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Abstract

We present a new bandit algorithm, SAO (Stochastic and Adversarial Optimal) whose regret is
(essentially) optimal both for adversarial rewards and for stochastic rewards. Specifically, SAO
combines the O(y/n) worst-case regret of Exp3 (Auer et al., 2002b) and the (poly)logarithmic
regret of UCB1 (Auer et al., 2002a) for stochastic rewards. Adversarial rewards and stochastic
rewards are the two main settings in the literature on multi-armed bandits (MAB). Prior work on
MAB treats them separately, and does not attempt to jointly optimize for both. This result falls into
the general agenda to design algorithms that combine the optimal worst-case performance with
improved guarantees for “nice” problem instances.

1. Introduction

Multi-armed bandits (henceforth, MAB) is a simple model for sequential decision making under
uncertainty that captures the crucial tradeoff between exploration (acquiring new information) and
exploitation (optimizing based on the information that is currently available). Introduced in early
1950-ies (Robbins, 1952), it has been studied intensively since then in Operations Research, Elec-
trical Engineering, Economics, and Computer Science.

The “basic” MAB framework can be formulated as a game between the player (i.e., the algo-
rithm) and the adversary (i.e., the environment). The player selects actions (“arms”) sequentially
from a fixed, finite set of possible options, and receives rewards that correspond to the selected
actions. For simplicity, it is customary to assume that the rewards are bounded in [0, 1]. In the ad-
versarial model one makes no other restrictions on the sequence of rewards, while in the stochastic
model we assume that the rewards of a given arm is an i.i.d sequence of random variables. The
performance criterion is the so-called regret, which compares the rewards received by the player to
the rewards accumulated by a hypothetical benchmark algorithm. A typical, standard benchmark is
the best single arm. See Figure 1 for a precise description of this framework.

Adversarial rewards and stochastic rewards are the two main reward models in the MAB lit-
erature. Both are now very well understood, in particular thanks to the seminal papers (Lai and
Robbins, 1985; Auer et al., 2002a,b). In particular, the Exp3 algorithm from (Auer et al., 2002b)
attains a regret growing as O(y/n) in the adversarial model, where n is the number of rounds, and
UCB1 algorithm from (Auer et al., 2002a) attains O(logn) in the stochastic model. Both results
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Known parameters: K arms; n rounds (n > K > 2).
Unknown parameters (stochastic model):

K probability distributions vy, . .., vk on [0, 1] with resp. means p1, . . ., k.
Foreachroundt =1,2,...,n;

(1) algorithm chooses I € {1,..., K}, possibly using external randomization;

(2) adversary simultaneously selects rewards g; = (914, - - -, gi.¢) € [0, 1]%.

- in the stochastic model, each reward g; + ~ v; is drawn independently.

(3) the forecaster receives (and observes) the reward gy, .
He does not observe the rewards from the other arms.

Goal: Minimize the regret, defined in the adversarial model by:

n n
Rn = rflaXK E 9it — E 91, ts
et K t=1

and in the stochastic model by:

R, = i) -
3 (ie{q%u u)

t=1

Figure 1: The MAB framework: adversarial rewards and stochastic rewards.

are essentially optimal. It is worth noting that UCB1 and Exp3 have influenced, and to some extent
inspired, a number of follow-up papers on richer MAB settings.

However, it is easy to see that UCB1 incurs a trivial £2(n) regret in the adversarial model, whereas
Exp3 has 2(y/n) regret even in the stochastic model.! This raises a natural question that we aim
to resolve in this paper: can we achieve the best of both worlds? 1s there a bandit algorithm which
matches the performance of Exp3 in the adversarial model, and attains the performance of UCB1 if
the rewards are in fact stochastic? A more specific (and slightly milder) formulation is as follows:

Is there a bandit algorithm that has O(y/n) regret in the adversarial model and polylog(n.)
regret in the stochastic model?

We are not aware of any prior work on this question. Intuitively, we introduce a new tradeoff:
a bandit algorithm has to balance between attacking the weak adversary (stochastic rewards) and
defending itself from a more devious adversary that targets algorithm’s weaknesses, such as be-
ing too aggressive if the reward sequence is seemingly stochastic. In particular, while the basic
exploration-exploitation tradeoff induces O(logn) regret in the stochastic model, and O(/n) re-
gret in the adversarial model, it is not clear a priori what are the optimal regret guarantees for this
new attack-defense tradeoff.

1. This is clearly true for the original version of Exp3 with a mixing parameter. However, this mixing is unnecessary
against oblivious adversaries (Stoltz, 2005). The regret of the resulting algorithm in the stochastic model is unknown.
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We answer the above question affirmatively, with a new algorithm called SAO (Stochastic and
Adversarial Optimal). To formulate our result, we need to introduce some notation. In the stochastic
model, let n; be the expected single-round reward from arm ¢. A crucial parameter is the minimal
gap: A = min;. 4, <, p* — p;, where p* = max; p;. With this notation, UCB1 attains regret
O(% log n) in the stochastic model, where K is the number of arms. We are looking for the follow-
ing: regret E[R,,] = O(v/Kn) in the adversarial model and regret E[R,,] = O(%) in the stochastic
model, where O(-) hides polylog(n) factors. Our main result is as follows.

Theorem 1 There exists an algorithm SAO for the MAB problem such that:
(a) in the adversarial model, SAO achieves regret E[R,] < O(vVnK log®?(n) log K).
(b) in the stochastic model, SAO achieves regret E[R,,] < O(% log?(n) log K).

Moreover, with very little extra work we can obtain the corresponding high-probability versions
(see Theorem 15 for a precise statement).

It is easier, and more instructive, to explain the main ideas on the special case of two arms and
oblivious adversary.” This special case (with a simplified algorithm) is presented in Section 3. Due
to the page limit, the general case is fleshed out in the Appendix.

Discussion. The question raised in this paper touches upon an important theme in Machine Learn-
ing, and more generally in the design of algorithms with partially known inputs: how to achieve a
good worst-case performance and also take advantage of “nice” problem instances. In the context of
MAB it is natural to focus on the distinction between stochastic and adversarial rewards, especially
given the prominence of the two models in the MAB literature. Then our “best-of-both-worlds”
question is the first-order specific question that one needs to resolve. Also, we provide the first
analysis of the same MAB algorithm under both adversarial and stochastic rewards.

Once the “best-of-both-worlds” question is settled, several follow-up questions emerge. Most
immediately, it is not clear whether the polylog factors can be improved to match the optimal guar-
antees for each respective model; a lower bound would indicate that the “attack-defence” tradeoff
is fundamentally different from the familiar explore-exploit tradeoffs. A natural direction for fur-
ther work is rewards that are adversarial on a few short time intervals, but stochastic most of the
time. Moreover, it is desirable to adapt not only to the binary distinction between the stochastic and
adversarial rewards, but also to some form of continuous tradeoff between the two reward models.

Finally, we acknowledge that our solution is no more (and no less) than a theoretical proof of
concept. More work, theoretical and experimental, and perhaps new ideas or even new algorithms,
are needed for a practical solution. In particular, a practical algorithm should probably go beyond
what we accomplish in this paper, along the lines of the two possible extensions mentioned above.

Related work. The general theme of combining worst-case and optimistic performance bounds
have received considerable attention in prior work on online learning. A natural incarnation of this
theme in the context of MAB concerns proving upper bounds on regret that can be written in terms
of some complexity measure of the rewards, and match the optimal worst-case bounds. To this end,
a version of Exp3 achieves regret O(\ /KG), where G}, < n is the maximal cumulative reward
of a single arm, and the corresponding high probability result was recently proved in Audibert and
Bubeck (2010). In Hazan and Kale (2009), the authors obtain regret O(\ /KV¥), where V¥ < n

2. An oblivious adversary fixes the rewards g; ; for all round ¢ without observing the algorithm’s choices.
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is the maximal “temporal variation” of the rewards.’ Similar results have been obtained for the
full-feeback (“experts”) version in Cesa-Bianchi et al. (2007); Abernethy et al. (2008). Also, the
regret bound for UCB1 depends on the gap A, and matches the optimal worst-case bound for the
stochastic model (up to logarithmic factors). Moreover, adaptivity to “nice” problem instances is a
crucial theme in the work on bandits in metric spaces (Kleinberg et al., 2008; Bubeck et al., 2011;
Slivkins, 2011), an MAB setting in which some information on similarity between arms is a priori
available to an algorithm.

The distinction between polylog(n) and 2(y/n) regret has been crucial in other MAB settings:
bandits with linear rewards (Dani et al., 2008), bandits in metric spaces (Kleinberg and Slivkins,
2010), and an extension of MAB to auctions (Babaioff et al., 2009; Devanur and Kakade, 2009;
Babaioff et al., 2010). Interestingly, here we have four different MAB settings (including the one in
this paper) in which this distinction occurs for four different reasons, with no apparent connections.

A proper survey of the literature on multi-armed bandits is beyond the scope of this paper; a
reader is encouraged to refer to Cesa-Bianchi and Lugosi (2006) for background. An important
high-level distinction is between Bayesian and non-Bayesian MAB formulations. Both have a rich
literature; this paper focuses on the latter. The “basic” MAB version defined in this paper has been
extended in various papers to include additional information and/or assumptions about rewards.

Most relevant to this paper are algorithms UCB1 (Auer et al., 2002a) and Exp3 (Auer et al.,
2002b). UCB1 has a slightly more refined regret bound than the one that we cited earlier: R, =
010D le > ZZ) with high probability. A matching lower bound (up to the considerations of
the variance and constant factors) is proved in Lai and Robbins (1985). Several recent papers (Auer
and Ortner, 2010; Honda and Takemura, 2010; Audibert et al., 2009; Audibert and Bubeck, 2010;
Maillard and Munos, 2011; Garivier and Cappé, 2011; Perchet and Rigollet, 2011) improve over
UCB1, obtaining algorithms with regret bounds that are even closer to the lower bound.

The regret bound for Exp3 is E[R,,] = O(y/nK log K), and a version of Exp3 achieves this
with high probability (Auer et al., 2002b). There is a nearly matching lower bound of Q(\/ﬁ)
Recently Audibert and Bubeck (2010) have shaved off the log K factor, achieving an algorithm with
regret O(\/ﬁ) in the adversarial model against an oblivious adversary.

High-level ideas. For clarity, let us consider the simplified algorithm for the special case of two
arms and oblivious adversary. The algorithm starts with the assumption that the stochastic model is
true, and then proceeds in three phases: “exploration”, “exploitation”, and the “adversarial phase”.
In the exploration phase, we alternate the two arms until one of them (say, arm 1) appears signif-
icantly better than the other. When and if that happens, we move to the exploitation phase where
we focus on arm 1, but re-sample arm 2 with small probability. After each round we check several
consistency conditions which should hold with high probability if the rewards are stochastic. When
and if one of these conditions fails, we declare that we are not in the case of stochastic rewards, and
switch to running a bandit algorithm for the adversarial model (a version of Exp3).

Here we have an incarnation of the “attack-defense” tradeoff mentioned earlier in this section:
the consistency conditions should be (a) strong enough to justify using the stochastic model as an
operating assumption while the conditions hold, and (b) weak enough so that we can check them

3. The result in Hazan and Kale (2009) does not shed light on the question in the present paper, because the “temporal
variation” concerns actual rewards rather than expected rewards. In particular, temporal variation is minimal when the
actual reward of each arm is constant over time, and (essentially) maximal in the stochastic model with 0-1 rewards.
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despite the low sampling probability of arm 2. The fact that (a) and (b) are not mutually exclusive
is surprising and unexpected.

More precisely, the consistency conditions should be strong enough to insure us from losing too
much in the first two phases even if we are in the adversarial model. We use a specific re-sampling
schedule for arm 1 which is rare enough so that we do not accumulate much regret if this is indeed
a bad arm, and yet sufficient to check the consistency conditions.

To extend to the K -arm case, we “interleave” exploration and exploitation, “deactivating” arms
one by one as they turn out to be suboptimal. The sampling probability of a given arm increases
while the arm stays active, and then decreases after it is deactivated, with a smooth transition be-
tween the two phases. This complicated behavior (and the fact that we handle general adversaries)
in turn necessitate a more delicate analysis.

2. Preliminaries

We consider randomized algorithms, in the sense that I; (the arm chosen at time ¢) is drawn from a

probability distribution p; on {1, ..., K'}. We denote by p; ; the probability that /; = i. For brevity,
git Lit

let [;; = ]l{ Ii=i}- Given such a randomized algorithm, it is a well-known trick to use g; ; = o

as an unbiased estimate of the reward g; ;. Now for arm 7 and time ¢ we introduce:

o Gy = 22:1 Gi,s (fixed-arm cumulative reward from arm ¢ up to time t),

o Gy = 22:1 Ji,s (estimated cumulative reward from arm ¢ up to time t),

~

Git = Zi:l 9is Lis  (algorithm’s cumulative reward from arm ¢ up to time t),

Ti(t)=>"'_,Lis (the sampling time of arm i up to time ).
e The corresponding averages: H;; = % Git, I;'l-’t = %é” and ﬁi,t = @”/Tz(t)

G ¢ is the cumulative reward of a “fixed-arm algorithm” that always plays arm 7. Recall that our
benchmarks are max; G; for the adversarial model, and max; E[G} ;] for the stochastic model.

Note that fIi,t, .FAIiyt (and éi,t, (A?M) are observed by an algorithm whereas H; ; (and G; ;) is not.
Informally, f[z‘,t and ﬁi,t are estimates for the expected reward p; in the stochastic model, and I;'Z-,t
is an estimate for the benchmark reward H; ; in the adversarial model.

In the stochastic model we define the gap of arm i as A; = (maxi<j<k ftj) — f, and the
minimal gap A = min;. A, >0 A;.

Following the literature, we measure algorithm’s performance in terms of regret R,, and R,, as
defined in Figure 1. The two notions of regret are somewhat different, in particular the “stochastic
regret” R, is not exactly equal to the expected “adversarial regret” R,,. However, in the stochastic

model they are approximately equal:* E[R,] < E[R,] < E[R,] + /3 nlog K.

3. The case of K = 2 arms

We will derive a (slightly weaker version of) the main result for the special case of K = 2 arms and
oblivious adversary, using a simplified algorithm. This version contains most of the ideas from the
general case, but can be presented in a more lucid fashion.

4. This fact is well-known and easy to prove, e.g. see Proposition 34 in Audibert and Bubeck (2010).
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We are looking for the “best-of-both-worlds™ feature: O(\/ﬁ) regret in the adversarial model,
and O(%) regret in the stochastic model, where A = |u; — ol is the gap. Our goal in this section
is to obtain this feature in the simplest way possible. In particular, we will hide the constants under
the O() notation, and will not attempt to optimize the polylog(n) factors; also, we will assume
oblivious adversary. We will prove the following theorem:

Theorem 2 Consider a MAB problem with two arms. There exists a algorithm such that:
(a) against an oblivious adversary, its expected regret is E[R,] < O(y/n log? n).
(b) in the stochastic model, its expected regret satisfies E[R,] < O(% log® n).
Both regret bounds also hold with probability at least 1 — %

Note that in the stochastic model, regret trivially cannot be larger than An, so part (b) trivially
implies regret E[R,,] < O(v/n).

Our analysis proceeds via high-probability arguments and directly obtains the high-probability
guarantees. The high-probability arguments tend to make the analysis cleaner; we suspect it cannot
be made much simpler if we only seek bounds on expected regret.

3.1. A simplified SAO (Stochastic and Adversarial Optimal) Algorithm

The algorithm proceeds in three phases: exploration, exploitation, and adversarial phase. In the
exploration phase, we alternate the two arms until one of them appears significantly better than the
other. In exploitation phase, we focus on the better arm, but re-sample the other arm with small
probability. We check several consistency conditions which should hold with high probability if
the rewards are stochastic. When and if one of these conditions fails, we declare that we are not in
the case of stochastic rewards, and switch to running a bandit algorithm for the adversarial model,
namely algorithm Exp3.P (Auer et al., 2002b).

The algorithm is parameterized by Ccr, = ©(logn) which we will chose later in Section 3.2.
The formal description of the three phases is as follows.

(Exploration phase) In each round ¢, pick an arm at random: p1; = pa2; = % Go to the next

phase as soon as t > 2(C2,,) and the following condition fails:

|ﬁ1,t - ﬁ2,t’ <24 Ccm/\/i. (1)

Let 7. be the duration of this phase. Without loss of generality, assume H 1 > H 2,7, This
means, informally, that arm 1 is selected for exploitation.

Tx

(Exploitation phase) In each round ¢ > 7, pick arm 2 with probability p2 ; = 5, and arm 1 with

the remaining probability p1; =1 — 5

271; .
After the round, check the following consistency conditions:
8 Ccrn/\/a S ﬁl,t - ﬁQ,t S 40 Ccrn/\/’ﬁ (2)

{|ﬁh,t — Hyy| < 6Cemn/VE 5

’f—jQ,t - ﬁQ,t| < GCcrn/\/ﬁ-
If one of these conditions fails, go to the next phase.

(Adversarial phase) Run algorithm Exp3.P from Auer et al. (2002b).
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Discussion. The exploration phase is simple: Condition (1) is chosen so that once it fails then
(assuming stochastic rewards) the seemingly better arm is indeed the best arm with high probability.

In the exploitation phase, we define the re-sampling schedule for arm 2 and a collection of “con-
sistency conditions”. The re-sampling schedule should be sufficiently rare to avoid accumulating
much regret if arm 2 is indeed a bad arm. The consistency conditions should be sufficiently strong
to justify using the stochastic model as an operating assumption while they hold. Namely, an adver-
sary constrained by these conditions should not be able to inflict too much regret on our algorithm
in the first two phases. Yet, the consistency conditions should be weak enough so that they hold
with high-probability in the stochastic model, despite the low sampling probability of arm 2.

It is essential that we use both HZ . and H; .+ in the consistency conditions: the interplay of these
two estimators allows us to bound regret in the adversarial model. Other than that, the conditions
that we use are fairly natural (the surprising part is that they work). Condition (2) checks whether the
relation between the two arms is consistent with the outcome of the exploration phase, i.e. whether
arm 1 still seems bettgr than arm 2, but not too muAch better. Condition (3) checks whether for each
arm ¢, the estimate H;; is close to the average H;;. In the stochastic model, both estimate the
expected gain p;, SO we expect them to be not too far apart. However, our definition of “too far”
should be consistent with how often a given arm is sampled.

3.2. Concentration inequalities

The “probabilistic” aspect of the analysis is confined to proving that several properties of estimates
and sampling times hold with high probability. The rest of the analysis can proceed as if these
properties hold with probability 1. In particular, we have made our core argument essentially deter-
ministic, which greatly simplifies presentation.

All high-probability results are obtained using an elementary concentration inequality loosely
known as Chernoff Bounds. For the sake of simplicity, we use a slightly weaker formulation below
(see Appendix A for a proof), which uses just one inequality for all cases.

Theorem 3 (Chernoff Bounds) Let X,, ¢t € [n] be a independent random variables such that X, €
[0,1] for each t. Let X ="} | X; be their sum, and let ju = E[X]. Then

Pr[|X — p| > C max(1,\/p)] < 2=, forany C > 1. 4)

We will often need to apply Chernoff Bounds to sums whose summands depend on some events
in the execution of the algorithms and therefore are not mutually independent. However, in all cases
these issues are but a minor technical obstacle which can be side-stepped using a slightly more
careful setup.® In particular, we sometimes find it useful to work in the probability space obtained by
conditioning on the outcome of the exploration phase. Specifically, the post-exploration probability
space is the probability space obtained by conditioning on the following events: that the exploration
phase ends, that it has a specific duration 7, and that arm 1 is chosen for exploitation.

Throughout the analysis, we will obtain concentration bounds that hold with probability at least
1 —2n~%. We will often take a Union Bound over all rounds ¢, which will imply success probability
at least 1 — 2n=3. To simplify presentation, we will allow a slight abuse of notation: we will say

5. However, the independence issues appear prohibitive for K > 2 arms or if we consider a non-oblivious adversary.
So for the general case we resorted to a more complicated analysis via martingale inequalities.
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with high probability (abbreviated w.h.p.), which will mean mean with probability at least 1 — 2n =3
or at least 1 — 2n~4, depending on the context.

To parameterize the algorithm, let us fix some Ccr, = 12 In(n) such that Theorem 3 with
C = Crq ensures success probability at least 1 — 2 n=4.

3.3. Analysis: adversarial model

We need to analyze our algorithm in two different reward models. We start with the adversarial
model, so that we can re-use some of the claims proved here to analyze the stochastic model.
Recall that 7, denotes the duration of the exploration phase (which in general is a random
variable). Following the convention from Section 3.1 that whenever the exploration phase ends, the
arm chosen for exploitation is arm 1. (Note that we do not assume that arm 1 is the best arm.)
We start the analysis by showing that the re-sampling schedule in the exploitation phase does
not result in playing arm 2 too often.

Claim 4 During the exploitation phase, arm 2 is played at most O(1, logn) times w.h.p..

Proof. We will work in the post-exploration probability space S. We need to bound from above the
sum ) , I ;, where ¢ ranges over the exploitation phase. However, Chernoff Bounds do not immedi-
ately apply since the number of summands itself is a random variable. Further, if we condition on a
specific duration of exploitation then we break independence between summands. We sidestep this
issue by considering an alternative algorithm in which exploitation lasts indefinitely (i.e., without
the stopping conditions), and which uses the same randomness as the original algorithm. It suffices
to bound from above the number of times that arm 2 is played during the exploitation phase in this
alternative algorithm; denote this number by N. Letting J; be the arm selected in round ¢ of the
alternative algorithm, we have that N = >~ _ | 1y _;; is a sum of 0-1 random variables, and in
S these variables are independent. Moreover, in S it holds that

E[N] = Z?:T*-‘rl D2t = Tx Z?:T*-i-l % = O(T* log ’I’L)
Therefore, the claim follows from Chernoff Bounds. O

Now we connect the estimated cumulative rewards éiyt with the benchmark G ;. More specifi-
cally, we will bound from above several expressions of the form |.FNI” — H;|. Naturally, the upper
bound for arm 1 will be stronger since this arm is played more often during exploitation. To ensure
that the bound for arm 2 is strong enough we need to play this arm “sufficiently often” during ex-
ploitation. (Whereas Claim 4 ensures that we do not play it “too often”.) Here and elsewhere in this
analysis, we find it more elegant to express some of the claims in terms of the average cumulative
rewards (such as H; 4, etc.)

Claim 5 (a) With high probability, I;T” - H;. | <2 Ccm/\/ﬁfor each arm 1.
(b) For any round t in the exploitation phase, with high probability it holds that

{|ﬁ1,t - Hl,t‘ < 3Ccrn/\/ga (5)

|ﬁ27t - HZ,t‘ < 3Ccrn/\/7-7*‘
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Proof. For part (a), we are interested in the sum ZKT* git Iit. As in the proof of Claim 4,
Chernoff Bounds do not immediately apply since the number of summands 7, is a random variable
(and conditioning on a particular value of 7, tampers with independence between summands). So let
us consider an alternative algorithm in which the exploration phase proceeds indefinitely, without
the stopping condition, and uses the same randomness as the original algorithm.® Let .J; be the
arm selected in round ¢ of this alternative algorithm, and define A4;; = Zizl gi,t L 5,—;). Then
(when run on the same problem instance) both algorithms coincide for any ¢ < 7, so in particular
Git = 2A;;. Now, A;, is the sum of bounded independent random variables with expectation
Git/2. Therefore by Chernoff Bounds w.h.p. it holds that |A4;; — G; /2| < Cern/t for each ¢,
which implies the claim.

For part (b), we will analyze the exploitation phase separately. Let us work in the post-exploration
probability space S. We will consider the alternative algorithm from the proof of Claim 4 (in which
exploitation continues indefinitely). This way we do not need worry that we implicitly condition
on the event that a particular round ¢ > 7, belongs to the exploitation phase. Clearly, it suf-
fices to prove (5) for this alternative algorithm. To facilitate the notation, define the time interval
INT = {7« +1,...,t}, and denote G 1nr = ) c1y7 it and G vt = D e qyp irt-

To handle arm 1, note that in S, éi,INT is a sum of independent random variables, with expec-
tation G yr. Since p1 ¢ > L for any t € INT, the summands g; ; are bounded by 2. Therefore by

Chernoff Bounds with high probability it holds that

\él,INT — G| < 2CepnVt — T

From this and part (a) it follows that w.h.p.

‘él,t - Gl,t‘ < 2Ccrn(\/7—7*+ Vi — T*) < 3Ccrn\/%7

which implies the claim for arm 1.
Handling arm 2 requires a little more work since the summands g»; may be large (since they
have a small probability ps ; in the denominator). For each ¢ € INT,

~ 2s 2t s 2t
Go,mr = ZSEINT — 925 Ios = — ZSGINT T 92, Ios = — ZSGINT X,
Ty T, t Ty

*

where X, = ¥ go o5 € [0,1]. In S, random variables X, s € INT are mutually independent,
and the expectation of their sum is

HEE[ Ve Xs| = 5 E [GZ,INT} =2 Gomr < 5 55

Noting that G 1yr < ¢ — 7% and letting o = 7, we obtain u < % (1 — a). By Chernoff Bounds
w.h.p. it holds that

> semr Xs — p] < Ccrnm,

Going back to éZINT and G'2 1yt, We obtain:

~ 2t 2t
‘GQ,INT - G2,INT| < 7_7 C’crn V Tx (]- - Oé) < Ccrn F 1—-oa.

6. Note that this is not the same “alternative algorithm” as the one in the proof of Claim 4.
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From part (a), we have that |é”* — G,

< Cern f—% . Therefore,

2t 3t
Y — 1- crn ~ —-
- (Va+v1l—a)<C - O

Combining Claim 5(b) and Condition (2), we obtain:

|é2,t - GZ,t| < CYcrn

Corollary 6 In the exploitation phase, for any round t (except possibly the very last round in the
phase) it holds w.h.p. that G1; > G2 .

By Corollary 6, regret accumulated by round ¢ in the exploitation phase is, with high probability,
equal to G1 4 — G14+ — Ga2. The following claim upper-bounds this quantity by O(v/t log? n). The
proof of this claim contains our main regret computation.

Claim 7 For any round t in the exploitation phase it holds w.h.p. that
él,t + éZ,t — Gy > —O(Vt log?n).

Proof. Throughout this proof, let us assume that the high-probability events in Claim 4 and Claim 5(b)
actually hold; we will omit “with high probability” from here on.
Let ¢t be some (but not the last) round in the exploitation phase. First,

ﬁl,t —Hy; = {ﬁl,t - Hl,t} + {ﬁl,t - E’l,t} > —O(Cern/V1). (6)

We have upper-bounded the two square brackets in (6) using, respectively, Claim 5(b) and Con-
dition (3). We proved that algorithm’s average for arm 1 (fl 1,¢) 18 not too small compared to the
corresponding benchmark average H; ;, and we used the estimate H 1, as an intermediary in the
proof.

Similarly, using Condition (2), Condition (3), and Claim 5(b) to upper-bound the three square
brackets in the next equation, we obtain that

le,t —Hyy = [ﬁQ,t - ﬁl,t} + [ﬁZt - ﬁ?,t} + [ﬁu — Hl,t} > —O(Cern/V/T)- @)

Here we have proved that the algorithm did not do too badly playing arm 2, even though this arm
was supposed to be suboptimal. Specifically, we establish that algorithm’s average for arm 2 (ﬁzt)
is not too small compared to the benchmark average for arm I (H; ;). Again, the estimates H 1,+ and
H. 2.+ served us as intermediaries in the proof.

Finally, let us go from bounds on average rewards to bounds on cumulative rewards (and prove
the claim). Combining (6), (7) and Claim 4, we have:

Gro+Gop— Gre=Y 1, T(t) [ﬁi,t - Hl,t]

> _O(Ccrn) [Tl(t)/\/i—i_ T2<t)/\/7—7*1|
> —O(Cern)(Vt + (/T logn)
> —O(Vt log?n). O

10
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Now we are ready for the final computations. We will need to consider three cases, depending
on which phase the algorithm is in when it halts (i.e., reaches the time horizon). B

First, if the exploration phase never ends then by Claim 5(a) w.h.p. it holds that |H; ,, — H; ,,| <
2 Ceyn/+/n for each arm i, and the exit condition (1) never fails. This implies the claimed regret
bound R,, < O(y/nlogn).

From here on let us assume that the exploration phase ends at some 7, < n. Define regret on
the time interval [a, b] as

b b
R[a,b} = Zgj:i);} Za:l Git — ZSIQ I ¢t

Let ¢ be the last round in the exploitation phase. By Corollary 6 and Claim 7 we have
Ryt 1=Gip — éu — éz,t < O(yv/n log®n).

If t = n (i.e., the algorithm halts during exploitation) then we are done.
Third, if the algorithm enters the adversarial phase then we can use the regret bound for Exp3.P
in Auer et al. (2002b), which states that w.h.p. Ry, < O(y/n). Therefore

Ry < Ry 1)+ Ry < O(v/n log® n).

This completes the proof of Theorem 2(a).

3.4. Analysis: stochastic model

We start with a simple claim that w.h.p. each arm is played sufficiently often during exploration,
and arm 1 is played sufficiently often during exploitation. This claim complements Claim 4 from
the previous subsection which states that arm 2 is not played too often during exploitation (we will
re-use Claim 4 later in the proofs).

Claim 8 With high probability it holds that:
(a) during the exploration phase, each arm is played at least T /4 times.
(b) during the exploitation phase, T (t) > t/4 for each time t.

Proof. Both parts follow from Chernoff Bounds. The only subtlety is to ensure that we do not
condition the summands (in the sum that we apply the Chernoff Bounds to) on a particular value of
74 or on the fact that arm 1 is chosen for exploitation.

For part (a), without loss of generality assume that n fair coins are tossed in advance, so that
in the ¢-th round of exploration we use the t-th coin toss to decide which arm is chosen. Then
by Chernoff Bounds for each ¢ w.h.p. it holds that among the first ¢ coin tosses there are at least
t/2 — Ccm\/t/72 heads and at least this many tails. We take the Union Bound over all ¢, so in
particular this holds for ¢ = 7,. Therefore w.h.p. we have:

Ti(7) =2 7/2 = C'crn\/@- ®)

The claim follows from (8) because we force exploration to last for at least 2(C2,,) rounds.
For part (b), let us analyze the exploitation phase separately. We are interested in the sum
> < 11,5, where s ranges over all rounds in the exploitation phase. We will work in the post-

exploration probability space. The indicator variables I g, for all rounds s during exploitation, are

11
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mutually independent. Therefore Chernoff Bounds apply, and w.h.p. 71 (¢t) — T (1) > (t —74) /2 —

Cerny/T — Tx. Using (8), it follows that T1(t) > /2 — Cepn(\/Tx + VE— T4) > /2 — Cern V't >
t/4. O

Recall that Claim 5(b) connects algorithm’s estimate I:Tm and the benchmark average H; ; (we
will re-use this claim later in the proofs). In the stochastic model these two quantities, as well as
the algorithm’s average ﬁ” are close to the respective expected reward p;. The following lemma
makes this connection precise.

Claim 9 Assume the stochastic model. Then during the exploitation phase for each arm i and each
time t the following holds with high probability:

|Hi,t - H2| < Ccrn/ﬁa
’Hl,t - ,U/1| <2 Ccrn/\/ga
’HQ,t - /—1/2| S 2 Ccrn/\/ﬁ-

Proof. All three inequalities follow from Chernoff Bounds. The first inequality follows immedi-
ately. To obtain the other two inequalities, we claim that w.h.p. it holds that

|H;y — pti] < Cezn//Ti(t). 9)

Indeed, note that without loss of generality 7" independent samples from the reward distribution of
arm ¢ are drawn in advance, and then the reward from the /-th play of arm ¢ is the /-th sample. Then
by Chernoff Bounds the bound (9) holds w.h.p. for each T;(¢) = [, and then one can take the Union
Bound over all [ to obtain (9). Claim proved.

Finally, we use (9) and plug in the lower bounds on T;(¢) from Claim 8(ab). ]

Now that we have all the groundwork, let us argue that in the stochastic model the consistency
condition in the algorithm are satisfied with high probability.

Corollary 10 Assume the stochastic model. Then in each round t of the exploitation phase, with
high probability the following holds:

16 Ccrn/\/TTk < — po <32 C’crn/\/a- (10)
Moreover, conditions (2-3) are satisfied.

Proof. Condition (3) follows simply by combining Claim 5(b) and Claim 9.
To obtain (10), we note that by Claim 5(b) and Claim 9 w.h.p. it holds that

[Hyp — | + | Hap — pio] < 8Corn/ /7. (1n
Recall that Condition (1) holds at time ¢ = 7, — 1, and fails at ¢ = 7. This in conjunction with (11)
(for t = 7,) implies (10). In turn, (10) with (11) imply Condition (2). ]

To complete the proof of Theorem 2(b), assume we are in the stochastic model with gap A =
|11 — p12|- In the rest of the argument, we omit “with high probability”. If the exploration phase never
ends, it is easy to see that A < O(1//n), and we are done since trivially B,, < An < O(x). Else,
by Corollary 10 it holds that arm 1 is optimal, 7, = ©(Clrn/A)? and moreover that the exploitation
phase never ends. Now, by Claim 4 in the exploitation phase the suboptimal arm 2 is played at most
O(7y log n) times. Therefore R, < O(% log®n).

12
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Appendix A. Concentration inequalities

Recall that the analysis in Section 3 relies on Chernoff Bounds as stated in Theorem 3. Let us derive
Theorem 3 from a version of Chernoff Bounds that can be found in the literature.

Theorem 11 (Chernoff Bounds: Theorem 2.3 in McDiarmid (1998)) Consider n i.i.d. random
variables X1 ... X, on [0,1]. Let X = 2 "7 | X, be their average, and let ;i = E[X]. Then for
any € > 0 the following two properties hold:

2 e~ n/3 ¢ <1
(a) Pr[X > (14 ¢)u] < exp (—%) < {e—au/i’)” otherwise.
(b) PrlX < (1 —e)u) < e =H/2,
Corollary 12 [n the setting of Theorem 11, for any 3 > 0 we have:
Pr[|X — p| > B max(8, /i) ] < 2073, (12)

We obtain Theorem 3 by taking 8 = +/C, noting that § max(f, Vi) £ Cmax(1, /i) for C > 1.

14
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Proof. Fix 5 > 0 and consider two cases: ;. > 3% and p < (2.
If ;1 > (32 then we can take ¢ = 3/ v/# < 1in Theorem 11(ab) and obtain

Pr[|X — | > By = Pr|X — p| > ep] < 213 = 270°/3,
Now assume z < 32. We can still take ¢ = 3/ /# in Theorem 11(b) to obtain
PrX —u< —BQ] <PriX —p<-8p < e E2 — o=B%/2,
Then let us take ¢ = 3?/u > 1 in Theorem 11(a) to obtain
Pr[X — pu> B2 =Pr[X — p > ep] < e /3 = e P13,
It follows that Pr[| X — u| > 3?] < 2 e=P*/3, completing the proof. O

Next we present two important concentration inequalities for martingale sequences that we use
in the analysis of the general case (K > 1 arms).

Theorem 13 (Hoeffding-Azuma’s inequality for martingales, Hoeffding (1963)) Let F; C --- C
Fn be afiltration, and X1, . . . , X, real random variables such that Xy is Fy-measurable, BE(X;|F;—1) =
0 and X; € [Ay, Ay + ¢] where Ay is a random variable F;_1-measurable and c; is a positive con-
stant. Then, for any € > 0, we have

" 2¢2
P(S X, >¢e) <exp (n> , (13)
(; t ) S 2

t=1Ct

or equivalently for any § > 0, with probability at least 1 — §, we have

- log(6~1)
X, < | /=2 ¢2 14

Theorem 14 (Bernstein’s inequality for martingales, Freedman (1975)) Let 71 C --- C F,, be
a filtration, and X1, . .., X, real random variables such that X is Fy-measurable, E(X¢|Fi—1) =

0, | Xt| < bfor some b > 0and let Vy, = Y 7 E(X?|Fi—1). Then, for any ¢ > 0, we have
P( X, >candV, < >< S 15
; = eand V<V —eXp< 2V+2b5/3> ()

and for any § > 0, with probability at least 1 — §, we have either V,, >V or

blog(5~1
N og( )'

3 (16)

Z X < /2Vlog(6—1)
=1
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Appendix B. SAO (Stochastic and Adversarial Optimal algorithm)

In this section we treat the general case: K arms and adaptive adversary. The proposed algorithm,
SAQ, is described precisely in Algorithm 1 (see page 17). On a high-level, SAO proceeds similarly
to the simplified version in Section 3, but there are a few key differences.

First, the exploration and exploitation phases are now interleaved. Indeed, SAO starts with all
arms being “active”, and then it successively “deactivates” them as they turn out to be suboptimal.
Thus, the algorithm evolves from pure exploration (when all arms activated) to pure exploitation
(when all arms but the optimal one are deactivated).

Second, in order to make the above evolution smooth we adopt a more complicated (re)sampling
schedule that the one we used in Section 3. Namely, the probability of selecting a given arm con-
tinuously increases while this arm stays active, and then continuously decreases when it gets deac-
tivated, and the transition between the two phases is also continuous. For the precise equation, see
Equation (21) in Algorithm 1.

Third, this more subtle behavior of the (re)sampling probabilities p; ; in turn necessitates more
complicated consistency conditions (e.g. see Condition (18) compared to Condition (3)), and a
more intricate analysis. The key in the analysis is to obtain the good concentration properties of
the different estimators, which we accomplish by exhibiting martingale sequences and resorting to
Bernstein’s inequality for martingales (Theorem 14).

Recall that the crucial parameter for the stochastic model is the minimal gap A = min;. o, >0 Ay,
where A; = (max;< J<K ,uj) — [ is the gap of arm 7. Our main result is formulated as follows:

Theorem 15 SAO with 3 = n* satisfies in the stochastic model:

Klog(K) logz(n)>
A )

ERn§O<

and in the adversarial model:
ER, <O <log(K) log3/%(n)v nK) .

More precisely, for any 6 € (0,1), with probability at least 1 — 6, SAO with B = 10Kn36~! satisfies
in the stochastic model:

2
7 < 200501 +1<Zg K)log®(5)

and in the adversarial model:

Ry, < 60(1 + log K)(1 + log n)/n K log(8) + 52 log?(8) + 200K log?(8).

We divide the proof into three parts. In Section B.1 we propose several concentration inequali-
ties for the different quantities involved in the algorithm. Then we make a deterministic argument
conditional on the event that all these concentration inequalities hold true. First, in Section B.2, we
analyze stochastic rewards, and Section B.3 concerns the adversarial rewards.
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Algorithm 1 The SAO strategy with parameter § > 1

L A« {l,...,K} > A is the set of active arms
2: fori=1,...,K do > Initialization
3: TN > 7; 1s the time when arm ¢ is deactivated
4: pi + 1/K > p; is the probability of selecting arm ¢
5: end for
6: fort=1,...,ndo > Main loop
7: Play I; at random from p > Selection of the arm to play
8: fori=1,...,Kdo > Test of four properties for arm ¢
9: if > Test if arm ¢ should be deactivated
L 4K K1 ?
i€ A, and maxHjt—Hit>6\/ Og(5)+5< Og(ﬂ)) 17)
jEA ’ ’ t t
10: then A < A\ {i}, 7, < tand ¢; + p; > Deactivation of arm ¢
11 end if > ¢; denotes the probability of arm ¢ at the moment when it was de-activated
12: if one of the three following properties is satisfied
13: then Start Exp3.P with the parameters described in [Theorem 2.4, Bubeck (2010)]
14: > Test if stochastic model still valid for arm ¢
15: > First, test if the two estimates of H; ; are consistent; let t7 = min(7;, ).
L 210g(5) Kt t—t Klog(8)\
H;y— H;;| > 4 L L)1 5 ——) . 18
16: > Second, test if the estimated suboptimality of arm ¢ did not increase too much
- - 4K K1 2
i ¢ A, and max Hj, — Hyy > 10 08(f) | 5 (Klog(5))" (19)
jeA ’ i —1 Ti—1
17: > Third, test if arm ¢ still seems significantly suboptimal
. - 4K 1 K1 2
i A, and maxHjt—HitSZ\/ 0g(5>+5( Og(ﬂ)) . (20)
jeA 7 ’ Ti Ti
18: end if
19: end for > End of testing
20: fori=1,...,K do > Update of the probability of selecting arm ¢
i Ti 1 4j T
; 1; — | 1- Tica. 21
Pt Z¢A+’A‘ 2 i1 | Liea (2D
J¢A
21: end for
22: end for

17
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Let us discuss some notation. Recall that we denote by p; ; the probability that the algorithm
selects arm 7 at time ¢; this probability is denoted by p; in the description of the algorithm. As in
Algorithm 1, g; will denote the probability of arm ¢ at the moment when this arm was deactivated.
Let A; denote the set of active arms at the end of time step ¢. We also introduce 7y as the last time
step before we start Exp3.P, with a convention that 79 = n if we never start Exp3.P. Moreover
note that with this notation, if 7; < 79 then we have ¢; = p; -,. We generalize this notation and set
i *= Di, min(ri,7)- FOr sake of notation, in the following 7; denotes the minimum between the time
when arm 1 is deactivated and the last time before we start Exp3.P, that is 7; <— min(7;, 79).

B.1. Concentration inequalities
First we derive a version of Bernstein’s inequality for martingales that suits our needs.
Lemma 16 Let 71 C --- C F,, be a filtration, and X1, ..., X,, real random variables such that

Xy is Fy-measurable, E(X¢|F;_1) = 0 and | X| < b for some b > 0. Let V;, = > " | E(X?|Fi-1)
and § > 0. Then with probability at least 1 — 9,

ZXt < \/4Vn log(nd=1) + 5b2 log?(nd—1).
=1

Proof. The proof follows from Theorem 14 along with an union bound on the events V;, € [z, x+b],

€ {0,0%,20%,...,(n—1)b%}. Italso uses v/a + vb < \/2(a + b). O

Now let us use this martingale inequality to derive the concentration bound for (average) esti-
mated cumulative rewards fIm. Recall that lEIi,t is an estimator of H; ;, so we want to upper-bound
the difference |I§Q7t — H; |, and in the stochastic model ﬁ@t is an estimator of the true expected
reward p;, so we want to upper-bound the difference ]ﬁ it — 1l

Lemma 17 For any armi € {1,..., K} and any time t € {1,...,n}, in the stochastic model we
have with probability at least 1 — 6, if t < T,

e - 25-1)\ 2
S\/4 <Km1n(7'z,t) +max(t TZ’O)>log(2t25—1)+5<K10g(2t J )> .

t2 4Tt min(7;, t)

‘ﬁi,t — M

Moreover in the adversarial model we have with probability at least 1 — 6, if t < 7,

in(r o 25-1)\ 2
< \/4 <Km1n(n,t) N max (¢ TZ,O)> log(2626-1) + 5 <Klog(2t 4 )> ‘

12 qiTit min(7;, t)

‘Hi,t —H;,

Proof. The proof of the two concentration inequalities is similar, so we restrict our attention to the
adversarial model. Let (F;) be the filtration associated to the historic of the strategy. We introduce
the following sequence of independent random variables: for 1 <i < K,1 < s <mnandp € [0, 1],
let Z(p) ~ Bernoulli(p). Then for t < 7 we have,

.5 iTi

A : Zﬁ(pi,s) S i (4iTi
Git = Zgi,s —— 1<, + Z ( S ) Tssr, ).

s=1
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ForT € {1,...,n}, let

. Z(p, S ) T
X;<T>=<SW—1) gi,sﬂsgngw(, Z;(q’ )—1) gi ol
Dis ;T s

We have, for ¢ < 79,
t
Git — Gip = Z X(m).
s=1

Now remark that (X?(T"))1<s< is a martingale difference sequences such that | X?(T')| < K max (4, 1)
(since p; s > 1/K when s < 7;) and

t min(7;,t)

Y E((XUD)P|Fomr) <

s=1 s=1

t max(t — T,0)
pz,s QiT .

Thus, using Lemma 16, we obtain that with probability at least 1 — §,

t min(7;,t) 2
, 1 t t—T,0 t
ZX;(T) < |4 Z + tmax(t ~ T,0) log(t6—1) + 5 K? max <> .1 | log?(ts—1).
s=1 s=1 pi,S qlT T

Then, using an union bound over 7', we obtain the claimed inequality by taking 1" = 7; (with another
union bound to get the two-sided inequality). O

Next, we analyze the (average) cumulative reward H it collected by the algorithm. Again, in the
stochastic model H; ; can be used as an estimate of the true expected reward fi;, and it is not hard to
see that it is a reasonably sharp estimate.

Lemma 18 For any armi € {1,..., K}, in the stochastic model we have with probability at least
1 =9, forany timet € {1,...,n}, if T;(t) > 1

~ -1
‘Hit ol < 2log(2né—1)
’ Ti(t)

Proof. This follows via an union bound over the value of T;(¢) and a standard Hoeffding’s inequal-
ity for independent random variables, see Theorem 13. 0

Next we show that, essentially, T;(t) < O(qm + /4iT)-

Lemma 19 Foranyi € {1,...,K},t € {1,...,n}, with probability at least 1 — 0, if t < 7,

T;(t) < qimi(1 4+ logt) + \/4qiri(1 +logt)log(td—1) + 5log?(t5—1).

Proof. Using the notation of the proof of Lemma 17, we have for ¢ < 79,
qiT,
ZZ pzs s<7'z + ZZ ( zsz) ]ls>7'¢'
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Let

) . . T T
X; = (Z;(pi,S) _pi,s)]lsgn- + <Z; (qzsz> - qZSZ> ]ls>n~

Then (X?) is a martingale difference sequence such that | X?| < 1 and, since p; s is increasing in s
for s < 73, it follows that

t t

, i
D E((XD*Fer) Sami+ Y = < aimi(l+logt).
s=1 s=T;+1

Thus using Lemma 16 we obtain that with probability at least 1 — §:

t
ZXé(T) < \/4(]m(1 + log t) log(t6—1) + 5log?(t5—1).

It implies that

t

Z Z(pis) Ls<r+Z} <q’ ’) Tssr, < qz-n(1+logt)+\/4qm(1 + logt) log(t5—1) + 5log?(t5—1),
s=1

which is the claimed inequality. O

The next lemma restates regret guarantee for Exp3.P in terms of our setting. Instead of using
the original guarantee from Auer et al. (2002b), we take an improved bound from Bubeck (2010)
(namely, Theorem 2.4 in Bubeck (2010)).

Lemma 20 In the adversarial model, with probability at least 1 — §, we have

n
max Z it — Z gr.t < 5.15\/(n —19)K log(K§—1).
t To+1 t=10+1

Let 8 = 10K n36~1. Putting together the results of Lemma 17, 18, 19 and 20, we obtain that
with probability at least 1 — 9, the following inequalities hold true for any arm ¢ € {1,..., K'} and
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any time ¢t € {1,...,70}:

In the stochastic model,

. \/4 (Kmin(n,t) , max(t = n,o)) log(5) + 5 (Klmg(ﬂ)y o)

12 q;iTit min(7;, t)

‘ﬁz’,t — M

In the adversarial model,

g\/4 (Kmin(n,t) +max(t—n,O))lOg(ﬁHS(Klog(ﬁ)>? .

t2 q;Tit min(7;, t)

‘E[i,t — H;y

In the stochastic model,

= 2log(f)

H;y — il < . 24
| Hie = | < O (24)
In both models,
Ti(t) < qimi(1 + logt) + \/ 4gimi(1 +logt) log(B) + 5log*(8), (25)
In the adversarial model,

~ max Z Git — Z gt < 5.15v/(n — 1) K log(3). (26)
’LE{I 7777 K} t=19+1 t=10+1

We will now make a deterministic reasoning on the event that the above inequalities are indeed true.

B.2. Analysis in the stochastic model

First note that by equations (22) and (24), test (18) is never satisfied.
Let ¢* € argmax; u;. Remark that by equation (22), test (17) is never satisfied for ", since if

i,1* € A; then
- - 4K lo Klo 2
Hit— Hpp < —A; + 2\/ tg(ﬁ) +5 < tg(ﬁ)) .

Thus we have i* € A, Vt. Moreover if i € A, then it means that 7; < t and test (17) was satisfied
at time step 7; (and not satisfied at time 7; — 1). Thus, using (22), we see that if i ¢ A, then it
implies:

A, +2¢4K1°$<5> 5 (K10$<5>)2 > 6\/“%@ s (W)Q,

Ts T3 T3 T3

and (since i* € Ay)

Ao \/4Klog(ﬁ)+ 5<K10g(ﬁ))2 6 \/4Klog(5)+ 5<mog<ﬁ>>? on

Ti—l Ti—l Ti—l Ti_]-

Thus test (19) is never satisfied since:

2 2
@Xﬁj,t_ﬁiﬁt@ﬁg\/‘m%(ﬁ)%(f%g(ﬁ)) glo\/W%(W) .
J&At i - . — _

Ti Ti
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Moreover (20) is also never satisfied, indeed since i* € A; we have:

2 2
v Ty — > A, _2¢Mg<ﬁ>+5<fﬂog<ﬁ>) >2¢Mg<ﬁ>+5<m<m) |

JEAL Ti Ti Ti Ti

In conclusion we proved that Exp3 is never started in the stochastic model, that is 79 = n. Thus,
using (25), we obtain:

K
=1

K
< DA (qm(l +logn) + /4gimi(1 + logm) log(8) + 510g2(ﬁ)) :
=1

Now remark that for any arm ¢ with A; > 0, one can see that (27) implies:

Klo g(ﬁ) Klog(ﬂ)

7, Z

7 < 259

Indeed if 7; > 259%%81%) 11 then

7

4K log(pB) Klog(8)\? 4A2  5A%
e SRl <A,
8\/ 7 —1 5 T —1 <8 259+259<

which contradicts (27).
The proof is concluded with straightforward computations and by showing that

K

3 g <1+logK. (28)
i=1
Denote by 1) < o0 < TR the ordered random variables 71,...,7x. Then we clearly have

) < 7=t z+1’ which proves (28).

B.3. Analysis in the adversarial model

Let i* € argmax; << G o—1. First we show that i* € A _q. Let I* € argmaX;c 4, Giro—1
and i ¢ A, _1, then we have, by 7; < 79 — 1, (23) and since (20) is not satisfied at time 79 — 1:

Grero—1 — Girg—1
=Gr -1 = Grro-1 +Grerg—1 — Girg—1 + Girg—1 — Girg—1

>—\/4<(TOI(_Ti2 To—1—73>10g(5)+5<1m5(5)>2_\/4Klog(ﬁ)+5<Klog(5)>2

Z) +qm(To—1 Ti T0—1 70— 1
2
) \/4Klog(ﬁ) o (Aosl)

n
- \/4 e )>10g(5)+5<fm5(5)>2+\/4K10g(ﬁ) +5<K10g(5)>2’

(10 —1)2 quz(To—l Ti T; Ti
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where the last inequality follows from ¢; > 1/K and

T n To—1—-7 _1
(70—1)2 TZ‘(To—l) - Ti.

This proves i* € A, _;. Thus we get, using the fact that (18) and (19) are not satisfied at time
79 — 1, as well as (23), and the fact that (17) is not satisfied for active arms at time 79 — 1,

K
Ry—1 = Gir—1— Z Giro—1
i—1
K
= ZTz’(To —1) <Hi*,7-071 - Hz’,7071>
i1
K ~ ~ ~ ~ o~
= ZTi(To -1) (Hi*,ro—l — Hi g1+ Hi= 7y—1 — Hirg—1 + Hi 7p—1 — Hi,m—1>
=1

K 4K log(8 Klog(8)\ 2 2log (8
S -1 W Coni) 5 (Kloai))", [ 2lon(s)

IN

Then, using (25) and (26) we get, thanks to 7; > 2,

Ry,

IN

K
14 6.6y/nKlog(8) +12) _ qi(1 +logn)\/16K7; log(8) + 20(K log(B))?
=1

- 2
+ 122 (4611‘7'@‘(1 + logn)log(B) + 510g2(5)) (4Klog(ﬁ) +5 (W) )
i=1

7 —1 7 —1

< 60(1+41log K)(1 4 logn) \/nK log(8) + K2log?(B) + 200K? log?(B),

where the last inequality follows from (28) and straightforward computations.
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