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We propose a fuzzy system that simulates dispersion of individuals whose movements are described by diffusion. We will use only
the position of the population as an input variable for describing the process. We emphasize that the classical diffusion equation
along with its analytical solution in no time was used for obtaining our solution.

1. Introduction

The differential equations and deterministic differences are
a powerful tool for modeling phenomena whose state vari-
ables are subject to changes over time. However, for the
deterministic modeling be efficient is necessary to have a
deep well of the relationship between the variables and their
variations knowledge. It is the knowledge of the phenomenon
that makes it possible to choose the functions that determine
the variations with respect to the state (value) of the variable.
In many cases, however, this relationship between variables
and variations is only partially known, which make the
deterministic model is less applicable [1–5].

On the other hand, models of fuzzy variational equa-
tions though behaving subjectivities are also not applicable
modeling phenomena with partially known relationships.
This comes from the fact that these models are derived
from deterministic models. Subjectivity supported by fuzzy
equations refers to uncertainties as the initial states of
fuzziness demographic variables and parameters of fuzziness
environmental. In general, both types of fuzziness are present
in equations of population dynamics [6–9].

The p-fuzzy systems incorporate subjective information
in both variables as the variations and their relationships with
the variables and are therefore a very useful tool for modeling
phenomena whose behavior is partially known.

The fuzzy systems are generally the result of a general-
ization of the classical systems; that is, in this approach the
uncertain concepts are incorporated into these systems. A
central feature of fuzzy systems is that they are based on the
concept of fuzzy partition information. The use of fuzzy sets
allows a generalization of information that is associated with
the introduction of imprecision ignoring the phenomena. In
essence, the representation of information in fuzzy systems
tries to imitate the process of human reasoning, considering
heuristic knowledge and information across the disconnected
principle [10].

In this work, we describe a diffusive process without
the use of their analytical solution, using dynamical systems
p-fuzzy and given a rule base. It is worth noting that the
results obtained in terms of solution are very similar to the
deterministic.

2. Preliminaries

A subset (classic) 𝐴 of the universe 𝑈 can be represented by
its characteristic function given by

𝜒
𝐴 (𝑥) = {

1, if 𝑥 ∈ 𝐴
0, if 𝑥 ̸=𝐴.

(1)
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Figure 1: Structure of the fuzzy controller.

Thus, the membership function describes completely the
set 𝐴, since it indicates which elements of the set 𝑈 are
elements of 𝐴.

Allowing a kind of relaxation in the image set of themem-
bership function of a set, Zadeh mathematically formulated
the concept of fuzzy set [11]. We define a fuzzy subset 𝐴 of
𝑈, or simply fuzzy set, through the membership function
𝜇
𝐴

: 𝑈 → [0, 1], where 𝜇
𝐴
(𝑥) represents the degree of

membership of the element 𝑥 to fuzzy subset 𝐴.
A fuzzy rule-based system has basically four components:

an input processor (or fuzzificator), a set of linguistic rules,
a model of fuzzy inference, and a processor output (or
defuzzificator), generating a real number as output. Figure 1
illustrates the controller fuzzy.

The fuzzification is the process by which the input values
of the system are converted to fuzzy sets with respective
ranges of values where they are defined. It is a mapping of
the field of real numbers to fuzzy field.

We can define the fuzzy roles by structures of the form
If {background} Then {resulting} used to describe specific
situations that can be subjected to analysis a panel of experts,
whose inference leads to a desired result. The background to
define a fuzzy region in the space of input variables describes
a system and condition, whereas the result define a region
in the space of output variables of the system and describe a
conclusion or an action that can be drawn when the premises
occur. A fuzzy rule is a unit able to capture some specific
knowledge.

A set of rules (or rule base) can describe a system
in its various possibilities, fulfilling the role of translating
mathematically the information of basis of knowledge of the
fuzzy system.The rule base systems fuzzy (RBSF), in this case
called fuzzy controllers, has four modules: the fuzzification
module, themodule based on linguistic rules, fuzzy inference,

system

Modelo matematico

xk Δxk

xk+1 = xk + Δxk

Fuzzy rule-based

Figure 2: Structure of operation of a p-fuzzy system.

and defuzzification module. These modules are connected as
shown in Figure 2. We call system p-fuzzy iterative system

𝑥
𝑘+1

= 𝑓 (𝑥
𝑘
) ,

𝑥
𝑜
∈ R
𝑛 given,

(2)

where 𝑓(𝑥
𝑘
) is almost linear; that is, 𝑓(𝑥

𝑘
) = 𝑥

𝑘
+ Δ(𝑥

𝑘
),

Δ(𝑥
𝑘
) ∈ R𝑛 and Δ(𝑥

𝑘
) is obtained by a system based on fuzzy

rules.
The rule base is a set consisting of fuzzy rules that

relates the linguistic terms of the input variables and output
variables. The rule base is considered as an element of a
member of the fuzzy controller core. Each rule base satisfies
the following structure:

IF 𝑎 is in 𝐴
𝑖
THEN 𝑏 is in 𝐵

𝑖
, (3)

where 𝐴
𝑖
and 𝐵

𝑖
are fuzzy sets that represent linguistics

terms of input variables and output variables, respectively.
The expression 𝑎 in 𝐴

𝑖
means 𝜇

𝐴𝑖
(𝑎) ∈ [0, 1]. Both the fuzzy

set 𝐴
𝑖
and 𝐵

𝑖
can be a cartesian product of fuzzy sets; that is,

𝐴
𝑖
= 𝐴
𝑖1
×𝐴
𝑖2
× ⋅ ⋅ ⋅ ×𝐴

𝑖𝑚
and 𝐵

𝑖
= 𝐵
𝑖1
×𝐵
𝑖2
× ⋅ ⋅ ⋅ ×𝐵

𝑖𝑛
. In this

case, each fuzzy set,𝐴
𝑖𝑗
and𝐵

𝑖𝑘
, is a linguistic term for the 𝑗th

input variable and 𝑘-th output variable, and the expression 𝑎
in 𝑎
𝑖
means that

𝜇
𝐴𝑖
(𝑎) = min {𝜇

𝐴𝑖1
, 𝜇
𝐴𝑖2
, . . . , 𝜇

𝐴𝑖𝑚
} ∈ [0, 1] . (4)

It is the definition of the rule base the information of the
phenomenon under study are used. For each state defined by
the linguistic terms of the input variable is a rule base. Thus,
themore linguistic termsmore details are incorporated in the
model.

The relationship between the linguistic variable is charac-
terized MIN by the operator; that is, each rule is considered
a fuzzy relation 𝑅

𝑖
where the degree of membership for each

(𝑎, 𝑏) is

𝜇
𝑅𝑖
(𝑎, 𝑏) = min {𝜇

𝐴𝑖
(𝑎), 𝜇𝐵𝑖

(𝑏)} . (5)

The relationship between each rule is characterized by
the maximum operator, that is, fuzzy relation 𝑅, which is
determined by the rule basemodel is obtained by joining each
individual rule, so that for each pair (𝑎, 𝑏) we have

𝜇
𝑅 (𝑎, 𝑏) = max

1≤𝑖≤𝑛

{𝜇
𝐴𝑖
(𝑎) ∧ 𝜇𝐵𝑖

(𝑏)} , (6)

where ∧ represents the operator MIN.
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Figure 3: Mamdani inference engine with two linguistic input variables and one output.

Now we want to find each entry a corresponding action;
that is, for a 𝐴 set of input data, we determine a set 𝐵 output
data. Mamdani method, the membership function of 𝐵, is
given by

𝜇
𝐵 (𝑏) = max

1≤𝑖≤𝑛

{max
𝑎

{𝜇
𝐴 (𝑎) ∧ 𝜇𝐴𝑖

(𝑎)} ∧ 𝜇𝐵𝑖
(𝑏)} . (7)

If the entry is a classic unitary set, then 𝜇
𝐴
(𝑎) = 1 and

𝜇
𝐴𝑖
(𝑎) ≤ 1. Therefore, the previous expression results in

𝜇
𝐵 (𝑏) = max

1≤𝑖≤𝑛

{𝜇
𝐴𝑖
(𝑎) ∧ 𝜇𝐵𝑖

(𝑏)} (8)

and therefore we have the fuzzy set 𝐵 representing the action
of each input 𝐴 (Figure 3).

The role of the defuzzificador is to convert each comple-
tion obtained by the method of inference in a real number
which is the best action to take. For systems p-fuzzy, the
actual number is obtained by defuzzification added to the
value assumed by input variable in instant 𝑘, feeding the
iterative system.

One of the main methods of defuzzification is the center
of mass, for continuous variables, which is given by

𝑚(𝐵) =

∫
Ω
𝑏𝜇
𝐵 (𝑏) 𝑑𝑏

∫
Ω
𝜇
𝐵 (𝑏) 𝑑𝑏

. (9)

This defuzzification method will be used throughout this
paper. Note that the fuzzy controller can be seen as a function
𝑓 : R𝑛 → R𝑚, since given an input value, there is a single
output value.

3. The Model

In this section, we are interested in developing a base of
rules that enable us to find a solution to a graphical problem
involving diffusion. For this, we use only the position pop-
ulation, initial condition, and population growth. By these
ways wemay estimate the population density in an instant 𝑡 =
𝑡
∗without necessarily using the analytical solution problem.

Classical models of population dynamics and/or epi-
demiology, in overall, are given by a system of differential
equations. In this case, the parameters of themodels are often
taken as mean values obtained from one set of data such
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Figure 4: Linguistic variables for population position.

that the model is to be deterministically known. However,
admitting uncertainty due to partial knowledge, which is
common in biological phenomena, an alternative is to model
such knowledge from a set of rules of the form if-then.

It is common to adopt an equation

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑦) (10)

to represent the dynamic system, where the field 𝑓 is
variation, from which the evolution of the system is studied.
Actually we can ask the following question: how can we
analyze system (10) if it is partially known? The response is
to adopt a linguistic model capable of capable of capturing
the information availables from the model with a specialist.
Propose a methodology to estimate solutions to differential
equations using fuzzy controllers in which the state variables
are the inputs and outputs are changes of state.

Thus, consider how linguistic variables to position of
the population (distance to origin): low positive (Bp), mean
positive (Mp), mean high positive (MAp), positive high (Ap),
low negative (Bn), mean negative (Mn), mean high negative
(MAn) and negative high (An). Where the positive or neg-
ative terms means distance from the origin to the right or
left respectively. Thus, Figure 4 represents graphically these
linguistic variables.
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Figure 5: Linguistic variables for population growth.
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Figure 6: Curve generated from the rules of the previous figure
using Mamdani.

Likewise, as output variable, consider the variation pop-
ulation and linguistic variables: low positive (Bp), positive
average (Mp), average high positive (MAp), high positive
(Ap), low negative (Bn), average negative (Mn), average high
negative (MAn), and high negative (An). In Figure 5 these
plots represent the linguistic variables.

Considering the known results about diffusion process,
consider the following of fuzzy rules:

(a) if the position is of the individuals low positiveBp then
the variation of population is low positive Bp;

(b) if the position is of the individuals positive average
Mp then the variation of population is positive average
Mp;

(c) if the position is of the individuals average high
positive MAp then the variation of population is
average high positiveMAp;

(d) if the position is of the individuals high positive Ap
then the variation of population is high positive Ap;

(e) if the position is of the individuals low negative Bn
then the variation of population is low negative Bn;
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Figure 7: Solution to 𝑡 = 0.
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Figure 8: Solution to 𝑡 = 10.

(f) if the position is of the individuals average negative
Mn then the variation of population is average nega-
tiveMn;

(g) if the position is of the individuals average high
negative MAn then the variation of population is
average high negativeMAn;

(h) if the position is of the individuals high negative An
then the variation of population is high negative An.

Figure 6 shows the graph of all variation of dependent
variable (change in population) as a function of independent
variable (position of the population) in the Mamdani model.

So with this rule base, the Mamdani controller and
defuzzification given by the center of mass, the p-fuzzy
system in leads to the path illustrated by the sequence of
Figures 7, 8, 9, 10, 11, 12, 13, and 14. To this end, we consider
as a condition initial𝑁

0
= 10.

Another important observation is that time in our prob-
lem means the number of iterations in simulated MATLAB.
This information is of great importance because it reduces the
amount of data needed to describe the problem. We can thus
write p-fuzzy dynamical system in the following form:

𝑥
𝑘+1

= 𝑥
𝑘
+ Δ𝑥
𝑘
. (11)

As for each iteration (𝑡 = 𝑡
∗
), we have a curve; then, we

can plot a surface that will be our graph p-fuzzy solution of
the diffusion equation. This graph is shown in Figure 15.
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Figure 9: Solution to 𝑡 = 25.
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Figure 10: Solution to 𝑡 = 100.

10 20 30 40 50 60 70 80 90 100

10
9
8
7
6
5
4
3
2
1
0

−1

Po
pu

lat
io

n 
de

ns
ity

Population position

Figure 11: Solution to 𝑡 = 250.
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Figure 12: Solution to 𝑡 = 500.
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Figure 13: Solution to 𝑡 = 1000.
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Figure 14: Solution to 𝑡 = 5000.
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Figure 15: Union of p-fuzzy solutions.

4. Conclusion

The most interesting in this process is not possible to know
what the best model, it is the deterministic model or the p-
fuzzymodel, since the results are very similar as we can see in
Figure 15.Themodeling assumes that not alwayshas real data,
the intuition or common sense can guide the formulation of
models.

From the educational point of view the best model is
secondary because you can always do better than the previous
one and you can always imagine different situations for the
same phenomenon.
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We show that it is possible to use a FRBS to model the
behavior of the population density of a species when youwant
to take into account the diffusion of individuals.
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