
EUROGRAPHICS 2022 / R. Chaine and M. H. Kim
(Guest Editors)

Volume 41 (2022), Number 2

Meshlets and How to Shade Them: A Study on Texture-Space Shading

T. Neff1 , J. H. Mueller1 , M. Steinberger1 and D. Schmalstieg1

1Graz University of Technology, Institute of Computer Graphics and Vision, Austria

Visible meshlets
Meshlet atlas

Final image

Figure 1: The meshlet shading atlas operates on large groups of primitives by clustering the scene into meshlets (left). For each meshlet, a
suitable mapping is used to transform it into texture space and shade it (center). By grouping as many primitives as possible, we can reduce
the impact of overshading and better distribute samples in texture space, which results in higher image quality per sample (right).

Abstract
Commonly used image-space layouts of shading points, such as used in deferred shading, are strictly view-dependent, which
restricts efficient caching and temporal amortization. In contrast, texture-space layouts can represent shading on all surface
points and can be tailored to the needs of a particular application. However, the best grouping of shading points—which we
call a shading unit—in texture space remains unclear. Choices of shading unit granularity (how many primitives or pixels per
unit) and in shading unit parametrization (how to assign texture coordinates to shading points) lead to different outcomes in
terms of final image quality, overshading cost, and memory consumption. Among the possible choices, shading units consisting
of larger groups of scene primitives, so-called meshlets, remain unexplored as of yet. In this paper, we introduce a taxonomy for
analyzing existing texture-space shading methods based on the group size and parametrization of shading units. Furthermore, we
introduce a novel texture-space layout strategy that operates on large shading units: the meshlet shading atlas. We experimentally
demonstrate that the meshlet shading atlas outperforms previous approaches in terms of image quality, run-time performance
and temporal upsampling for a given number of fragment shader invocations. The meshlet shading atlas lends itself to work
together with popular cluster-based rendering of meshes with high geometric detail.

CCS Concepts
• Computing methodologies → Rendering; Texturing;

1. Introduction

In real-time rendering, the runtime tends to be dominated by the
cost of pixel shader invocations. Consequently, many computer
graphics techniques aim to reduce shading cost, either by reducing
overshading (i.e., avoiding shader invocations that do not contribute

to the final image) or by facilitating spatio-temporal reuse of cached
shading information. Popular approaches such as temporal anti-
aliasing [YLS20] or learned supersampling [Liu20; NVI18] rely
on the organization of shading information in image space to reuse
shading. However, a shading cache in image space only has two

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0002-6559-5653
https://orcid.org/0000-0002-6368-6340
https://orcid.org/0000-0001-5977-8536
https://orcid.org/0000-0003-2813-2235


Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

dimensions, and its sample distribution is view-dependent, making
it a poor match for techniques that rely on coherence in object space.
For example, global illumination (e.g., Lumen [Epi21a]), stochastic
sampling [RLC*11] or disocclusion-free image warping [PZ17]
require identifying a 3D neighborhood of a shading point in object
space. Besides better support for this class of algorithm, caching in
object space enables much longer periods of shading reuse compared
to image-space caching [MNV*21].

For these and other reasons, recent research has investigated
object-space shading representations. Unlike image space, object
space allows for a wide variety of layouts, each with its own set of
advantages and disadvantages. Some object-space shading methods
index into the cache directly from the 3D coordinates of shading
points—for instance, using 3D hashing [RLC*11; LD12]. Alas, this
form of indexing precludes the use of hardware features such as
texture interpolation, which makes a high-performance implemen-
tation difficult. Therefore, most object-space shading methods rely
on a parametrization of shading point coordinates that maps into a
suitably chosen texture space.

All of these texture-space shading (TSS) techniques require an-
swering two key questions: (1) How should shading points be
grouped into what Mueller et al. [MNV*21] call a shading unit
(SU), which contains shading points that are processed and stored
together? (2) How should the parametrization that maps an SU into
a given texture space be determined?

The choice of SU grouping and SU parametrization determines
the two essential performance characteristics of a TSS technique,
namely, image quality and shader invocations. These characteristics
form a trade-off: Image quality depends on the ability to reconstruct
a target image from the shading cache. Ideally, the shading cache
is filled with exactly the samples required to reconstruct the target
image at reference quality (which is usually derived from a super-
sampled forward rendering of the same scene).

In general, the ideal sample selection is not known in advance, so
oversampling, undersampling, or distortion occurs. Oversampling
means generating samples at a higher than necessary resolution,
generating samples which do not appear in the target image, or
generating duplicate samples. Although oversampling can enhance
the image quality, it also increases the number of shader invocations
and, thus, the cost. Oversampling may also be amortized when more
than one final image is reconstructed from a given shading cache.
Applications of such multi-view rendering include stereo displays,
framerate upsampling with image warping, or game streaming
for multiple players. Like oversampling, undersampling is also
generally undesirable. It reduces the number of shader invocations,
but leads to a deterioration of image quality. Distortion refers to
sample patterns that do not match the final reconstruction sample
distribution. Especially angular distortion is bothersome, as it leads
to oversampling and undersampling at the same time, even when
the number of samples in the shading cache matches the number of
samples in the target.

Besides image quality and shader invocations, an additional con-
cern is the memory footprint. A mandatory requirement of TSS is
that each shading point must have a unique mapping to a texel. If
large scenes containing more surface points than would fit into GPU

memory are desired, this unique mapping must reside sparsely in
texture space, i.e., only the currently visible portion of the scene
is mapped to valid cache addresses. This requirement influences
the choice of SU parametrization. In particular, sparse textures can-
not solely rely on a statically determined UV-parametrization (also
known as pre-charting). To support sparse residency, pre-charting
must always be combined with an online parametrization that deter-
mines the final size and placement of an SU in texture space. In this
paper, we focus on methods that support sparse residency and the
trade-off between image quality and shader invocations, but not on
memory efficiency. We assume that the resident set of a scene does
not exceed the GPU memory capacity.

The choice of SU grouping is also influenced by the recent trend
in GPU programming towards favoring large(r) clusters of primi-
tives [NVI18; Epi21b]. This trend is not considered in previous TSS
techniques, which operate on small pixel blocks or on few (1−3)
triangles. Small SU group sizes have a poor ratio of interior area to
border length, leading to substantial overshading, and require more
effort for border handling. A larger SU group size may overcome
these difficulties.

Consequently, we introduce a novel TSS method, called meshlet
shading atlas (MSA), that operates on clusters of primitives which
match the preferred primitive granularity of the GPU hardware.
MSA operates on groups consisting of a varying number of spatially
coherent triangles, called meshlets, and makes use of recent NVIDIA
extensions to transform and shade such meshlets. MSA combines
the memory management for sparse residency [MVD*18] with an
SU configuration that can be customized by choosing the best SU
group size (i.e., triangle counts per meshlet) and SU parametrization
(pre-charted or derived from the current view). By comparing MSA
to previous TSS methods, we make the following contributions:

• We show how MSA extends existing work by classifying it within
our texture-space shading taxonomy.
• We address the question how an SU parametrization based on pre-

charting compares to an SU parametrization determined based on
online perspective projection to the current view.
• We investigate how image quality is influenced by the number of

primitives in an SU.
• We show that using large meshlets is advantageous for temporal

accumulation, temporal upsampling and run-time performance.
• We demonstrate that MSA outperforms existing methods in terms

of quality per shaded pixel.

2. Background

In recent years, TSS techniques mainly focused on efficient spatio-
temporal caching and reuse of shading information in order to
enhance applications such as streaming rendering, virtual reality,
or real-time global illumination. New TSS methods have clearly
brought advances in sampling efficiency, memory requirements and
image quality. Yet, it remains difficult to compare methods and to
reason about their specific benefits and drawbacks.

All texture-space rendering systems can be roughly divided into
four stages: visibility (a.k.a. geometry pre-pass), memory manage-
ment, shading and final image rendering. Among those, the visi-
bility stage is independent of the other stages, as it only serves to

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

Pre-charted

Texel Shading

Forward Shading

Variable Rate 
Shading

Shading Atlas

Pre-charted + Dynamic Size Perspective-corrected Perspective

Meshlet Shading Atlas (UV)

Orthographic

Less view-dependent SU Parametrization More view-dependent

SU Group Type 
and Capacity

(Larger ↓)

Pixel (1)

Pixel Tiles (8 x 8…)

Meshlet Shading 
Atlas (Orthographic)

Meshlet Shading 
Atlas (Perspective)

Tessellated Shading 
Streaming

Snake BinningPrimitives (1 - 3)

Primitives (> 3)

Figure 2: Texture-space methods can be characterized along two dimensions: The SU parametrization can be less or more view dependent,
and the SU group size can be larger or smaller. Because we must also distinguish by SU group type (pixel or primitive), the group size is
ambiguous – one primitive can be smaller than one pixel, although this is not usually the case. This observation explains why competing TSS
methods may or may not agree on performance comparisons, since results are dependent on the choice of primitives in the scene. Our new
family of methods, MSA, occupies the previously neglected space with large primitive counts and view-dependence in size or projection.

determine the relevant portion of the scene. In its simplest form,
it can just be an exact visible set of primitives or shading points,
but more sophisticated approaches can make use of visibility data
structures [HSS19b] or sample a potentially visible set [MVD*18].
Final rendering always samples the shading cache, but can otherwise
use arbitrary image synthesis approaches, be it forward rendering,
deferred rendering or ray-tracing. Hence, the two remaining stages,
memory management and shading, form the core of TSS techniques,
and we will discuss only these stages further here.

We have already identified SU grouping and SU parametrization
as the two key parameters that characterize a TSS technique. We use
these two parameters as the dimensions of a taxonomy that lets us
classify existing techniques and identify gaps in the design space of
possible TSS techniques. This taxonomy is illustrated in Figure 2,
and we will refer to it in the following discussion.

The SU grouping, arranged along the vertical axis in the figure,
can either be done on shading points or on primitives. Both types
of SU need to be given a contiguous array of pixels in the shading
cache. Hence, we require a suitable SU parametrization from shad-
ing points to cache entries. The SU parametrization, arranged along
the horizontal axis in the figure, can be roughly subdivided into meth-
ods that use pre-charting and methods that use a view-dependent
projection. Pre-charting can be completely view-independent, but it
can also enforce a pixel budget in the shading cache based on a view-
dependent size estimate of the SU. Perspective projection methods
are view-dependent by definition, but we can further distinguish
methods that use a pure perspective projection and methods that
try to strike a compromise between view-independence and view-
dependence to facilitate better reuse (labeled “perspective-corrected”
and “orthographic” in the figure).

Techniques using forward rendering occupy the top right corner,
corresponding to pure perspective projections of single pixels in the
image space of the final view. This choice has the lowest overhead
and no overshading. It is also the configuration used in multi-sample

anti-aliasing [Ake93] and temporal anti-aliasing [YLS20]. Multi-
sample anti-aliasing can be interpreted as a TSS technique if we
count sub-pixel coverage samples as an SU grouping. Along similar
lines, temporal anti-aliasing can be interpreted as a TSS technique
if we count reverse reprojection [NSL*07] as an SU parametriza-
tion. Variable-rate shading (VRS) [HGF14] is another technique
relying on pure perspective projection, applied on an SU group size
slightly larger than a single pixel (e.g., 16× 16 pixels). It adapts
the number of shader invocations across image space according to
a user-specified value per screen tile. VRS is useful in applications
such as lens-distortion compensation for virtual reality headsets or
content-aware blurring.

Pre-charting is favorable if the scene has been authored using
globally non-overlapping texture coordinates. In our taxonomy, pre-
charting occupies the spot on the top left. The most prominent TSS
technique in this space is texel shading (TS) [HY16], which operates
on tiles (i.e., SU groupings) of 8×8 pixels in the pre-charted UV
space. A first geometry pass determines which shading points are
visible and marks the corresponding SU and mip level. A second
pass determines the shading for the marked SU set, stored at the
right mip level. A third pass computes a final image by sampling
the shading cache with trilinear interpolation. To handle trilinear
interpolation correctly, the shade queuing pass needs to account for
borders in UV islands by using conservative rasterization, and it
needs to mark all tiles that will be required by the trilinear filter
during display. The pre-charting of TS consumes a large amount
of memory, especially if the texture-space needs to be unwrapped
onto multiple layers for overlapping UV maps. However, hardware
support for sparse textures could potentially be utilized to reduce
memory pressure. Although there is considerable reuse between
samples, the main cause of overshading in TS is that each sample
with trilinear interpolation can potentially touch eight tiles. This
results in more overshading, even if only those texels would be
shaded that are absolutely necessary to generate the final image.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

Preprocessing Visibility Memory Management Shading Display

TransformCluster Shade Display

Figure 3: The MSA pipeline consists of 5 stages. First, preprocessing clusters large coherent groups of primitives into meshlets. During
run-time, visibility is determined per meshlet. Then, memory management is performed by considering space inside the texture atlas based on
the screen-space size of each meshlet. Afterwards, meshlets are shaded using mesh shaders and the previously determined parametrization.
Finally, the display stage can sample independently from the atlas. Working with meshlets, we make use of efficient mesh shaders throughout
the pipeline.

Small primitive sets as SU grouping are favorable for stream-
ing and for supporting extended periods of temporal amortization.
Among these TSS techniques, which can be found in the bottom
half of the table, are the shading atlas (SA) [MVD*18], tessellated
shading streaming [HSS19a], and snake binning [HSS21]. Rather
than pre-charting the whole scene with unique coordinates, the pre-
processing used in these techniques just breaks down the scene into
groups consisting of a few primitives. At runtime, a visibility pre-
pass determines the visible SU set and a size for each SU. From
the visible set, a memory management pass determines each SU
parametrization to generate a densely packed chart. The shading
pass uses this SU parametrization to fill the shading cache. The ra-
tionale of this type of approach is that spatially coherent primitives
represent a natural grouping of pixels, making groups of primitives
more memory efficient than groups of pixels. The disadvantage is
that grouping triangles of different sizes or shapes may cause various
sampling problems.

The shading atlas (SA) [MVD*18] is a TSS technique that specifi-
cally targets compactness and temporal coherence. Its groups consist
of 1−3 triangles. For each visible SU, a rectangular area of suitable
size in the shading cache is determined, which is entirely filled with
shading points of the SU primitives. For final rendering, a half-pixel
offset within each block is used to enable bilinear sampling. The
simple and efficient SU parametrization comes at the price of a
disregard for perspective effects. If primitives within an SU require
different sample distributions or sizes, SA tends to produce over-
or undersampling artifacts. The major benefit of SA is that the SU
parametrization must only be updated after a significant change in
image-space size, an optimal behavior for temporal coherence and
video encoding.

Tessellated shading streaming [HSS19a] uses a single primitive
as its SU grouping. Inspired by non-standard texture-space represen-
tations such as Ptex [BL08] and Mesh Color Textures [Yuk17], it
exploits the hardware tessellation stages to improve sampling and
packing efficiency by uniformly sampling near-equilateral triangles.
Samples are adjusted based on a perspective correction to prevent
sampling artifacts for non-uniform triangles. For slanted triangles,
the authors propose an oversampling approach, splitting these trian-
gles into two right-angled triangles and conservatively oversampling

them by 25% to 35%. Compared to SA, tessellated shading stream-
ing incorporates perspective information more strongly into its SU
parametrization. Most of its overshading comes from increasing the
border of individual triangles to support bilinear sampling and from
the handling of slanted triangles.

Snake binning (SB) [HSS21] takes the ideas of tessellated shading
streaming further towards a fully perspective SU parametrization.
To obtain a tightly packed shading cache, triangles are binned in to
two dimensions: the image-space height and the angle adjoining the
longest edge. This binning enables dense packing in texture space
after a simple rotation of the triangles. A hysteresis is applied to
the binning to ensure a sufficient amount of temporal coherence
across frames. The main downside of SB is that temporal coherence
breaks down if its bins overflow, making it necessary to reserve
a substantial amount of empty space. Its sampling errors mostly
come from the discrete binning, which introduces minor distortions
if the geometry does not fully match the bin size. Furthermore,
large bins are very sparsely filled. Finally, bilinear sampling of
isolated triangles requires conservative rasterization with significant
overshading.

Figure 2 reveals that the bottom area, i.e., TSS with SU groupings
of more than a handful of primitives, has not been explored so far.
In the next section, we will present a method that relies on groups
of up to 84 triangles, and can leverage special hardware support in
the form of mesh shaders for additional acceleration.

3. Meshlet shading atlas

Approaches using small shading units either trade compactness and
temporal coherence for sampling distortion, such as the shading
atlas (SA), or they favor low amounts of distortion at the cost of
overshading many individual triangles, such as snake binning (SB).
A remedy is to use larger groups, which reduces overshading while
keeping distortion low. To this end, we propose a novel texture-space
shading approach, the meshlet shading atlas (MSA). It is optimized
to take advantage of modern GPU hardware by grouping many prim-
itives into a meshlet. Compared to individual primitives, meshlets
have a much better ratio of border to interior area, leading to a sub-
stantial reduction of overshading owed to the need for redundant

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

(a) Forward shading (b) Naively clustered (c) Extended Garland (d) Concave (e) Non-uniform size (f) Overlapping (g) Uniform size

Figure 4: We use hierarchical clustering of primitives into meshlets. (b) A naive clustering may greedily group meshlets and produce
suboptimal layouts after mapping them into texture space. (c) Our extended Garland [GWH01] approach favors uniform meshlets that do not
vary significantly in their surface normals. (d, e, f) A naive approach cannot account for special cases that lead to meshlets that can exhibit
sampling issues or wasted memory under various parametrizations. (g) Ideally, uniformly clustered meshlets (as targeted by our clustering
approach) utilize the space inside the atlas efficiently and are well behaved for arbitrary parametrizations.

pixels at the border of an SU. At the same time, MSA preserves
the benefits of temporal coherence, caching and upsampling that
we have observed for methods based on small primitive sets. As
the final SU parametrization is determined at runtime, we have the
opportunity to combine view-dependent projection and pre-charting
to keep distortion low. The SU packing of MSA extends the memory
management of rectangular power-of-two-sized blocks proposed by
SA, but replaces its SU grouping (1− 3 triangles in a rectangular
block) with SU handling at meshlet granularity. This decision lets
us speed up all relevant stages of the pipeline by relying on mesh
shaders [NVI18] for memory management, shading and display.

The full MSA pipeline is shown in Figure 3. In a preprocessing
pass, performed once per scene, it gathers spatially coherent mesh-
lets of up to 84 triangles as recommended for current GPU hardware.
In the visibility pass, it renders a visibility buffer [BH13] at meshlet
granularity. For framerate upsampling and streaming, it predicts one
or multiple future camera poses and combines the visibility results.

The memory management operates on rectangular blocks with
power-of-two sizes that are allocated and deallocated in parallel.
These blocks are managed within power-of-two wide columns in-
side square superblocks. Each superblock can contain blocks of a
specific width and variable height. The memory management com-
mences in three steps. First, all previously visible meshlets that
are now invisible are deallocated, freeing up their slots within the
superblock and potentially deallocating empty superblocks. Second,
for each visible meshlet, we determine its texture-space block size by
modifying the level selection pass of the original SA [MVD*18] to
account for meshlets. We describe in Section 3.2 how the block sizes
and SU parametrization for meshlets are determined. The resulting
target block size is then slightly increased to account for bilinear
sampling and can be biased to meet a specific shading budget. Fi-
nally, we allocate one rectangular block for each visible meshlet
based on the previously determined size.

The shading pass iterates over the shading cache and invokes the
fragment shader for every texel of each visible meshlet. Shader im-
age footprints [NVI18] could be used at this point to further reduce
the overshading, but only if temporal accumulation, frame-to-frame
caching or novel view generation are not required. The display pass
renders all visible meshlets to the current view with bilinear sam-

pling from the shading cache, using the SU parametrization that was
determined during the memory management stage. This provides
a flexible, effective solution to combine efficient temporal caching
and upsampling, while avoiding sampling errors and overshading
caused by an SU that is too small.

3.1. Meshlet generation

A good meshlet generation ensures that the resulting meshlets can
be mapped into the atlas with as little distortion as possible, while
being agnostic to the actual parametrization. Ideal meshlets are flat
to prevent overshading of backfaces; their borders should be as
convex as possible to avoid wasting space in the atlas, and they
should not overlap themselves after perspective projection.

An ideal geometric pipeline for the MSA would include levels of
detail (LOD) that contain optimized meshlets for specific viewing
distances.However, for simplicity, we first preprocess the scene ge-
ometry globally without LOD (using a maximum edge length of 0.1
units in world space), ensuring that the geometric resolution is fine
enough such that grouping triangles does not produce meshlets that
exceed the maximum block size in texture space. This establishes a
baseline that follows the trend of modern micropolygon real-time
rendering content.

Second, we generate our meshlets by applying a modified version
of the hierarchical clustering proposed by Garland et al. [GWH01].
This clustering method first constructs a dual graph, where each
node corresponds to a face cluster, and edge contractions within
this graph correspond to merging two clusters. During clustering,
a greedy optimization scheme assigns each potential merge a cost
depending on the geometric properties of the merged cluster. We
modify this cost function to prioritize more important properties for
our meshlets, and our final cost function is defined as follows:

C = α ·E f it +β ·Edir + γ ·Eshape +δ ·Ecount . (1)

E f it , Edir and Eshape are the original error measures introduced by
Garland et al. that describe the flatness, orientation and compact-
ness of the resulting cluster, respectively [GWH01]. Ecount is an
additional term that encourages cluster merges to target the maxi-
mum meshlet sizes, which will bias otherwise equal merges towards

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

larger meshlet sizes. From initial experiments, α = 1, β = 8 and
γ = 0.5 produced the most reliable results in our scenes. With these
parameters, the optimizer will primarily prefer merging clusters that
do not fold back onto themselves, with flatness and meshlet size
being secondary criteria. However, the cost function alone does not
preclude merging of clusters with strongly different orientations if
the clustering runs out of alternatives. Therefore, we impose an ad-
ditional hard constraint that clusters with large difference in average
normal vectors must not be merged, which we tuned experimentally
on our scenes. Large groups (more than 50 triangles) are not merged
if the cluster normals deviate by more than 60 degrees. For smaller
merges, this criterion is less strict, and merges with fewer than 10
triangles are permitted a deviation up to 90 degrees in their cluster
normals. An example result of our clustering process and examples
for the decision criteria of the clustering algorithm are shown in
Figure 4. This clustering procedure only needs to be done once per
scene, and the resulting hierarchy can be used to generate meshlets
of various target sizes.

3.2. Meshlet parametrization

No single SU parametrization can lead to an optimal sample distri-
bution for all possible views. This observation is independent of the
SU type, be it groups of shading points or groups of primitives. Nei-
ther the mip-mapped 8×8 tiles of TS nor the combination of 1−3
triangles into power-of-two-sized rectangles used in SA is distortion-
free from arbitrary viewpoints. This raises the question on what SU
parametrization works best for the meshlets of MSA. We investi-
gate three different ways of determining the SU parametrization:
perspective projection, pre-charting and orthographic projection.

Perspective projection A straight-forward choice for determining
texture coordinates is to use a standard perspective projection from
the current point of view. In terms of image quality, the result is
optimal for the given viewpoint, and deteriorates in a manner pro-
portional to the displacement of a new viewpoint from the current
one. While such a proportional response is generally desirable, the
sampling density is also proportional to the angle between the nor-
mal at a shading point and the view vector. Near the silhouette in
the current view, undersampling may deteriorate the image quality
even for small viewpoint displacements, and disocclusion artifacts
may occur if the silhouette crosses the interior of the meshlet. We
determine the texture-space block size for each meshlet based on its
clipped image-space bounding box to ensure that the sample place-
ment is as close as possible to the image-space sample placement.
Unfortunately, a small performance penalty must be expected from
the need to perform clipping inside the shader, since we cannot use
hardware clipping when our render target is the shading cache and
not a framebuffer corresponding to the current view.

Pre-charting Instead of defining a perspective parametrization on
the fly, we can rely on a pre-charted parametrization per meshlet. Es-
sentially, this combines MSA with a texel shading (TS) parametriza-
tion to achieve a more view-independenent result. Among the vast
amount of surface parameterization methods [FH05], we chose least
squares conformal maps (LSCM) [LPRM02], since it comes clos-
est to our idea of a view-independent, yet largely distortion-free
parametrization. We first determine an initial texture-space block

size via screen-space edge lengths [MVD*18]. To calculate the scale
of the final transformation that is used to allocate the meshlet, we
combine this initial block size with the bounding box and area of
the pre-computed UV chart. This optimizes the allocated memory
individually also for UV charts that do not perfectly utilize their
individual UV space.

Orthographic projection To mitigate the undersampling near the
silhouette, we would prefer a “weaker perspective” projection which
is less sensitive to the surface orientation. One can imagine how the
image of a meshlet changes if the camera is not close to the meshlet,
but rather a zoom lens with a large optical power is used. We simu-
late this type of parametrization using an orthographic projection,
with the camera looking towards the meshlet center. We compute the
texture-space block size based on the maximum subtended angle be-
tween the meshlet center and all meshlet vertices. This parametriza-
tion attempts to strike a compromise between view-independent
pre-charting and view-dependent perspective parametrization. How-
ever, it obviously introduces some distortion with respect to either
of the previous two parametrizations. In ideal cases, where meshlets
are completely flat and perspective effects are minor, this could
potentially be a useful view-agnostic parametrization.

All three types of parametrizations operate in a common frame-
work: First, each transformed meshlet is rotated according to its
oriented bounding box (using the gift wrapping algorithm [Jar73])
to get an axis-aligned bounding box of minimal size in landscape
orientation. This rotation can directly be baked into any precom-
puted mapping parametrization. If necessary, the scale component
of the SU parametrization can be biased by the available memory
in the texture atlas or to limit the number of fragment shader invo-
cations. Moreover, we use a dilation filter to add a one pixel border
necessary for bilinear filtering. Trilinear filtering is not expected to
enhance quality if we can choose the size of each meshlet in the
shading cache individually, which reduces overshading if meshlets
are neither too large nor too small in image space. The final SU
parametrization is used to determine a power-of-two texture-space
block size in the shading cache. Once this parametrization is deter-
mined, it can be kept temporally coherent for multiple frames as
required.

4. Evaluation

We compare the different versions of MSA—MSA with perspec-
tive projection (MSA-P), MSA with pre-charting (MSA-UV) and
MSA with orthographic projection (MSA-O)—against a selection
of texture-space shading methods (see Section 2) as well as against
standard forward rendering with a depth prepass.

Texel shading Our TS implementation uses 8× 8 tiles in the
pre-charted UV space with a total of five mip levels and trilinear
filtering. To support overlapping UV spaces, we use layered
rendering to make the UV space unique on a per-triangle basis
without modifying the original UV layout. As TS with 8×8 tiles is
prone to overshading, we also evaluate against a variant that only
shades individual pixels (TS-1).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

Shading atlas We configure SA to use a generous atlas size of 128
megapixels, allowing for large superblocks of 2048×2048 pixels
to prevent SA from being limited by its maximum block size. These
conditions let us focus specifically on the distortion introduced by
its blockwise mapping into the atlas.

Meshlet shading atlas For MSA, we use a similar atlas size of
128 megapixels and a superblock size of 2048× 2048 pixels. We
evaluate the three parametrizations discussed in Section 3: MSA-P,
MSA-UV and MSA-O.

4.1. Evaluation setup

Test scenes We test on three scenes containing physically-based
materials [Sch94] and animated lighting and models to evaluate
both SA and MSA. Robot Lab uses the stock materials, lights and
animations provided in the Unity sample scene, including a light
shining through a rotating fan and multiple moving robots. Sponza
(Crytek) was extended by animated, colored spotlights as well as an-
imated falling boulders that provide a challenging scenario in terms
of shading and visibility. Space is a custom scene built from assets
that are freely available on the Unity Asset Store, and showcases a
platform in space, with flying asteroids and space ships, as well as
challenging animated lighting and high-frequency metallic textures.
To properly evaluate TS, we use slightly modified versions of two
scenes, Robot Lab-texel and Space-texel. Both scenes were altered
so that their TS footprint fits into 24 GB of video memory. We also
evaluate all other approaches on these modified scenes. In all scenes,
large triangles are subdivided to provide optimal conditions for both
SA and MSA, see Figure 1 for a visualization of the geometric
resolution when grouped into meshlets. For each scene, we evaluate
four different camera setups, including two dynamic camera paths
and two static camera positions for a total of 900 frames at 60 Hz.

Comparison setup We compare all shading methods against a for-
ward renderer with 4× supersampling in terms of quality, shader
invocations and overshading (OS). We compute overshading indi-
vidually for each texture-space method by counting the amount of
accessed texels during display, versus the amount of shaded texels—
this enables us to judge the sample efficiency given frame-by-frame
shading. We roughly bias all methods towards a shading budget
of 1920×1080 samples, either by decreasing the bounding box or
block size of the SU (SA, MSA) or by adding a positive mip level
bias (TS). This bias is computed by measuring the average shader
invocations without bias in a calibration run through the scenes. We
measure the quality of each approach by computing FLIP [ANA*20]
and LPIPS [ZIE*18] metrics against the supersampled forward ren-
derer.

We also evaluate the temporal amortization capabilities of each
renderer. We run each scene with a constant temporal upsampling
rate, where only every n-th frame contains updated shading and
animations, and intermediate frames are generated by sampling
from the texture-space representation. In this temporal amortiza-
tion experiment, we simulate a server-client streaming setup with
perfect visibility prediction for the next n frames. We evaluate tem-
poral upsampling rates of n ∈ {4,8,16} on all dynamic camera
paths, and bias all renderers towards an increased shading budget

of 2×1920×1080 samples. Thus, we can determine the temporal
amortization capabilities of each approach, while still allowing for
a higher shading budget to make up for the temporal reuse and
resampling of shading information.

System setup All tests were run on a workstation with an NVIDIA
RTX 3090 GPU with 24 GB of video memory and an Intel Core
i7-8700K CPU with 32 GB of system memory.

4.2. Optimal primitive count in meshlets

To determine the optimal number of triangles per meshlet, we first
perform a small ablation experiment on some selected scenes. For
each scene described in Section 4, we choose an animated camera
path and evaluate the maximum number of triangles per meshlet
in the range of [1,4,16,40,84]. We bias the shader invocations of
each method to 1920×1080 pixels, and measure FLIP [ANA*20]
and LPIPS [ZIE*18] for MSA using perspective (MSA-P), pre-
charted (MSA-UV) and orthographic (MSA-O) parametrizations.
Furthermore, to show the effect of meshlet sizes on run-time perfor-
mance, we also compare timings of all stages of MSA-UV against
the original SA.

The quality results of the meshlet-size ablation can be seen in
Table 1. Both FLIP and LPIPS clearly show that larger meshlet sizes
lead to improved quality at a fixed shading budget. This matches the
expectation that smaller groups of meshlets require more samples
at the borders to enable bilinear sampling, which results in overall
worse quality when the shading budget is limited. MSA-UV benefits
the most from larger meshlet sizes, while MSA-O benefits the least.
For MSA-O, this can be explained by triangles that overlap unfa-
vorably after projection, and thus smaller meshlets achieve similar
quality even though the overshading due to additional boundary
pixels is higher for small meshlets. As it showed the best overall
image quality, we only consider the maximum meshlet size of 84
throughout the rest of our evaluation.

In terms of run-time performance, Table 2 clearly shows that
small meshlet sizes are suboptimal, especially for texture-space
memory management. Compared to SA, MSA-UV at a maximum
meshlet size of 84 shows a 4.72× speedup when allocating and deal-
locating blocks in texture space, as well as a 2.18× speedup when
determining the optimal block sizes. This speedup is optimal across
our tested meshlet sizes—both larger and smaller meshlet sizes re-
duce the achieved speedup. Very small meshlet sizes (such as 1, 4
or 16) show up to 3−7× worse performance across all stages, with
the shading stage being impacted the most. Small groups of prim-
itives are more suited towards traditional geometry pipelines and
need specific tuning to achieve optimal performance. Furthermore,
our implementation also does not benefit from even larger meshlet
sizes. During shading, MSA-UV shows slight overheads compared
to the original SA, which are mostly due to the usage of conservative
rasterization. Finally, in the display stage, MSA-UV outperforms
SA with as few as 16 triangles per meshlet. Overall, our prototype
implementation of MSA-UV outperforms SA at meshlet sizes larger
than 84 both in terms of quality and run-time performance.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

(a) Reference
(4× SSAA)

(b) Forward (c) MSA-O (d) MSA-P (e) MSA-UV (f) SA (g) TS

Figure 5: Qualitative comparison of all shading methods in the Space-texel scene. Among the texture-space methods, MSA-UV achieves the
closest result compared to the reference. All other methods blur the fine high-frequency texture and shading details in this scene.

(a) Reference
(4× SSAA)

(b) Forward (c) MSA-O (d) MSA-P (e) MSA-UV (f) SA (g) TS

Figure 6: Qualitative comparison of all shading methods in the Robot Lab-texel scene. All methods perform very well, as this scene contains
mostly low-frequency texture detail and shading. MSA-UV, MSA-P and SA manage to achieve slightly sharper textures, with MSA-O and TS
being slightly blurrier in comparison.

Table 1: FLIP and LPIPS results averaged across three represen-
tative paths in Robot Lab, Space and Sponza to evaluate differing
maximum triangle counts per meshlet. At a limited shading bud-
get, larger meshlet sizes show improved quality, suggesting that the
sampling error and overshading is reduced for larger meshlets.

MSA-O MSA-P MSA-UV
Meshlet Size FLIP LPIPS FLIP LPIPS FLIP LPIPS

1 .061 .241 .059 .235 .061 .255
4 .054 .192 .053 .189 .049 .176
16 .054 .195 .052 .181 .049 .176
40 .054 .193 .051 .177 .048 .167
84 .053 .193 .049 .170 .047 .170

Table 2: Timings in milliseconds for all stages of MSA-UV and
SA. MSA-UV-N denote the timings for a variety of meshlet sizes
N. Overall, MSA-UV outperforms the original SA at meshlet sizes
larger than 84 in terms of memory management, while incurring
slight overheads during shading due to conservative rasterization.

Renderer
Block
Size

Block
(De-)Alloc. Shading Display Total

MSA-UV-1 .151 .355 7.488 .275 8.269
MSA-UV-4 .075 .156 6.408 .141 6.781

MSA-UV-16 .044 .081 5.852 .071 6.047
MSA-UV-40 .030 .055 5.852 .058 5.997
MSA-UV-84 .022 .036 5.713 .058 5.829

MSA-UV-126 .023 .039 5.740 .058 5.859

SA .048 .170 5.623 .092 5.932

MSA-UV-84
vs. SA (Speedup) 2.180 4.716 .984 1.583 1.018

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

Table 3: We evaluate all methods by comparing them in terms of quality (FLIP and LPIPS) and overshading (OS) at a limited shading budget
of 1920×1080 pixels. Across all our scenes, the MSA methods are the best performing texture-space methods, performing almost as well as
the forward renderer. Although MSA-UV exhibits slightly more overshading compared to MSA-P and SA, it still achieves the best quality,
suggesting that its quality per shaded pixel is higher due to a more suitable mapping into texture-space. Both TS and TS-1 fall behind the
competing texture-space methods, as these approaches either show significant overshading (TS) or require explicit mip mapping (TS-1), which
results in lower image quality at a fixed shading budget.

Robot Lab Space Sponza Robot Lab-texel Space-texel Average

Renderer FLIP LPIPS OS FLIP LPIPS OS FLIP LPIPS OS FLIP LPIPS OS FLIP LPIPS OS FLIP LPIPS OS

Forward .028 .107 - .062 .078 - .038 .078 - .023 .054 - .066 .085 - .043 .074 -

MSA-O .035 .185 1.150 .075 .172 1.357 .050 .203 1.232 .030 .116 1.103 .073 .127 1.183 .052 .143 1.205
MSA-P .035 .178 1.078 .070 .140 1.032 .047 .178 1.041 .029 .105 1.047 .071 .118 1.072 .050 .128 1.054
MSA-UV .032 .157 1.175 .068 .155 1.348 .048 .191 1.250 .026 .086 1.115 .063 .101 1.170 .047 .123 1.212
SA .037 .193 1.022 .074 .166 1.068 .048 .188 1.054 .029 .107 1.015 .071 .127 1.043 .052 .139 1.041
TS - - - - - - - - - .051 .249 3.031 .117 .192 3.884 .084 .175 3.457
TS-1 - - - - - - - - - .032 .119 1.000 .087 .125 1.000 .059 .101 1.000

4.3. Image quality

The results in Table 3 show that MSA comes closest towards match-
ing the quality of forward rendering at a fixed shading budget.
Among the tested texture-space methods, MSA-UV achieves the
highest quality, followed closely by MSA-P. MSA-O suffers from
the fact that an orthographic projection differs too much from the
required sample distribution during display, even for well-behaved
meshlets. SA performs surprisingly well, given that it tends to pro-
duce blurring artifacts if triangles of different sizes are matched
within blocks [MVD*18; HSS21]. We attribute this finding to the
near-optimal geometric resolution in our scenes—triangles are suf-
ficiently subdivided such that they can be mapped into rectangu-
lar blocks very efficiently. Finally, TS achieves the worst quality
throughout all scenes. In contrast to its competitors, which directly
choose a size per SU, TS needs to explicitly shade all the required
texels for trilinear filtering in two mip levels, which significantly
increases the total shading load, resulting in much lower quality
when biased towards a fixed shading budget. The same result can
also be seen when shading individual texels instead of tiles (TS-1),
where the requirement for explicit shading of mip levels still results
in overall worse quality at a limited shading budget.

Figures 5 and 6 showcase cropped images and FLIP results from
the Space-texel and Robot Lab-texel scenes. Space-texel (Figure 5)
shows noticeable shading aliasing, which can vary significantly
depending on the sample distribution in texture space. All tested
methods (including the standard resolution forward renderer) blur
the final result too much, with TS being completely blurry due to
the limited shading budget. MSA-UV better replicates the high-
frequency texture detail compared to all the other methods, as it
allocates slightly more space based on its pre-charted layout. In
Robot Lab-texel (Figure 6), all methods fare very well due to the
low-frequency nature of the scene. Most textures are low-frequency,
and there is no high-frequency lighting or animation present in this
scene. Still, we observe that MSA-UV shows the most faithful repre-
sentation compared to the reference, with SA and MSA-P following
closely. TS also handles this scene well, despite the significant bias
to fit the shading budget.

4.4. Overshading

For each TSS method, we compute the overshading (OS) as the ratio
between shaded pixels and pixels that are used to generate the final
image. Ignoring TS-1 (which only shades the exact number of pixels
necessary for final display), the overshading results in Table 3 show
that SA exhibits the least amount of overshading. We attribute this
to the well-behaved geometric resolution of our scenes—if triangles
can be packed efficiently into blocks at almost correct resolution,
SA operates at optimal conditions. Furthermore, since SA only uses
1−3 triangles per SU, it only shades a small portion of occluded or
out-of-view samples. The MSA variants occupy the second place,
with MSA-P exhibiting less overshading than MSA-UV, followed by
MSA-O. Its use of a perspective parametrization suggests that MSA-
P is efficient in terms of overshading, as it clips away a majority of
invisible texels that would lie outside the view frustum, and maps the
meshlets with the same parametrization that is used in the current
view. In contrast, the pre-charted layouts of MSA-UV can generate
more overshading for partially invisible geometry, as full meshlets
are shaded as a unit, even if only a single triangle is visible. The
mesh shaders could be modified to discard fully invisible triangles
within meshlets, further increasing quality for single frame rendering
as it lowers the bias. However, this would diminish the support for
temporal accumulation and novel view generation, where shading
primitives that are slightly out of view must be rendered. MSA-O
suffers from the same problem, as it shades all triangles of each
partially visible meshlet. Since it is not as optimized with respect
to the texture layout as MSA-UV, it produces worse image quality
at similar amounts of overshading. Overall, even though MSA-UV
exhibits more overshading compared to MSA-P, it is more robust to
resampling its texture-space layout to fit into lower shading budgets,
resulting in MSA-UV achieving better quality compared to MSA-P
on average. Finally, TS shows the most amount of overshading, with
most of it attributed to the 8×8 tiles that need to be shaded for each
texel that is required by the final display pass. With trilinear filtering,
this can result in a potential 8 tiles that need to be shaded for a
single output pixel if viewing angles are very oblique or only a small
part of the texture is visible on screen. At worst, this can require
512(= 8 ·8 ·8) shaded texels for a single output pixel, though this
extreme case is unlikely in practice.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

4.5. Temporal amortization

When keeping shading information over multiple frames and sam-
pling from different novel views, view agnostic parametrizations
have a clear advantage over perspective parametrizations that are
tailored towards a specific view. This can be seen in Table 4—at all
upsampling rates, MSA-UV achieves the best quality. Compared
to the results without temporal upsampling, MSA-O even outper-
forms MSA-P on all upsampling rates, suggesting that the more
view-independent orthographic projection is slightly more suitable
compared to a reference perspective projection if shading results
are reused over multiple frames. The SA performs almost as well
as MSA-O in FLIP, but fares slightly worse in LPIPS—suggesting
that it is also well suited for temporal upsampling, but still suffers
from its inherent sampling issues due to the fixed rectangular layout,
reducing image quality. Finally, even with an increased shading bud-
get, TS shows the worst quality in the temporal upsampling use case.
Even though its texture-space mapping is completely view-agnostic,
its inherent overshading still results in quality degradation at a fixed
shading budget.

Table 4: Across various temporal upsampling factors n, the MSA
variants achieve the best image quality. MSA-UV benefits the most
from its view-agnostic mapping, which lends itself well to temporal
upsampling. Furthermore, orthographic projection (MSA-O) en-
ables higher quality upsampling compared to perspective projection
(MSA-P), as it is not as affected by sample distortion over time. Even
with an increased shading budget, the inherent overshading of TS
reduces its effectiveness for temporal upsampling.

n = 4 n = 8 n = 16
Renderer FLIP LPIPS FLIP LPIPS FLIP LPIPS

MSA-O .045 .098 .049 .102 .056 .113
MSA-P .047 .105 .051 .111 .061 .126
MSA-UV .041 .080 .045 .084 .052 .094
SA .048 .117 .051 .122 .058 .130
TS .061 .099 .065 .105 .072 .112

5. Limitations, conclusion and future work

Based on existing work, we showed that texture-space methods
can be primarily identified by the grouping and parametrization
of shading units. We derived a taxonomy of texture-space shading,
which is a useful tool to analyze the benefits and drawbacks of
texture-space shading methods. By observing a gap in this taxon-
omy, we motivated a texture-space shading approach that is able
to use arbitrary parametrizations on large groups of primitives: the
meshlet shading atlas (MSA). We showed that it is beneficial for
the final image quality to group as many primitives as possible into
meshlets, and when compared to existing texture-space shading
methods, the MSA achieves better quality at the same shading bud-
get. Furthermore, when reusing shading information over multiple
frames, we demonstrated that using pre-charted LSCM maps en-
ables a high-quality view-agnostic mapping into texture space. Even
without temporal reuse, pre-charted meshlets result in high quality,
likely because charting meshlets separately results in less distortion
compared to charting a whole mesh at once. Finally, we show that

even a simple perspective parametrization can be sufficient for high-
quality texture-space shading, without requiring precomputation of
charts. Overall, the MSA provides an elegant solution for various
texture-space shading problems, while being simple to integrate into
modern rendering systems. The main limitation of MSA is that its
effectiveness can depend on the geometric resolution and clustering
of the scene, especially for the orthographic and perspective vari-
ants. These variants can show disocclusion artifacts within projected
meshlets if the camera view changes. Furthermore, large-scale mesh-
lets might exceed the maximum block size in texture-space, and
can also result in more overshading if only a few of their primitives
are visible in the current view, as visibility is always handled on a
per-meshlet granularity. Although the amount of overshading for
MSA is comparable to existing work, if novel view generation is
not desired, invisible triangles can be culled in the mesh shader
to further reduce the amount of overshading. Additionally, these
considerations could be addressed by optimized levels of detail,
where the meshlet clustering pipeline produces meshlets that are
sized appropriately for any given viewing distance.

A second limitation of our initial prototype is the packing density
for streaming scenarios. MSA-UV achieves a packing density of
55% when scaling the meshlets to the allocated block size, mostly
due to the empty space of non-rectangular meshlets. However, for
streaming, due to the inherent temporal coherence of the MSA, it
would be possible to cut and pack the shading cache into MPEG-
block-sized pieces to achieve a more optimal packing density. The
MPEG-encoder could then efficiently encode the remaining empty
space, resulting in bitrates and encoding speeds that are similar to
image sequences only containing shaded pixels. Furthermore, we
could provide an empty-space mask to a custom encoder, such that
all non-shaded pixels could be completely ignored.

Thirdly, as the MSA directly inherits its block-based memory
management from the SA, it inherits some of its shortcomings. In
particular, applying a large bias towards the block sizes in texture
space can lead to visible popping artifacts if block sizes change
between neighboring powers of two. This is not noticable when
meshlets are shaded at their optimal size, and could also be reme-
died by lifting the power-of-two limitation on block allocation or
modifying the meshlet parametrization to smoothly scale when tran-
sitioning between block sizes under heavy bias.

Finally, MSA allows fine-grained control over the desired amount
of shader invocations. Individual triangles can be culled when not
needed; we can even use exact shader footprint determination to
shade only the required pixels for the final display pass. These
measures can be mixed and matched for individual pixels, individual
triangles or full meshlets.

To our knowledge, MSA is the first texture-space shading system
that transforms and shades large groups of primitives in texture
space. We believe that this approach will be an essential part of
modern rendering systems, and that the MSA provides an attractive
solution to the memory management and parametrization parts of
this pipeline.

Acknowledgment This work was supported by the Christian
Doppler Laboratory for Semantic 3D Computer Vision, funded
in part by Qualcomm Inc.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Neff et al. / Meshlets and How to Shade Them: A Study on Texture-Space Shading

References
[Ake93] AKELEY, KURT. “Reality Engine Graphics”. Proceedings of

the 20th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’93. Anaheim, CA: Association for Comput-
ing Machinery, 1993, 109–116. ISBN: 0897916018. DOI: 10.1145/
166117.166131. URL: https://doi.org/10.1145/166117.
166131 3.

[ANA*20] ANDERSSON, PONTUS, NILSSON, JIM, AKENINE-MÖLLER,
TOMAS, et al. “FLIP: A Difference Evaluator for Alternating Images”.
Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques 3.2 (2020), 15:1–15:23 7.

[BH13] BURNS, CHRISTOPHER A. and HUNT, WARREN A. “The Visibility
Buffer: A Cache-Friendly Approach to Deferred Shading”. Journal of
Computer Graphics Techniques (JCGT) 2.2 (Aug. 2013), 55–69. ISSN:
2331-7418. URL: http://jcgt.org/published/0002/02/
04/ 5.

[BL08] BURLEY, BRENT and LACEWELL, DYLAN. “Ptex: Per-Face Tex-
ture Mapping for Production Rendering”. Eurographics Symposium on
Rendering 2008. 2008, 1155–1164 4.

[Epi21a] EPIC GAMES. Lumen Technical Details. Visited on September
01, 2021. 2021. URL: https://docs.unrealengine.com/5.0/
en-US/RenderingFeatures/Lumen/TechOverview/ 2.

[Epi21b] EPIC GAMES. Nanite Virtualized Geometry. Visited on September
01, 2021. 2021. URL: https://docs.unrealengine.com/5.0/
en-US/RenderingFeatures/Nanite/ 2.

[FH05] FLOATER, MICHAEL S. and HORMANN, KAI. “Surface Parameter-
ization: a Tutorial and Survey”. Advances in multiresolution for geometric
modelling. Ed. by DODGSON, N. A., FLOATER, M. S., and SABIN, M. A.
Springer Verlag, 2005, 157–186. URL: http://vcg.isti.cnr.it/
Publications/2005/FH05 6.

[GWH01] GARLAND, MICHAEL, WILLMOTT, ANDREW, and HECKBERT,
PAUL S. “Hierarchical Face Clustering on Polygonal Surfaces”. ACM
Press, 2001. ISBN: 1581132921 5.

[HGF14] HE, YONG, GU, YAN, and FATAHALIAN, KAYVON. “Extend-
ing the Graphics Pipeline with Adaptive, Multi-Rate Shading”. ACM
Trans. Graph. 33.4 (July 2014). ISSN: 0730-0301. DOI: 10.1145/
2601097 . 2601105. URL: https : / / doi . org / 10 . 1145 /
2601097.2601105 3.

[HSS19a] HLADKY, JOZEF, SEIDEL, HANS-PETER, and STEINBERGER,
MARKUS. “Tessellated Shading Streaming”. Computer Graphics Forum
(Proc. Eurographics Symposium on Rendering 2019) (2019). ISSN: 1467-
8659. DOI: 10.1111/cgf.13780 4.

[HSS19b] HLADKY, JOZEF, SEIDEL, HANS-PETER, and STEINBERGER,
MARKUS. “The Camera Offset Space: Real-time Potentially Visible Set
Computations for Streaming Rendering”. ACM Transactions on Graphics
(Proc. SIGGRAPH Asia 2019) 38.6 (2019). DOI: 10.1145/3355089.
3356530 3.

[HSS21] HLADKY, J., SEIDEL, H.P., and STEINBERGER, M. “Snake-
Binning: Efficient Temporally Coherent Triangle Packing for Shading
Streaming”. Computer Graphics Forum 40.2 (2021), 475–488. DOI:
https://doi.org/10.1111/cgf.142648. eprint: https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.
142648. URL: https://onlinelibrary.wiley.com/doi/
abs/10.1111/cgf.142648 4, 9.

[HY16] HILLESLAND, KARL E and YANG, JC. “Texel Shading”. Pro-
ceedings of the 37th Annual Conference of the European Association
for Computer Graphics: Short Papers. EG ’16. Goslar Germany, Ger-
many: Eurographics Association, 2016, 73–76. DOI: 10.2312/egsh.
20161018 3.

[Jar73] JARVIS, R.A. “On the identification of the convex hull of a finite
set of points in the plane”. Information Processing Letters 2.1 (1973), 18–
21. ISSN: 0020-0190. DOI: https://doi.org/10.1016/0020-
0190(73)90020- 3. URL: https://www.sciencedirect.
com/science/article/pii/0020019073900203 6.

[LD12] LIKTOR, GÁBOR and DACHSBACHER, CARSTEN. “Decoupled
Deferred Shading for Hardware Rasterization”. Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games. I3D
’12. Costa Mesa, California: Association for Computing Machinery,
2012, 143–150. ISBN: 9781450311946. DOI: 10.1145/2159616.
2159640. URL: https : / / doi . org / 10 . 1145 / 2159616 .
2159640 2.

[Liu20] LIU, EDWARD. DLSS 2.0 - Image Reconstruction for Real-time
Rendering with Deep Learning. 2020. URL: https://developer.
nvidia.com/gtc/2020/video/s22698-vid 1.

[LPRM02] LÉVY, BRUNO, PETITJEAN, SYLVAIN, RAY, NICOLAS, and
MAILLO T, JÉROME. “Least Squares Conformal Maps for Automatic Tex-
ture Atlas Generation”. ACM SIGGRAPH conference proceedings. Ed. by
ACM. July 2002. URL: http://www.loria.fr/publications/
2002/A02-R-065/A02-R-065.ps 6.

[MNV*21] MUELLER, JOERG H., NEFF, THOMAS, VOGLREITER, PHILIP,
et al. “Temporally Adaptive Shading Reuse for Real-Time Rendering and
Virtual Reality”. ACM Trans. Graph. 40.2 (Apr. 2021). ISSN: 0730-0301.
DOI: 10.1145/3446790. URL: https://doi.org/10.1145/
3446790 2.

[MVD*18] MUELLER, JOERG H, VOGLREITER, PHILIP, DOKTER, MARK,
et al. “Shading Atlas Streaming”. ACM Transactions on Graphics 37.6
(Nov. 2018). DOI: 10.1145/3272127.3275087 2–6, 9.

[NSL*07] NEHAB, DIEGO, SANDER, PEDRO V., LAWRENCE, JASON, et al.
“Accelerating Real-Time Shading with Reverse Reprojection Caching”.
Proceedings of the 22nd ACM SIGGRAPH/EUROGRAPHICS Symposium
on Graphics Hardware. GH ’07. San Diego, California: Eurographics
Association, 2007, 25–35. ISBN: 9781595936257 3.

[NVI18] NVIDIA. NVIDIA Turing GPU Architecture Whitepaper. Vis-
ited on September 01, 2021. 2018. URL: https://www.nvidia.
com / content / dam / en - zz / Solutions / design -
visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf 1, 2, 5.

[PZ17] PENNER, ERIC and ZHANG, LI. “Soft 3D reconstruction for view
synthesis”. Vol. 36. Association for Computing Machinery, Nov. 2017.
DOI: 10.1145/3130800.3130855 2.

[RLC*11] RAGAN-KELLEY, JONATHAN, LEHTINEN, JAAKKO, CHEN, JI-
AWEN, et al. “Decoupled Sampling for Graphics Pipelines”. ACM Trans.
Graph. 30.3 (May 2011). ISSN: 0730-0301. DOI: 10.1145/1966394.
1966396. URL: https : / / doi . org / 10 . 1145 / 1966394 .
1966396 2.

[Sch94] SCHLICK, CHRISTOPHE. “An Inexpensive BRDF Model for
Physically-based Rendering”. Computer Graphics Forum 13.3 (Aug.
1994), 233–246. DOI: 10.1111/1467-8659.1330233 7.

[YLS20] YANG, LEI, LIU, SHIQIU, and SALVI, MARCO. “A Survey of
Temporal Antialiasing Techniques”. Computer Graphics Forum 39.2
(2020), 607–621. DOI: https://doi.org/10.1111/cgf.14018.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.
1111/cgf.14018. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/cgf.14018 1, 3.

[Yuk17] YUKSEL, CEM. “Mesh Color Textures”. High-Performance Graph-
ics (HPG 2017). Los Angeles, CA: ACM, 2017. ISBN: 978-1-4503-5101-
0/17/07. DOI: 10.1145/3105762.3105780. URL: http://doi.
acm.org/10.1145/3105762.3105780 4.

[ZIE*18] ZHANG, RICHARD, ISOLA, PHILLIP, EFROS, ALEXEI A, et
al. “The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric”. CVPR. 2018 7.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1145/166117.166131
https://doi.org/10.1145/166117.166131
https://doi.org/10.1145/166117.166131
https://doi.org/10.1145/166117.166131
http://jcgt.org/published/0002/02/04/
http://jcgt.org/published/0002/02/04/
https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Lumen/TechOverview/
https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Lumen/TechOverview/
https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/
https://docs.unrealengine.com/5.0/en-US/RenderingFeatures/Nanite/
http://vcg.isti.cnr.it/Publications/2005/FH05
http://vcg.isti.cnr.it/Publications/2005/FH05
https://doi.org/10.1145/2601097.2601105
https://doi.org/10.1145/2601097.2601105
https://doi.org/10.1145/2601097.2601105
https://doi.org/10.1145/2601097.2601105
https://doi.org/10.1111/cgf.13780
https://doi.org/10.1145/3355089.3356530
https://doi.org/10.1145/3355089.3356530
https://doi.org/https://doi.org/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142648
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.142648
https://doi.org/10.2312/egsh.20161018
https://doi.org/10.2312/egsh.20161018
https://doi.org/https://doi.org/10.1016/0020-0190(73)90020-3
https://doi.org/https://doi.org/10.1016/0020-0190(73)90020-3
https://www.sciencedirect.com/science/article/pii/0020019073900203
https://www.sciencedirect.com/science/article/pii/0020019073900203
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://doi.org/10.1145/2159616.2159640
https://developer.nvidia.com/gtc/2020/video/s22698-vid
https://developer.nvidia.com/gtc/2020/video/s22698-vid
http://www.loria.fr/publications/2002/A02-R-065/A02-R-065.ps
http://www.loria.fr/publications/2002/A02-R-065/A02-R-065.ps
https://doi.org/10.1145/3446790
https://doi.org/10.1145/3446790
https://doi.org/10.1145/3446790
https://doi.org/10.1145/3272127.3275087
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1145/3130800.3130855
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1145/1966394.1966396
https://doi.org/10.1111/1467-8659.1330233
https://doi.org/https://doi.org/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14018
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14018
https://doi.org/10.1145/3105762.3105780
http://doi.acm.org/10.1145/3105762.3105780
http://doi.acm.org/10.1145/3105762.3105780

