
HAL Id: hal-03440948
https://hal.archives-ouvertes.fr/hal-03440948

Submitted on 22 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International
License

Self-Adaptive Run-Time Variable Floating-Point
Precision for Iterative Algorithms: A Joint HW/SW

Approach
N. Ait Said, Mounir Benabdenbi, Katell Morin-Allory

To cite this version:
N. Ait Said, Mounir Benabdenbi, Katell Morin-Allory. Self-Adaptive Run-Time Variable Floating-
Point Precision for Iterative Algorithms: A Joint HW/SW Approach. Electronics, MDPI, 2021,
pp.2209. �hal-03440948�

https://hal.archives-ouvertes.fr/hal-03440948
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

electronics

Article

Self-Adaptive Run-Time Variable Floating-Point Precision for
Iterative Algorithms: A Joint HW/SW Approach

Noureddine Ait Said * , Mounir Benabdenbi and Katell Morin-Allory

����������
�������

Citation: Ait Said, N.; Benabdenbi,

M.; Morin-Allory, K. Self-Adaptive

Run-Time Variable Floating-Point

Precision for Iterative Algorithms: A

Joint HW/SW Approach. Electronics

2021, 10, 2209. https://doi.org/

10.3390/electronics10182209

Academic Editor: Alessandro Savino

Received: 30 July 2021

Accepted: 31 August 2021

Published: 9 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

CNRS, Grenoble INP (Institute of Engineering University Grenoble Alpes), TIMA, University Grenoble Alpes,
38000 Grenoble, France; mounir.benabdenbi@univ-grenoble-alpes.fr (M.B.);
katell.morin-allory@univ-grenoble-alpes.fr (K.M.-A.)
* Correspondence: noureddine.ait-said@univ-grenoble-alpes.fr

Abstract: Using standard Floating-Point (FP) formats for computation leads to significant hardware
overhead since these formats are over-designed for error-resilient workloads such as iterative algo-
rithms. Hence, hardware FP Unit (FPU) architectures need run-time variable precision capabilities. In
this work, we propose a new method and an FPU architecture that enable designers to dynamically
tune FP computations’ precision automatically at run-time called Variable Precision in Time (VPT),
leading to significant power consumption, execution time, and energy savings. In spite of its circuit
area overhead, the proposed approach simplifies the integration of variable precision in existing
software workloads at any level of the software stack (OS, RTOS, or application-level): it only requires
lightweight software support and solely relies on traditional assembly instructions, without the need
for a specialized compiler or custom instructions. We apply the technique on the Jacobi and the
Gauss–Seidel iterative methods taking full advantage of the suggested FPU. For each algorithm,
two modified versions are proposed: a conservative version and a relaxed one. Both algorithms are
analyzed and compared statistically to understand the effects of VPT on iterative applications. The
implementations demonstrate up to 70.67% power consumption saving, up to 59.80% execution time
saving, and up to 88.20% total energy saving w.r.t the reference double precision implementation,
and with no accuracy loss.

Keywords: transprecision computing; variable precision; floating-point; iterative methods; RISC-V

1. Introduction

Recently, many industrial applications have emerged in domains such as the Internet
of Things (IoT), Artificial Intelligence (AI), Neural Networks (NNs), etc. with a common
characteristic: inherent error-resilience. Thus, HW/SW designers could trade the precision
of computations against cost, resource, and power savings for such a class of applications.

Transprecision Computing (TC) [1] is a paradigm that came to implement this vision
by introducing efficient, flexible, and reconfigurable architectures adequate for such ap-
plications. TC especially targets Floating-Point (FP) arithmetic, since Floating-Point Units
(FPUs) are present in most modern application classes and even embedded processors
since they significantly boost computationally-intensive applications. However, an FPU
is usually responsible for an extensive amount of power consumption and high memory
bandwidth. Moreover, the energy consumption associated with FP arithmetic is known to
be higher than that of its integer counterpart [2], making FPU optimization a priority.

A typical FP algorithm implementation flow is shown in Figure 1. It is a process
that usually starts with the algorithm design and mathematical stability analysis [3–5].
The next step is often a naive implementation, where all variables are declared in high
precision formats, e.g., using double or long double type variables in C/C++. Next, the
process of Variable Type Optimization (VTO) [6–9] is overtaken. Its objective is to migrate
as many variables as possible from high precisions to lower ones for a given constraint.
For example, by carefully changing double variables to float or long double variables to

Electronics 2021, 10, 2209. https://doi.org/10.3390/electronics10182209 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1211-7559
https://orcid.org/0000-0001-9586-3009
https://doi.org/10.3390/electronics10182209
https://doi.org/10.3390/electronics10182209
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10182209
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10182209?type=check_update&version=2

Electronics 2021, 10, 2209 2 of 33

double, either manually or automatically, one can still satisfy a given Quality of Result
(QoR) constraint on the output. Then, designers can use arbitrary Reduced Precision
(ARP) [10] for fine-grained bit-width optimization. It consists of reducing the exponent
and/or mantissa bit-widths to either narrower standard bit-widths such as the 16-bit
binary16 format [11], or custom reduced arbitrary bit-widths such as Intel Nervana’s
Flexpoint [12], Microsoft Brainwave’s 9-bit floats [13], Google TPU’s 16-bit BFloats [14],
and NVIDIA’s 19-bit format [15].

Algorithm design
& stability analysis

[3-5]

Naive implementation
with high-precision

FP types only

Variable Type
Optimization (VTO)

[6-9]

Optimization with
Arbitrary Reduced

Precision (ARP)
[9,10,16-19]

Dynamic optimization with
Variable Precision in Time (VPT)

[20,21, this work]

Figure 1. Typical FP application implementation flow [3–10,16–21].

Many tools have been proposed to allow the functional simulation of such reduced
precision operators [16–20]. However, when it comes to arbitrary reduced precision, most
of these tools are only adequate for simulation without actually providing appropriate
hardware architectures that leverage such concepts to quantify hardware-level gains. In
this work, a new method that enables designers to automatically and dynamically tune
FP computations’ precision at run-time is proposed. The theoretical and statistical study
performed in this work shows a drastic energy reduction for iterative algorithms. These
algorithms are the cornerstone of Computer Vision applications which are widely used in
the context of Artificial Intelligence. Reducing the power consumption of such applications
is crucial to meet the current international trends.

This paper is an extension of our previous work [21] in which the concept of Variable
Precision in Time (VPT) was introduced for the first time. VPT consists of allowing the
programmer to configure computations’ precision dynamically at run-time. The previous
paper presented a preliminary feasibility study to evaluate the potential of the methodology.
In the current paper, we focus on generalizing VPT to all stationary iterative algorithms
such as Jacobi and Gauss–Seidel. For such applications, the requirements in terms of
precision vary at run-time. This means that standard FP formats are over-designed for
these workloads. Moreover, it is shown that even fixed reduced precision formats are
over-designed for some parts of these applications. Hence, there is a need for FPU architec-
tures that enable fine-grained VPT. A video presentation explaining our previous work is
available at [22].

This paper first revisits the proposed hardware architecture and its lightweight soft-
ware support in more detail (Section 4). Then the concept of VPT is pushed further by
proposing two transformed iterative algorithms that self-adapt their computation precision
automatically. These algorithms do not need intervention from the user or the programmer.
The first is a conservative version and the second is a relaxed (approximate) version. Pro-
grammers can choose one of them depending on their application; the first provides more
robust guarantees while achieving interesting energy gains, while the second has relaxed
guarantees but with a higher power-efficiency. Moreover, the software implementation of
these algorithms is discussed and a set of statistical studies is performed to evaluate the
effectiveness of the two approaches across many inputs.

This paper proposes the following new contributions:

• Generalization of VPT to other iterative methods (Section 5) and proposition of two
modified VPT-enabled algorithms with self-adaptive run-time precision (Section 6);

• An in-depth statistical verification study of the VPT’s impact on Jacobi algorithm’s
behavior (Section 7); and

Electronics 2021, 10, 2209 3 of 33

• An ASIC implementation of the proposed FPU on a 28 nm FD-SOI technology node
and a post-synthesis evaluation of the proposed VPT algorithms’ power consumption,
execution time, and overall dissipated energy (Section 8).

Before diving into the details, some related works are presented in Section 2, and a set
of definitions and the motivations behind this work are introduced in Section 3.1.

2. Related Works

The proposed approach takes advantage of non-standard arbitrary reduced opera-
tors [10,19] to achieve significant gains in terms of execution time, power consumption,
and overall energy consumption. The following are some related works from the literature.

2.1. FP Variable Type Optimization (VTO)

For a given triplet {application, input dataset, QoR constraint}, tools such as [6–8]
perform coarse-grained VTO using the delta-debugging search heuristic [23]. The authors’
objective is to minimize the number of high-precision variables and maximize the number
of low-precision variables. For some of these tools [7,8], the objective is to optimize for
speed, whereas for others, such as Promise [6], the goal is to maximize the number of
float variables.

2.2. Non-Standard/Arbitrary Precision Support

The mentioned tools support standard IEEE 754 [11] formats only, except Precimo-
nious [8], which also supports Intel’s 80-bit format implemented as long double in C.
The authors of fpPrecisionTuning [9] proposed an arbitrary precision impact simulation
methodology based on an automatic source code transformation tool. Libraries such as
FlexFloat and FloatX [17,18] enable developers to simulate the impact of reduced precision
on application-level Quality of Result (QoR). These tools support arbitrary precision only
in simulation to help designers decide which precision is adequate for their application.
However, they do not provide hardware-level support to leverage these decisions for
power, execution time, or energy savings.

2.3. Mixed-Precision for Linear Algebra

There are two categories of linear system solvers: direct solvers (e.g., Gaussian Elimi-
nation, Cholesky decomposition) and iterative solvers. Carson and Higham [24,25] have
proposed a general algorithm for solving linear systems based on iterative refinement [26]
with three standard FP precisions. However, this method only uses standard precisions
that traditional processors support. Moreover, the technique is mixed-precision in space
but not in time, i.e., it contains mixed-precision instructions. Still, each instruction keeps its
precision for all iterations. Authors of [27] have built on the previous work and proposed
a solution with five different precisions. In contrast, new FP data types supported in
NVIDIA GPUs were introduced in [28]. Finally, others [29] proposed an adaptive scheme to
reduce communication overhead by selectively storing parts of the system preconditioner
in different precision formats (half, single, or double). In this paper, we focus specifically on
classical stationary iterative solvers such as Jacobi, Gauss–Seidel, Richardson, Successive
Over-Relaxation, [30,31] etc.

2.4. Arbitrary Reduced Precision

In [10,19], we proposed a simulator (AxQEMU) (source code available at [32]) that
simulates the impact of arbitrary reduced FP precision on applications in a non-intrusive
way without modifying the source code. This approach is complementary to VTO since
the tools mentioned before can be used as a starting point. Furthermore, using AxQEMU
allows primary memory footprint optimization and enables fine-grained accuracy/en-
ergy trade-offs.

Electronics 2021, 10, 2209 4 of 33

2.5. Variable Precision in Time (VPT)

VPREC [20] is a software back-end component that enables non-intrusive run-time
variable precision simulation in the Verificarlo [33] software toolchain. This tool simulates
run-time variable precision, specifically for iterative algorithms. However, VPREC is de-
signed for impact simulation only in software and does not provide a hardware implemen-
tation for power reduction, whereas this work targets both software and hardware-level
implementations. Moreover, VPREC evaluates the needed reduced precision for each
iteration through off-line and data-dependent studies performed after the execution. In
contrast, we propose a technique to automatically select the adequate precision for each
iteration online at run-time in this work.

3. Background and Motivation
3.1. Definitions

A binary floating-point number can be written in the form (−1)s(1 + m)2e, where s is
the sign bit, m is the mantissa (also called significand or fraction), and e is the exponent. An
FP number can be encoded either following standard IEEE 754 [11] formats, e.g., binary32
(32-bit single-precision format), binary64 (64-bit double precision format), or using a
custom bit-width representation.

Definition 1. A Floating-Point (FP) format is defined by the pair (E, M), where E is the bit-
width of its exponent and M is the bit-width of its mantissa field.

An FP format’s “precision” refers to its mantissa bit-width M. The exponent bit-width
E reflects its dynamic range. Custom non-standard (arbitrary) formats can be defined when
some loss of precision is tolerated, or the numbers represented have a limited dynamic
range. Hardware implementations contain an additional bit in the mantissa field, also called
hidden bit [11]. In this work, the hidden bit is not counted in the mantissa bit-width M.

Definition 2. The machine epsilon (or machine precision) of an FP format (E, M) provides
an upper bound on the relative error caused by rounding. It is defined as

εM = 2−M (1)

The machine epsilon εM also constitutes the distance from 1.0 to the next larger FP
number [34].

For this work, only software Application Binary Interfaces (ABI) that support FP
arithmetic in hardware (i.e., hard-float ABI) are considered. We also focus on CPU archi-
tectures and precisely on the 64-bit RISC-V [35] Instruction Set Architecture (ISA), with
single-precision (F) and double precision (D) extensions. This architecture is referred to as
“RV64FD” and will constitute our reference baseline FPU architecture.

In the rest of this paper, let P be the maximum number of precisions supported by the
FPU and p an integer index such that 1 ≤ p ≤ P. Then, let (E1, M1), . . . , (EP, MP) denote
the list of reduced precision FP formats supported by the hardware.

3.2. Motivation

This section presents the motivations for this work. First, the fact that floating-point
computations constitute an essential part of iterative workloads is demonstrated. Second,
we show to which extent the standard FP double precision is over-designed for such
applications using the AxQEMU Arbitrary Reduced Precision simulator [10,19].

3.2.1. FP Computation Usage in Jacobi and Gauss–Seidel

The first motivation behind this work is the fact that iterative algorithms such as Jacobi
and Gauss–Seidel spend a lot of time performing floating-point (FP) computations. To

Electronics 2021, 10, 2209 5 of 33

evaluate the execution time associated with such computational operations, a cycle-accurate
simulation is performed.

To do that, a cycle-accurate processor model (called CVA6 [36]) running at 200 MHz is
used. The Jacobi and Gauss–Seidel algorithms have been executed on top of this model with
a randomly generated input. Figure 2 depicts dynamic assembly instructions’ breakdown
for both Jacobi and Gauss–Seidel, i.e., how many instances of assembly instructions have
been issued through the processor pipeline during the execution of the application.

#Cycles per Insn

#Insns

19.5%

10.2%

23.0%

19.8%

38.4%

39.3%

18.8%

30.5%

FP arith. insns.

FP mem. insns.

Other FP insns.

Integer mem. insns.

Integer arith. insns.

Others insns.

Jacobi

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

#Cycles per Insn

#Insns

28.8%

16.2%

26.4%

31.5%

18.9%

34.5%

25.6%

17.5%

Gauss-Seidel

Figure 2. Dynamic instructions breakdown and number of cycles per instruction for Jacobi and
Gauss–Seidel. Both applied to the same random input with a tolerance threshold TOL = 10−12).

As depicted in Figure 2, for a 10−12 tolerance threshold, 10.2% (resp. 16.2%) of the total
assembly instructions executed are FP arithmetic instructions, and 19.8% (resp. 31.5%) are
FP memory instructions for Jacobi (resp. Gauss–Seidel). The remaining portions concern
instructions manipulating integers (arithmetic and memory) as well as other instructions
such as branch and control flow instructions, system instructions that manipulate CSRs, etc.

Although executed FP arithmetic and memory instructions are limited to 10.2% (resp.
16.2%) and 19.8% (resp. 31.5%), they constitute 19.5% (resp. 28.8%) and 23.0% (resp.
26.4%) in terms of how many cycles are actually spent on each instruction for Jacobi (resp.
Gauss–Seidel).

These statistics might vary slightly from one input to another and depend on the SoC
parameters (cache parameters, memory bus/interconnect, . . .). However, it is safe to say
that targeting FP computation optimization for these applications is a good decision. More-
over, when the approach is combined with classic state-of-the-art techniques, designers
can also benefit from low memory overhead in addition to the computation gains afforded
by our technique.

3.2.2. The Limitation of Arbitrary Fixed Reduced Precision

The second motivation behind this work is the fact that even fixed ARP is over-
designed for iterative algorithms. Figure 3 shows the impact of precision variation on the
convergence profile (variation of the computed solution’s accuracy at each iteration cf.,
Definition 3) of Jacobi when operating on different arbitrary reduced precisions. The refer-
ence application is simulated using the AxQEMU simulator [10,19] for multiple precisions
(4, 8, . . . , 48, 52). Each of the colored lines shows the evolution of the error metric when the
application is executed with arbitrary reduced precision. For each simulation, the precision
is defined at launch time and stays constant at run-time.

This example demonstrates that it is unnecessary to compute all iterations with double
precision. For instance, for Jacobi to reach a target 10−10 error threshold, the designer only
needs an FP format with a 32-bit mantissa, i.e., the FP format (11, 32), which has a total
bit-width of 44 bits. Similarly, for Gauss–Seidel, a 28-bit mantissa, i.e., a total bit-width of
40 bits, is sufficient to reach a target error threshold of 10−10.

Electronics 2021, 10, 2209 6 of 33

For Jacobi, even though the (11, 32) format will dissipate less power than the orig-
inal binary64 format, there is still room for significant improvement. For instance, the
(11, 32) format is still over-designed for iterations 0 to 457. A similar case could be made
for Gauss–Seidel.

As a conclusion, the standard FP formats are over-designed for these applications
and ARP optimizes the energy consumption compared to the original reference precision.
However, there is still room for improvement using an Arbitrary Reduced Precision variable
at run-time. This would allow precision to be varied during the execution depending
on the error threshold needed. In this paper, an FPU capable of computing different
configurable ARPs at run-time is proposed with two modified self-adaptive algorithms
that automatically vary the computation precision without user intervention.

0 200 400 600 800 1000

Iterations

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

R
es

id
u

al
E

rr
or

(s
m

a
ll

er
is

b
et

te
r)

Tolerance Threshold 10−10

4 bits

8 bits

12 bits

16 bits

20 bits

21 bits

22 bits

23 bits

24 bits

28 bits

32 bits

36 bits

40 bits

44 bits

48 bits

52 bits

Figure 3. The variation of solution accuracy when Jacobi is executed for each fixed Arbitrary
Reduced Precision.

4. Proposed Hardware Architecture

We propose a hardware FPU architecture named VPT-FPU. It enables dynamic variable
precision at run-time. We also propose a lightweight software library that facilitates its
integration in an existing CPU core.

4.1. Architecture Overview

VPT-FPU contains two types of data-paths: precise data-paths, that contain standard-
precision arithmetic operators, and approximate data-paths, that contain reduced arbitrary
precision operators. The proposed architecture (Figure 4) includes:

A Non-computational operations data-path: performs non computational operations
such as FP-to-integer and integer-to-FP conversion, comparison, input classification
etc. In practice, the hardware/energy cost of these instructions is negligible when
compared to computational instructions, so we chose to not optimize them.

B Multi-precision DIV/SQRT data-path [37]: a block that computes division and
square root operations using an iterative algorithm implemented in hardware [38].

Electronics 2021, 10, 2209 7 of 33

C Precise Fused Multiply Add (FMA) data-path: contains the precise FMA operators
that perform addition, subtraction, multiplication, and multiplication-accumulation
in binary32 and binary64 formats.

D Approximate FMA data-paths: contains two sets of reduced arbitrary precision data-

paths DF and DD . Approximated float computations are executed in DF , whereas

approximated double precision computations are executed in DD .

VPT Registers

Clock
Reset

Operands
Operation

RND mode
target_precision

Non-computational Operations
F2F/F2I/I2F Conversion, comparision,

classification, sign injection

Result
Status

Multi-precision DIV/SQRT

64-bit (binary64) FMA

32-bit (binary32) FMA

float > (E1, M1) > float

float > (Ei, Mi) > float

...

{Operation, target_precision}

VPT_STATUS

VPT_FLOAT_PREC

VPT_DOUBLE_PREC

double > (Ei+1, Mi+1) > double

double > (EP, MP) > double

...

32

32

64

64

32

32

64

64

64

32

64

64

64

32

64

64

B

A

DF

DD

C

D

Figure 4. Hardware architecture of the Approximate Aware FPU.

For each supported non-standard FP format (Ep, Mp), 1 ≤ p ≤ P, an approximate

block is integrated inside either DF or DD at the RTL level at synthesis time. This means

that the set of supported precisions is fixed, once synthesized. Each of these approximate
blocks contains:

• A reduction block that converts the inputs from the original format (binary32 or
binary64) to the target reduced format (Ep, Mp).

• An FMA computational operator in (Ep, Mp) format.

• An extension block that converts the result from (Ep, Mp) back to the original format.

The blocks A , B , and C constitute the original standard RV64FD FPU. The block B
containing DIV/SQRT operators do not need to be duplicated or surrounded by reduction
and extension blocks since their precision can be adjusted via a precision selection input
signal that varies at run-time. This is why only FMA blocks are duplicated.

Section 8 studies the area overhead introduced by block D and the savings in terms
of power/energy and execution time.

4.2. Custom VPT Registers

To simply and flexibly support VPT, three custom Control and Status Registers (CSR)
have been added to the FPU (see Figure 4): the VPT_STATUS register, which is used to en-
able/disable the VPT mode, and the two registers VPT_FLOAT_PREC and VPT_DOUBLE_PREC,
which, respectively, select the precision settings for float and double operations via software.

Electronics 2021, 10, 2209 8 of 33

4.3. VPT Software Support

The added registers are memory-mapped when the FPU is integrated into a CPU
core. This enables lightweight software support since read/write (R/W) operations can
then be performed using the usual CSR assembly instructions, i.e., no special compiler
modification is needed. The additional CSRs belong to the custom R/W user-level address
space [35], which means that no particular machine- or supervisor-level privileges are
needed to perform R/W operations.

A small set of Hardware Abstraction Layer (HAL) functions has been developed to
enable the programmer to select float and double operations’ precision via software. Of
course, at the SW level, the programmer can only select a precision among the ones sup-
ported in hardware (Ep, Mp), 1 ≤ p ≤ P. The proposed HAL functions are wrappers for the
CSR read/write assembly instructions. For a seamless integration in existing applications,
the functions are bundled as a header-only library. Listing 1 depicts a few examples. For
instance, vpt_set_prec_float (resp. vpt_set_prec_double), sets the precision of float
(resp. double) operations, i.e., by configuring the content of the register VPT_FLOAT_PREC
(resp. VPT_DOUBLE_PREC) to 1 << M, where M is the target arbitrary reduced precision.

Listing 1. VPT-related HAL function prototypes.

void vpt_enable(void); /* Enable VPT mode */
void vpt_disable(void); /* Disable VPT mode */
uint8_t vpt_set_prec_float(uint8_t M); /* Sets the precision of float FP instructions
and returns the previous precision */
uint8_t vpt_set_prec_double(uint8_t M);/* Sets the precision of double FP instructions
and returns the previous precision */

5. Iterative Methods: Mathematical Foundations

The Jacobi and Gauss–Seidel iterative algorithms are used as case studies to evalu-
ate the gains and the limitations of the proposed VPT-FPU. The original algorithms are
presented as well as two VPT-enabled versions that benefit from the run-time variable
precision capability of suggested hardware FPU.

5.1. Presentation of Jacobi and Gauss–Seidel Iterative Methods

Stationary iterative methods are algorithms that determine the solution of a square
n× n system of linear equations, in the form:

A~x =~b (2)

Given the n× n real coefficient matrix A and the right-hand side n-vector~b, an iterative
algorithm aims to find the unknown vector ~x satisfying Equation (2). This equation can
be transformed to a fixed-point iteration [30]. The system is solved by computing, at each
iteration (k + 1), the (k + 1)th approximation of the vector ~x (k+1) as a function of the
previous result ~x (k). This paper focuses on two main iterative algorithms to solve this
problem based on the fixed-point method:

• The Jacobi method (published in 1845), whose formula can be written as follows:

x(k+1)
i = 1

aii

(
bi −∑j 6=i aijx

(k)
j

)
, i = 1, 2, . . . , n. (3)

where x(k+1)
i is the ith element of the vector ~x (k+1).

• The Gauss–Seidel method (published in 1874), which uses a slightly different equation:

x(k+1)
i = 1

aii

(
bi −∑i−1

j=1 aijx
(k+1)
j −∑n

j=i+1 aijx
(k)
j

)
(4)

These methods and others are well documented in the literature [30,34].

Electronics 2021, 10, 2209 9 of 33

5.2. Convergence of Iterative Algorithms

To solve this problem iteratively, the convergence of the system should first be mathe-
matically ensured. In the remainder of this paper, we assume A to be strictly diagonally
dominant: the elements of matrix A satisfy the following condition |aii| > ∑j 6=i

∣∣aij
∣∣. For

both Jacobi and Gauss–Seidel, this is a sufficient (but not necessary) condition to ensure the
convergence for any initial guess vector ~x (0) [30] (Theorem 4.5, p. 111).

The iterative algorithm reaches convergence when the computed approximation ~x (k)

is very close to the exact solution of the system ~x ∗, i.e., the forward error~e (k) defined below
is small enough

~e (k) = ~x (k) −~x ∗ (5)

However, the exact solution ~x ∗ is unknown. This is why the error of the computed
solution is estimated in an indirect way using a convergence metric. The latter is a scalar
that represents the evolution of the solution accuracy at each iteration k. The idea is
to compute the convergence metric at the end of each iteration and stop the iterative
process when progress is no longer being made, i.e., when the computed metric is below
a given user-defined threshold denoted TOL. The result of this comparison is called the
stopping criterion.

For the sake of simplicity, the distance between two consecutive results is chosen as
the metric. It is defined as follows:

||~x (k+1) −~x (k)|| =
√

∑n
i=1(x(k+1)

i − x(k)i)2 (6)

where ||.|| refers to the Euclidean norm. The metric is computed at the end of each iteration.
Other metrics (e.g., residual error ||~b−A~x||) can also be used.

At the end of each iteration, the stopping criterion is evaluated to (1) identify when
the forward error~e (k) is small enough to stop iterations [31] (p. 63), (2) detect when the error
is no longer decreasing or decreasing too slowly, and (3) limit the maximum amount of
time spent iterating.

The following definitions are provided for the remaining of this document:

Definition 3. The Convergence Profile (CP) is the curve representing the variation of the
convergence metric (e.g., ||~x (k+1) −~x (k)||) through iterations k. An average CP is an average
curve computed across many inputs.

Definition 4. The Precision Variation Profile (PVP) is the curve representing the variation of
operating precision (Mp) through iterations k. An average PVP is an average curve computed
across many inputs.

6. Implementation of VPT-Enabled Iterative Methods

This part presents the implementation details of iterative algorithms.

6.1. The Original Algorithm

The following algorithm (Algorithm 1) depicts a typical implementation of an iterative
method with only standard precision, (i.e., single-precision/double precision) with no
custom variable precision involved.

Electronics 2021, 10, 2209 10 of 33

Algorithm 1: general structure of iterative methods.
Inputs : A : a diagonally dominant matrix of size n× n,

~b : the right-hand side vector of size n× 1,
~x (0) : an initial guess vector of size n× 1,
MAX_ITER : maximum number of iterations,
TOL : original global error threshold.

Output :~x (k+1): the solution of the linear system.

1 k← 0
2 repeat
3 Compute ~x (k+1) . Implements Equation (3) or (4)
4 metric(k+1) = compute_metric(~x (k), ~x (k+1)) . Compute convergence metric (Equation (6))
5 k← k + 1 . Continue until convergence is reached
6 until metric(k+1) ≤ TOL or k ≥ MAX_ITER;
7 return ~x (k+1)

The original algorithm contains a main loop (lines 2–6), where the elements x(k+1)
i

of the solution vector ~x (k+1) are computed in line 3, using either Equation (3) for Jacobi,
or Equation (4) for Gauss–Seidel. Then, the convergence metric is computed according
to Equation (6) (line 4). After that, the stopping criterion evaluation is performed by
checking if the computed metric is lower than the tolerance threshold TOL or if the number
of iterations k has reached its limit MAX_ITER. If the stopping criterion is satisfied, the
algorithm stops and returns the last computed result. Otherwise, the algorithm continues
until reaching convergence in the next iterations or potentially reaching the maximum
iterations limit MAX_ITER.

6.2. The Transformed Algorithm

To take advantage of the VPT-FPU presented in Section 4, Jacobi and Gauss–Seidel
algorithms should be manually transformed. Algorithm 2 depicts the general structure
of an iterative method with VPT enabled. The regions added to the original baseline
implementation (depicted in Algorithm 1) are colored in blue.

Our transformation methodology consists of starting the process with the lowest
possible precision and increasing it gradually until convergence. In this example, both the
original and the VPT-enabled algorithms are applied to the same input matrix A and vector
~b for comparison. These inputs are generated randomly with a randomization seed equal
to zero. The steps of the transformation process are:

1. Define a list of available precisions supported in hardware {M1, . . . , MP} (input of
Algorithm 2).

2. Define a list of intermediate tolerance thresholds TOLp (input of Algorithm 2).

Since the objective is to increase precision gradually, the intermediate thresholds
{TOL0, TOL1, TOL2, . . .} should be defined for each one of the intermediate precisions
{M0, M1, M2 . . .}.

3. Enable VPT at the beginning of the algorithm (line 2 of Algorithm 2).

4. Iterate over the supported precisions to gradually improve the accuracy of the solution.

The outer loop (lines 3–11) iterates over the available precisions Mp. At the be-
ginning of each outer loop iteration, the precision is set to Mp with the function
vpt_set_precision(Mp) which configures the internal registers of the FPU to use
the precision Mp.

Inside the inner loop iteration (lines 6–10), the vector ~x (k+1) as well as the metric are
computed using the intermediate precision Mp:

Electronics 2021, 10, 2209 11 of 33

(a) If the intermediate tolerance threshold TOLp, corresponding to the precision
Mp, is reached, the algorithm exits the inner loop and moves on to the next
higher precision Mp+1.

(b) If the maximum number of iterations MAX_ITER is reached, the algorithm exits
both loops and returns the last computed ~x (k+1) vector.

(c) Otherwise, the inner loop continues with the same precision Mp until conver-
gence or until MAX_ITER is reached, and the outer loop continues until scanning
all available precisions or until reaching MAX_ITER.

This process is illustrated through the example depicted in Figure 5. It shows the
evolution of the convergence profile (left axis), with iterations (horizontal axis) for the
double precision reference original algorithm (continuous blue line) and the VPT-enabled
algorithm (continuous red line) of Jacobi.

In this example, a set of 13 supported precisions {4, 8, . . . , 52} is considered (right axis)
to which 13 tolerance thresholds {2−4, 2−8, . . . , 2−52} are associated. The figure also shows
how the computation precision Mp of the VPT-enabled algorithm increases at run-time
(orange dashed line, right axis). The intermediate thresholds TOLp are marked in green.

As shown in Figure 5, the precision is increased from Mp to Mp+1 when the conver-
gence metric reaches the intermediate threshold TOLp. Through this example, it is shown
that the VPT-enabled algorithm follows the same trend and provides the same accuracy at
the input while operating with much lower and auto-adaptive precision.

The presented methodology does not alter the convergence of the algorithm, and
programmers can apply it to other applications, (e.g., Successive Over-Relaxation (SOR),
Richardson method, etc. [30]) as long as its convergence is guaranteed mathematically. In
strict logic, we verify that the input couple (A,~b) remains strictly diagonally dominant
for each reduced precision. The variation of the convergence profile for Gauss–Seidel is
depicted in Figure A1 in the Appendix A.

10 81 155 226 306 384 457 529 602 682 753 825 895

Iterations

2−4

2−8

2−12

2−16

2−20

2−24

2−28

2−32

2−36

2−40

2−44

2−48

2−52

C
o
n
ve

rg
en

ce
p

ro
fi

le

TOL0

TOL1

TOL2

TOL3

TOL4

TOL5

TOL6

TOL7

TOL8

TOL9

TOL10

TOL11

TOL12

Reference ||x(k+1) − x(k)|| VPT ||x(k+1) − x(k)||

4

8

12

16

20

24

28

32

36

40

44

48

52

P
re

ci
si

o
n

VPT precision

Figure 5. The convergence profile of the original and the VPT-enabled Jacobi applied to one randomly generated input.

Electronics 2021, 10, 2209 12 of 33

The choice of intermediate thresholds is critical: the smaller they are, the harder they
can be reached. On one hand, choosing thresholds that are easy to reach will lead to
premature precision increment; hence more iterations will be spent on higher precisions,
and power consumption will be increased. On the other hand, if the thresholds are very
difficult to reach for a given precision, it can cause convergence stagnation. In this paper,
two threshold policies are proposed for choosing these thresholds. The first one provides
conservative thresholds and is explained in Section 6.2.1. The second generates smaller
thresholds and handles stagnation cases. The latter is detailed in Section 6.2.2.

Algorithm 2: VPT-enabled iterative methods.
Inputs : A: a diagonally dominant matrix of size n× n,

~b : the right-hand side vector of size n× 1,
~x (0): an initial guess vector of size n× 1,
MAX_ITER: maximum number of iterations,
TOL: original error threshold.
M1 . . . MP: available precisions,
TOL1 . . .TOLP: intermediate error thresholds.

Output :~x (k+1): the solution of the linear system.
1 k← 0, p← 0
2 vpt_enable() . Enable VPT
3 repeat
4 p← p + 1 . Increase precision index
5 vpt_set_precision(Mp) . Set precision to Mp
6 repeat
7 Compute ~x (k+1) . Implements Equation (3) or (4)
8 metric(k+1) = compute_metric(~x (k), ~x (k+1)) . Compute convergence metric (Equation (6))
9 k← k + 1 . Continue until convergence is reached.

10 until metric(k+1) ≤ TOLp or k ≥ MAX_ITER ;
11 until p == P or k ≥ MAX_ITER;
12 return ~x (k+1)

6.2.1. Details of Threshold Policy (1): Conservative Thresholds

An intermediate threshold should be computed for each precision Mp. With this
threshold policy, the computed thresholds are more conservative, i.e., they are sufficiently
high, which makes them more reachable with a given precision. They are mathematically
computed according to the smallest distance between two consecutive points in a given
FP format.

In the case where the distance metric is used for convergence, an upper bound can
be computed in the precision Mp, by assuming that the distances between all elements of

~x (k+1) and ~x (k) i.e., x(k+1)
i − x(k)i are as low as some small positive floating-point value u.

This assumption provides an upper bound on the tolerance threshold equal to u
√

n, as
explained below.

x(k+1)
i − x(k)i ≤ u ⇐⇒ ∑n

i=1(x(k+1)
i − x(k)i)2 ≤ n u2 (7)

⇐⇒
√

∑n
i=1(x(k+1)

i − x(k)i)2 ≤ u
√

n (8)

This upper bound has to be computed and rounded to the precision Mp. For example,
if u is set to εMp , then TOLp = round(

√
n εMp , Mp), where round(X, Mp) is a function that

rounds the result of a FP number X to Mp mantissa bits following one of the standard FP
rounding modes, typically the round-to-nearest rounding mode.

Electronics 2021, 10, 2209 13 of 33

As the convergence metric is computed in low precision, the designer should also
take the rounding errors associated with the metric computation into consideration [31]
(Section 4.2.5, p. 56), since the metric computation involves n multiplications, (n − 1)
additions, plus a final square root operation (see Equation (6)). All these computations will
contribute to the final computed TOLp values.

To compute an estimation of the thresholds, a proof assistant called Gappa [39] is used
to compute the thresholds for all possible precisions Mp ∈ {1, 2, . . . , 52}. Listing A1 of
the Appendix A shows the Gappa script used to compute the thresholds. In this case, it is
applied to a precision Mp equal to 40 bits. Furthermore, this script is run offline only once
for each precision. This means that it does not add an overhead to the iterative application
itself at run-time.

Example

Consider n = 50, Mp = 40, and u = ε40 = 2−40. If the threshold is computed ideally,
the result would be TOLp = 2−40 ×

√
50 = 6.43109 . . . 10−12, which is similar to Gappa’s

result. However, for Mp = 4, the ideal result would be TOLp = 0.44194 . . . , whereas using
Gappa, it provides the result 0.5. The latter is more conservative and takes rounding error
into account.

6.2.2. Details of Threshold Policy (2): Relaxed Thresholds with Stagnation Detection

This threshold policy is more “relaxed” in the sense that the chosen intermedi-
ate thresholds are as low as possible to maximize the number of iterations spent on
lower precisions.

Definition of Convergence Stagnation

Choosing very low thresholds is riskier since there are no guarantees that the conver-
gence metric can actually go as low as the specified intermediate TOLp thresholds, i.e., there
is a chance that the convergence metric will stagnate at a specific value or oscillate around
it. Hence, it is important to consider this effect when choosing to lower down the selected
convergence thresholds. This process will be referred to as “stagnation detection”. The
stagnation behavior has been observed only for a small subset of the tested inputs, yet it is
important to consider when the thresholds are selected.

Example of Convergence Stagnation

Figure 6 depicts the convergence profile and the precision variation profile for three
separate cases 0, 1, and 2 (each one has a randomly generated matrix A and vector~b). In
this case, TOLp is set to εMp for each precision Mp and a discrete subset of precisions, i.e.,
Mp ∈ {4, 8, 12, . . . , 48, 52} is chosen so that the total bit-width (1+ 11+ Mp) of the reduced
VPT-FPU formats are multiples of 4 bits.

As shown in Figure 6, input matrices 0 and 1 converge normally without problems.
However, the distance metric associated with input matrix 2 oscillates between two values
0.14312744140625 (which is equal to 2−6.1265) and 0.13732910156250 (which is equal to
2−6.1862) while operating in 8-bit precision. The residual error~r (k) (i.e., ||~b (k)−A~x (k)||) also
stagnates at the value 0.0000889301300049. For an 8-bit mantissa, the expected convergence
threshold is normally 2−8, which seems to be difficult to reach for input matrix 2. Hence
the importance of being able to detect such stagnation cases.

Figure A2 of the Appendix A shows the same phenomenon for the residual er-
ror metric.

Electronics 2021, 10, 2209 14 of 33

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

C
o
n
ve

rg
en

ce
p

ro
fi

le
||x

(k
+

1
)
−
x

(k
)
||

Stagnation of the convergence profile

0 1 2

4

8

12

16

20

24

28

32

36

40

44

48

52

P
re

ci
si

on
s

Stagnation of the precision

Figure 6. Convergence profiles (left axis, continuous lines) and their corresponding precision varia-
tion profiles (right axis, dotted lines) for three inputs (Matrix IDs 0, 1, and 2). The convergence profile
here is in terms of the distance metric (||~x (k+1) −~x (k)||).

The Proposed Convergence Stagnation Detection Mechanism

To avoid the stagnation of the convergence profile, a condition to the stopping criterion
should be added to detect this stagnation or oscillation phenomenon [31] (Section 4.2.4,
p. 56). For that, we define the Stagnation Maximum Iterations (denoted SMI) as the
maximum number of iterations for which stagnation can be tolerated. If the convergence
metric stagnates at a fixed level or oscillates, the precision should be increased if higher
precision is available. Otherwise, if there is no higher available precision, then the algorithm
is stopped.

A comprehensive VPT-enabled iterative algorithm is proposed (Algorithm 3) to ac-
count for the convergence stagnation effect. In addition to the standard version of the
algorithm (black-colored statements) and the original VPT statements (colored in blue),
additional instructions (colored in red) have been added to implement stagnation detection.

From an implementation point of view, an additional integer variable should be
added to keep stagnation iterations count, as well as one subtraction instruction and one
comparison to check if two consecutive iterations have similar or very close distance
metric (||~x (k+1) − ~x (k)||) values (line 11). This overhead is negligible compared to the
cost of the main iteration computations, which is confirmed by the performed energy
consumption study.

Electronics 2021, 10, 2209 15 of 33

Algorithm 3: VPT-enabled iterative algorithm with stagnation detection.
Inputs : A: a diagonally dominant matrix of size n× n,

~b: the right-hand side vector of size n× 1,
~x (0): an initial guess vector of size n× 1,
MAX_ITER: maximum number of iterations,
TOL: original error threshold.
M1 . . . MP: available precisions,
TOL1 . . .TOLP: intermediate error thresholds.
SMI: stagnation maximum iterations.

Output :~x (k+1): the solution of the linear system.
1 k← 0, p← 0
2 vpt_enable() . Enable VPT
3 repeat
4 p← p + 1 . Increase precision index
5 stag_counter← 0 . Initialize stagnation counter
6 vpt_set_precision(Mp) . Set precision to Mp
7 repeat
8 Compute ~x (k+1) . Implements Equation (3) or (4)
9 metric(k+1) = compute_metric(~x (k), ~x (k+1)) . Compute convergence metric (Equation (6))

10 k← k + 1 . Continue until convergence is reached
11 if |metric(k+1) − metric(k)| ≤ DBL_MIN (The value of the macro DBL_MIN is the minimum normalized positive

floating-point number that is representable in double precision format. It is provided by the header float.h from
the standard C library) then

12 stag_counter← stag_counter + 1 . Increase stagnation counter
13 end
14 else
15 stag_counter← 0 . Reset stagnation counter
16 end
17 until metric(k+1) ≤ TOLp or k ≥ MAX_ITER or stag_counter == SMI ;
18 until p == P or k ≥ MAX_ITER;
19 return ~x (k+1)

6.2.3. Comparing Different Threshold Policies

The different kinds of intermediate thresholds resulting from each threshold policy
are studied and compared to understand how conservative or relaxed they are. Figure 7
depicts a comparative study of these thresholds.

For each precision Mp ∈ {1, 2, . . . , 52} three versions of intermediate thresholds TOLp
are computed:

• Relaxed thresholds: by considering εMp for each Mp ∈ {1, 2, . . . , 52}.
• Theoretical conservative thresholds: computed using the formula

√
n εMp and rounded

to the nearest.

• Conservative thresholds computed with Gappa: these are generated using the Gappa
proof assistant as explained in Section 6.2.1 to take rounding errors into account.

Figure 7 shows no meaningful difference between the two conservative threshold
versions, except for very low precisions (Mp < 6). Thus, in practice, using one or the other
does not change the results since it only affects the threshold associated with the precision
Mp = 4.

Electronics 2021, 10, 2209 16 of 33

0 4 8 12 16 20 24 28 32 36 40 44 48 52

Precisions

10−14

10−11

10−8

10−5

10−2

101

In
te

rm
ed

ia
te

th
re

sh
o
ld

s

1 2 3 4 5 6

Conservative thresholds -
√
nεMp

Conservative thresholds - Gappa

Relaxed thresholds εMp (2−Mp)

Figure 7. Thresholds comparison.

7. Statistical Analysis

Section 6.2, demonstrated the effect of VPT by applying it to a single randomly
generated input. In this section, the behavior of VPT and its gains will be evaluated across
a set of 1000 randomly generated input (A,~b).

The first objective of this section is to statistically study the effects of VPT on the
generated 1000-input set. The second is to study and compare the influence of each
convergence threshold policy (conservative thresholds vs. relaxed thresholds) on the
convergence profile, the precision variation profile, the total number of iterations, the
distribution of iterations across the intermediate precisions.

To perform the statistical study, each input will be identified by an ID ranging from 0 to
999. Then, each input is generated using a randomization seed equal to its ID. This section
only studies the Jacobi iterative method, but the conclusions also apply to Gauss–Seidel
and similar iterative methods.

7.1. Software Implementation Aspects

In the following sections, an open-source Jacobi implementation [40] written in C is
considered. It takes as an input a randomly generated 50 × 50 diagonally dominant matrix
A, with pseudo-random values between 0 and 1. The default target tolerance threshold is
set to 10−10 unless otherwise is specified. Gauss–Seidel is also implemented following the
same structure of the original Jacobi application.

The software applications have been cross-compiled for the Proxy Kernel execution
environment (a lightweight bare-metal-like OS dedicated to RISC-V-based systems) [41],
using the RISC-V GCC compiler in a similar fashion to the cycle-accurate study performed
earlier in Section 3.2.1.

Electronics 2021, 10, 2209 17 of 33

7.2. Effects of VPT on the Convergence Profile and Precision Variation Profile

Considering the two threshold policies and their respective parameters presented in
Section 6.2, five different use cases are established to be evaluated and compared:

1. Standard baseline results.

In this case, the original algorithm (Algorithm 1) double precision implementation
is applied to the randomly generated 1000-input set. Figure 8 depicts the average
convergence profile (continuous blue line). The area highlighted in light-blue covers
the range of possible convergence profiles obtained for the 1000 inputs. This case is
represented by the blue line (Figures 8–10).

2. VPT-enabled results, with threshold policy (1), using
√

n εMp conservative thresholds.

In this case, the VPT-enabled algorithm (Algorithm 1) is implemented. Here, the
thresholds are computed with the formula below as explained in Section 6.2.1.

round(
√

n εMp , Mp) (9)

The corresponding convergence profile is depicted in Figure 9, which overlaps with
the original standard baseline convergence profile. This means that in this case, the
convergence speed does not change compared to the reference even though lower
precisions are used. This case is represented by the orange line (Figures 9 and 10).

3. VPT-enabled results, with threshold policy (1), using conservative thresholds gen-
erated with Gappa.

In this case, the VPT-enabled algorithm (Algorithm 1) is implemented. Here the
thresholds computed using the Gappa proof assistant are used (Section 6.2.1). Please
note that these thresholds are similar to the latter case except for low precisions
1 ≤ Mp ≤ 5. This case is represented by the green line (Figures 9 and 10).

4. VPT-enabled, with threshold policy (2), along with εMp thresholds and the Stag-
nation Maximum Iterations set to 2 (SMI = 2).

In this case, the VPT-enabled algorithm (Algorithm 2) is implemented. The conver-
gence thresholds used here are more relaxed, and the stagnation detection mechanism
presented in Section 6.2.2 is activated. For this experiment, stagnation is tolerated
for at most two consecutive iterations before incrementing the precision. This case is
represented by the red line (Figures 9 and 10).

5. VPT-enabled, with threshold policy (2), along with εMp thresholds and the Stag-
nation Maximum Iterations set to 4 (SMI = 4).

This case is represented by the purple line (Figures 9 and 10).

Figure 9 depicts the average convergence profiles for each one of the five use cases.
The conservative thresholds (overlapping orange and green) produce a convergence profile
similar to the standard baseline (blue). The relaxed thresholds (overlapping red and purple)
also result in similar convergence profiles on average, although its speed slows down
compared to the baseline starting from iteration 700.

Figure 10 shows the precision variation profile for the five cases. For the baseline
reference, the operating precision is fixed at 52 bits, i.e., double precision format for
all iterations. Both conservative threshold sets (

√
n εMp and Gappa) produce a similar

overlapping precision variation profile (green and orange). Relaxed thresholds also produce
similar overlapping profiles (red and purple) indifferent to the value of SMI.

Electronics 2021, 10, 2209 18 of 33

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

A
ve

ra
ge

C
on

ve
rg

en
ce

P
ro

fi
le

(||
x

(k
+

1
)
−
x

(k
)
||)

Double-precision reference

Figure 8. The average convergence profile of the reference double precision Jacobi.

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10−16

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

A
ve

ra
g
e

C
o
n
ve

rg
en

ce
P

ro
fi

le
(||
x

(k
+

1
)
−
x

(k
)
||)

Double-precision reference

Conservative thresholds -
√
n εMp

Conservative thresholds - Gappa

Relaxed thresholds εMp - SMI = 2

Relaxed thresholds εMp - SMI = 4

Figure 9. Comparison of average convergence profiles for each use case.

Electronics 2021, 10, 2209 19 of 33

0 100 200 300 400 500 600 700 800 900 1000

Iterations

4

8

12

16

20

24

28

32

36

40

44

48

52

P
re

ci
si

on
va

ri
at

io
n

p
ro

fi
le

Double-precision reference

Conservative thresholds -
√
n εMp

Conservative thresholds - Gappa

Relaxed thresholds εMp - SMI = 2

Relaxed thresholds εMp - SMI = 4

Figure 10. Comparison of average precision variation profiles for each use case.

7.3. Effects of VPT on the Total Number of Iterations

In this paragraph, the effect of VPT on the total number of iterations is studied by
analyzing each one of the five use cases stated previously. Figures 11 and 12 show the
distribution of the total number of iterations (vertical axis) for each use case (horizontal
axis), for two target thresholds 10−4 and 10−12, respectively. To get these data, each version
of Jacobi has been executed on the 1000 inputs. The figure represents the medians (red lines
in the middle of the box plot) and the means (black dot). The blue crosses (+) represent
non-significant outliers.

For higher target thresholds, and specifically 10−4 in this case (Figure 11), there is a
clear effect on iterations’ number distribution: using the relaxed thresholds induces less
time to converge. It is also clear that an SMI value of 4 achieves slightly less number of
iterations compared to an SMI of 2. On the other hand, threshold policy (1) (conservative
thresholds) shows no noticeable effect on the number of iterations.

When the target tolerance threshold is set to 10−12 (Figure 12), no significant effect is
observed. However, the relaxed thresholds lead to slightly higher iteration numbers on
average compared to the double precision reference.

There seems to be an effect on the outliers (+). Although this is not statistically
significant, a worst-case and best-case HW-level comparison will be performed to evaluate
to which extent this increase affects the power, energy, and execution time savings.

Figures 13 and 14 present the distribution of the overheads brought by each threshold
policy with respect to the total number of iterations for the whole 1000-input set for a 10−04

and 10−12 tolerance threshold, respectively. Positive percentage values signify an increase
in the number of iterations, whereas negative ones mean that there was a reduction in the
number of iterations. Furthermore, the conservative policies do not alter the number of
iterations much compared to the double precision reference: they achieve a bit less than
±1.5%. However, the relaxed policies have a slightly important but scattered effect on
iterations’ count. For example, for a threshold of 10−4 (Figure 13), relaxed policies achieve a

Electronics 2021, 10, 2209 20 of 33

−17% to −1% reduction in the number of iterations for more than 75% of inputs. At 10−12

(Figure 14), nearly half of the input dataset achieves a variation between −1% and +2.5%.

Threshold Policies

140

160

180

200

220

240

260

#
T

o
ta

l
It

er
at

io
n

s

#Total Iterations - Target threshold 1.00e-04

Conservative thresholds -
√
n εMp

Conservative thresholds - Gappa

Relaxed thresholds εMp - SMI = 2

Relaxed thresholds εMp - SMI = 4

Double-precision reference

Figure 11. Total number of iterations for TOL = 10−4.

Threshold Policies

500

600

700

800

900

#
T

ot
al

It
er

at
io

n
s

#Total Iterations - Target threshold 1.00e-12

Figure 12. Total number of iterations for TOL = 10−12.

Electronics 2021, 10, 2209 21 of 33

Threshold Policies

−15%

−10%

−5%

+0%

+5%

+10%

+15%

+20%

It
er

at
io

n
s

O
ve

rh
ea

d
s

TOL = 1.00e-04

Figure 13. Total number of iterations’ overhead w.r.t each policy for TOL = 10−4.

Threshold Policies

−15%

−10%

−5%

+0%

+5%

+10%

+15%

+20%

It
er

a
ti

on
s

O
ve

rh
ea

d
s

TOL = 1.00e-12

Figure 14. Total number of iterations’ overhead w.r.t each policy for TOL = 10−12.

7.4. Effects of VPT on Iterations’ Distribution

Studying the effects on the total number of iterations alone is insufficient to understand
the consequences of applying VPT to such algorithms fully. Hence the necessity of also

Electronics 2021, 10, 2209 22 of 33

studying the distribution of iterations across the intermediate precisions. The reason for
that is that, even though two use cases have the same total number of iterations, some
cases will tend to over-use lower precisions more than the higher ones or vice versa, hence
leading to potentially different power/energy consumption.

Figures 15 and 16 illustrate a study similar to the one performed in the last section,
this time by considering the distribution of the number of iterations per each precision for
the 1000 inputs.

Figure 15 depicts the study when the target threshold is set to 10−4. As you can see,
threshold policy (2) (relaxed thresholds) tends to maximize iterations at the lower precisions,
whereas threshold policy (1) (conservative thresholds) tend to maximize iterations at the
higher precisions. Thus, if the two policies have the same total number of iterations, it
is more likely that most of these iterations will be skewed towards lower precisions for
threshold policy (2) and skewed to higher precisions for threshold policy (1). This will
translate into an important difference in terms of power consumption.

Figure 16 provides a similar study with a target threshold of 10−12 to examine the
previous trend in the long term. The figure shows that the earlier conclusion holds since
threshold policy (1) seems to minimize iterations at lower precisions and maximize them
at higher ones. For example, at Mp = 44, most cases already finished their execution when
operating with threshold policy (2), whereas they have around 45 iterations left when
working with threshold policy (1). Moreover, those 45 iterations are executed in higher
precision, which means that there will be significant overhead in terms of energy compared
to threshold policy (1).

4 8 12 16 20

Precisions

0

20

40

60

80

100

120

#
It

er
at

io
n

s
p

er
P

re
ci

si
on

#Iterations per precisions - Target threshold 1.00e-04

Figure 15. Iterations’ distribution per precision for TOL = 10−4.

Electronics 2021, 10, 2209 23 of 33

4 8 12 16 20 24 28 32 36 40 44

Precisions

0

20

40

60

80

100

120

#
It

er
at

io
n

s
p

er
P

re
ci

si
on

#Iterations per precisions - Target threshold 1.00e-12

Figure 16. Iterations’ distribution per precision for TOL = 10−12.

Conclusions

The conservative thresholds provide a similar convergence profile to the baseline ref-
erence, whereas the relaxed thresholds tend to be slightly slower at the end of convergence.
However, the relaxed thresholds tend to use less precision, which will translate to lower
power consumption.

In the next section, a hardware-level power, execution time, and total computational
energy evaluation will be performed for a single (typical) input and then on two cases
among the 1000 random inputs.

8. Hardware-Level Evaluation & Discussion

After assessing the effectiveness of the proposed approach from a statistical and
software point of view, this section presents a hardware-level evaluation of the power,
execution time, and energy savings related to computations occurring inside the FPU.

8.1. Hardware Synthesis Conditions

The presented VPT-FPU was implemented in SystemVerilog, based on an open-source
parametrized FPU [42]. The hardware design is globally parametric so that the list of
supported formats {(E1, M1), . . . , (EP, MP)} in hardware are variable at design time.

The implementation was synthesized as an ASIC, on a 28-nm FD-SOI technology
node, in the typical corner (Regular Vt, 1.00 V, 25 °C, No Body Biasing) for a 200-MHz
frequency target. Synthesis has been performed on Synopsys Design Compiler® with
automatic clock-gating enabled and default effort levels. In addition, Post-synthesis gate-
level simulations were performed using Synopsys VCS®, and power consumption was
estimated by considering both static power and dynamic switching activity associated with
the application using Synopsys PrimeTime®.

Electronics 2021, 10, 2209 24 of 33

8.2. HW-Level Evaluation with One Input and Relaxed Thresholds (Nominal Scenario)

This section will quantitatively evaluate the hardware savings and overheads intro-
duced by VPT in terms of execution time, average power consumption, and overall energy.
In this subsection, only one randomly generated matrix A and vector~b is considered (the
same one presented in Section 6.2).

8.2.1. Evaluation Methodology

Table 1 depicts the evaluation results for each error threshold TOL ∈ {10−4, 10−6, 10−8,
10−10, 10−12}. Experiments are performed for each {SW configuration, HW configuration}
pair, defined as follows:

Definition 5. A SW configuration specifies which algorithm is implemented and what variable
types are used in the source code implementation.

Definition 6. A HW configuration specifies the set of supported reduced floating-point formats

{(E0, M0), (E1, M1), . . . , (EP, MP)} and to which approximate data-path they belong DD or

DF , as explained in Section 4.1 and depicted in Figure 4.

For each tolerance threshold, post-synthesis results are provided for three different
SW configurations of each iterative algorithm:

1. Ref double: an implementation of the original algorithm (Algorithm 1) in double
precision format. FP computations are executed in binary64 (11, 52) format within
the C data-path.

2. VPT double: an implementation of the VPT-enabled algorithm (Algorithm 2) in dou-

ble precision format. FP computations are executed within the DD data-path of

the VPT-FPU, which is populated with the supported precisions (4, 8, 12, . . .). All
corresponding exponents are 11-bit.

3. VPT float: an implementation of the VPT-enabled algorithm (Algorithm 2) in single-

precision format. FP computations are executed within the DF data-path of the
VPT-FPU, which is populated with the supported precisions (3, 7, 11, . . .). All corre-
sponding exponents are 8-bit. This SW configuration takes advantage of both VPT
and the classic VTO technique.

Seven different HW configurations: VPT_A, VPT_B, . . . VPT_G are provided (Table 1).

Baseline Results

The baseline performance results are obtained by executing the reference SW configu-
ration Ref double on the reference RV64FD hardware FPU. This experiment is repeated for
each tolerance threshold. All upcoming results will be normalized w.r.t this one.

VPT Results

For each tolerance threshold and each {SW configuration, HW configuration} pair, a
gate-level simulation is performed. The absolute values of execution times, average power,
and the dissipated energy spent on FP computations are reported in Table 1 for Jacobi and
Gauss–Seidel. The results were obtained by applying the algorithm on a single input matrix
A and vector~b auto-generated with a randomization seed equal to zero. Column-wise
normalized values (%) are reported by dividing the estimated values by the reference ones
for each target error threshold, i.e., there is a reference for each target threshold column.

Electronics 2021, 10, 2209 25 of 33

Table 1. Post-synthesis and gate-level simulation results for Jacobi and Gauss–Seidel applied to 1 input with relaxed
thresholds (εMp).

Target Error Thresholds 10−4 10−6 10−8 10−10 10−12

VPT SW Configurations VPT Float VPT Double VPT Float VPT Double VPT Double VPT Double VPT Double

Mp

precisions
DD (Ep = 11) - 4, 8, 12, 16 - 4, 8, 12, 16, 20 4, 8, 12, 16, 20,

24, 28
4, 8, 12, 16, 20,
24, 28, 32, 36

4, 8, 12, 16, 20,
24, 28, 32, 36,
40

DF (Ep = 8) 3, 7, 11, 15 - 3, 7, 11, 15, 19 - - - -

VPT-FPU Config. name VPT_A VPT_B VPT_C VPT_D VPT_E VPT_F VPT_G

Area overhead 1.19× 1.27× 1.30× 1.39× 1.78× 2.30× 2.63×
Jacobi Results

Average
Power
(W)

Switching 2.44 × 10−4 3.01 × 10−4 2.95 × 10−4 4.24 × 10−4 4.61 × 10−4 4.36 × 10−4 4.77 × 10−4

Internal 4.97 × 10−4 6.14 × 10−4 5.83 × 10−4 8.03 × 10−4 8.74 × 10−4 8.72 × 10−4 9.39 × 10−4

Leakage 2.90 × 10−5 3.10 × 10−5 3.20 × 10−5 3.40 × 10−5 4.30 × 10−5 5.60 × 10−5 6.40 × 10−5

Total 7.70 × 10−4 9.46 × 10−4 9.10 × 10−4 1.26 × 10−3 1.38 × 10−3 1.36 × 10−3 1.48 × 10−3

Total power savings (%) 79.09% 74.31% 75.3% 65.77% 62.55% 62.9% 59.71%

Execution time (ps) 5.96 × 109 5.35 × 109 1.00 × 1010 1.00 × 1010 1.56 × 1010 1.32 × 1010 1.65 × 1010

Execution time savings (%) 47.49% 52.85% 45.72% 45.72% 39.17% 59.77% 58.70%

Energy (pJ) 4.59 × 106 5.06 × 106 9.12 × 106 1.26 × 107 2.15 × 107 1.80 × 107 2.45 × 107

Energy savings (%) 89.02% 87.89% 86.59% 81.46% 77.21% 85.07% 83.35%

Gauss–Seidel Results

Average
Power
(W)

Switching 2.11 × 10−4 2.20 × 10−4 2.83 × 10−4 3.26 × 10−4 3.74 × 10−4 4.50 × 10−4 5.89 × 10−4

Internal 4.40 × 10−4 4.93 × 10−4 5.57 × 10−4 6.59 × 10−4 7.47 × 10−4 8.81 × 10−4 1.09 × 10−3

Leakage 2.90 × 10−5 3.10 × 10−5 3.20 × 10−5 3.40 × 10−5 4.30 × 10−5 5.60 × 10−5 6.40 × 10−5

Total 6.80 × 10−4 7.44 × 10−4 8.72 × 10−4 1.02 × 10−3 1.16 × 10−3 1.39 × 10−3 1.74 × 10−3

Total power savings (%) 80.06% 78.18% 74.97% 70.75% 66.92% 60.79% 50.83%

Execution time (ps) 1.68 × 108 1.68 × 108 2.54 × 108 2.83 × 108 4.10 × 108 5.38 × 108 7.12 × 108

Execution time savings (%) 51.61% 51.70% 51.19% 45.76% 41.00% 38.03% 31.70%

Energy (pJ) 1.14 × 105 1.25 × 105 2.22 × 105 2.88 × 105 4.77 × 105 7.46 × 105 1.24 × 106

Energy savings (%) 90.35% 89.46% 87.78% 84.15% 80.49% 75.72% 66.40%

8.2.2. Discussion
VPT Double vs. Ref Double

Table 1 shows that the VPT-enabled implementations always achieve better perfor-
mance with no accuracy loss compared to the reference. For example, the VPT double SW
configuration of Jacobi achieves power consumption savings ranging from 59.71% up to
74.31%, execution time savings ranging from 39.17% up to 59.77%, and energy savings
between 77.21% and 87.89%. Meanwhile, the same SW configuration for Gauss–Seidel
application achieves power consumption savings ranging from 50.83% up to 78.18%, exe-
cution time savings ranging from 31.70% up to 51.70%, and energy savings between 66.40%
and 89.46%.

VPT Float vs. Ref Double

Analyzing the two first columns (10−4 and 10−6) reveals the importance of traditional
Variable Type Optimization (VTO) techniques in floating-point. For example, in the case of
Jacobi, when TOL equals 10−4, the VPT double SW configuration saves 74.31% of the original
total power and 87.89% of the energy consumed by the Ref double configuration. However,
if VPT is applied along with VTO, i.e., if FP variables are migrated from double to float in
the VPT-enabled algorithm, the power savings are further optimized up to 79.09%, and the
energy savings up to 89.02%. Similarly, at 10−6 error threshold, optimizing variable types
increases energy savings brought by VPT from 81.46% up to 86.59%. This observation also
holds for Gauss–Seidel.

Conclusions

To sum up, starting from an already optimized standard software version (using
VTO) instead of a double precision, one can achieve higher power and energy savings.
Using the VPT approach allows to refine and enhance VTO savings one step further. Even

Electronics 2021, 10, 2209 26 of 33

though the additional VTO gains shown may seem limited to a few percentage points in
terms of computations, starting from an already optimized version (using VTO) guarantees
subsequent memory footprint savings too. However, this is only feasible for 10−4 and 10−6

target error thresholds which are reachable using single-precision.

8.3. Worst Case/Best Case HW-Level Evaluation

With everything said in Section 7 in mind, it is important to perform an empirical
HW-level evaluation. Only edge cases where VPT affects either negatively or positively
the energy consumption of the algorithm are considered since it would take months to
perform the HW-level study for all the 1000 inputs. Moreover, for the sake of concision,
only the conservative thresholds generated with Gappa in the case of threshold policy (1)
are considered. Furthermore, for threshold policy (2), only the case where SMI is set to 4 is
evaluated.

The edge cases have been chosen from the 1000-input dataset based on the software
simulation presented in Section 7. They correspond to the input couples (A,~b) that produce
the lowest and the biggest iterations’ overhead for each threshold in Figures 13 and 14.
Table 2 lists the nomenclature that will be used in the remaining of this paper. For ex-
ample, BC-04 refers to the input couple (A,~b) that represents the best case for a 10−4

tolerance threshold.
To ensure a fair comparison from a hardware standing point, the following experi-

ments are all run on top of a VPT-FPU hardware configuration that will be referred to as

VPT_H. This configuration supports the following precisions {4, 8, . . . , 48} within the DD

data-path (with an exponent bit-width maintained at 11). Post-synthesis power simulations
are performed with the same synthesis conditions as explained in Section 8.1.

Table 2. Worst cases’ and best cases’ nomenclature per tolerance threshold and threshold generation
policy—Jacobi.

Threshold Policy
10−4 10−12

Best Case Worst Case Best Case Worst Case

Conservative
thresholds—Gappa BC-04 WC-04 BC-12 WC-12

Relaxed thresholds—SMI = 4 BR-04 WR-04 BR-12 WR-12

Baseline HW-Level Results for All Edge Cases

Table 3 shows the baseline average power, execution time, and energy consumption
results for the standard double precision version of Jacobi applied to each of the selected
cases and executed on top of the reference baseline RV64FD architecture. This data will
constitute the baseline against which all the following studies will be compared.

Table 3. Power, execution time, and energy consumption of the standard double precision version of Jacobi executed on the
RV64FD reference FPU.

Target Error Thresholds 10−4 10−12

Input BC-04 WC-04 BR-04 WR-04 BC-12 WC-12 BR-12 WR-12

VPT SW Configs Type Double Double Double Double Double Double Double Double

Average
Power (W)

Switching 1.42 × 10−3 1.43 × 10−3 1.43 × 10−3 1.43 × 10−3 1.42 × 10−3 1.42 × 10−3 1.43 × 10−3 1.42 × 10−3

Internal 2.21 × 10−3 2.22 × 10−3 2.22 × 10−3 2.22 × 10−3 2.21 × 10−3 2.21 × 10−3 2.22 × 10−3 2.20 × 10−3

Leakage 2.60 × 10−5 2.60 × 10−5 2.60 × 10−5 2.60 × 10−5 2.60 × 10−5 2.60 × 10−5 2.60 × 10−5 2.60 × 10−5

Total 3.67 × 10−3 3.68 × 10−3 3.67 × 10−3 3.68 × 10−3 3.66 × 10−3 3.66 × 10−3 3.68 × 10−3 3.65 × 10−3

Execution Time (ps) 1.09 × 1010 1.18 × 1010 1.00 × 1010 1.15 × 1010 4.03 × 1010 3.20 × 1010 3.54 × 1010 4.05 × 1010

Energy (pJ) 4.03 × 107 4.35 × 107 3.70 × 107 4.26 × 107 1.47 × 108 1.17 × 108 1.30 × 108 1.48 × 108

Electronics 2021, 10, 2209 27 of 33

Overhead of VPT-FPU When Operating in Full Precision

Table 4 depicts HW results when executing the application on the precise part of the
VPT-FPU for each selected edge case. This evaluates the overhead brought by the static
energy dissipated in the approximate part of the VPT-FPU circuitry when execution mode
is fully precise.

As shown in the table, execution time is not affected. Only power increases due to
static power (leakage) dissipated in the non-active approximate parts, leading to a 3.72%
(input BC-12) up to 3.85% (input WR-12) energy increase, which is negligible compared to
the savings exposed in the following sections.

Table 4. Power, execution time, and energy consumption overheads of the standard double precision version of Jacobi
executed on the VPT_H configuration of the VPT-FPU.

Target Error Thresholds 10−4 10−12

Input BC-04 WC-04 BR-04 WR-04 BC-12 WC-12 BR-12 WR-12

VPT SW Configs Type Double Double Double Double Double Double Double Double

Average
Power (W)

Switching 1.39 × 10−3 1.40 × 10−3 1.40 × 10−3 1.40 × 10−3 1.39 × 10−3 1.39 × 10−3 1.40 × 10−3 1.39 × 10−3

Internal 2.33 × 10−3 2.33 × 10−3 2.33 × 10−3 2.33 × 10−3 2.32 × 10−3 2.32 × 10−3 2.33 × 10−3 2.31 × 10−3

Leakage 8.30 × 10−5 8.30 × 10−5 8.30 × 10−5 8.30 × 10−5 8.30 × 10−5 8.30 × 10−5 8.30 × 10−5 8.30 × 10−5

Total 3.81 × 10−3 3.82 × 10−3 3.81 × 10−3 3.82 × 10−3 3.80 × 10−3 3.80 × 10−3 3.82 × 10−3 3.79 × 10−3

Total power overhead 3.81% 3.77% 3.81% 3.77% 3.77% 3.79% 3.77% 3.81%

Execution Time (ps) 1.09 × 1010 1.18 × 1010 1.00 × 1010 1.15 × 1010 4.03 × 1010 3.20 × 1010 3.54 × 1010 4.05 × 1010

Execution time overhead 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Energy (pJ) 4.19 × 107 4.51 × 107 3.84 × 107 4.42 × 107 1.53 × 108 1.22 × 108 1.35 × 108 1.53 × 108

Energy overhead 3.81% 3.77% 3.83% 3.80% 3.72% 3.83% 3.83% 3.85%

Gains Using the Conservative Thresholds

Table 5 depicts the HW-level gains for the conservative threshold policy (1). In
addition, the table presents the results of the best case and worst case inputs at 10−4 and
10−12 target thresholds.

Table 5. Power, execution time, and energy consumption gains of VPT-enabled version of Jacobi (with theoretical conserva-
tive thresholds) executed on the VPT_H configuration of the VPT-FPU.

Target Error Thresholds 10−4 10−12

Input Best Case (BC-04) Worst Case (WC-04) Best Case (BC-12) Worst Case (WC-12)

VPT SW Configs Type VPT double VPT double VPT double VPT double

Average
Power (W)

Switching 3.41 × 10−4 3.51 × 10−4 7.14 × 10−4 7.23 × 10−4

Internal 7.89 × 10−4 8.05 × 10−4 1.31 × 10−3 1.32 × 10−3

Leakage 8.10 × 10−5 8.10 × 10−5 8.20 × 10−5 8.20 × 10−5

Total 1.21 × 10−3 1.23 × 10−3 2.10 × 10−3 2.13 × 10−3

Total power savings 67.03% 66.43% 42.48% 41.90%

Execution Time (ps) 5.31 × 109 5.82 × 109 2.58 × 1010 2.07 × 1010

Execution time savings 51.64% 50.61% 35.88% 35.15%

Energy (pJ) 6.43 × 106 7.20 × 106 5.44 × 107 4.42 × 107

Energy savings 84.06% 83.43% 63.13% 62.33%

As depicted in the table, there is not much difference between best-case and worst-case
scenarios in terms of computational energy, i.e., 84.06% (best case for 10−4) vs. 83.43%

Electronics 2021, 10, 2209 28 of 33

(worst case for 10−4) then 63.13% (best case for 10−12) vs. 62.33% (worst case for 10−12).
This can be explained by the fact that using VPT threshold policy (1) does not affect the
number of iterations executed.

Upon a closer look to Figures 13 and 14, we conclude that this is due to the negligible
effect on the number of iterations when using conservative threshold policies.

Gains Using the Relaxed Thresholds

Results for this experiment are depicted in Table 6. For a target threshold of 10−4, this
threshold policy achieves energy savings between 82.95%(worst case) up to 88.20% (best
case), mainly due to 42.20% up to 59.80% savings in terms of execution time. Similarly, for a
target of 10−12, the energy gain stands between 63.20% (worst case) and 68.97% (best case).
These percentages are slightly more interesting than in threshold policy (1), especially in
the best case.

Table 6. Power, execution time, and energy consumption gains of VPT-enabled version of Jacobi (with relaxed thresholds
and SMI = 4) executed on the VPT_H configuration of the VPT-FPU.

Target Error Thresholds 10−4 10−12

Input Best Case (BR-04) Worst Case (WR-04) Best Case (BR-12) Worst Case (WR-12)

VPT SW Configs Type VPT double VPT double VPT double VPT double

Average
Power (W)

Switching 2.90 × 10−4 2.94 × 10−4 6.42 × 10−4 6.48 × 10−4

Internal 7.08 × 10−4 7.13 × 10−4 1.20 × 10−3 1.21 × 10−3

Leakage 8.10 × 10−5 8.10 × 10−5 8.20 × 10−5 8.20 × 10−5

Total 1.07 × 10−3 1.08 × 10−3 1.93 × 10−3 1.94 × 10−3

Total power savings 70.67% 70.49% 47.58% 46.74%

Execution Time (ps) 4.04 × 109 6.68 × 109 2.09 × 1010 2.80 × 1010

Execution time savings 59.80% 42.20% 40.82% 30.89%

Energy (pJ) 4.36 × 106 7.27 × 106 4.05 × 107 5.45 × 107

Energy savings 88.20% 82.95% 68.97% 63.20%

Please remember that, in this situation, the VPT relaxed threshold policy (2) has a
more substantial impact on the number of iterations, as shown in Figures 13 and 14. For
example, input BR-12 sees a decrease in the number of iterations from 612 to 578 (−5.5%
variation), translating to a 68.97% energy gain. On the other hand, WR-12 sees an increase
from 700 to 763 iterations (+9.0% increase) which translates to 63.20% total energy gain,
which is still an important achievement despite the extra iterations’ overhead.

8.4. Circuit Area Results

Table 1 reports the total cell area overhead for each HW configuration w.r.t the baseline
standard RV64FD FPU.

The area overhead depends on the additional supported reduced precision formats.
Overheads can range from 1.19× (VPT_A) up to 2.63× (VPT_G).

When VTO is also applied along with VPT, (i.e., when the VPT float SW configuration
is considered), this technique can attenuate the area overhead. For example, overhead can
be reduced from 1.27× (VPT_B) down to 1.19× (VPT_A) for a 10−4 threshold.

These ratios also depend on the number of intermediate pipeline registers inserted
in each approximate datapath, configurable at design time. The area overhead is the only
significant disadvantage of the proposed architecture.

Electronics 2021, 10, 2209 29 of 33

Conclusions

These results demonstrate that the VPT-enabled software implementation is a one-
size-fits-all solution, i.e., using the same software implementation along with our proposed
VPT-FPU, the designer can drastically reduce consumed resources by using only the needed
precision instead of an over-designed solution such as standard FPUs. The price to pay is
in terms of circuit area overhead. Designers can also use standard VTO techniques jointly
to enhance the energy savings of our technique and reduce its area overhead.

9. Conclusions

This work proposes a new method and an FPU architecture that enable designers to
dynamically tune FP computations’ precision automatically at run-time called Variable
Precision in Time (VPT). In spite of its circuit area overhead, the proposed approach
simplifies the integration of variable precision in existing software workloads at any level
of the software stack (OS, RTOS, or application-level): it only requires lightweight software
support and solely relies on traditional assembly instructions, without the need for a
specialized compiler or custom instructions.

The technique was applied to the Jacobi and the Gauss–Seidel iterative methods
taking full advantage of the suggested FPU. For each algorithm two threshold policies
were proposed: a conservative policy (1) and a relaxed policy (2).

The last two sections presented a statistical study that explored the effects of each
VPT threshold policy on many aspects of the application: impact on the total number
of iterations, impact on the iterations’ distribution across different precisions, impact on
HW-level estimations such as execution time, power and the overall energy consumption.

The implementations demonstrate up to 70.67% power consumption saving, up to
59.80% execution time saving, and up to 88.20% total energy saving w.r.t the reference
double precision implementation, and with no accuracy loss.

To conclude, the threshold policy (1) is a conservative approach that brings some
predictability and safety along with all the run-time variable precision benefits. On the
other hand, threshold policy (2) is a relaxed approach that further optimizes power and
energy consumption. However, it tends to alter the total number of iterations, sometimes
favorably and sometimes negatively. However, even when the total number of iterations
is increased, there is still a very interesting energy gain. Thus, threshold policy (1) is the
safest solution, and threshold policy (2) represents a risky but optimized solution.

9.1. Limitations

To choose between the two threshold policies for a given problem, the user/designer
should use representative datasets and especially evaluate the memory-related aspects,
especially for threshold policy (2). Furthermore, the memory-related aspects should be
studied further to evaluate whether the cost of the potential added iterations (hence more
load and store operations) is lower than the gain associated with computation optimization.

The proposed methodology is application-dependent, i.e., the designer should trans-
form the algorithm manually, ensure convergence after modification, and select ade-
quate intermediate tolerance thresholds depending on the convergence metric used in
the application.

9.2. Future Works

Our future studies will focus on optimizing the circuit area by merging some compo-
nents of the VPT-FPU. We also intend to explore the usability of the proposed VPT-FPU with
other kinds of workloads such as Machine Learning and Computer Vision applications.

Electronics 2021, 10, 2209 30 of 33

Author Contributions: N.A.S.: Conceptualization, Methodology, Formal analysis, Software, Val-
idation, Investigation, Data curation, Visualization, Writing—Original Draft, Writing—Review &
Editing. M.B.: Conceptualization, Writing—Review & Editing, Supervision, Project administration,
Funding acquisition. K.M.-A.: Conceptualization, Formal analysis, Investigation, Writing—Original
Draft, Writing—Review & Editing, Supervision, Project administration, Funding acquisition. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FP Floating-Point
FPU Floating-Point Unit
TC Transprecision Computing
VTO Variable Type Optimization
ARP Arbitrary Reduced Precision
VPT Variable Precision in Time
HAL Hardware Abstraction Layer

Appendix A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iterations

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

E
rr

o
r

Tolerance Threshold 10−10

Reference ||x(k+1) − x(k)|| VPT ||x(k+1) − x(k)||

4

8

12

16

20

24

28

32

36

40

P
re

ci
si

on

VPT precision

Figure A1. The convergence profile of the VPT-enabled Gauss–Seidel.

Electronics 2021, 10, 2209 31 of 33

0 100 200 300 400 500 600 700 800 900 1000

Iterations

10−15

10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

C
on

ve
rg

en
ce

p
ro

fi
le
||b

(k
+

1
)
−
A
x

(k
+

1
)
|| Stagnation of the convergence profile

0 1 2

4

8

12

16

20

24

28

32

36

40

44

48

52

P
re

ci
si

on
s

Stagnation of the precision

Figure A2. Convergence profiles (left axis, continuous lines) and their corresponding precision
variation profiles (right axis, dotted lines) for three inputs (Matrix IDs 0, 1, and 2). The convergence
profile here is in terms of the residual error metric (||~b (k+1) −A~x (k+1)||).

Listing A1. Gappa script for the generation of conservative thresholds. It is applied on
n = 50, Mp = 40. Here we use RNE (round-to-nearest tie to even) rounding for the round() function.

Create a FP format with E = 11 (same as binary64) and M_p = 40
Choose Round to Nearest, tie to even (ne)
@rnd = float<40, -1022, ne>;

Declare a variable u, which is cast from a real value U
u = rnd(U);

Compute expression with 40 bits of precision
square rnd= u * u;

Unrolled summation of squares, loops don't exist in Gappa
nsquare_1 rnd= square;
nsquare_2 rnd= nsquare_1 + square;
nsquare_3 rnd= nsquare_2 + square;
...
...
nsquare_49 rnd= nsquare_48 + square;
nsquare_50 rnd= nsquare_49 + square;

sqroot rnd= sqrt(nsquare);
norm2 = rnd(sqroot);

{
Hypotheses --------------------------------------
Given that n = 50, and U is in [0, 2^-40]

n = 50 /\ U in [0 , 1b-40]
->
The property to be proven ----------------------

rnd(norm2) in ?
}

Output of Gappa --
Results:
float<40,-1022,ne>(norm2) in [0, 121480019999b-74 {6.431098710766519833e-12,

2^(-3.717810058593750000e+01)}]
The lower bound of the variable <norm2> is 0
The upper bound of the variable <norm2> is 6.43110e-12

Electronics 2021, 10, 2209 32 of 33

References
1. Malossi, A.C.I.; Schaffner, M.; Molnos, A.; Gammaitoni, L.; Tagliavini, G.; Emerson, A.; Tomás, A.; Nikolopoulos, D.S.;

Flamand, E.; Wehn, N. The transprecision computing paradigm: Concept, design, and applications. In Proceedings of the
2018 Design, Automation Test in Europe Conference Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1105–1110.
[CrossRef]

2. Matoussi, O.; Durand, Y.; Sentieys, O.; Molnos, A. Error Analysis of the Square Root Operation for the Purpose of Precision
Tuning: A Case Study on K-means. In Proceedings of the ASAP 2019—30th IEEE International Conference on Application-Specific
Systems, Architectures and Processors, New York, NY, USA, 15–17 July 2019; IEEE: New York, NY, USA, 2019.

3. Panchekha, P.; Sanchez-Stern, A.; Wilcox, J.R.; Tatlock, Z. Automatically Improving Accuracy for Floating Point Expressions.
SIGPLAN Not. 2015, 50, 1–11. [CrossRef]

4. Sanchez-Stern, A.; Panchekha, P.; Lerner, S.; Tatlock, Z. Finding Root Causes of Floating Point Error with Herbgrind. arXiv 2018,
arXiv:1705.10416.

5. Benz, F.; Hildebrandt, A.; Hack, S. A Dynamic Program Analysis to find Floating-Point Accuracy Problems. ACM SIGPLAN Not.
2012, 47, 453–462. [CrossRef]

6. Graillat, S.; Jézéquel, F.; Picot, R.; Févotte, F.; Lathuilière, B. Auto-tuning for floating-point precision with Discrete Stochastic
Arithmetic. J. Comput. Sci. 2019, 36, 101017. [CrossRef]

7. Rubio-González, C.; Hough, D.; Nguyen, C.; Mehne, B.; Sen, K.; Demmel, J.; Kahan, W.; Iancu, C.; Lavrijsen, W.; Bailey,
D.H. Floating-point precision tuning using blame analysis. In Proceedings of the 38th International Conference on Software
Engineering—ICSE’16, Austin, TX, USA, 14–22 May 2016; ACM Press: Austin, TX, USA, 2016; pp. 1074–1085. [CrossRef]

8. Rubio-González, C.; Nguyen, C.; Nguyen, H.D.; Demmel, J.; Kahan, W.; Sen, K.; Bailey, D.H.; Iancu, C.; Hough, D. Precimonious:
Tuning Assistant for Floating-point Precision. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Denver, CO, USA, 17–22 November 2013.

9. Ho, N.; Manogaran, E.; Wong, W.; Anoosheh, A. Efficient floating point precision tuning for approximate computing. In
Proceedings of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Chiba, Japan, 16–19 January 2017;
pp. 63–68. [CrossRef]

10. Ait Said, N.; Benabdenbi, M.; Morin-Allory, K. Arbitrary Reduced Precision for Fine-grained Accuracy and Energy Trade-offs.
Microelectron. Reliab. 2021, 120, 114099. [CrossRef]

11. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008. 2008. pp. 1–70. Available online: https://ieeexplore.ieee.org/
document/4610935 (accessed on 26 August 2021). [CrossRef]

12. Köster, U.; Webb, T.J.; Wang, X.; Nassar, M.; Bansal, A.K.; Constable, W.H.; Elibol, O.H.; Gray, S.; Hall, S.; Hornof, L.; et al.
Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks. In Proceedings of the 31st
International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017;
Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 1740–1750.

13. Chung, E.; Fowers, J.; Ovtcharov, K.; Papamichael, M.; Caulfield, A.; Massengill, T.; Liu, M.; Lo, D.; Alkalay, S.; Haselman, M.; et al.
Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro 2018, 38, 8–20. [CrossRef]

14. Jouppi, N.P.; Young, C.; Patil, N.; Patterson, D.; Agrawal, G.; Bajwa, R.; Bates, S.; Bhatia, S.; Boden, N.; Borchers, A.; et al.
In-Datacenter Performance Analysis of a Tensor Processing Unit. SIGARCH Comput. Archit. News 2017, 45, 1–12. [CrossRef]

15. Xie, S.; Davidson, S.; Magaki, I.; Khazraee, M.; Vega, L.; Zhang, L.; Taylor, M.B. Extreme Datacenter Specialization for Planet-Scale
Computing: ASIC Clouds. SIGOPS Oper. Syst. Rev. 2018, 52, 96–108. [CrossRef]

16. Fousse, L.; Hanrot, G.; Lefèvre, V.; Pélissier, P.; Zimmermann, P. MPFR: A Multiple-precision Binary Floating-point Library with
Correct Rounding. ACM Trans. Math. Softw. 2007, 33, 13-es. [CrossRef]

17. Flegar, G.; Scheidegger, F.; Novaković, V.; Mariani, G.; Tomás, A.E.; Malossi, A.C.I.; Quintana-Ortí, E.S. FloatX: A C++ Library for
Customized Floating-Point Arithmetic. ACM Trans. Math. Softw. 2019, 45, 40:1–40:23. [CrossRef]

18. Tagliavini, G.; Marongiu, A.; Benini, L. FlexFloat: A Software Library for Transprecision Computing. IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst. 2018, 39, 145–156. [CrossRef]

19. Ait Said, N.; Benabdenbi, M.; Morin-Allory, K. FPU Bit-Width Optimization for Approximate Computing: A Non-Intrusive
Approach. In Proceedings of the 2020 15th Design Technology of Integrated Systems in Nanoscale Era (DTIS), Marrakech,
Morocco, 1–3 April 2020; pp. 1–6.

20. Chatelain, Y.; Petit, E.; de Oliveira Castro, P.; Lartigue, G.; Defour, D. Automatic Exploration of Reduced Floating-Point Representations
in Iterative Methods; Euro-Par 2019: Parallel Processing; Yahyapour, R., Ed.; Springer International Publishing: Cham, Switzerland,
2019; pp. 481–494.

21. Ait Said, N.; Benabdenbi, M.; Morin-Allory, K. FPU Reduced Variable Precision in Time: Application to the Jacobi Iterative
Method. In Proceedings of the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) (ISVLSI-2021), Tampa, FL,
USA, 7–9 July 2021.

22. Ait Said, N. FPU Reduced Variable Precision in Time: Application to the Jacobi Iterative Method—ISVLSI’21. Available online:
https://www.youtube.com/watch?v=w8Hem9r0daU (accessed on 15 July 2021).

23. Zeller, A.; Hildebrandt, R. Simplifying and isolating failure-inducing input. IEEE Trans. Softw. Eng. 2002, 28, 183–200. [CrossRef]
24. Carson, E.; Higham, N.J. A New Analysis of Iterative Refinement and Its Application to Accurate Solution of Ill-Conditioned

Sparse Linear Systems. SIAM J. Sci. Comput. 2017, 39, A2834–A2856. [CrossRef]

http://doi.org/10.23919/DATE.2018.8342176
http://dx.doi.org/10.1145/2813885.2737959
http://dx.doi.org/10.1145/2345156.2254118
http://dx.doi.org/10.1016/j.jocs.2019.07.004
http://dx.doi.org/10.1145/2884781.2884850
http://dx.doi.org/10.1109/ASPDAC.2017.7858297
http://dx.doi.org/10.1016/j.microrel.2021.114099
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
http://dx.doi.org/10.1109/IEEESTD.2008.4610935
http://dx.doi.org/10.1109/MM.2018.022071131
http://dx.doi.org/10.1145/3140659.3080246
http://dx.doi.org/10.1145/3273982.3273991
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/3368086
http://dx.doi.org/10.1109/TCAD.2018.2883902
https://www.youtube.com/watch?v=w8Hem9r0daU
http://dx.doi.org/10.1109/32.988498
http://dx.doi.org/10.1137/17M1122918

Electronics 2021, 10, 2209 33 of 33

25. Carson, E.; Higham, N.J. Accelerating the Solution of Linear Systems by Iterative Refinement in Three Precisions. SIAM J. Sci.
Comput. 2018, 40, A817–A847. [CrossRef]

26. Moler, C.B. Iterative Refinement in Floating Point. J. ACM 1967, 14, 316–321. [CrossRef]
27. Amestoy, P.; Buttari, A.; Higham, N.; L’Excellent, J.Y.; Mary, T.; Vieuble, B. Five-Precision GMRES-based iterative refinement.

working paper or preprint.
28. Blanchard, P.; Higham, N.J.; Lopez, F.; Mary, T.; Pranesh, S. Mixed Precision Block Fused Multiply-Add: Error Analysis and

Application to GPU Tensor Cores. SIAM J. Sci. Comput. 2020, 42, C124–C141. [CrossRef]
29. Anzt, H.; Dongarra, J.; Flegar, G.; Higham, N.J.; Quintana-Ortí, E.S. Adaptive precision in block-Jacobi preconditioning for

iterative sparse linear system solvers: Adaptive precision in block-Jacobi preconditioning for iterative solvers. Concurr. Comput.
Pract. Exp. 2019, 31, e4460. [CrossRef]

30. Saad, Y. Iterative Methods for Sparse Linear Systems; Other Titles in Applied Mathematics; Society for Industrial and Applied
Mathematics: Philadelphia, PA, USA, 2003. [CrossRef]

31. Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; der Vorst, H.V. Templates
for the Solution of Linear Systems: Building Blocks for Iterative Methods. Math. Comput. 1995, 64, 1349. [CrossRef]

32. Ait Said, N. AxQEMU: A Floating-Point Approximation-Aware Emulator. 2021. Available online: https://github.com/
noureddine-as/axqemu (accessed on 18 August 2021).

33. Denis, C.; de Oliveira Castro, P.; Petit, E. Verificarlo: Checking Floating Point Accuracy through Monte Carlo Arithmetic. In
Proceedings of the 23nd IEEE Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley, CA, USA, 10–13 July 2016;
pp. 55–62. [CrossRef]

34. Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia,
PA, USA, 2002.

35. Waterman, A.; Asanović, K. The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2019121. 2019. Available
online: https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf (accessed on 18 August 2021).

36. The Open-source Repository of CORE-V CVA6 CPU: An Application Class 6-Stage RISC-V CPU Capable of Booting Linux. 2021.
Available online: https://github.com/openhwgroup/cva6 (accessed on 13 June 2021).

37. Li, L.; Gautschi, M.; Benini, L. Approximate DIV and SQRT instructions for the RISC-V ISA: An efficiency vs. accuracy analysis. In
Proceedings of the 2017 27th International Symposium on Power and Timing Modeling, Optimization and Simulation (PATMOS),
Thessaloniki, Greece, 25–27 September 2017; pp. 1–8. [CrossRef]

38. Jun, K.; Swartzlander, E.E. Modified non-restoring division algorithm with improved delay profile and error correction.
In Proceedings of the 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers
(ASILOMAR), Pacific Grove, CA, USA, 4–7 November 2012; pp. 1460–1464. [CrossRef]

39. de Dinechin, F.; Lauter, C.; Melquiond, G. Certifying the Floating-Point Implementation of an Elementary Function Using Gappa.
IEEE Trans. Comput. 2011, 60, 242–253. [CrossRef]

40. The Open-Source Repository of the Jacobi C Implementation. 2020. Available online: https://github.com/UoB-HPC/intro-hpc-
jacobi (accessed on 13 June 2021).

41. RISC-V Proxy Kernel. 2019. Available online: https://github.com/riscv/riscv-pk (accessed on 3 June 2019).
42. Mach, S.; Rossi, D.; Tagliavini, G.; Marongiu, A.; Benini, L. A Transprecision Floating-Point Architecture for Energy-Efficient

Embedded Computing. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence,
Italy, 27–30 May 2018; pp. 1–5.

http://dx.doi.org/10.1137/17M1140819
http://dx.doi.org/10.1145/321386.321394
http://dx.doi.org/10.1137/19M1289546
http://dx.doi.org/10.1002/cpe.4460
http://dx.doi.org/10.1137/1.9780898718003
http://dx.doi.org/10.2307/2153507
https://github.com/noureddine-as/axqemu
https://github.com/noureddine-as/axqemu
http://dx.doi.org/10.1109/ARITH.2016.31
https://riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://github.com/openhwgroup/cva6
http://dx.doi.org/10.1109/PATMOS.2017.8106987
http://dx.doi.org/10.1109/ACSSC.2012.6489269
http://dx.doi.org/10.1109/TC.2010.128
https://github.com/UoB-HPC/intro-hpc-jacobi
https://github.com/UoB-HPC/intro-hpc-jacobi
https://github.com/riscv/riscv-pk

	Introduction
	Related Works
	FP Variable Type Optimization (VTO)
	Non-Standard/Arbitrary Precision Support
	Mixed-Precision for Linear Algebra
	Arbitrary Reduced Precision
	Variable Precision in Time (VPT)

	Background and Motivation
	Definitions
	Motivation
	FP Computation Usage in Jacobi and Gauss–Seidel
	The Limitation of Arbitrary Fixed Reduced Precision

	Proposed Hardware Architecture
	Architecture Overview
	Custom VPT Registers
	VPT Software Support

	Iterative Methods: Mathematical Foundations
	Presentation of Jacobi and Gauss–Seidel Iterative Methods
	Convergence of Iterative Algorithms

	Implementation of VPT-Enabled Iterative Methods
	The Original Algorithm
	The Transformed Algorithm
	Details of Threshold Policy (1): Conservative Thresholds
	Details of Threshold Policy (2): Relaxed Thresholds with Stagnation Detection
	Comparing Different Threshold Policies

	Statistical Analysis
	Software Implementation Aspects
	Effects of VPT on the Convergence Profile and Precision Variation Profile
	Effects of VPT on the Total Number of Iterations
	Effects of VPT on Iterations' Distribution

	Hardware-Level Evaluation & Discussion
	Hardware Synthesis Conditions
	HW-Level Evaluation with One Input and Relaxed Thresholds (Nominal Scenario)
	Evaluation Methodology
	Discussion

	Worst Case/Best Case HW-Level Evaluation
	Circuit Area Results

	Conclusions
	Limitations
	Future Works

	
	References

