, especially when the dataset is large (i.e., more than 1000 sequences),
has a high rate of evolution, or when there is sequence length heterogeneity.
Some of these issues have been reasonably well addressed through the newer
alignment methods, but sequence length heterogeneity (whether resulting from
large indels in the evolution of the sequences or through the inclusion of reads
or incompletely assembled gene sequences) still presents significant challenges
for accuracy [14, [I8, 20]. Finally, many evolutionary biologists are interested in
adding new sequences into already estimated alignments and trees rather than
recomputing these from scratch. Thus, two MSA problems remain inadequately
solved: Problem 1: aligning datasets that contain substantial sequence length
heterogeneity, and Problem 2: adding new sequences into an existing alignment.

UPP [14] is an MSA method that was designed to address Problem 1 (i.e.,
aligning sequence datasets with substantial sequence length heterogeneity). UPP
operates in two stages: first, it selects and aligns a small subset of the sequences
it considers “full-length” (and hence easy to align well using standard methods),
thus producing a “backbone alignment.” It then builds an “ensemble of Hidden
Markov Models” (eHMM) for the backbone alignment and uses that ensemble
to align the remaining sequences. This two-stage design enables UPP to be
more accurate than standard alignment methods, such as MAFFT-linsi [8] and
PASTA [I1], when aligning datasets with fragmentary sequences [14} [I7]. Note,
therefore, that UPP addresses Problem 1 by using a particular method (which
we can refer to as UPP-add) for Problem 2.

UPP-add is not the only method for Problem 2. In addition to its prede-
cessors (the alignment step in SEPP [10]), the most well known techniques for
Problem 2 can be found in the MAFFT package [7]. Among the MAFFT --add
variants, MAFFT-linsi --add is perhaps the most accurate but also very com-
putationally expensive and is not considered usable beyond “a few hundreds of
sequences” [6].

This study aims to design new methods for adding sequences into a backbone
alignment to advance methods for both problems. Our approach is a divide-and-
conquer technique for making MAFFT-linsi-add scalable so that it can be used
on large backbone alignments containing several thousands of sequences. We
show, through an experimental study involving large biological and simulated
datasets, that this method — eMAFFTadd — provides superior accuracy to both
UPP and MAFFT-insi-add, scales to large datasets, and is reasonably efficient
(slower than UPP but still fast enough to be used on very large datasets).

The rest of the study is structured as follows. In Section[2] we briefly describe
and discuss existing sequence-adding methods. In Section [3] we introduce our
new method, eMAFFTadd. In Section [} we describe the experimental study,
and in Section [5] we present the results. We discuss trends in Section [6] and
conclude with directions for future work in Section [@
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2 Background

2.1 Overview

The input to Problem 2 is an alignment M on m sequences and a set of ¢
query sequences to add into the alignment. The output is a multiple sequence
alignment on all m + ¢ sequences, while the backbone alignment is preserved.
In this section, we describe and discuss backgrounds of three popular sequence-
adding methods, namely UPP-add, MAFFT-add, and MAFFT-linsi-add.

2.2 Existing sequence-adding methods
2.2.1 UPP-add

UPP-add is essentially the second stage of UPP [I4]. As briefly described in
Section (1, UPP-add creates a set of HMMs (i.e., eHMM) to add query se-
quences. It first computes a backbone tree with FastTree2 [I5] using the back-
bone alignment. Then, it recursively decomposes the backbone tree to smaller
sub-trees until the last decomposition results in sub-trees with no more than A
leaves (A = 10 in default UPP). An HMM is created using hmmbuild from the
HMMER suites [3] for each sub-alignment defined by leaves of each sub-tree.
This results in a collection of HMMs. Each query sequence is searched against
all HMMs using hmmsearch, mapped to the HMM with the highest bit-score
(i.e., the most relevant sub-alignment), and aligned using hmmalign. Finally, all
query alignments are merged transitively to the backbone alignment to form the
final alignment. UPP-add needs to compute a FastTree tree on the backbone
alignment, which scales sub-quadratically [I5] with the number of sequences in
the backbone. Then, it scales linearly with the number of query sequences.

2.2.2 MAFFT-add

MAFFT-add in its default setting uses a standard progressive alignment proce-
dure with two iterations to add query sequences. In each iteration, it computes
an (m+q) x (m+ ¢q) distance matrix on sequences from both the backbone and
queries using shared 6-mers. Then, it computes a guide tree using the distance
matrix and builds an alignment. More specifically, for each node in the guide
tree, MAFFT-add does an alignment computation only if a query sequence is
involved at the node (i.e., at least one child has some query sequences). Other-
wise, it simply uses the alignment from the backbone.

There are other variants of MAFFT-add that use more accurate distance
calculation and can result in improved alignment accuracy (at the cost of scala-
bility). One of the most accurate variants is MAFFT-linsi-add which we briefly
describe below.

2.2.3 MAFFT-linsi-add

The procedure to add sequences using MAFFT-linsi-add is similar to MAFFT-
add, with two differences. Firstly, MAFFT-linsi-add uses localpair (local pair-
wise alignment scores) for the distance matrix calculation, which is more accu-
rate than shared 6-mers. Secondly, it only runs for one iteration of progressive
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alignment and uses at most 1000 iterations of iterative refinement after the
progressive alignment finishes.

Both MAFFT-add and MAFFT-linsi-add theoretically scale quadratically
due to the O((m + ¢)?) distance matrix calculation. MAFFT-linsi-add is even
less scalable since its distance calculation is accurate but costly. Also, it does
many steps of refinement that further impact the runtime.

3 Owur new method: eMAFFTadd

Since MAFFT-linsi-add is accurate but very computationally expensive, we de-
velop a new method, named eMAFFTadd, to make it scalable even on datasets
with several thousands of sequences. The core idea of eMAFFTadd is to break
the sequence-adding problem into multiple smaller sub-problems, on which MAFFT-
linsi-add can efficiently and accurately run (i.e., divide-and-conquer). Given the
recommendation for MAFFT-linsi-add on the MAFFT webpage [6], we limit
each sub-problem to at most 500 sequences. Additionally, we arbitrarily set a
lower bound of sub-alignment sizes to 50 and have a parameter, u, that can be
set by the user as the upper bound on the sub-alignment size. Based on the
motivations above, we design the eMAFFTadd pipeline as follows (with one free
parameter, u):

1. Build an eHMM as done by UPP-add, but instead of A = 10, use A = 50
as the decomposition stopping criterion.

2. Instead of using all HMMs/sub-alignments, use sub-alignments of sizes at
most u (note that the result is that all sub-alignments have size between
50 and u).

3. Assign query sequences to the selected HMMs/sub-alignments the same
way as UPP-add (i.e., best fitting HMM for each query based on bit-
scores).

4. Use MAFFT-linsi-add to add assigned query sequences to each sub-alignment.
If the number of sequences in the sub-alignment plus the number of as-
signed queries exceeds 500, then evenly divide the assigned queries into
smaller subsets so that each sub-problem has at most 500 sequences.

Note that this design achieves two properties. All sub-problems on which we
run MAFFT-linsi-add have at most 500 sequences in total (considering both the
backbone sub-alignment and the query sequences), but also, the query sequences
are assigned to a sub-problem for which they are likely to be closely related
(based on the bit score calculation). These two properties together make for
sub-problems that are small enough for MAFFT-linsi-add to run well on, but
closely related enough to potentially improve accuracy.

4 Experimental design

4.1 Overview

We conducted four experiments. In the first experiment, we showed the scala-
bility issue with MAFFT-linsi-add when adding many sequences to an existing
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alignment. Experiments 2 and 3 address Problem 1, which is the alignment of
datasets with sequences of heterogeneous lengths, and Experiment 4 addresses
Problem 2, which is adding sequences into a given alignment (not necessarily in
the context of aligning datasets exhibiting substantial sequence length hetero-
geneity). Experiment 2 is used for the design phase of eMAFFTadd, where we
tune the parameter u for eMAFFTadd (i.e., the upper bound for sizes of sub-
alignments). Experiment 3 compares the pipeline (similar to UPP) based on
eMAFFTadd to other MSA methods for aligning datasets with sequence length
heterogeneity. Finally, in Experiment 4, we compare eMAFFTadd to other
sequence-adding methods on biological datasets in a leave-many-out analysis.

All analyses were run on the UIUC Campus Cluster, with 16 cores and 64
GB of memory, and the runtime limit is 12 hours. See Appendix Section [A] for
exact commands of all methods.

4.2 Datasets

We use simulated and biological nucleotide datasets to evaluate eMAFFTadd,
while both exhibit sequence length heterogeneity. Empirical statistics for these
datasets can be found in Table [I} where a higher p-distance (i.e., normalized
Hamming distance) means higher rates of insertions, deletions, and substitutions
(i.e., higher rates of evolution).
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Figure 1: Sequence length histograms for CRW 5S.3, 5S.E, 5S.T, 16S.3, and
16S.T datasets (biological datasets, top), and 5000M2, 5000M3, and 5000M4
dataset on their first replicates (simulated datasets, bottom).

We generated three new simulated conditions with 5000 sequences with a
type of evolutionary sequence length heterogeneity, varying the rate of evo-
lution and hence alignment difficulty. We name the conditions 5000M2-het,
5000M3-het, and 5000M4-het, ordered from having the highest rate of evolution
(hardest) to the lowest (easiest), with the “het” suffix signaling heterogeneity in
the sequence lengths, a common trend in biological datasets (see Figure [1| top).
Specifically, our model for sequence length heterogeneity assumes that inser-
tion/deletion (“indel”) events, with a small probability, can be promoted to long
indel events modelling infrequent large gain or loss of genic regions during the
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Dataset # of Seqs —sz.dlslt/.[ax % gaps lesrfgqt.h Alllf:llgtlﬁnt
Simulated nucleotide datasets

5000M2-het(10)* 5000 0.686 0.789 97.9 1025 48,887
5000M3-het(10) 5000 0.664 0.764 96.0 1001 25,262
5000M4-het(10) 5000 0.528 0.671 96.0 1001 24,415
Biological nucleotide datasets (CRW)

5S.3(1) 5507 0.418 1.000 74.5 106 414
5S.E(1) 2774 0.305 1.000 87.8 96 793
55.T(1) 5751 0.425 1.000 75.6 106 436
16S.3(1) 6323 0.315 0.833 82.1 1557 8716
16S.T(1) 7350 0.345 0.901 87.4 1492 11,856

Table 1: Dataset empirical statistics of simulated and biological datasets. CRW
is short for the comparative ribosomal website [I]. Datasets marked with (*) de-
note training datasets. p-dist.: p-distance (i.e., normalized Hamming distance).

evolutionary process (e.g., domain level indels). We then simulated sequences
evolving under non-ultrametric model trees using INDELible [4]. The details of
the generation can be found in the Appendix (Section , and their sequence
length distributions are presented in Figure (bottom). We use 5000M2-het for
the demonstration of the scalability issue with MAFFT-linsi-add (Experiment
1) and parameter training for eMAFFTadd (Experiment 2), and 5000M3-het
and 5000M4-het for testing (Experiment 3).

We use five biological datasets, namely 5S.3, 5S.E, 5S.T, 16S.3, and 16S.T,
from the comparative ribosomal website (CRW) [I]. These datasets have been
used in previous studies [2, [14] [I8], exhibit sequence length heterogeneity (Figure
top), and have reference alignments based on secondary structures. We use
these CRW datasets for testing (Experiments 3 and 4).

4.3 Methods for comparison

We compare eMAFFTadd to existing sequence-adding methods that are intro-
duced in Section 2, including UPP-add [I4], MAFFT-add, and MAFFT-linsi-
add [7], in terms of alignment accuracy of added query sequences to the same
backbone alignment.

4.4 Backbone alignment and query sequences

Experiments 1 to 3 address Problem 1, which is the alignment of datasets with
sequences of heterogeneous lengths. We follow the UPP procedure to split each
sequence dataset into a backbone set and a query set. For each dataset, the back-
bone set contains at most 1000 full-length sequences (i.e., lengths 25% around
the median length), while the query set contains all remaining sequences (e.g.,
several thousands of sequences). We compute an alignment on the backbone set
using MAGUS [19], because it is the current state-of-the-art alignment method
that is accurate and robust to sequence length heterogeneity [18]. The align-
ment itself is not restricted to MAGUS and can be done by any other accurate
alignment methods, such as MAFFT-linsi [8] and PASTA [11].
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Experiment 4 addresses Problem 2, which is the problem of adding sequences
into an existing alignment (not necessarily in the context addressed by UPP). In
this analysis, we use five biological datasets from the CRW [I] collection, each
with a reference alignment. For each reference alignment, we leave 100 sequences
out as query sequences and use the reference alignment on the remaining se-
quences as the backbone alignment. For each CRW dataset, we consider three
types of queries: 1) when queries are 100 randomly selected sequences, 2) when
queries are the shortest 100 sequences, and 3) when queries are the longest 100
sequences.
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Figure 2: Experiment 1: Runtime (left) and alignment error (right) vs. number
of query sequences for MAFFT-add and MAFFT-linsi-add. Both methods add ¢
query sequences to the same 1000-taxon backbone alignment of 5000M2-het (10
replicates). The data points from left to right for each line indicate the addition
of 100, 200, 1000, or 2000 query sequences correspondingly. We exclude replicate
4 because MAFFT-linsi-add encountered out-of-memory issues when adding 100
or 200 query sequences. Additionally, MAFFT-linsi-add either encountered out-
of-memory issues or did not complete within 12 hours when adding 1000 or 2000
query sequences and thus is not shown.

4.5 Evaluation metrics

We evaluate all methods’ accuracy by alignment error, SPFN, and SPFP on
added query sequences. A pair of homologies refers to an aligned column be-
tween two sequences. The sum-of-pairs false-negative (SPFN) rate is the fraction
of pairs of homologies in the reference alignment but missing in the estimated
alignment. The sum-of-pairs false-positive (SPFP) rate is the fraction of pairs
of homologies that are in the estimated alignment but missing in the reference
alignment. Alignment error is the average of SPFN and SPFP. These error
rates are calculated using FastSP [I2]. We also report wall-clock running time
in minutes of all methods.
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5 Results
5.1 Experiment 1 - scalability of MAFFT-linsi-add

In this experiment, we explore what sizes of datasets MAFFT-linsi-add can align
without crashing or encountering memory issues. We use our training dataset
5000M2-het as the benchmark and either MAFFT-add or MAFFT-linsi-add to
add 100, 200, 1000, or 2000 query sequences to the backbone.

Figure [2] shows the results for runtime and alignment error vs. numbers of
queries on 5000M2-het datasets. Replicate 4 is excluded because MAFFT-linsi-
add encountered out-of-memory issues when adding 100 or 200 query sequences,
while MAFFT-linsi-add also encountered out-of-memory issues or did not com-
plete within 12 hours when adding 1000 or 2000 query sequences and thus is
not shown.

The results justify the effort to make MAFFT-linsi-add scalable, since MAFFT-
linsi-add is more accurate than MAFFT-add but cannot run when there are
many query sequences.

5.2 Experiment 2 - tuning parameter

In this experiment, we explore different values for the parameter u, which con-
trols the upper size limit of sub-alignments we use for MAFFT-linsi-add. We
vary u between 100, 200, and 400, on our training dataset 5000M2-het (10
replicates).

Appendix Figure[7]shows SPFN, SPFP, and alignment error of eMAFFTadd
with different settings for u on 5000M2-het (10 replicates). The differences
between eMAFFTadd variants are negligible on all three evaluation metrics.
The runtime comparison is also presented in Appendix (Figure . We observe
that larger values for u generally increases running time. Since larger u (i.e.,
u € {200,400}) also has outliers with much longer running time without sub-
stantially benefiting alignment accuracy, we choose v = 100 for eMAFFTadd
and use it in the following experiments.

5.3 Experiment 3 - addressing Problem 1

In this experiment, we compare eMAFFTadd (with u = 100) to UPP-add [I4],
MAFFT-add, and MAFFT-linsi-add [7], in the context of de novo alignments
with sequence length heterogeneity. For each dataset, we follow the UPP proce-
dure to extract at most 1000 full-length sequences to form the backbone align-
ment (aligned with MAGUS [19]) and add the remaining sequences using each
method. We ensure all methods use the same 1000-taxon backbone alignment
and measure their alignment accuracy on the added queries. We first show
alignment results on the two INDELible simulated datasets (5000M3-het and
5000M4-het), and then on the five CRW datasets (5S.3, 5S.E, 5S.T, 16S.3, and
16S.T). For MAFFT-linsi-add, we only show it for those datasets on which it
completes on all replicates.

5.3.1 Alignment results on simulated datasets

Figure |3| shows alignment errors of the methods mentioned above on 5000M3-
het and 5000M4-het, each with 10 replicates. MAFFT-linsi-add is not shown
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because it either encountered out-of-memory issues or failed to complete within
the time limit. On 5000M3-het, MAFFT-add has an error close to 1. Both
eMAFFTadd and UPP-add have low errors, and eMAFFTadd is the most accu-
rate. On 5000M4-het, absolute errors for all methods decrease noticeably com-
pared to 5000M3-het, and MAFFT-add has an error similar to eMAFFTadd and
UPP-add. eMAFFTadd is still the most accurate, but gaps between methods
are much smaller.

Figure [ provides a closer look at SPFN and SPFP of the best two methods
on 5000M3-het and the best three methods on 5000M4-het. On 5000M3-het,
eMAFFTadd is more accurate than UPP-add in terms of both SPFN and SPFP,
and its advantage in SPFN is quite noticeable. On 5000M4-het, eMAFFTadd
and UPP-add both have the lowest SPFP, while eMAFFTadd still has a notice-
able advantage over the other two methods in terms of SPFN.
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Figure 3: Experiment 3: Alignment error (average of SPFN and SPFP) of
different sequence-adding methods on query sequences of 5000M3-het (left) and
5000M4-het (right), each with 10 replicates. Results for MAFFT-linsi-add are
not shown because it either failed to complete within 12 hours or encountered
out-of-memory issues (marked as “X”).

5.3.2 Aligning biological datasets

Figure [5| shows alignment errors for the same set of methods on the five CRW
datasets (5S.3, 5S.E, 5S.T, 16S.3, and 16S.T). MAFFT-linsi-add encountered
out-of-memory issues on 16S.3 and 16S.T, and is only shown for 5S.3, 5S.E, and
5S.T. The trend is similar to Figure [3] as eMAFFTadd is the most accurate
on all five datasets. MAFFT-linsi-add, when it can complete, is on par with
eMAFFTadd.

The trends for SPFN and SPFP are also similar to what are presented in the
simulated datasets. eMAFFTadd has the lowest SPFN, and MAFFT-linsi-add
ties with it if completed within the time limit. On the other hand, SPFP of
eMAFFTadd is either on par or slightly higher than UPP-add but always better
than MAFFT-add (Appendix Figures |§| and .

5.3.3 Runtime comparisons

A runtime comparison in Experiment 3 is presented in Figure [6] and Appendix
Figure for simulated datasets and biological datasets. MAFFT-add is the
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Figure 4: Experiment 3: SPFN (top) and SPFP (bottom) of the best methods
on query sequences of 5000M3-het and 5000M4-het, each with 10 replicates.
MAFFT-add is not shown for 5000M3-het because it has an error rate close to
1.

fastest method in all cases, and MAFFT-linsi-add is the slowest when it can
complete within the time limit. eMAFFTadd is usually slower than UPP-add
but much faster than MAFFT-linsi-add (when it can run).

5.4 Experiment 4: Addressing Problem 2

Problem 2 is concerned with adding sequences into a growing alignment, an ap-
plication of interest to evolutionary biologists. In this case, the added sequences
may be full length, or they may be a mixture of lengths. For this experiment,
we use the five CRW datasets. In each case, we select 100 sequences, either
at random, the 100 shortest, or the 100 longest sequences. We then add these
selected sequences into the reference alignment (i.e., as provided in [I], based
on secondary structure) using each of the sequence-adding methods. Given the
failures for MAFFT-linsi-add on large datasets from Experiment 3, we did not
attempt to run MAFFT-linsi-add on the two largest datasets, 16S.3 and 16S.T,
which have more than 6000 sequences.

TableRlshows results without MAFFT-linsi-add across the five CRW datasets.
Overall, errors are higher when adding the shortest or longest 100 sequences than
random sequences for all methods. For all types of added queries, eMAFFTadd
has the lowest alignment error and MAFFT-add the highest. eMAFFTadd also
consistently has the lowest SPFN, and UPP-add has the lowest SPFP. In general,
short sequences are the hardest to align for all of the methods, long sequences
are also somewhat difficult, but the “random” sequences are relatively easy to
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Figure 5: Experiment 3: Alignment error (average of SPFN and SPFP) of
different alignment methods on query sequences of CRW 5S.3, 5S.E, 5S.T, 16S.3,
and 16S.T datasets. MAFFT-linsi-add encountered out-of-memory issues on
16S.3 and 16S.T (marked as “X”) and is only shown for 5S.3, 5S.E, and 5S.T.

align. Since the random sequences are a mixture of full-length, short, and long,
this suggests that all the methods do well at adding full-length sequences. An-
other interesting observation is that eMAFFTadd has the lowest SPFN across
all three categories, followed by UPP-add and then MAFFT-add. However, the
gap between SPFN scores is large for eMAFFTadd over UPP-add and small
between UPP-add and MAFFT-add.

Table 3| shows the same averages for those CRW datasets on which MAFFT-
linsi-add finished (i.e., 5S.3, 5S.E, and 5S.T). This table thus allows us to see
how MAFFT-linsi-add compares to other methods on those datasets on which
it can run. One consistent trend in these data is that across all three types
of query sequences (random, short, or long) and all criteria (SPFN, SPFP, or
their average), MAFFT-add is the least accurate. Differences between the other
methods are discernible when examining either short or long sequences, but
there are only small differences when examining the random sequences. For both
long and short query sequences, and considering SPFN or the average of SPFN
and SPFP, eMAFFTadd is the most accurate, and the improvement on other
methods is quite noticeable. Results are slightly different for SPFP, with UPP-
add doing better than all other methods but with eMAFFTadd close behind.
UPP-add substantially improves on MAFFT-linsi-add on the short sequences for
both SPFN and SPFP. On long sequences, UPP-add has better average error
than MAFFT-linsi-add, but this is achieved by a better SPFP and slightly
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Figure 6: Experiment 3: Running time in minutes of different alignment meth-
ods on adding 4000 query sequences to 1000-taxon backbone alignments of
5000M3-het (left) and 5000M4-het (right), each with 10 replicates. Results for
MAFFT-linsi-add are not shown because it failed to complete within 12 hours
or encountered out-of-memory issues (marked as “X”).

worse SPFN. Thus, the four methods show different responses to short and long
sequences, but overall, eMAFFTadd provides the best accuracy. Finally, we note
that, for all methods, the error rates are highest on the short sequences than on
the long sequences. This indicates that short sequences present challenges for
both types of sequence-addition methods (i.e., those using MAFFT techniques
and those using HMMs to add sequences).

dataset query type method SPFN SPFP average
random 100 eMAFFTadd 0.013 0.013 0.013
UPP-add 0.016 0.011 0.014

MAFFT-add 0.017 0.014 0.016

shortest 100 eMAFFTadd 0.045 0.039 0.042

CRW (5) UPP-add 0.095 0.033 0.064
MAFFT-add 0.109 0.089  0.099

longest 100 eMAFFTadd 0.034 0.034 0.034

UPP-add 0.077  0.027 0.052

MAFFT-add 0.085 0.065 0.075

Table 2: Experiment 4: Average SPFN, SPFP, and their average (alignment
error) over the five CRW datasets. We show results when adding 1) 100 ran-
domly selected sequences, 2) 100 shortest sequences, or 3) 100 longest sequences
in each dataset as queries. MAFFT-linsi-add is not shown because it is not run
on 16S.3 and 16S.T. The lowest SPFN, SPFP, and their average are boldfaced.

6 Discussion

In this study, we presented eMAFFTadd, a new sequence-adding method that
scales MAFFT-linsi --add to large datasets. Given an existing alignment (back-
bone alignment) and unaligned query sequences, it adds queries to the backbone
alignment using MAFFT-linsi-add with a divide-and-conquer approach inspired
by UPP [14] [18]. We showed that eMAFFTadd enables MAFFT-linsi-add on

11


https://doi.org/10.1101/2022.05.23.493139
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.05.23.4931309; this version posted May 25, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

dataset query type method SPFN SPFP average
eMAFFTadd 0.011  0.011  0.011
random 100 UPP-add 0.012 0.005 0.008
MAFFT-add 0.013 0.011 0.012
MAFFT-linsi-add 0.010 0.010 0.010
eMAFFTadd 0.067 0.055 0.061
UPP-add 0.144  0.042 0.093
CRW (3) - shortest 100 yrpppaqd 0172 0138 0.155
MAFFT-linsi-add 0.158  0.130  0.144
eMAFFTadd 0.046 0.045 0.045
longest 100 UPP-add 0.114 0.031 0.073
MAFFT-add 0.128 0.096 0.112

MAFFT-linsi-add 0.098  0.088  0.093

Table 3: Experiment 4: Average SPFN, SPFP, and their average (alignment er-
ror) over the three CRW datasets on which MAFFT-linsi-add completed (5S.3,
5S.E, and 5S.T). We show results when adding 1) 100 randomly selected se-
quences, 2) 100 shortest sequences, or 3) 100 longest sequences in each dataset
as queries. The lowest SPFN, SPFP, and their average are boldfaced.

large datasets with at least 5000 sequences. It is also the most accurate among
sequence-adding methods we tested under different sequence-adding scenarios.

It is easy to see why eMAFFTadd can scale to large datasets, as its de-
sign ensures that no problem is ever too big for MAFFT-linsi-add to complete.
An explanation as to why eMAFFTadd is more accurate than MAFFT-add
is straightforward: MAFFT-linsi-add is more accurate when it can run, and
eMAFFTadd allows MAFFT-linsi-add to be used on these large datasets. Un-
derstanding why eMAFFTadd is more accurate than UPP-add is more interest-
ing, but we offer a hypothesis. UPP-add operates by adding each query sequence
independently, whereas MAFFT-linsi-add considers relationships it detects be-
tween query sequences and does not treat these additions independently; this
may be key to why eMAFFTadd is more accurate than UPP-add. Finally,
we note that there were cases where MAFFT-linsi-add and eMAFFTadd both
ran, and we observed eMAFFTadd to be more accurate than MAFFT-linsi-
add. The explanation for this is again somewhat subtle. While MAFFT-linsi is
an exceptional alignment method, other studies (beginning with [9]) observed
that MAFFT-linsi accuracy degraded on large datasets with high evolutionary
diameters, and this observation led to the development of divide-and-conquer
methods like SATé that improved accuracy by applying MAFFT-linsi to small
diameter subsets of the sequence dataset. Thus, the improvement in accuracy
for eMAFFTadd over MAFFT-linsi-add may result from a similar trend: re-
stricting MAFFT-linsi-add to small diameter subsets may improve its accuracy.

It is also worth noting that where eMAFFTadd really excels is in its high
recall (i.e., its ability to detect homologies). On all datasets in this study,
eMAFFTadd has the lowest SPFN, and most of the time, the improvement on
other methods is quite noticeable. We also note that eMAFFTadd has generally
low SPFP scores, although UPP-add sometimes is better.
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7 Conclusions

This study suggests many directions for future work. In particular, we only ex-
plored MAFFT-linsi-add rather than MAFFT-linsi-addfragments, which might
provide better accuracy for adding short sequences. Improving the runtime
for eMAFFTadd is also important, and variants that use faster sequence ad-
dition methods for the easy query sequences (i.e., full-length sequences) might
improve speed without a loss of accuracy. Changes to the decomposition strat-
egy might also lead to further improvements. More ambitiously, improvements
might also be obtained by combining information from different sequence ad-
dition methods. Finally, not discussed here but of definite interest is whether
these sequence addition methods are useful for distinguishing between remote
homologs and non-homologs. For this to be achieved, it will be necessary to pro-
vide statistical support for the predicted alignment, which might be obtained
by combining information from UPP-add and eMAFFTadd.
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A Commands for software

1. Generating MAGUS backbone (we used MAGUS GitHub version commit-
ted on April 5th 2021):

$ python3 magus.py —recurse false —mnp 16 \
—1 [unaligned backbone sequences] —d [outdir] \
—o [output alignment |

2. Generating FastTree2 backbone tree (on nucleotide, v2.1 multi-threaded
version):

$ FastTreeMP —nt —gtr [backbone alignment]| > [backbone tree]

3. Running UPP-add (UPP version v4.5.0):

$ python3 run_upp.py —x 16 —s [query sequences path] \
—a [backbone alignment] —t [backbone tree] —p [tempdir] \
—d [outdir] —o [job name]
4. Running MAFFT/MAFFT-linsi --add:

$ [mafft/mafft—linsi] —quiet —thread 16 —add [query sequences] \
[backbone alignment] > [output alignment ]

B Dataset Generation

Condition [ (tree scale) r (indel rate)

5000M2 30 4.4 x 1074
5000M3 20 3.3x10°%
5000M4 5 1.32 x 1073

Table 4: Parameters for generating the 5000M-het series data, where [ is the tree
scale parameter, defining the maximimum path-length in the non-ultrametric
model tree, and r defines the indel rate.

We present details for the generation of our new simulated conditions below.
Our simulation parameters are based on those of the 1000M series of the ROSE
simulated dataset [9]. We uploaded all of our INDELible control files generating
this data to https://github.com/ThisBioLife/5000M-234-het| to allow easy
reproduction.

B.1 Model trees

Our model trees were generated by a two-step process. We first generated ran-
dom 5000-species birth-death trees (one tree per replicate) using the DendroPy
[21] treesim.birth death tree function, setting the birth rate initially at 1
with the standard deviation of the change to the birth rate set to 0.2 (see the
documentation on this Dendropy function on the birth-death process and the
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implication of this parameter), with a zero death rate. Then, taking only the
topology of the tree generated in the prior step, we instructed INDELible to
assign branch lengths to the tree s.t. the resulting tree is both non-ultrametric
and has a maximum path-length [. We vary [ to control the scale of the tree and
hence the rate of evolution of the condition. The choice of [ across conditions
can be seen in Table @

B.2 1Indel length distribution & indel rates

Our model for sequence length heterogeneity assumes a base (“short indel”)
distribution of indel lengths. In our case we simply took the “medium” length
distribution from the “M”-series ROSE simulated datasets as the short indel dis-
tribution. Given an indel event, with probability p = 0.85, it draws its length
from the short indel distribution. Otherwise, it draws its length from a long
indel distribution, in our case set to NB(130,0.5). The indel length distribution
is thus equivalently a mixture distribution of the short indel distribution (prior
probability 0.85) and the long indel distribution (prior probability 0.15). We
directly computed the probability mass function (PMF) of this mixture distri-
bution, truncated the PMF, and fed the truncated PMF to INDELible as part
of the input. The truncated PMF can be found alongside the uploaded control
files in the Github repository linked.

Similar to the original ROSE dataset, we also varied the indel rates across
conditions, with the choices for the indel rate r shown in Table [d The indel
rates were chosen analogous to the original indel rates of the ROSE dataset.

B.3 Other parameters

The rest of the parameters (GTR+I" parameters and the initial sequence length)
were chosen to be the same as the original ROSE dataset and can be found in
the uploaded control files.

C MAFFT-linsi-add scalability issue on 5000-
taxon datasets

Our runtime environment is 16 cores, 64 GB memory, and 12-hour runtime
limit.

We tried running MAFFT-linsi --add (MAFFT-linsi-add) on our training
5000M2 datasets, where for each replicate, we added 4000 query sequences to
a 1000-taxon full-length backbone alignment. We encountered either out-of-
memory issues (64 GB memory limit) or crashes. We also conducted an exper-
iment on exploring the scalability of MAFFT-linsi-add by altering the number
of queries (Experiment 1).

The out-of-memory error message looks like the following:

slurmstepd: error: Detected 1 oom—kill event(s) in
Stepld=5376434.batch cgroup. Some of your processes may have been
killed by the cgroup out—of—memory handler.

The crash error message looks like the following:

Command exited with non—zero status 1
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D Additional Figures
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Figure 7: Experiment 2: SPFN (left), SPFP (middle), and alignment error
(right, the average of SPFN and SPFP) of eMAFFTadd with various settings
for adding all query sequences to a 1000-taxon alignment of 5000M2-het (10
replicates). eMAFFTadd variants are marked as eMAFFTadd(50, ), for which
u = {100,200,400} controls the maximum size of sub-alignments to use for
MAFFT-linsi-add. All metrics are calculated on query sequences only.
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Figure 8: Experiment 2: Runtime in minutes for eMAFFTadd with varying w,
u = [100, 200, 400], when adding 4000 query sequences to 1000-taxon backbone
alignments of 5000M2-het (10 replicates).
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Figure 9: Experiment 3: SPFN of different alignment methods on query se-
quences of CRW 5S.3, 5S.E, 5S.T, 16S.3, and 16S.T datasets. MAFFT-linsi-add
encountered out-of-memory issues on 16S.3 and 16S.T (marked as “X”) and is
only shown for 5S.3, 5S.E, and 5S.T.
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Figure 10: Experiment 3: SPFP of different alignment methods on query se-
quences of CRW 5S.3, 5S.E, 5S.T, 16S.3, and 16S.T datasets. MAFFT-linsi-add
encountered out-of-memory issues on 16S.3 and 16S.T (marked as “X”) and is
only shown for 5S.3, 5S.E, and 5S.T.
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Figure 11: Experiment 3: Running time in minutes of different alignment meth-
ods on adding 4000 query sequences to 1000-taxon backbone alignments of CRW
5S.3, 5S.E, 55.T, 16S.3, and 16S.T datasets. MAFFT-linsi-add encountered out-
of-memory issues on 16S.3 and 16S.T, and is not shown (marked as “X”).
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Figure 12: Experiment 4: Alignment error (average of SPFN and SPFP) of
different alignment methods when adding 100 random sequences to the ref-
erence backbone alignment of CRW 5S.3, 5S.E, 55.T, 16S.3, and 16S.T datasets.
MAFFT-linsi-add is not run on both 16S datasets since it does not scale in Ex-
periment 3 (marked as “X”).
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Figure 13: Experiment 4: Alignment error (average of SPFN and SPFP) of
different alignment methods when adding the shortest 100 sequences to
the reference backbone alignment of CRW 5S.3, 5S.E, 5S.T', 16S.3, and 16S.T
datasets. MAFFT-linsi-add is not run on both 16S datasets since it does not
scale in Experiment 3 (marked as “X”).
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Figure 14: Experiment 4: Alignment error (average of SPFN and SPFP) of dif-
ferent alignment methods when adding the longest 100 sequences to the ref-
erence backbone alignment of CRW 5S.3, 5S.E, 5S.T, 16S.3, and 16S.T datasets.
eMAFFTadd has zero error on 55.3 and 55.T. MAFFT-linsi-add is not run on
both 16S datasets since it does not scale in Experiment 3 (marked as “X”).
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