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ABSTRACT We formulate the visual tracking problem as a semi-supervised continual learning problem,
where only an initial frame is labeled. In contrast to conventional meta-learning based approaches that
regard visual tracking as an instance detection problem with a focus on finding good weights for model
initialization, we consider both initialization and online update processes simultaneously under our adaptive
continualmeta-learning framework. The proposed adaptivemeta-learning strategy dynamically generates the
hyperparameters needed for fast initialization and online update to achieve more robustness via adaptively
regulating the learning process. In addition, our continual meta-learning approach based on knowledge
distillation scheme helps the tracker adapt to new examples while retaining its knowledge on previously
seen examples. We apply our proposed framework to deep learning-based tracking algorithm to obtain
noticeable performance gains and competitive results against recent state-of-the-art tracking algorithms
while performing at real-time speeds.

INDEX TERMS Continual learning, meta learning, object tracking, visual tracking.

I. INTRODUCTION
Visual tracking, which is one of the fundamental computer
vision problems, has seen practical applications in robotics,
automated surveillance, and autonomous driving. Given the
initial video frame with a bounding box label of the target
object, the goal of the visual tracking problem is to track the
target object throughout the subsequent video frames without
losing the target object. However, conventional tracking algo-
rithms face several challenges in various circumstances such
as scale change, occlusion, illumination change, deformation,
background clutter, and motion blur.

Recently, with the advances in the application of deep con-
volutional neural networks (CNN) to image classification and
object detection tasks [1]–[4], visual tracking algorithms have
also achieved large improvements in performance, owing to
the representation power of their deep backbone networks [5],
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[6] and the object detection framework [7], [8]. However,
there is a misalignment between goals of object detection and
visual tracking problem,where object detection aims to locate
all objects of same semantic class whereas visual tracking
aims to locate a specific object instance. To overcome this
gap, visual tracking algorithms employ some form of domain
adaptation process to the object detection framework, such as
online network finetuning using stochastic gradient descent
(SGD)-based methods [5], [9]–[11] or Siamese network
structure [6], [7], [12]–[14] which generates a target-specific
convolutional kernel from the initial frame.

While recent tracking algorithms were successful in
achieving high performance metrics on several visual track-
ing benchmarks [15]–[17], the importance of the online adap-
tation process was often overlooked despite their crucial role
in visual tracking. In particular, the tracker may need to
update its model since the appearance of the target object con-
stantly changes and similar distractor objects can appear in a
given scene. Moreover, these aspects are further emphasized
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FIGURE 1. Motivation for the proposed visual tracking framework.
Given an input video, (a) conventional tracking algorithm initializes and
updates its model weights using fixed and predefined learning rates.
(b) Our proposed tracking framework incorporates an adaptive learning
scheme for both model initialization and online update using adaptive
learning rate and adaptive knowledge distillation, which increases the
flexibility of the tracker to learn new examples, while aiming to achieve
robustness through retaining the memory on previously seen examples.

in long-term tracking scenarios [18]–[20]where the target can
be absent for a prolonged time interval. Online update was
often achieved by incorporating hand-crafted regularization
schemes and meticulous hyperparameter selection, due to the
lack of training samples and label uncertainty. In cases of
most Siamese network-based trackers, online adaptation was
completely ignored to achieve faster and real-time speeds.
To address these aforementioned issues, several recent
trackers employed meta-learning-based adaptation schemes
[21]–[28] in order to learn the adaptation process itself. How-
ever, a majority of them either focused only on finding a good
initialization for the tracker [21], [23] or only regulating the
online update process [22], [25]–[27].

In this paper, we introduce a more generalized visual track-
ing framework, in which we model both adaptation and con-
tinual processes under our adaptive continual meta-learning
framework.We adopt an adaptive schemewhere hyperparam-
eters can dynamically change to deal with various tracking
scenarios. In addition, our continual meta-learning scheme
employs adaptive knowledge distillation-based update strat-
egy to help the tracker adapt to newly obtained examples
while retaining the necessary knowledge on previously seen
examples. During offline training, our integrated framework
trains (1) network weights that are good for both initialization
and future online updates; (2) hyperparameter generator net-
work which adaptively generates the learning rates, instance-
wise weights, and loss hyperparmeter for controlling the
adaptation process; and (3) knowledge distiller network for
regulating the balance between learning new examples and
retaining the knowledge from the previous step.

To validate the effectiveness of our proposed framework,
we apply our method to Siamese network-based tracking
algorithm TACT [29], which is a two-stage detector-based
tracker. We compare our method to other state-of-the-art

trackers on test splits of large-scale visual tracking datasets,
including LaSOT [18], OxUvA [19], TLP [20], Track-
ingNet [16], and GOT-10k [17]. We further demonstrate the
effectiveness of our framework by component-wise ablation
analyses on the LaSOT dataset. Our framework requires
minimal computational overhead, achieving real-time speeds.
Motivation for our tracking framework is shown in Figure 1.

II. RELATED WORK
A. DEEP NEURAL NETWORK-BASED TRACKING
ALGORITHMS
Contemporary visual tracking algorithms solve visual track-
ing via tracking-by-detection, where they attempt to locate
the target by finding the position where the classifier pro-
duces the highest classification score for the target class.
With the powerful representation capacity of deep nerual
networks, recent trackers employ deep neural networks
for feature extraction and classification. While features
from denoising autoencoder are used in [30], MDNet [5]
used VGG [3] features with multi-task learning, which
RT-MDNet has accelerated to real-time speed by using
ROIAlign [31]. Correlation filter-based trackers [32], [33]
have also been widely used on top of pretrained deep
features, such as C-COT [34] and ECO [35], in which
they use continuous convolutional operator for the fusion
of multi-resolution CNN feature maps. Other approaches
include spatially regularized filters [36], the fusion of mul-
tilevel features [37], group feature selection [38], and spatial
transformers [39].

Recently, Siamese network-based trackers have gained
traction due to their simplicity and high performance
[6]–[8], [14], [40]–[47]. SiamFC [6] introduced a fully
convolutional end-to-end approach with increased speed
and accuracy. SiamRPN [7] added a region proposal net-
work for more accurate localization and size estimation
while DaSiamRPN [40] enhanced its discriminability by
introducing negative pairs during training to suppress dis-
tractors. Both [41] and [42] utilized deeper and wider
feature extractors based on [1] and [48] for further per-
formance gains. Other works include general transfor-
mation learning model [43], local pattern detection for
structure-based prediction [44], cascaded region proposal for
sequential refinement [45], and recurrent optimization based
model [46]. Recent approaches employ inverted residual
networks [49], attentional cascade keypoints [13], sailency
information [50], and relation networks [51] for Siamese
networks. There also have been approaches to automatically
find lightweight networks for efficient matching such as [52]
and [53], inspired by network architecture search (NAS)
methods.

Introduction of transformers [54] and self-attention [55]
to computer vision applications also enabled utilization
of additional temporal information for visual tracking.
Recent approaches include end-to-end fully-convolutional
networks [56], incorporating rich scene information [57], use
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of space-time memory networks [58], and feature fusion with
transformers [59].

B. META-LEARNING FOR VISUAL TRACKING
To overcome the issues of conventional model adaptation
in visual tracking, noteworthy methods have been pro-
posed to improve the tracking performance by employ-
ing meta-learning based adaptation at test-time. Among
meta-learning algorithms, model-agnostic meta-learning
(MAML) [60] based approaches [61]–[65] recently gained
attention owing to its simplicity and versatility. MAML
aims to find good model weights that can be trained to
generalize well with a small number of SGD steps and a
small amount of training data. Meta-Tracker [21] was one
of the first to apply MAML on MDNet [5] for fast adapta-
tion, reducing the number of SGD iterations. MetaRTT [24]
extended the idea by simultaneously finding the learning
rates for initialization and online update. In addition, [23]
used MAML to convert a modern detection network into
a tracker. However, all above methods used fixed learning
rates for all tracking scenarios and thus lack the adaptiveness
to deal with diverse individual scenarios, which are accom-
panied by various training examples with varying degree
of label uncertainty. Additionally, they do not address the
erroneous updates performed with uncertain and mislabeled
examples. On the other hand, our proposed method is able
to adaptively change the hyperparameters to deal with these
scenarios.

Other meta-learning-based tracking algorithms introduce
a separate meta-learner network to regulate the adaptation
process. [27] and [22] used loss gradient information obtained
during tracking to update the target feature representation.
Moreover, [25] used a separate update module to acquire the
updated accumulated template. An optimization-based archi-
tecture with a model predictor was used in [11] to predict the
filter weights while a similar approach using recurrent neural
optimizer is proposed in [46]. However, a majority of the
aforementioned methods are mainly focused on short-term
tracking scenarios, and are not designed for long-term track-
ing scenarios. With the exception of [26], where they used
a meta-updater network that takes multiple cues as input to
make the binary decision whether to update or not to update
the baseline tracker.

C. INCREMENTAL OBJECT CLASSIFICATION
AND DETECTION
Conventional training setting for the classification problem
assumes that abundant labeled training examples are always
available for all classes at any point in training time. By con-
trast, incremental/continual setting assumes new examples
or new classes are given in a sequential manner, thus the
model has to be trained incrementally to prevent the model
from catastrophic forgetting, which is a phenomenon where
the performance of the model on previously seen exam-
ples significantly degrades over time. Recent approaches for
deep neural networks include iCaRL [66] which learns the

classifier and representation simultaneously based on replay
memory; EWC [67] which selectively slows down learning
of weights based on their importance; and LwF [68] where
task-specific parameters from previous tasks are utilized with
knowledge distillation loss to prevent the network from for-
getting, while improving the performance on a new task.
Related to LwF, incremental learning of object classifica-
tion and detection models based on the knowledge distil-
lation [69] scheme to prevent catastrophic forgetting have
recently emerged [70]–[73].

Inspired by aforementioned approaches, we employ a
knowledge distillation-based continualmeta-learning scheme
for our visual tracking framework. Different from conven-
tional continual learning settings where new examples are
given in a sequential manner along with their corresponding
ground truth labels, these labels are not available under stan-
dard visual tracking setting. Since labels for new examples
have to be obtained in a self-supervised manner, chance of
adapting the model based on mislabeled examples persists.
To alleviate this issue, we introduce two solutions. (1) When
performing an online update at a certain time step, we always
start from initially adapted weights where previous weights
are used for knowledge distillation. This reduces error accu-
mulation and overfitting to small number of training exam-
ples, while increasing the flexibility of the tracker. (2) We
introduce an adaptive knowledge distiller network that pre-
dicts the importance weights for each previous frame where
the magnitude of weights determine the degree of knowledge
distilled from a certain frame. By controlling these weights,
the tracker can choose between learning new examples and
retaining the previous knowledge.

III. PROPOSED METHOD
Our proposed framework consists of two large components,
which are the baseline tracking algorithm and the adap-
tive continual meta-learner module. In the following subsec-
tions, training procedure for our proposed adaptive continual
meta-learner module is delineated.

Assuming a baseline tracker fθ0 with its default weights
θ0, the meta-learner network g controls the learning process
through adaptively generating the hyperparameters to mod-
ify the direction and magnitude of the loss gradients. The
meta-learner network g contains four sub-networks, gα , gβ ,
gγ , and gδ , where each sub-network generates the learn-
ing rate α, instance weight β, focal loss hyperparameter γ ,
and knowledge distillation hyperparameter δ, respectively.
Our objective is to train the default weights θ0 and network
weights for g. To train both parameters, we construct a
simulated tracking episode to perform the initial and online
adaptation processes and assess how well these adaptations
are conducted by evaluating the loss on the future frames. Our
training scheme extends on the basic meta-learning formula-
tion of dividing the training set into support and query sets,
then performing inner-loop and outer-loop optimizations for
meta-training analogous to such as in [60].
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FIGURE 2. Overview for the training process of proposed framework. The training video V is divided into four datasets, {D1,D2,D3,D4}, where each
dataset Di contains frame images Ii and GT box labels Bi . Initial adaptation is performed using the initial frame and label in D1, and online
adaptations are conducted using self-supervised labels B̂2, B̂3 in D̂2, D̂3. Afterwards, outer loop optimization is performed to evaluate all adapted
weights θi on Di+1,··· for meta-training.

A. META-TRAINING WITH SIMULATED EPISODES
1) TRACKER SETTING
The baseline tracking algorithm fθ with weights θ takes a
video frame image I t as an input and outputs K candidate
bounding boxes btθ ∈ RK×4 with corresponding confidence
values ctθ ∈ RK , which is denoted as,

btθ , c
t
θ = fθ

(
I t
)
. (1)

Tracking is performed by choosing the bounding box with
the highest confidence value as an output. Online updates
are conducted by training the tracker using this chosen out-
put box, in which other boxes are labeled as positive if
they have high overlap with the output box (IoU> τp) and
negative otherwise (IoU< τn). We chose overlap thresh-
old values τp = 0.5 and τn = 0.3 for training and
testing.

2) EPISODE SETTING
Given a training video sequence V of length T with its frame
images {I1, I2, . . . , IT } and ground truth target bounding box
annotations {b1, b2, . . . , bT }, the video sequence is divided
into four time-ordered video segments I1, I2, I3, and I4 with
corresponding bounding box label sets B1, B2, B3, and B4.
Then, each video segment and label set are paired to form four
datasets D1

= (I1,B1), D2
= (I2,B2), D3

= (I3,B3), and

D4
= (I4,B4), respectively. Each video segment contains

frame images with sizes of |I1
| = 1, |I2

| = |I3
| = N , and

|I4
| = T − 2N − 1, where N is the number of frames used

for online adaptation.
Given a baseline tracker fθ0 with the default weights θ0,

the initial adaptation is first performed using the dataset
D1
= (I1,B1) to obtain adapted weights θ1. Then, using the

initialized tracker fθ1 on images in I2, we can obtain esti-
mated labels B̂2 to form the dataset for self-supervised online
update D̂2

= (I2, B̂2) where the tracker is updated from
θ1 to θ2. Lastly, using the adapted tracker fθ2 , online update
is performed again with dataset D̂3

= (I3, B̂3) to obtain θ3.
After simulating tracking episodes, we obtain intermediate
weights θ0, θ1, θ2, and θ3 for the tracker. To train our overall
framework, we evaluate the tracker on different combination
of datasets based on each intermediate weight, then perform
outer-loop optimization on the loss to train the default weights
θ0 and network weights for meta-learner g. The overview for
the training process of our proposed framework is depicted in
Figure 2.

3) INITIAL ADAPTATION
Our tracker first performs the initial adaptation process using
the initial frame and label, D1. Starting from θ0, the adapted
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FIGURE 3. Diagram of our proposed online adaptation process. Given
an input frame image I t , baseline tracking algorithm fθi with weights θi
returns estimated boxes and scores bt

θi
, ct
θi

with its learning state τi
based on [∇̄θi L, θ̄i ]. The meta-learner g receives these information as
input and generates the learning rate αi , instance weight βi , focal loss
hyperparameter γi , and knowledge distillation hyperparameter δi , where
these hyperparameters control the adaptation process of θi → θi+1.

weights θ1 are obtained by,

θ1 = θ0 − α0 �∇θ0Linit
(
D1
)
, (2)

where α0 = gα(τ0) is the predicted per-parameter learn-
ing rate and the input τ0 is the learning state based on
the layer-wise mean of gradients and kernels [∇̄θ0L, θ̄0],
as defined in [65]. The loss function for the initial adaptation
Linit is defined as,

Linit
(
D1
)
= β0FL

(
c1θ0; γ0

)
, (3)

where FL denotes the focal loss [74] evaluated using the
initially given bounding box label B1, β0 = gβ

(
c1θ0

)
is the

instance weight for the initial frame, and γ0 = gγ
(
c1θ0

)
is

the focusing hyperparameter used in focal loss to control the
balance between losses of easy and hard samples. β0 and
γ0 are both scalar values.

4) ONLINE ADAPTATIONS
Using the initially adapted tracker fθ1 and frames in I2,
online adaptation is performed using D̂2 to obtain updated
parameters θ2 as in,

θ2 = θ1 − α1 �∇θ1Lon
(
D̂2
)
, (4)

where α1 = gα(τ1). Loss function for the online update is
defined as,

Lon
(
D̂2
)
=

1
|I2|

∑
I i∈I2

{
β i1FL

(
ciθ1; γ

i
1

)
+δi1KD

(
ciθ1 , c

i
θ0

)}
,

(5)

where FL is evaluated using self-labeled bounding boxes
in B̂2 as labels, β i1 = gβ

(
ciθ1

)
, and γ i1 = gγ

(
ciθ1

)
. KD

is the knowledge distillation loss equivalent to the standard
binary cross entropy loss and is used to measure discrepancy

Algorithm 1 Visual Tracking With Meta-Learner
Input: Tracking algorithm fθ with default weights θ0

Trained meta-learner network g
Tracking sequence of length L, {I1, I2, . . . , IL}
Initial target bounding box coordinates b1

Output: Target bounding box coordinates for each frame

# Initialization at t = 1
Form dataset D1

=
(
I1, b1

)
for initial adaptation

Model initialization from θ0 usingD1 as in Eq. (2) and (3),
updating θ ← θ1

# For later frames in tracking sequence
for t = 2 to L do

Obtain candidate boxes btθi and confidence scores
ctθi from input frame I t as in Eq. (1)
Choose box with the highest confidence score as
output b̂t
If an output is confident (PSR< τon), store corre-
sponding frame and output box (I t , b̂t ) to dataset
for online update D̂on

= (Ion, B̂on)
if t mod U = 0 and |Ion| ≥ N then

Online update from θ1 using θi and N training
samples from D̂on as in Eq. (6) and (7), updating
θ ← θi+1 and i← i+ 1
Clear buffer for dataset D̂on

end if
end for

between predictions made by the model with parameters
θ0 and θ1. To control the degree of knowledge distilled from
a certain example, the knowledge distillation hyperparameter
δi1 = gδ

(
ciθ1 , c

i
θ0

)
is predicted, where δi1 is a scalar value.

Afterwards, further online adaptation is performed using
D̂3, where B̂3 is obtained by evaluating the tracker fθ2 on
frames in I3. Updated parameters θ3 can be acquired by
evaluating the equations analogous to the previous step as in
Eq. (4) and Eq. (5) where,

θ3 = θ1 − α2 �∇θ1Lon
(
D̂3
)
, (6)

Lon
(
D̂3
)
=

1
|I3|

∑
I i∈I3

{
β i2FL

(
ciθ1; γ

i
2

)
+δi2KD

(
ciθ1 , c

i
θ2

)}
,

(7)

where online adaptation is performed from the initially
adapted parameters θ1 rather than previous-step parameters
θ2 to reduce the effect of erroneous updates. For our proposed
meta-learning framework, knowledge distillation is used in
the temporal domain to enforce long-term memory on the
tracker. We use the tracker after k-th online update fθk as
the teacher network and utilize this network to generate
soft labels for frames in D̂k . When updating the tracker to
obtain fθk+1 , knowledge from fθk can be transferred to fθk+1 ,
where the amount of knowledge distilled can be controlled
by scaling the KD loss term in equation (5) and (7) using
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TABLE 1. Comparison on the LaSOT test set.

TABLE 2. Comparison on the OxUvA test set.

TABLE 3. Comparison on the TLP dataset.

δk , which is generated by the meta-learner. Also, updating
from θ1 reduces error accumulation and overfitting to small
number of training examples, while increasing the flexibility
of the tracker. By controlling δk , the tracker can choose
between learning new examples and retaining the previous
long-term knowledge.

5) OUTER-LOOP OPTIMIZATION
After completing the simulated tracking episode on input
video sequence V , we obtain intermediate tracker weights
θ0, θ1, θ2, and θ3. We perform meta-training on our overall
tracking framework by evaluating and performing outer-loop
optimization for the tracker with each intermediate weight,
using different combinations of held-out datasets with ground
truth annotations to encourage reduced overfitting and better
generalization performance of each adaptation process. Over-
all outer-loop loss functionLouter for outer-loop optimization
is given as following,

Louter (V) = λ0Lθ0
(
D2,3,4

)
+ λ1Lθ1

(
D2,3,4

)
+ λ2Lθ2

(
D3,4

)
+ λ3Lθ3

(
D4
)
, (8)

where λ0, λ1, λ2, and λ3 are stage-wise weighting hyper-
parameters with sum of 1 and superscript on D indicates a
combination of respective datasets (i.e., Di,j

= Di
∪ Dj).

Each individual loss term Lθi with respect to each weight θi
is defined as,

Lθi(D) =
∑

(I j,bj)∈D
FL
(
cjθi; γouter

)
, (9)

where focal loss FL is evaluated for binary class predictions
cjθi obtained from the tracker with weights θi, using the ground
truth bounding box bj and γouter is fixed to 0.5. Each loss
Lθi , except for Lθ0 , is evaluated with dataset Di+1,··· to mea-
sure the generalization performance on unseen future frames,
assessing the quality of the adaptation process conducted
from the previous weights θi−1 using the meta-learner net-
work g. It also serves to facilitate the tracker with weights
θi to make more accurate predictions for subsequent frames
in I i+1 for better future self-supervised update using the
estimated labels, D̂i+1

= (I i+1, B̂i+1). Note that for all
aforementioned focal loss terms FL, additional IoU loss term
evaluated on btθ for bounding box regression is omitted for
simplicity.

The process of outer-loop optimization is identical to the
gradient-based bilevel optimization process of MAML [60]
and its variants [61]–[65], where MAML aims to find good
model weights that can be trained to generalize well on
unseen tasks with small amount of training data. Key dif-
ference between the original MAML and our proposed
method is that in addition to finding the good model
weights θ0 for generalization, our method incorporates the
meta-learner network g, where g is also trained at the
outer-loop optimization stage since it participated in gener-
ating the intermediate weights θ1, θ2, θ3. By obtaining gra-
dients ∇θ0Louter ,∇θ1Louter ,∇θ2Louter ,∇θ3Louter , ∇φLouter
where φ represents the weights for the meta-learner net-
work g, we can train our framework using an off-the-shelf
optimizer.
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TABLE 4. Comparison on the TrackingNet test set.

TABLE 5. Comparison on the GOT-10k test set.

B. VISUAL TRACKING WITH META-LEARNER
Herein, we propose the visual tracking with a novel adaptive
continual meta-learner. The tracking process is purposely
made simple to retain the speed of the original backbone
tracking algorithmwhile requiring as small memory overhead
as possible. Given an input tracking sequence of length L,
the proposed initial adaptation process is performed using the
initial frame I1 and bounding box b1 to obtain initial weights
θ1 for update. During the tracking process, frames that yield
output confidence values with peak-to-sidelobe ratios (PSR)
smaller than τon = 0.7 are considered as confident frames
and stored to the dataset for online update D̂on. Online
update is performed every U = 100 frames by employing
N most confident frames from the dataset D̂on and initial
weights θ1, updating the weights θi−1 to θi, and the buffer
for D̂on is cleared after every update. The overall tracking
procedure is organized and described in Algorithm 1, and
Figure 3 shows the diagram for our proposed online adap-
tation process.

IV. EXPERIMENTS
In this section, we elaborate on the implementation details
for the backbone tracker and the proposed meta-learning
framework, followed by the experimental results to vali-
date the performance gains obtained by our framework on
five large-scale visual tracking benchmark datasets. We also
demonstrate the results for attribute-wise and module-wise
ablation experiments to further analyze the effectiveness of
our proposed method.

A. IMPLEMENTATION DETAILS
1) BACKBONE TRACKER
We employ Siamese network-based backbone tracking algo-
rithm based on TACT [29], which is a variant of a two-stage
detection network. TACT is based on GlobalTrack [12]
and (1) is a long-term oriented tracker which fits our pur-
pose, (2) is a full-frame search-based tracker where we
can consider all potential distractors in a scene for update,
and (3) has no hand-crafted motion smoothness constraints.

Considering the aforementioned aspects, we can validate that
the performance changes come solely from our proposed
meta-learning framework without any influence from other
potential variables. While freezing the weights of the fea-
ture extractor layers, the region proposal layers, and con-
text embedding layers, we perform meta-training on the last
ROI classification and refinement layers, starting from the
original weights of TACT. We refer the modified trackers
as ConTACT-18 and ConTACT-50 which are extensions of
TACT-18 and TACT-50, respectively, with adaptive continual
meta-learners.

2) META-LEARNER ARCHITECTURE
For the meta-learner g, its sub-networks gα , gβ , gγ , and gδ are
all 3-layer MLPs with group normalization [88] and ReLU
activation between the linear layers. The number of interme-
diate hidden units for each sub-network are 128, 256, 256,
and 512, respectively. Assuming L is the number of layers that
are involved in the adaptation process, the adaptive learning
rate generator gα takes 2L-dimensional learning state as an
input and returns L-dimensional layer-wise multipliers which
are then multiplied to the per-parameter base learning rate
αbase, similar to [61], and can be applied to each layer for
SGD. Elaborating on the 2L-dimensional learning state τ ,
its dimension is determined by the number of layers L of
the backbone tracker network fθ . The backbone tracker fθ
TACT [29] is based on a two-stage object detection frame-
work, and we chose to use the final ROI classification and
refinement layers of TACT for the adaptation process, which
consist of 5-layer CNNs, resulting in L = 5 for our imple-
mentation of ConTACT. The learning state τ is constructed
in a similar manner as in [65], where we concatenate the
L-dimensional layer-wise mean of kernel weights and
L-dimensional layer-wise mean of kernel gradients. L is fixed
throughout the process of adaptations.

The adaptive instance weight generator gβ and adaptive
focusing hyperparameter generator gγ both take confidence
values ctθi ∈ RK obtained from a given frame as input and
returns scalar values β ti and γ ti . The adaptive knowledge
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FIGURE 4. Visualization for the effectiveness of the meta-learner. (a) Self-labeled frames for online adaptation, with candidate boxes color-coded
according to their confidence values, along with β, γ and δ values generated by the meta-learner. (b) Future frames with predicted output boxes before
and after the online adaptation with corresponding frames in (a).

TABLE 6. Attribute-wise ablation on LaSOT test set.

distiller gδ takes two confidence vectors obtained from two
different models as an input, [ctθi , c

t
θi−1

] ∈ R2K , where [·, ·]
denotes concatenation, and outputs a single scalar value δti .

3) TRAINING DETAILS
Dimensions of input images are the same as in [29] and
the overall framework is trained with training splits of Ima-
geNetVID [89], GOT-10k [17], LaSOT [18], and Track-
ingNet [16], from which a video sequence V is randomly
chosen. T = 13 frames, in turn, are uniformly sampled
inside a time window of 500 frames inside V , along with
their bounding box annotations. Among sampled frames, the
first frame is used as D1. As for the remaining 12 frames,
N = 4 frames are assigned to each of D2, D3 and D4 in
a sequential order. For all frames and annotations in V ,
random image augmentations, such as Gaussian noise, blur,

TABLE 7. Component-wise ablation on LaSOT test set.

horizontal flips, and bounding box jittering are applied. For
online adaptation, we choose a box with highest confidence
from K = 64 candidate boxes for a given frame and use this
box as self-supervision.

Self-supervision is performed based on the estimated
bounding box, where a best candidate box is chosen for a
single image and can be considered as the pseudo ground-
truth box. Based on this pseudo GT box, K = 64 candidate
boxes estimated in an image can be labeled for classification
(positive or negative) by calculating the IoU scores between
the pseudo GT box. Candidate boxes having scores larger
than τp = 0.5 are labeled positive, and boxes with scores
less than τn = 0.4 are labeled negative, where classification
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FIGURE 5. Qualitative comparison with other trackers. Results are shown for sequences airplane-1, cat-20, chameleon-20, giraffe-15, goldfish-8, and
kite-6. Best viewed zoomed in on a high resolution display.

losses are enforced. For positive candidate boxes, bounding
box regression loss (IoU loss) is calculated and used for
adaptation. Our online training scheme is identical to the
training scheme of the original tracker [29] and Faster R-
CNN [4]. For a single dataset D̂i with N = 4 images in
I i, corresponding N = 4 best candidate boxes B̂i are first
estimated using the tracker, where these boxes are used as
the pseudo ground-truth boxes for each frame. Using D̂i

=

(I i, B̂i), we can train our tracker with self-supervision, where
classification loss and regression loss can be enforced on
N × K = 256 estimated candidate boxes following the
aforementioned procedure.

For both initial and online adaptations, per-parameter base
learning rate αbase are initialized to 10−3 and single-step
SGD update is performed for faster speed. For the outer-loop
optimization, Adam [90] optimizer with learning rate of 10−5

is used with weight decay of 10−5 and trained for 5 × 105

iterations with batch size of 4.

B. QUALITATIVE AND QUANTITATIVE EVALUATION
1) EVALUATION DATASETS AND METRICS
We conducted evaluations for our trackers on test splits of five
large-scale visual tracking benchmark datasets: LaSOT [18],

OxUvA [19], TLP [20], TrackingNet [16], andGOT-10k [17].
LaSOT, OxUvA, and TLP are long-term visual tracking
benchmarks with average sequence lengths longer than
1 min., whereas TrackingNet and GOT-10k have shorter
sequence lengths with larger number of sequences with more
various semantic classes of objects. LaSOT [18] dataset is a
large-scale and long-term tracking dataset with 1, 400 video
sequences for training and testing, with an average of
2, 512 frames (≈ 83 secs) in length, and are annotated with
target bounding boxes. We evaluated our trackers on the
test split (Protocol II) of 280 video sequences, and report
the performance metrics of area-under-curve (AUC) of the
success plot, location precision, and normalized precision for
comparison. OxUvA [19] dataset is focused on long-term
tracking performance of a tracker where its dev and test
splits have 200 and 166 sequences, respectively, with an
average length of 4,260 frames (≈ 142 secs). Since tar-
get can leave and reappear in a frame under the long-term
tracking scenario, trackers must report the target bounding
boxes as well as whether the target is present or absent in
a given frame. The performance metrics are the maximum
geometric mean (MaxGM) over the true positive rate (TPR)
and the true negative rate (TNR), with IoU thresholds of
0.5. TLP [20] dataset also evaluates the long-term tracking
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FIGURE 6. Additional qualitative comparison with other trackers tested on real-world videos. Best viewed zoomed in on a high resolution display.

performance where it contains 50 HD real-world videos, with
average sequence length of 13,500 frames (≈ 450 secs).
AUC of the success plot is used as the performance met-
ric. TrackingNet [16] is a large-scale tracking dataset with
more than 30, 000 videos gathered from YouTube, of which
511 sequences assigned as the test split. Similar to the other
tracking benchmarks, location precision, normalized preci-
sion, and AUC of the success plot are used as performance
metrics. GOT-10k [17] is a dataset composed under the
one-shot experiment setting where the training and test splits
have disjoint set of object classes. It contains 10, 000 video
sequences of which 420 are used in the test split. Performance
metrics are calculated by the success rate (SR, with thresholds
0.5 and 0.75) and average overlap (AO).

2) COMPARISON TO OTHER TRACKERS
Results for evaluation of our trackers on the LaSOT test
set are provided in Table 1. Applying the proposed adaptive
continual meta-learner on both variants of TACT, denoted
as ConTACT-18 and ConTACT-50, show consistent and
noticeable gains on all performance metrics on both vari-
ants, while retaining real-time speeds of 52 fps and 38 fps.
Both variants outperform many recent ResNet-based track-
ing algorithms, GlobalTrack [12], ATOM [10], DiMP [11],
SiamRPN++ [41], SPLT [75], and Ocean [8]. For further
evaluation of the long-term tracking capabilities, we eval-
uated our tracker on the OxUvA test set and presented
the results in Table 2. To detect the absence of the target,
we simply used confidence threshold value of 0.97 to label
target as absent if confidence is below this threshold. The

proposed method shows substantial performance gains in
MaxGM and TNR metrics compared to TACT, where the
performance gains are more pronounced under long-term
sequences. Evaluation on relatively short-term, large-scale
tracking benchmarks TrackingNet and GOT-10k are shown in
Table 4 and 5.
Both of our trackers show consistent performance gains on

all metrics for both datasets, validating the effectiveness of
our proposed meta-learner on both long-term and short-term
tracking applications where performance improvements are
more pronounced in the long-term tracking applications. The
baseline tracker of our algorithm is TACT [29], which is
based on GlobalTrack [12] where GlobalTrack is a full-frame
search-based tracker with no hand-crafted motion smooth-
ness constraints (local search, cosine window penalty, lin-
ear interpolation between bounding boxes, etc.) commonly
used in other tracking algorithms, and GlobalTrack requires
minimal hyperparmeter tuning. Due to the aforementioned
characteristics, TACT and GlobalTrack perform better on
long-term tracking benchmarks such as LaSOT and OxUvA
and the performance gains made by our proposed algorithm
are less pronounced on short-term tracking benchmarks such
as TrackingNet and GOT-10k. Despite these differences in
characteristics, our proposed ConTACT-18 and ConTACT-50
successfully improves the baseline tracking algorithm TACT
by noticeable margins, with competitive performance even
compared with other recently published tracking algorithms.
Qualitative comparison between other trackers, TACT [29],
GlobalTrack [12], ATOM [10], SiamRPN++ [41], and
SPLT [75], are shown in Figure 6.
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FIGURE 7. Attribute-wise success plots for the test split of the LaSOT dataset.

C. ANALYSIS
1) ABLATION STUDY
a: ATTRIBUTE-WISE ABLATION
To further analyze the effectiveness of proposed continual
meta-learner, we show attribute-wise AUC performance on
the LaSOT test set in Table 6, with comparison on six differ-
ent challenge attributes of LaSOT. Displaying performance
gains in all attributes, largest improvement comes from BC
(background clutter) attribute, which validates the effective-
ness of our initial and online adaptation strategy on eliminat-
ing the hard negatives while tracking.

Additional attribute-wise success plots with comparison
between other tracking algorithms are also shown in Figure 7.
Both variants of the proposed algorithm show competitive
performance on multiple challenge attributes compared to
other state-of-the-art trackers.

b: COMPONENT-WISE ABLATION
To verify the contribution of each component in our meta-
learning framework, component-wise ablation results are
shown in Table 7, where we sequentially remove each adap-
tive learning component in (2)-(5). The results suggest that
every component contributes to performance gain, where
adaptive instance weighting contributes the most. Results in
(8) show that our adaptive learning approach is effective even
without any online adaptation, where only initial adaptation
is adaptively performed. Regarding the online adaptation,
results in (6), which are obtained with naïve online fine-
tuning with learning rate of 10−3 on TACT, show reduced
performance possibly due to erroneous updates and over-
fitting. Also, results in (7) suggest that online adaptation
from the initial weights θ1 instead of previous weights θi−1
contributes to a large performance gain, owing to reduced
error accumulation.

2) VISUALIZING THE ADAPTIVE LEARNING
In Figure 4, we showfive video examples of online adaptation
with self-labeled training samples, where erroneous predic-
tions in the future frames are corrected after the adaptation.
During the adaptation process, β, γ and δ values predicted
by the meta-learner for each training sample dynamically
change. The meta-learner assigns relatively lower β and δ
values to examples with less confident, uncertain predictions
while the negative γ value consistently directs to focus more
on maximizing the class margin for confident examples, giv-
ing less attention to ambiguous examples that may lead the
tracker to fail in the future.

V. CONCLUSION
In this paper, we proposed a novel adaptive continual
meta-learning framework for visual tracking that dynamically
generates the hyperparameters needed for initialization and
online update with self-labeled examples. Also, our contin-
ual meta-learning approach based on knowledge distillation
scheme helps the tracker adapt to new examples while retain-
ing its knowledge on previously seen examples. We apply
our proposed framework to deep learning-based track-
ing algorithm, where our ConTACT-18 and ConTACT-50
achieve noticeable performance gains and competitive results
against recent state-of-the-art tracking algorithms on all five
large-scale visual tracking benchmarks, while running at real-
time speeds.
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