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Abstract

The stochastic block model (SBM) is a random graph model with cluster
structures. It is widely employed as a canonical model to study clustering
and community detection, and provides generally a fertile ground to study the
information-theoretic and computational tradeo↵s that arise in combinatorial
statistics and data science.

This monograph surveys the recent developments that establish the fun-
damental limits for community detection in the SBM, both with respect to
information-theoretic and computational tradeo↵s, and for various recovery
requirements such as exact, partial and weak recovery. The main results dis-
cussed are the phase transitions for exact recovery at the Cherno↵-Hellinger
threshold, the phase transition for weak recovery at the Kesten-Stigum threshold,
the optimal distortion-SNR tradeo↵ for partial recovery, and the gap between
information-theoretic and computational thresholds.

The monograph gives a principled derivation of the main algorithms devel-
oped in the quest of achieving the limits, in particular two-round algorithms via
graph-splitting, semi-definite programming, (linearized) belief propagation, clas-
sical and nonbacktracking spectral methods. Extension to other block models,
such as geometric block models, and a few open problems are also discussed.
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1 Introduction

1.1 Community detection, clustering and block models

The most basic task of community detection, or graph clustering, consists in parti-
tioning the vertices of a graph into clusters that are more densely connected. From
a more general point of view, community structures may also refer to groups of
vertices that connect similarly to the rest of the graphs without having necessarily a
higher inner density, such as disassortative communities that have higher external
connectivity. Note that the terminology of ‘community’ is sometimes used only for
assortative clusters in the literature, but we adopt here the more general definition.
Community detection may also be performed on graphs where edges have labels or
intensities, and if these labels represent similarities among data points, the problem
may be called data clustering. In this monograph, we will use the terms communities
and clusters exchangeably. Further one may also have access to interactions that go
beyond pairs of vertices, such as in hypergraphs, and communities may not always
be well separated due to overlaps. In the most general context, community detection
refers to the problem of inferring similarity classes of vertices in a network by having
access to measurements of local interactions.

Community detection and clustering are central problems in machine learning and
data science. A vast amount of data sets can be represented as a network of interacting
items, and one of the first features of interest in such networks is to understand
which items are “alike,” as an end or as a preliminary step towards other learning
tasks. Community detection is used in particular to understand sociological behavior
[GZFA10, For10, NWS], protein to protein interactions [CY06, MPN+99], gene
expressions [CSC+07, JTZ04], recommendation systems [LSY03, SC11, WXS+15],
medical prognosis [SPT+01], DNA 3D folding [CAT15], image segmentation [SM97],
natural language processing [BKN11a], product-customer segmentation [CNM04],
webpage sorting [KRRT99] and more.

The field of community detection has been expanding greatly since the 80’s, with
a remarkable diversity of models and algorithms developed in di↵erent communities
such as machine learning, computer science, network science, social science and
statistical physics. These rely on various benchmarks for finding clusters, in particular
cost functions based on cuts or modularities [GN02]. We refer to [New10, For10,
GZFA10, NWS] for an overview of these developments.

Various fundamental questions remain nonetheless unsettled such as:

• Are there really communities? Algorithms may output community structures,
but are these meaningful or artefacts?

• Can we always extract the communities when they are present; fully, partially?

• What is a good benchmark to measure the performance of algorithms, and
how good are the current algorithms?
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Figure 1: The above two graphs are the same graph re-organized and drawn from the
SBM model with 1000 vertices, 5 balanced communities, within-cluster probability
of 1/50 and across-cluster probability of 1/1000. The goal of community detection
in this case is to obtain the right graph (with five communities) from the left graph
(scrambled) up to some level of accuracy. In such a context, community detection
may be called graph clustering. In general, communities may not only refer to denser
clusters but more generally to groups of vertices that behave similarly.

The goal of this monograph is to describe recent developments aiming at answering
these questions in the context of block models. Block models are a family of
random graphs with planted clusters. The “mother model” is the stochastic block
model (SBM), which has been widely employed as a canonical model for community
detection. It is arguably the simplest model of a graph with communities (see
definitions in the next section). Since the SBM is a generative model, it benefits from
a ground truth for the communities, which allows to consider the previous questions
in a formal context. As any model, it is not necessarily realistic, but it is insightful -
judging for example from the powerful algorithms that have emerged from its study.

In a sense, the SBM plays a similar role to the discrete memoryless channel (DMC)
in information theory. While the task of modelling external noise may be more
amenable to simplifications that real data sets, the SBM captures some of the key
bottleneck phenomena for community detection and admits many possible refinements
that improve the fit to real data. Our focus will be here on the fundamental
understanding of the core SBM, without diving too much into the refined extensions.

The core SBM is defined as follows. For positive integers k, n, a probability
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vector p of dimension k, and a symmetric matrix W of dimension k ⇥ k with entries
in [0, 1], the model SBM(n, p, W ) defines an n-vertex random graph with vertices
split in k communities, where each vertex is assigned a community label in {1, . . . , k}
independently under the community prior p, and pairs of vertices with labels i and j
connect independently with probability Wi,j .

Further generalizations allow for labelled edges and continuous vertex labels,
connecting to low-rank approximation models and graphons (using the latter termi-
nology as adapted in the statistics literature). For example, a spiked Wigner model
with observation Y = XXT +Z, where X is an unknown vector and Z is Wigner, can
be viewed as a labeled graph where edge-(i, j)’s label is given by Yij = XiXj + Zij .
If the Xi’s take discrete values, e.g., {1,�1}, this is closely related to the stochastic
block model—see [DAM15] for a precise connection. Continuous labels can also
model Euclidean connectivity kernels, an important setting for data clustering. In
general, models where a collection of variables {Xi} have to be recovered from noisy
observations {Yij} that are stochastic functions of Xi, Xj , or more generally that
depend on local interactions of some of the Xi’s, can be viewed as inverse problems
on graphs or hypergraphs that bear similarities with the basic community detec-
tion problems discussed here. This concerns in particular topic modelling, ranking,
synchronization problems and other unsupervised learning problems. We refer to
Section 9 for further discussion on these. The specificity of the core stochastic block
model is that the input variables are discrete.

A first hint on the centrality of the SBM comes from the fact that the model
appeared independently in numerous scientific communities. It appeared under
the SBM terminology in the context of social networks, in the machine learning
and statistics literature [HLL83], while the model is typically called the planted
partition model in theoretical computer science [BCLS87, DF89, Bop87], and the
inhomogeneous random graph in the mathematics literature [BJR07]. The model
takes also di↵erent interpretations, such as a planted spin-glass model [DKMZ11],
a sparse-graph code [AS15b, AS15a] or a low-rank (spiked) random matrix model
[McS01, Vu14, DAM15] among others.

In addition, the SBM has recently turned into more than a model for community
detection. It provides a fertile ground for studying various central questions in
machine learning, computer science and statistics: It is rich in phase transitions
[DKMZ11, Mas14, MNS14b, ABH16, AS15a], allowing to study the interplay between
statistical and computational barriers [YC14, AS15d, BMNN16, AS17], as well as
the discrepancies between probabilstic and adversarial models [MPW16], and it
serves as a test bed for algorithms, such as SDPs [ABH16, BH14, HWX15a, GV16,
AL14, ABKK15, MS16, PW15], spectral methods [Vu14, XLM14, Mas14, KMM+13,
BLM15, YP14a], and belief propagation [DKMZ11, AS15c].
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1.2 Fundamental limits: information and computation

This monograph focuses on the fundamental limits of community detection. The
term ‘fundamental limit’ here is used to emphasize the fact that we seek conditions
for recovery of the communities that are necessary and su�cient. In the information-
theoretic sense, this means finding conditions under which a given task can or cannot
be resolved irrespective of complexity or algorithmic considerations, whereas in the
computational sense, this further constraints the algorithms to run in polynomial
time in the number of vertices. As we shall see in this monograph, such fundamental
limits are often expressed through phase transition phenomena, which provide sharp
transitions in the relevant regimes between phases where the given task can or cannot
be resolved.

Fundamental limits have proved to be instrumental in the developments of
algorithms. A prominent example is Shannon’s coding theorem [Sha48], that gives a
sharp threshold for coding algorithms at the channel capacity, and which has led
the development of coding algorithms for more than 60 years (e.g., LDPC, turbo
or polar codes) at both the theoretical and practical level [RU01]. Similarly, the
SAT threshold [ANP05] has driven the developments of a variety of satisfiability
algorithms such as survey propagation [MPZ03].

In the area of clustering and community detection, where establishing rigorous
benchmarks is a long standing challenge, the quest of fundamental limits and phase
transitions is also impacting the development of algorithms. As discussed in the
monograph, this has already lead to developments such as neighborhood comparison
algorithms, linearized belief propagation algorithms or nonbacktracking spectral
algorithms. However, unlike in the Shannon’s context, information-theoretic limits
may not always be achievable in community detection, with information-computation
gaps that may emerge as discussed in Section 8.

1.3 An example on real data

This monograph focuses on the fundamentals of community detection, but we want
to illustrate here how the developed theory can impact real data applications. We use
the blogosphere data set from the 2004 US political elections [AG05] as an archetype
example.

Consider the problem where one is interested in extracting features about a
collection of items, in our case n = 1, 222 individuals writing about US politics,
observing only some of their interactions. In our example, we have access to which
blogs refers to which (via hyperlinks), but nothing else about the content of the
blogs. The hope is to extract knowledge about the individual features from these
simple interactions.

To proceed, build a graph of interaction among the n individuals, connecting
two individuals if one refers to the other, ignoring the direction of the hyperlink for
simplicity. Assume next that the data set is generated from a stochastic block model;
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assuming two communities is an educated guess here, but one can also estimate the
number of communities (e.g., as in [AS15d]). The type of algorithms developed in
Sections 7.2 and 7.1 can then be run on this data set, and two assortative communities
are obtained. In the paper [AG05], Adamic and Glance recorded which blogs are
right or left leaning, so that we can check how much agreement the algorithms give
with the true partition of the blogs. The results give about 95% agreement on the
blogs’ political inclinations, which is the state-of-the-art [New11, Jin15, GMZZ15].

Figure 2: The above graphs represent the real data set of the political blogs from
[AG05]. Each vertex represents a blog and each edge represents the fact that one of
the blogs refers to the other. The left graph is plotted with a random arrangement
of the vertices, and the right graph is the output of the ABP algorithm described
in Section 7.2, which gives 95% accuracy on the reconstruction of the political
inclination of the blogs (blue and red colors correspond to left and right leaning
blogs).

Despite the fact that the blog data set is particularly ‘well behaved’—there are
two dominant clusters that are well balanced and well separated—the above approach
can be applied to a broad collection of data sets to extract knowledge about the data
from graphs of similarities. In some applications, the graph of similarity is obvious
(such as in social networks with friendships), while in others, it is engineered from the
data set based on metrics of similarity that need to be chosen properly (e.g, similarity
of pixels in image segmentation). The goal is to apply such approaches to problems
where the ground truth is unknown, such as to understand biological functionality
of protein complexes; to find genetically related sub-populations; to make accurate
recommendations; medical diagnosis; image classification; segmentation; page sorting;
and more.
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In such cases where the ground truth is not available, a key question is to
understand how reliable the algorithms’ outputs may be. On this matter, the theory
discussed in this note gives a new perspective as follows. Following the definitions
from Sections 7.2 and 7.1, the parameters estimated by fitting an SBM on this data
set in the constant degree regime are

p
1

= 0.48, p
2

= 0.52, Q =

✓

52.06 5.16
5.16 47.43

◆

. (1)

and in the logarithmic degree regime

p
1

= 0.48, p
2

= 0.52, Q =

✓

7.31 0.73
0.73 6.66

◆

. (2)

Following the definitions of Theorem 30 from Section 7.2, we can now compute
the SNR for these parameters in the constant-degree regime, obtaining �2

2

/�
1

⇡ 18
which is much greater than 1. Thus, under an SBM model, the data is largely in a
regime where communities can be detected, i.e., above the weak recovery threshold.
Following the definitions of Theorem 25 from Section 7.1, we can also compute
the CH-divergence for these parameters in the logarithmic-degree regime, obtaining
J(p, Q) ⇡ 2 which is also greater than 1. Thus, under an SBM model, the data is in
a regime where the graph communities can in fact be recovered entirely, i.e, above
the exact recovery threshold. This does not answer whether the SBM is a good or
a bad model, but it gives that under this model, the data appears to be in a very
good ‘clusterable regime.’ This is of course counting on the fact that n = 1, 222 is
large enough to trust the asymptotic analysis. This is the type of insight that the
study of fundamental limits can provide.

1.4 Historical overview of the recent developments

This section provides a brief historical overview of the recent developments discussed
in this monograph. The resurged interest in the SBM and its ‘modern study’ has
been initiated in big part due to the paper of Decelle, Krzakala, Moore, Zdeborová
[DKMZ11], which conjectured1 phase transition phenomena for the weak recovery
(a.k.a. detection) problem at the Kesten-Stigum threshold and the information-
computation gap at 4 symmetric communities in the symmetric case. These conjec-
tures are backed in [DKMZ11] with strong insights from statistical physics, based

1The conjecture of the Kesten-Stigum threshold in [DKMZ11] was formulated with what we call
in this note the max-detection criteria, asking for an algorithm to output a reconstruction of the
communities that strictly improves on the trivial performance achieved by putting all the vertices
in the largest community. This conjecture is formally incorrect for general SBMs, see [AS17] for
a counter-example, as the notion of max-detection is too strong in some cases. The conjecture
is always true for symmetric SBMs, as re-stated in [MNS15], but it requires a di↵erent notion of
detection to hold for general SBMs [AS17]—see Section 7.2.
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on the cavity method (belief propagation), and provide a detailed picture of the
weak recovery problem, both for the algorithmic and information-theoretic behavior.
Paper [DKMZ11] opened a new research avenue driven by establishing such phase
transitions.

One of the first paper that obtains a non-trivial algorithmic result for the weak
recovery problem is [CO10] from 2010, which appeared before the conjecture (and
does not achieve the threshold by a logarithmic degree factor). The first paper to make
progress on the conjecture is [MNS15] from 2012, which proves the impossibility part
of the conjecture for two symmetric communities, introducing various key concepts
in the analysis of block models. In 2013, [MNS13] also obtains a result on the partial
recovery of the communities, expressing the optimal fraction of mislabelled vertices
when the signal-to-noise ratio is large enough in terms of the broadcasting problem
on trees [KS66, EKPS00].

The positive part of the conjecture for e�cient algorithm and two communities
was first proved in 2014 with [Mas14] and [MNS14b], using respectively a spectral
method from the matrix of self-avoiding walks and weighted non-backtracking walks
between vertices.

In 2014, [ABH14, ABH16] and [MNS14a] found that the exact recovery problem
for two symmetric communities has also a phase transition, in the logarithmic
rather than constant degree regime, further shown to be e�ciently achievable. This
relates to a large body of work from the first decades of research on the SBM
[BCLS87, DF89, Bop87, SN97, CK99, McS01, BC09, CWA12, Vu14, YC14], driven
by the exact or almost exact recovery problems without sharp thresholds.

In 2015, the phase transition for exact recovery is obtained for the general SBM
[AS15a, AS15d], and shown to be e�ciently achievable irrespective of the number of
communities. For the weak recovery problem, [BLM15] shows that the Kesten-Stigum
threshold can be achieved with a spectral method based on the nonbacktracking
(edge) operator in a fairly general setting (covering SBMs that are not necessarily
symmetric), but falling short to settle the conjecture for more than two communities
in the symmetric case due to technical reasons. The approach of [BLM15] is based on
the ‘spectral redemption’ conjecture made in 2013 in [KMM+13], which introduces
the use of the nonbacktracking operator as a linearization of belief propagation.
This is arguably the most elegant approach to the weak recovery problem, besides
for the fact that the matrix is not symmetrical (to work with a symmetric matrix,
the first proof of [Mas14] provides also a clean description via self-avoiding walks).
The general conjecture for arbitrary many symmetric or asymmetric communities is
settled later in 2015 with [AS15c, AS16], relying on a higher-order nonbacktracking
matrix and a message passing implementation. It is further shown in [AS15c, AS17]
that it is possible to cross information-theoretically the Kesten-Stigum threshold in
the symmetric case at 4 communities, settling both positive parts of the conjectures
from [DKMZ11]. Crossing at 5 communities is also obtained in [BM16, BMNN16],
which further obtains the scaling of the information-theoretic threshold for a growing
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number of communities.
In 2016, a tight expression is obtained for partial recovery with two communities

in the regime of finite SNR with diverging degrees in [DAM15] and [MX15] for
di↵erent distortion measures. This also gives the threshold for weak recovery in the
regime where the SNR in the regime of finite SNR with diverging degrees.

Other major lines of work on the SBM have been concerned with the performance
of SDPs, with a precise picture obtained in [GV16, MS16, JMR16] for the weak
recovery problem and in [ABH16, BH14, AL14, Ban15, ABKK15, PW15] for the
(almost) exact recovery problem, as well as spectral methods on classical operators
[McS01, CO10, CRV15, XLM14, Vu14, YP14a, YP15]. A detailed picture has also
been developed for the problem of a single planted community in [Mon15, HWX15c,
HWX15b, CLM16]. There is a much broader list of works on the SBMs that is not
covered in this paper, specially before the ‘recent developments’ discussed above but
also after. It is particularly challenging to track the vast literature on this subject as
it is split between di↵erent communities of statistics, machine learning, mathematics,
computer science, information theory, social sciences and statistical physics. This
monograph covers developments mainly until 2016. There a few additional surveys
available. Community detection and more generally statistical network models are
discussed in [New10, For10, GZFA10], and C. Moore has a recent overview paper
[Moo17] that focuses on the weak recovery problem with emphasis on the cavity
method.

The main thresholds proved for weak and exact recovery are summarized in the
table below:

Weak recovery (detection) Exact recovery
(constant degrees) (logarithmic degrees)

2-SSBM (a� b)2 > 2(a + b) [Mas14, MNS14b] |
p

a�
p

b| >
p

2 [ABH14, MNS14a]

General SBM �2

2

(PQ) > �
1

(PQ) [BLM15, AS15c] mini<j D
+

((PQ)i, (PQ)j) > 1 [AS15a]

1.5 Outline

In the next section, we formally define the SBM and various recovery requirements for
community detection, namely exact, weak, and partial recovery. We then start with
a quick overview of the key approaches for these recovery requirements in Section 3,
introducing the key new concepts obtained in the recent developments. We then treat
each of the three recovery requirements separately for the two community SBM in
Sections 7.1, 7.2 and 6 respectively, discussing both fundamental limits and e�cient
algorithms. We give complete (and revised) proofs for exact recovery and partial
proofs for weak and partial recovery. We then move to the results for the general
SBM in Section 7. In Section 9 we discuss other block models, such as geometric
block models, and in Section 10 we give concluding remarks and open problems.
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2 The stochastic block model

The history of the SBM is long, and we omit a comprehensive treatment here. As
mentioned earlier, the model appeared independently in multiple scientific com-
munities: the terminology SBM, which seems to have dominated in the recent
years, comes from the machine learning and statistics literature [HLL83], while
the model is typically called the planted partition model in theoretical computer
science [BCLS87, DF89, Bop87], and the inhomogeneous random graphs model in
the mathematics literature [BJR07].

2.1 The general SBM

Definition 1. Let n be a positive integer (the number of vertices), k be a positive
integer (the number of communities), p = (p

1

, . . . , pk) be a probability vector on
[k] := {1, . . . , k} (the prior on the k communities) and W be a k ⇥ k symmetric
matrix with entries in [0, 1] (the connectivity probabilities). The pair (X,G) is drawn
under SBM(n, p, W ) if X is an n-dimensional random vector with i.i.d. components
distributed under p, and G is an n-vertex simple graph where vertices i and j are
connected with probability WX

i

,X
j

, independently of other pairs of vertices. We also
define the community sets by ⌦i = ⌦i(X) := {v 2 [n] : Xv = i}, i 2 [k].

Thus the distribution of (X, G) where G = ([n], E(G)) is defined as follows; for

x 2 [k]n and y 2 {0, 1}(n
2

),

P{X = x} :=
n
Y

u=1

px
u

=
k
Y

i=1

p|⌦i

(x)|
i (3)

P{E(G) = y|X = x} :=
Y

1u<vn

W y
uv

x
u

,x
v

(1�Wx
u

,x
v

)1�y
uv (4)

=
Y

1ijk

W
N

ij

(x,y)
i,j (1�Wi,j)

Nc

ij

(x,y) (5)

where,

Nij(x, y) :=
X

u<v,x
u

=i,x
v

=j

1(yuv = 1), (6)

N c
ij(x, y) :=

X

u<v,x
u

=i,x
v

=j

1(yuv = 0) = |⌦i(x)||⌦j(x)|�Nij(x, y), i 6= j (7)

N c
ii(x, y) :=

X

u<v,x
u

=i,x
v

=i

1(yuv = 0) = |⌦i(x)|(|⌦i(x)|� 1)/2�Nii(x, y), (8)

which are the number of edges and non-edges between any pair of communities. We
may also talk about G drawn under SBM(n, p, W ) without specifying the underlying
community labels X.
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Remark 1. Besides for Section 10, we assume that p does not scale with n, whereas
W typically does. As a consequence, the number of communities does not scale with
n and the communities have linear size. Nonetheless, various results discussed in this
monograph should extend (by inspection) to cases where k is growing slowly enough.

Remark 2. Note that by the law of large numbers, almost surely,

1

n
|⌦i|! pi.

Alternative definitions of the SBM require X to be drawn uniformly at random with
the constraint that 1

n |{v 2 [n] : Xv = i}| = pi + o(1), or 1

n |{v 2 [n] : Xv = i}| = pi
for consistent values of n and p (e.g., n/2 being an integer for two symmetric com-
munities). For the purpose of this paper, these definitions are essentially equivalent,
and we may switch between the models to simplify some proofs.

Note also that if all entries of W are the same, then the SBM collapses to the
Erdős-Rényi random graph, and no meaningful reconstruction of the communities is
possible.

2.2 The symmetric SBM

The SBM is called symmetric if p is uniform and if W takes the same value on the
diagonal and the same value outside the diagonal.

Definition 2. (X, G) is drawn under SSBM(n, k, q
in

, q
out

) if W takes value q
in

on
the diagonal and q

out

o↵ the diagonal, and if the community prior is p = {1/k}k
in the Bernoulli model, and X is drawn uniformly at random with the constraints
|{v 2 [n] : Xv = i}| = n/k, n a multiple of k, in the uniform or strictly balanced
model.

2.3 Recovery requirements

The goal of community detection is to recover the labels X by observing G, up to
some level of accuracy. We next define the notions of agreement.

Definition 3 (Agreement and normalized agreement). The agreement between two
community vectors x, y 2 [k]n is obtained by maximizing the common components
between x and any relabelling of y, i.e.,

A(x, y) = max
⇡2S

k

1

n

n
X

i=1

1(xi = ⇡(yi)), (9)

Ã(x, y) = max
⇡2S

k

1

k

k
X

i=1

P

u2[n] 1(xu = ⇡(yu), xu = i)
P

u2[n] 1(xu = i)
, (10)
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Note that the relabelling permutation is used to handle symmetric communities
such as in SSBM, as it is impossible to recover the actual labels in this case, but we
may still hope to recover the partition. In fact, one can alternatively work with the
community partition ⌦ = ⌦(X), defined earlier as the unordered collection of the k
disjoint unordered subsets ⌦

1

, . . . ,⌦k covering [n] with ⌦i = {u 2 [n] : Xu = i}. It
is however often convenient to work with vertex labels. Further, upon solving the
problem of finding the partition, the problem of assigning the labels is often a much
simpler task. It cannot be resolved if symmetry makes the community label non
identifiable, such as for SSBM, and it is trivial otherwise by using the community
sizes and clusters/cuts densities.

For (X, G) ⇠ SBM(n, p, W ) one can always attempt to reconstruct X without
even taking into account G, simply drawing each component of X̂ i.i.d. under p.
Then the agreement satisfies almost surely

A(X, X̂)! kpk2
2

, (11)

and kpk2
2

= 1/k in the case of p uniform. Thus an agreement becomes interesting
only when it is above this value.

One can alternatively define a notion of component-wise agreement. Define the
overlap between two random variables X, Y on [k] as

O(X, Y ) =
X

z2[k]

(P{X = z, Y = z}� P{X = z}P{Y = z}) (12)

and O⇤(X, Y ) = max⇡2S
k

O(X,⇡(Y )). In this case, for X, X̂ i.i.d. under p, we
have O⇤(X, X̂) = 0. When discussing impossibility for weak recovery in the SSBM
(Section 5.2.1), we use an alternative definition, showing that the conditional mutual
information between any pair of vertices u 6= v vanishes, i.e., I(Xu;Xv|G) ! 0 as
n!1.

All recovery requirement in this note are going to be asymptotic, taking place
with high probability as n tends to infinity. We also assume in the following sections—
except for Section 2.5—that the parameters of the SBM are known when designing
the algorithms.

Definition 4. Let (X, G) ⇠ SBM(n, p, W ). The following recovery requirements are
solved if there exists an algorithm that takes G as an input and outputs X̂ = X̂(G)
such that

• Exact recovery: P{A(X, X̂) = 1} = 1� o(1),

• Almost exact recovery: P{A(X, X̂) = 1� o(1)} = 1� o(1),

• Partial recovery: P{Ã(X, X̂) � ↵} = 1� o(1), ↵ 2 (1/k, 1),

• Weak recovery: P{Ã(X, X̂) � 1/k + ⌦(1)} = 1� o(1).
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In other words, exact recovery requires the entire partition to be correctly
recovered, almost exact recovery allows for a vanishing fraction of misclassified
vertices, partial recovery allows for a constant fraction of misclassified vertices and
weak recovery allows for a non-trivial fraction of misclassified vertices. We call ↵
the agreement or accuracy of the algorithm. Note that partial and weak recovery
are defined by means of the normalized agreement Ã rather the agreement A. The
reason for this is discussed in details below and matters for asymmetric SBMs; for
the case of symmetric SBMs, A can be used for all four definitions.

Di↵erent terminologies are sometimes used in the literature, with following
equivalences:

• exact recovery () strong consistency

• almost exact recovery () weak consistency

Sometimes ‘exact recovery’ is also called just ‘recovery’ and ‘almost exact recovery’
is called ‘strong recovery.’

As mentioned above, that values of ↵ that are too small may not be interesting or
possible. In the symmetric SBM with k communities, an algorithm that that ignores
the graph and simply draws X̂ i.i.d. under p achieves an accuracy of 1/k. Thus the
problem becomes interesting when ↵ > 1/k, leading to the following definition.

Definition 5. Weak recovery or detection is solved in SSBM(n, k, q
in

, q
out

) if for
(X, G) ⇠ SSBM(n, k, q

in

, q
out

), there exists " > 0 and an algorithm that takes G as
an input and outputs X̂ such that P{A(X, X̂) � 1/k + "} = 1� o(1).

Equivalently, P{O⇤(XV , X̂V ) � "} = 1� o(1) where V is uniformly drawn in [n].
Determining the counterpart of weak recovery in the general SBM requires some
discussion. Consider an SBM with two communities of relative sizes (0.8, 0.2). A
random guess under this prior gives an agreement of 0.82 + 0.22 = 0.68, however an
algorithm that simply puts every vertex in the first community achieves an agreement
of 0.8. In [DKMZ11], the latter agreement is considered as the one to improve upon
in order to detect communities, leading to the following definition:

Definition 6. Max-detection is solved in SBM(n, p, W ) if for (X, G) ⇠ SBM(n, p, W ),
there exists " > 0 and an algorithm that takes G as an input and outputs X̂ such
that P{A(X, X̂) � maxi2[k] pi + "} = 1� o(1).

As shown in [AS17], previous definition is however not the right definition to
capture the Kesten-Stigum threshold in the general case. In other words, the
conjecture that max-detection is always possible above the Kesten-Stigum threshold
is not accurate in general SBMs. Back to our example with communities of relative
sizes (0.8, 0.2), an algorithm that could find a set containing 2/3 of the vertices
from the large community and 1/3 of the vertices from the small community would
not satisfy the above above weak recovery criteria, while the algorithm produces
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nontrivial amounts of evidence on what communities the vertices are in. To be more
specific, consider a two community SBM where each vertex is in community 1 with
probability 0.99, each pair of vertices in community 1 have an edge between them
with probability 2/n, while vertices in community 2 never have edges. Regardless of
what edges a vertex has it is more likely to be in community 1 than community 2, so
weak recovery according to the above definition is not impossible, but one can still
divide the vertices into those with degree 0 and those with positive degree to obtain
a non-trivial detection—see [AS17] for a formal counter-example.

Using the normalized agreement fixes this issue. Weak recovery can then be
defined as obtaining with high probability a weighted agreement of

Ã(X, X̂(G)) = 1/k + ⌦n(1),

and this applies to the general SBM. Another definition of weak recovery that seems
easier to manipulate and that implies the previous one is as follows; note that this
definition requires a single partition even for the general SBM.

Definition 7. Weak recovery (or detection) is solved in SBM(n, p, W ) if for
(X, G) ⇠ SBM(n, p, W ), there exists " > 0, i, j 2 [k] and an algorithm that takes G
as an input and outputs a partition of [n] into two sets (S, Sc) such that

P{|⌦i \ S|/|⌦i|� |⌦j \ S|/|⌦j | � ✏} = 1� o(1),

where we recall that ⌦i = {u 2 [n] : Xu = i}.

In other words, an algorithm solves weak recovery if it divides the graph’s
vertices into two sets such that vertices from two di↵erent communities have di↵erent
probabilities of being assigned to one of the sets. With this definition, putting all
vertices in one community does not detect, since |⌦i \ S|/|⌦i| = 1 for all i 2 [k].
Further, in the symmetric SBM, this definition implies Definition 5 provided that we
fix the output:

Lemma 1. If an algorithm solves weak recovery in the sense of Definition 8 for a
symmetric SBM, then it solves max-detection (or detection according to Decelle et
al.’s definition), provided that we consider it as returning k�2 empty sets in addition
to its actual output.

See [AS16] for the proof. The above is likely to extend to other weakly symmetric
SBMs, i.e., that have constant expected degree, but not all.

Finally, note that our notion of weak recovery requires to separate at least two
communities i, j 2 [k]. One may ask for a definition where two specific communities
need to be separated:

Definition 8. Separation of communities i and j, with i, j 2 [k], is solved in
SBM(n, p, W ) if for (X, G) ⇠ SBM(n, p, W ), there exists " > 0 and an algorithm
that takes G as an input and outputs a partition of [n] into two sets (S, Sc) such that

P{|⌦i \ S|/|⌦i|� |⌦j \ S|/|⌦j | � ✏} = 1� o(1).
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There are at least two additional questions that are natural to ask about SBMs,
both can be asked for e�cient or information-theoretic algorithms:

• Distinguishability (or testing): Consider an hypothesis test where a ran-
dom graph G is drawn with probability 1/2 from an SBM model (with same
expected degree in each community) and with probability 1/2 from an Erdős-
Rényi model with matching expected degree. Is is possible to decide with
asymptotic probability 1/2 + " for some " > 0 from which ensemble the graph
is drawn? This requires the total variation between the two ensembles to be
non-vanishing. This is also sometimes called ‘detection’, which partly explains
why we prefer to use ‘weak recovery’ in lieu of ‘detection’ for the previously
discussed problem. Distinguishability is further discussed in Section 8.

• Model learnability or parameter estimation: Assume that G is drawn
from an SBM ensemble, is it possible to obtain a consistent estimator for
the parameters? E.g., can we estimate k, p, Q from a graph drawn from
SBM(n, p, Q/n)? This is further discussed in Section 2.5.

The obvious implications are: exact recovery ) almost exact recovery ) partial
recovery ) weak detection ) distinguishability. Moreover, for symmetric SBMs
with two symmetric communities: learnability , weak recovery , distinguishability,
but these are broken for general SBMs; see Section 2.5.

2.4 SBM regimes and topology

Before discussing when the various recovery requirements can be solved or not in
SBMs, it is important to recall a few topological properties of the SBM graph.

When all the entries of W are the same and equal to w, the SBM collapses to the
Erdős-Rényi model G(n, w) where each edge is drawn independently with probability
w. Let us recall a few basic results for this model derived mainly from [ER60]:

• G(n, c log(n)/n) is connected with high probability if and only if c > 1,

• G(n, c/n) has a giant component (i.e., a component of size linear in n) if and
only if c > 1,

• For � < 1/2, the neighborhood at depth r = � logc n of a vertex v in G(n, c/n),
i.e., B(v, r) = {u 2 [n] : d(u, v)  r} where d(u, v) is the length of the shortest
path connecting u and v, tends in total variation to a Galton-Watson branching
process of o↵spring distribution Poisson(c).

For SSBM(n, k, q
in

, q
out

), these results hold by essentially replacing c with the
average degree.

• For a, b > 0, SSBM(n, k, a log n/n, b log n/n) is connected with high probability

if and only if a+(k�1)b
k > 1 (if a or b is equal to 0, the graph is of course not

connected).
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• SSBM(n, k, a/n, b/n) has a giant component (i.e., a component of size linear

in n) if and only if d := a+(k�1)b
k > 1,

• For � < 1/2, the neighborhood at depth r = � logd n of a vertex v in
SSBM(n, k, a/n, b/n) tends in total variation to a Galton-Watson branching
process of o↵spring distribution Poisson(d) where d is as above.

Similar results hold for the general SBM, at least for the case of a constant
excepted degrees. For connectivity, one has that SBM(n, p, Q log n/n) is connected
with high probability if

min
i2[k]
k(diag(p)Q)ik1 > 1 (13)

and is not connected with high probability if mini2[k] k(diag(p)Q)ik1 < 1, where
(diag(p)Q)i is the i-th column of diag(p)Q.

These results are important to us as they already point regimes where exact or
weak recovery are not possible. Namely, if the SBM graph is not connected, exact
recovery is not possible (since there is no hope to label disconnected components
with higher chance than 1/2), hence exact recovery can take place only if the
SBM parameters are in the logarithmic degree regime. In other words, exact
recovery in SSBM(n, k, a log n/n, b log n/n) is not solvable if a+(k�1)b

k < 1. This is
however unlikely to provide a tight condition, i.e., exact recovery is not equivalent
to connectivity, and next section will precisely investigate how much more than
a+(k�1)b

k > 1 is needed to obtain exact recovery. Similarly, it is not hard to see that
weak recovery is not solvable if the graph does not have a giant component, i.e.,
weak recovery is not solvable in SSBM(n, k, a/n, b/n) if a+(k�1)b

k < 1, and we will
see in Section 7.2 how much more is needed to go from the giant to weak recovery.

2.5 Learning the model

In this section we overview the results on estimating the SBM parameters by observing
a one shot realization of the graph. We briefly discuss these are the estimation
problem is generally simpler than the recovery problems. We consider first the case
where degrees are diverging, where estimation can be obtained as a side result of
universal almost exact recovery, and the case of constant degrees, where estimation
can be performed without being able to recover the clusters but only above the weak
recovery threshold.

2.5.1 Diverging degree regime

For diverging degrees, one can estimate the parameters by solving first almost exact
recovery without knowing the parameters, and proceeding then to basic estimates on
the clusters’ cuts and volumes. This requires solving an harder problem potentially,
but turns out to be solvable:
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Theorem 1. [AS15d] Given � > 0 and for any k 2 Z, p 2 (0, 1)k with
P

pi = 1
and 0 < �  min pi, and any symmetric matrix Q with no two rows equal such that
every entry in Qk is strictly positive (in other words, Q such that there is a nonzero
probability of a path between vertices in any two communities in a graph drawn from
SBM(n, p, Q/n)), there exist ✏(c) = O(1/ log(c)) such that for all su�ciently large ↵,
the Agnostic-sphere-comparison algorithm detects communities in graphs drawn from
SBM(n, p,↵Q/n) with accuracy at least 1� e�⌦(↵) in On(n1+✏(↵)) time.

The algorithm used in this theorem (agnostic-sphere-comparison) is discussed in
section 6.1 in the context of two communities and is based on comparing neighbor-
hoods of vertices. Note that the knowledge on � in this theorem can be removed if
↵ = !(1). We then obtain:

Corollary 1. [AS15d] The number of communities k, the community prior p and
the connectivity matrix Q can be consistently estimated in quasi-linear time in
SBM(n, p,!(1)Q/n).

Note that for symmetric SBMs, certain algorithms such as SDPs or spectral
algorithms discussed in Section 3 can also be used to recover the communities without
knowledge of the parameters, and thus to learn the parameters in the symmetric
case. A di↵erent line of work has also studied the problem of estimating ‘graphons’
[CWA12, ACC13, OW14] via block models, assuming regularity conditions on the
graphon, such as piecewise Lipschitz, to obtain estimation guarantees. In addition,
[BCS15] considers private graphon estimation in the logarithmic degree regime, and
obtains a non-e�cient procedure to estimate ‘graphons’ in an appropriate version
of the L

2

norm. More recently, [BCCG15] extends the type of results from [WO13]
to a much more general family of ‘graphons’ and to sparser regimes (though still
with diverging degrees) with e�cient methods (based on degrees) and non-e�cient
methods (based on least square and least cut norm).

2.5.2 Constant degree regime

In the case of the constant degree regime, it is not possible to recover the clusters
fully, and thus estimation has to be done di↵erently. The first paper that shows
how to estimate the parameter in this regime tightly is [MNS15], which is based
on approximating cycle counts by nonbacktracking walks. An alternative method
based on expectation-maximization using the Bethe free energy is also proposed in
[DKMZ11] (without a rigorous analysis).

Theorem 2. [MNS15] Let G ⇠ SSBM(n, 2, a/n, b/n) such that (a� b)2 > 2(a + b),
and let Cm be the number of m-cycles in G, d̂n = 2|E(G)|/n be the average degree in
G and f̂n = (2mnCm

n

� d̂mn

n )1/mn where mn = blog1/4(n)c. Then d̂n+ f̂n and d̂n� f̂n
are consistent estimators for a and b respectively. Further, there is a polynomial time
estimator to calculate d̂n and f̂n.
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This theorem is extended in [AS15c] for the symmetric SBM with k clusters,
where k is also estimated. The first step needed is the following estimate.

Lemma 2. Let Cm be the number of m-cycles in SBM(n, p, Q/n). If m = o(log log(n)),
then

ECm ⇠ VarCm ⇠
1

2m
tr(diag(p)Q)m. (14)

To see this lemma, note that there is a cycle on a given selection of m vertices
with probability

X

x
1

,...,x
m

2[k]

Qx
1

,x
2

n
· Qx

2

,x
3

n
· . . . · Qx

m

,x
1

n
· px

1

· . . . · px
m

= tr(diag(p)Q/n)m. (15)

Since there are ⇠ nm/2m such selections, the first moment follows. The second
moment follows from the fact that overlapping cycles do not contribute to the second
moment. See [MNS15] for proof details for the 2-SSBM and [AS15c] for the general
SBM.

Hence, one can estimate 1

2mtr(diag(p)Q)m for slowly growing m. In the symmetric
SBM, this gives enough degrees of freedom to estimate the three parameters a, b, k.
Theorem 2 uses for example the average degree (m = 1) and slowly growing cycles
to obtain a system of equation that allows to solve for a, b. This extends easily to
all symmetric SBMs, and the e�cient part follows from the fact that for slowly
growing m, the cycle counts coincides with the nonbacktracking walk counts with
high probability [MNS15]. Note that Theorem 2 provides a tight condition for the
estimation problem, i.e., [MNS15] also shows that when (a� b)2  2(a + b) (which
we recall is equivalent to the requirement for impossibility of weak recovery) the
SBM is contiguous to the Erdős-Rényi model with edge probability (a + b)/(2n).

However, for the general SBM, the problem is more delicate and one has to first
stabilize the cycle count statistics to extract the eigenvalues of PQ, and use weak
recovery methods to further peal down the parameters p and Q. Deciding which
parameters can or cannot be learned in the general SBM seems to be a non-trivial
problem. This is also expected to come into play in the estimation of graphons
[CWA12, ACC13, BCS15].

3 Tackling the stochastic block model

In this section, we discuss how to tackle the problem of community detection for the
various recovery requirements of Section ??. One feature of the SBM is that it can
(and has) been viewed from many di↵erent angles. In particular, we will pursue here
the algebraic and information-theoretic (or statistical) interpretations, viewing the
SBM:
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• As a low-rank perturbation model: the adjacency matrix of the SBM has low
rank in expectation; thus one may hope to characterize its behavior, e.g., its
eigenvectors, as perturbations of its expected counter-parts.

Expected adjacency matrix of a two community SBM:
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• As a noisy channel: the SBM graph can be viewed as the output on a channel
that takes the community memberships as inputs. In particular, this corre-
sponds to a memoryless channel encoded with a sparse graph code as in Figure
3.
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Figure 3: A graph model like the stochastic block model where edges are drawn
based on hidden vertex labels can be seen as an unorthodox code on a memoryless
channel.

3.1 The block MAP estimator

A natural starting point (e.g., from viewpoint 2) is to resolve the estimation of X
from the noisy observation G by taking the Maximum A Posteriori estimator. Upon
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observing G, if one estimates the community partition ⌦ = ⌦(X) with ⌦̂(G), the
probability of error is given by

Pe := P{⌦ 6= ⌦̂(G)} =
X

g

P{⌦̂(g) 6= ⌦|G = g}P{G = g}, (16)

and an estimator ⌦̂
map

(·) minimizing the above must minimize P{⌦̂(g) 6= ⌦|G = g}
for every g. To minimize P{⌦̂(g) 6= ⌦|G = g}, we must declare a reconstruction !
that maximizes the posterior distribution

P{⌦ = !|G = g} / P{G = g|⌦ = !}P{⌦ = !}. (17)

Consider now the strictly balanced SSBM, where P{⌦ = !} is the same for all
equal size partitions. Then MAP is thus equivalent to the Maximum Likelihood
estimator:

maximize P{G = g|⌦ = !} over equal size partitions !. (18)

In the two-community case, denoting by Nin and Nout the number of edges inside
and across the clusters respectively,

P{G = g|⌦ = !} /
✓

q
out

(1� q
in

)

q
in

(1� q
out

)

◆N
out

. (19)

Assuming q
in

� q
out

, we have q
out

(1�q
in

)

q
in

(1�q
out

)

 1 and thus

MAP is equivalent to finding a min-bisection of G,

i.e., a balanced partition with the least number of crossing edges.
This brings us to a first question:

Is it a good idea to use MAP, i.e, clusters obtained from a min-bisection?

Since MAP minimizes the probability of making an error for the reconstruction
of the entire partition ⌦, it minimizes the error probability for exact recovery. Thus,
if MAP fails in solving exact recovery, no other algorithm can succeed. In addition,
MAP may not be optimal for weak recovery, since the most likely partition may not
necessarily maximize the agreement. To see this, consider for example the uniform
SSBM in a sparse regime with a + b slightly above 2. In this case, the graph has a
giant component that contains less than half of the vertices, and there are various
balanced partitions of the graph that have zero crossing edges (they separate the
giant component from a collection of small disconnected components). Clearly, these
are min-bisections, but they do not solve weak recovery. Nonetheless, weak recovery
can still be solved in such cases:

22



Lemma 3. There exist a, b such that weak recovery is solvable in SSBM(n, 2, a/n, b/n)
but block MAP fails at solving weak recovery.

Proof. Let a = 2.5 and b = 0.1. We have that (a � b)2 > 2(a + b), so there is
an algorithm that solves weak recovery on SSBM(n, 2, a/n, b/n). However, in a
graph drawn from SSBM(n, 2, a/n, b/n), with high probability, only about 42% of
the vertices are in the main component of the graph while the rest are in small
components of size O(log n). So, one can partition the vertices of the graph into
two equal sized sets with no edges between them by assigning every vertex in the
main component and some suitable collection of small components to community
1 and the rest to community 2. However, the vertices in the main component are
split approximately evenly between the two communities, and there is no way to tell
which of the small components are disproportionately drawn from one community or
the other, so for any ✏ > 0, each set returned by this algorithm will have less than
1/2 + ✏ of its vertices drawn from each community with probability 1� o(1).

Note that such an argument is harder to establish if one restricts the min-bisection
to the giant component (though we still conjecture that MAP can fail at weak recovery
with this restriction). We summarize the two points obtained so far:

• Fact 1: If MAP does not solve exact recovery, then exact recovery is not
solvable.

• Fact 2: Weak recovery may still be solvable when MAP does not solve weak
recovery.

3.2 Computing block MAP: spectral and SDP relaxations

Resolving exactly the maximization in (226) requires comparing exponentially many
terms a priori, so the MAP estimator may not always reveal the computational
threshold for exact recovery. In fact, in the worst-case model, min-bisection is NP-
hard, and approximations leave a polylogarithmic integrality gap [KF06]. Various
relaxations have been proposed for the MAP estimator. We review here two of the
main ideas.

Spectral relaxations. Consider again the symmetric SBM with strictly bal-
anced communities. Recall that MAP maximizes

max
x2{+1,�1}n

x

t

1

n

=0

xtAx, (20)

since this counts the number of edges inside the clusters minus the number of edges
across the clusters, which is equivalent to the min-bisection problem (the total number
of edges being fixed by the graph). The general idea behind spectral methods is to
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relax the integral constraint to an Euclidean constraint on real valued vectors. This
leads to looking for a maximizer of

max
x2Rn

:kxk2
2

=n

x

t

1

n

=0

xtAx. (21)

Without the constraint xt1n = 0, the above maximization gives precisely the eigen-
vector corresponding to the largest eigenvalue of A. Note that A1n is the vector
containing the degrees of each node in g, and when g is an instance of the sym-
metric SBM, this concentrates to the same value for each vertex, and 1n is close to
an eigenvector of A. Since A is real symmetric, this suggests that the constraint
xt1n = 0 leads the maximization (21) to focus on the eigenspace orthogonal to the
first eigenvector, and thus to the eigenvector corresponding to the second largest
eigenvalue. Thus it is reasonable to take the second largest eigenvector �

2

(A) of A
and round it to obtain an e�cient relaxation of MAP:

X̂
spec

=

(

1 if �
2

(A) � 0,

2 if �
2

(A) < 0.
(22)

We will discuss later on whether this is a good algorithm or not (in brief, it works
well in the exact recovery regime but not in the weak recovery regime). Equivalently,
one can write the MAP estimator as a maximizer of

max
x2{+1,�1}n

x

t

1

n

=0

X

1i<jn

Aij(xi � xj)
2 (23)

since the above minimizes the size of the cut between two balanced clusters. From
simple algebraic manipulations, this is equivalent to looking for maximizers of

max
x2{+1,�1}n

x

t

1

n

=0

xtLx, (24)

where L is the Laplacian of the graph, i.e.,

L = D �A, (25)

and D is the degree matrix of the graph. With this approach 1n is precisely an
eigenvector of L with eigenvalue 0, and the relaxation to a real valued vector leads
directly to the second eigenvector of L, which can be rounded (positive or negative)
to determine the communities. A third variant of such basic spectral approaches is
to center A and take the first eigenvector of A� q

in

+q
out

2n 1n1tn and round it.
The challenge with such ‘basic’ spectral methods is that, as the graph becomes

sparser, the fluctuations in the node degrees become more important, and this can
disrupt the second largest eigenvector from concentrating on the communities (it
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may concentrate instead on large degree nodes). To analyze this, one may express
the adjacency matrix as a perturbation of its expected value, i.e.,

A = EA + (A� EA). (26)

When indexing the first n/2 rows and columns to be in the same community, the
expected adjacency matrix takes the following block structure

EA =

 

qn/2⇥n/2
in

qn/2⇥n/2
out

qn/2⇥n/2
out

qn/2⇥n/2
in

!

, (27)

where qn/2⇥n/2
in

is the n/2⇥n/2 matrix with all entries equal to q
in

. As expected, EA
has two eigenvalues, the expected degree (q

in

+ q
out

)/2 with the constant eigenvector,
and (q

in

� q
out

)/2 with the eigenvector taking the same constant with opposite signs
on each community. The spectral methods described above succeeds in recovering the
true communities if the noise Z = A�EA does not disrupt the first two eigenvectors
of A to be somewhat aligned with those of EA. We will discuss when this takes place
in Section 7.1.

SDP relaxations. Another common relaxation can be obtained from semi-
definite programming. We discuss again the case of two symmetric strictly balanced
communities. The idea of SDPs is instead to lift the variables to change the quadratic
optimization into a linear optimization (as for max-cut [GW95]). Namely, since
tr(AB) = tr(BA) for any matrices of matching dimensions, we have

xtAx = tr(xtAx) = tr(Axxt), (28)

hence defining X := xxt, we can write (28) as

X̂
map

(g) = argmax
X⌫0

X

ii

=1,8i2[n]

rankX=1

X1

n

=0

tr(AX). (29)

Note that the first three constraints on X force X to take the form xxt for a vector
x 2 {+1,�1}n, as desired, and the last constraint gives the balance requirement.
The advantage of (29) is that the objective function is now linear in the lifted variable
X. The constraint rankX = 1 is responsible now for keeping the optimization hard.
We hence simply remove that constraint to obtain an SDP relaxation:

X̂sdp(g) = argmax
X⌫0

X

ii

=1,8i2[n]

X1

n

=0

tr(AX). (30)

A possible approach to handle the constraint X1n = 0 is to use again a centering
of A. For example, on can replace the adjacency matrix A by the matrix B such
that Bij = 1 if there is an edge between vertices i and j, and Bij = �1 otherwise.
Using �T for a large T instead of �1 for non-edges would force the clusters to be
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balanced, and it turns out that �1 is already su�cient for our purpose. This gives
another SDP:

X̂SDP (g) = argmax
X⌫0

X

ii

=1,8i2[n]

tr(BX). (31)

We will further discuss the performance of SDPs in Section 4.3.2. In brief, they
work well for exact recovery, and while they are suboptimal for weak recovery, they
are not as senstive as vanilla spectral methods to degree variations. However, the
complexity of SDPs is significantly higher than that of spectral methods. We will
also discus how other spectral methods can a↵ord optimality in both the weak and
exact recovery regimes, while preserving a quasi-linear complexity. Notice however
that we are putting the cart before the horse by talking about weak recovery now:
we viewed spectral and SDP methods as relaxations of the MAP estimator, which is
only an optimal estimator for exact recovery. These relaxations may still work for
weak recovery, but the connection is less clear. Let us thus move to what would be
the right figure of merit for weak recovery.

3.3 The bit MAP estimator

If block MAP is not optimal for weak recovery, what is the right figure of merit? To
answer this more easily, we again have to break the symmetry in some way when
working with the symmetric SBM, as done in previous section by using the partition
function ⌦(X). This is slightly more technical for weak recovery. We use a di↵erent
trick to avoid uninteresting technicalities, and consider a weakly symmetric SBM.
I.e., consider a two-community SBM with a Bernoulli prior given by (p

1

, p
2

), p
1

6= p
2

,
and connectivity Q/n such that PQ has two rows with the same sum. In other words,
the expected degree of every vertex is the same (and weak recovery is non-trivial),
but the model is slightly asymmetrical and one can determine the community labels
from the partition. In this case, we can work with the agreement between the true
labels and the algorithm reconstruction without use of the relabelling ⇡, i.e.,

A(X, X̂(G)) =
n
X

v=1

1(Xv = X̂v(G)). (32)

Consider now an algorithm that maximizes the expected agreement, i.e,

EA(X, X̂(G)) =
n
X

v=1

P(Xv = X̂v(G)). (33)

To solve weak recovery, one needs a non-trivial expected agreement, and to maximize
the above, one has to maximize each term given by

P(Xi = X̂v(G)) =
X

g

P(Xv = X̂v(g)|G = g)P(G = g), (34)
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i.e., X̂v(g) should take the maximal value of the function xv 7! P(Xv = xv|G = g).
In other words, we need the marginal P(Xv = ·|G = g). Note that in the symmetric
SBM, this marginal is 1/2, hence the need for the symmetry breaking.2

3.4 Computing bit MAP: belief propagation

How do we compute the marginal P(Xv = xv|G = g)? By Bayes rule, this requires
the term P(G = g|Xv = xv), which can easily be obtained from the conditional
independence of the edges given the vertex labels, and the marginal P(G = g) =
P

x2[2]n P(G = g|X = x), which is the non-trivial part.
Set v

0

to be a specific vertex in G. Let v
1

, ...vm be the vertices that are adjacent
to v

0

, and define the vectors q
1

, ..., qm such that for each community i and vertex vj ,

(qj)i = P(Xv
j

= i|G\{v
0

} = g\{v
0

}).

Assume for a moment3 that the probability distributions for Xv
1

, Xv
2

, ..., Xv
m

ignoring v
0

are asymptotically independent, i.e., for all x
1

, ..., xm,

P (Xv
1

= x
1

, Xv
2

= x
2

, ..., Xv
m

= xm|G\{v
0

} = g\{v
0

}) (35)

= (1 + o(1))
m
Y

i=1

P (Xv
i

= xi|G\{v
0

} = g\{v
0

}) . (36)

This is a reasonable assumption in the SBM because the graph is locally tree-like,
i.e., with probability 1 � o(1), for every i and j, every path between vi and vj in
G\{v

0

} has a length of ⌦(log n). So we would expect that knowing the community
of vi would provide little evidence about the community of vj . Then, with high
probability,

P(Xv
0

= i|G = g) = (1 + o(1))
pi
Qm

j=1

(Qqj)i
Pk

i0=1

pi0
Qm

j=1

(Qqj)i0
.

One can now iterate this reasoning. In order to estimate P [Xv = i|G = g], one
needs P [Xv

j

= i0|G\{v} = g\{v}] for all i0 and all vj adjacent to v. In order to
compute those, one needs P (Xv0 = i0|G\{v, vj} = g\{v, vj}) for all vj adjacent to v,
v0 adjacent to vj , and community i0. To apply the formula recursively with t layers
of recursion, one needs an estimate of P (Xv

0

= i0|G\{v
1

, ..., vt} = g\{v
1

, ..., vt}) for
every path v

0

, ..., vt in G. The number of these paths is exponential in t, and so

2There are di↵erent ways to break the symmetry in the symmetric SBM. One may reveal each
vertex with some noisy genie; another option is to call community 1 the community that has the
largest number of vertices among the 2b

p
nc + 1 largest degree vertices in the graph (we pick

2b
p
nc+ 1 to have an odd number and avoid ties).

3This is where the symmetry breaking based on large degree vertices discussed in the previous
footnote is convenient, as it allows to make the statement.
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this approach would be ine�cient. However, due again to the tree-like nature of the
SBM, it may be reasonable to assume that

P (Xv0 = i0|G\{v, vj} = g\{v, vj}) = (1 + o(1))P (Xv0 = i0|G\{vj} = g\{vj}),

which should hold as long as there is no small cycle containing v, vj , and v0.
Therefore, using an initial estimate (qv,v0)i of P (Xv0 = i|G\{v} = g\{v}), for

each community i and each adjacent v and v0, we can iteratively refine our beliefs
using the following algorithm which is essentially4 belief propagation (BP):

1. Set q(0) = q, where q provides (qv,v0)i 2 [0, 1] for all v, v0 2 [n], i 2 [k], the
initial belief that vertex v0 sends to vertex v (one can set qv0,v = qv00,v).

2. For each 0 < t0 < t, each v 2 G, and each community i, set

(q(t
0
)

v,v0)i =
pi
Q

v00:(v0,v00)2E(G),v00 6=v(Qq(t
0�1)

v0,v00 )i
Pk

i0=1

pi0
Q

v00:(v0,v00)2E(G),v00 6=v(Qq(t
0�1)

v0,v00 )i0

3. For each v 2 G and each community i, set

(q(t)v )i =
pi
Q

v00:(v,v00)2E(G)

(Qq(t�1)

v,v00 )i
Pk

i0=1

pi0
Q

v00:(v,v00)2E(G)

(Qq(t�1)

v0,v00 )i0

4. Return q(t).

This algorithm is e�cient and terminates with a probability distribution for the
community of each vertex given the graph, which seems to converge to the true
distribution with enough iterations even with a random initialization. Showing this
remains an open problem. Instead, we will discuss in Section 5.3.1 how one can
linearlize BP, in order to obtain a version of BP that can be analyzed more easily.
This linearization of BP will further lead to a new spectral method on an operator
called the nonbacktracking operator (see Section 5.3.1), which connects us back to
spectral methods without the issues mentioned previously for the adjacency matrix
in the weak recovery regime (i.e., the sensitivity to degree variations).

4One should normally also factor in the non-edges, but we ignore these for now as their e↵ect is
negligible in BP, although we will factor them back in when discussing linearized BP.
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4 Exact recovery for two communities

Exact recovery for linear size communities has been one of the most studied problem
for block models in its first decades. A partial list of papers is given by [BCLS87,
DF89, Bop87, SN97, CK99, McS01, BC09, CWA12, Vu14, YC14]. In this line of
work, the approach is mainly driven by the choice of the algorithms, and in particular
for the model with two symmetric communities. The results look as follows5:

Bui, Chaudhuri,
Leighton, Sipser ’84 maxflow-mincut q

in

= ⌦(1/n), q
out

= o(n�1�4/((q
in

+q
out

)n))

Boppana ’87 spectral meth. (q
in

� q
out

)/
p

q
in

+ q
out

= ⌦(
p

log(n)/n)
Dyer, Frieze ’89 min-cut via degrees q

in

� q
out

= ⌦(1)
Snijders, Nowicki ’97 EM algo. q

in

� q
out

= ⌦(1)
Jerrum, Sorkin ’98 Metropolis aglo. q

in

� q
out

= ⌦(n�1/6+✏)
Condon, Karp ’99 augmentation algo. q

in

� q
out

= ⌦(n�1/2+✏)
Carson, Impagliazzo ’01 hill-climbing algo. q

in

� q
out

= ⌦(n�1/2 log4(n))

McSherry ’01 spectral meth. (q
in

� q
out

)/
p

q
in

� ⌦(
p

log(n)/n)
Bickel, Chen ’09 N-G modularity (q

in

� q
out

)/
p

q
in

+ q
out

= ⌦(log(n)/
p

n)
Rohe, Chatterjee, Yu ’11 spectral meth. q

in

� q
out

= ⌦(1)

More recently, [Vu14] obtained result for a spectral algorithm that works in the
regime where the expected degrees are logarithmic, rather than poly-logarithmic as
in [McS01, CWA12], extending results also obtained in [XLM14]. Note that exact
recovery requires the node degrees to be at least logarithmic, as discussed in Section
2.4. Thus the results of [Vu14] are tight in the scaling, and the first to apply in
such generality, but as for the other results in Table 1, they do not reveal the phase
transition. The fundamental limit for exact recovery was derived first for the case of
symmetric SBMs with two communities:

Theorem 3. [ABH14, MNS14a] Exact recovery in SSBM(n, 2, a log(n)/n, b log(n)/n)
is solvable and e�ciently so if |

p
a�
p

b| >
p

2 and unsolvable if |
p

a�
p

b| <
p

2.

A few remarks regarding this result:

• At the threshold, one has to distinguish two cases: if a, b > 0, then exact
recovery is solvable (and e�ciently so) if |

p
a �
p

b| =
p

2 as first shown in
[MNS14a]. If a or b are equal to 0, exact recovery is solvable (and e�ciently
so) if

p
a >
p

2 or
p

b >
p

2 respectively, and this corresponds to connectivity.

• Theorem 3 provides a necessary and su�cient condition for exact recovery,
and covers all cases for exact recovery in SSBM(n, 2, q

in

, q
out

) were q
in

and q
in

may depend on n as long as not asymptotically equivalent (i.e., q
in

/q
out

9 1).

5Some of the conditions have been borrowed from attended talks and bounds and have not been
double-checked.
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For example, if q
in

= 1/
p

n and q
out

= log3(n)/n, which can be written as

q
in

=
p
n

logn
logn
n and q

out

= log2 n logn
n , then exact recovery is trivially solvable

as |
p

a�
p

b| goes to infinity. If instead q
in

/q
out

! 1, then one needs to look
at the second order terms. This is covered by [MNS14a] for the 2 symmetric
community case, which shows that for an, bn = ⇥(1), exact recovery is solvable
if and only if ((

p
an �

p
bn)2 � 1) log n + log log n/2 = !(1).

• Note that |
p

a�
p

b| >
p

2 can be rewritten as a+b
2

> 1 +
p

ab and recall that
a+b
2

> 2 is the connectivity requirement in SSBM. As expected, exact recovery

requires connectivity, but connectivity is not su�cient. The extra term
p

ab is
the ‘over-sampling’ factor needed to go from connectivity to exact recovery,
and the connectivity threshold can be recovered by considering the case where
b = 0. An information-theoretic interpretation of Theorem 3 is also discussed
in Section 7.1.

4.1 Warm up: genie-aided hypothesis test

Before discussing exact recovery in the SBM, we discuss a simpler problem which
will turn out to be crucial to understand exact recovery. Namely, exact recovery
with a genie that reveals all the vertices labels besides for a few. By ‘a few’ we
really mean here one or two. If one works with the strictly balanced model for the
community prior, then it is not interesting to isolate a single vertex as this one is
forced to take the value of the community that has not n/2 vertices. In this case we
isolate two vertices. If one works with the Bernoulli model for the community prior,
then one can isolate a single vertex and it is non-trivial to decide for the labelling of
that vertex given others.

To further clean up the problem, assume for now that we have a single vertex (say
vertex 0) that needs to be labelled, with n/2 vertices revealed in each community,
i.e., assume that we have a model with two communities of size exactly n/2 and an
extra vertex that can be in each community with probability 1/2.

To minimize the probability of error for this vertex we need to use the MAP
estimator that picks u maximizing

P{X
0

= u|G = g, X⇠0

= x⇠0

}.(??) (37)

Note that the above probability depends only on the number of edges that vertex 0
has with each of the two communities; denoting by N

1

and N
2

these edge counts, we
have

P{X
0

= u|G = g, X⇠1

= x⇠1

} = P{X
0

= u|N
1

(G, X⇠0

) = N
1

(g, x⇠0

)} (38)

/ P{N
1

(G, X⇠0

) = N
1

(g, x⇠0

)|X
0

= u} (39)

This gives an hypothesis test with two hypotheses corresponding to the two values
that vertex 0 can take, with equiprobable prior and distributions for the observable
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N
1

= N
1

(G, X⇠0

) given by

Genie-aided hypothesis test:

(

X
0

= 1 : N
1

⇠ Bin(n/2, q
in

)

X
0

= 2 : N
1

⇠ Bin(n/2, q
out

)
(40)

The probability of error of the MAP test is then given by6

Pe := P{Bin(n/2, q
in

)  Bin(n/2, q
out

)}. (41)

This is the probability that a vertex “has more friends in the other community than
its own.” We have the following key estimate.

Lemma 4. Let q
in

= a log(n)/n, q
out

= b log(n)/n. The probability of error of the
genie-aided hypothesis test is given by

P{Bin(n/2, q
in

)  Bin(n/2, q
out

)} = n
�
⇣p

a�
p
bp

2

⌘
2

+o(1)
. (42)

Remark 3. The same equality holds for P{Bin(n/2, q
in

) + O(1)  Bin(n/2, q
out

)};
these are all special cases of the Lemma in Appendix 11.

The next result, which we will prove in the next section, reveals why this
hypothesis test is crucial.

Theorem 4. Exact recovery in SSBM(n, a log(n)/n, b log(n)/n) is
(

solvable if nPe ! 0

unsolvable if nPe !1.
(43)

In other words, when the probability of error of classifying a single vertex when
all others are revealed scales sub-linearly, one can classify all vertices correctly whp,
and when it scales supper-linearly, one cannot classify all vertices correctly whp.

4.2 The information-theoretic threshold

In this section, we establish the information-theoretic threshold for exact recovery
in the two-community symmetric SBM with the uniform prior. That is, we assume
that the two communities have size exactly n/2, where n is even, and are uniformly
drawn with that constraint.

Recall that the MAP estimator for this model picks a min-bisection (see Section
3.1), i.e., a partition of the vertices in two balanced group with the least number
of crossing edges (breaking ties arbitrarily). We will thus investigate when this
estimator succeeds/fails in recovering the planted partition. Recall also that we work
in the regime where

q
in

= a
log n

n
, q

out

= b
log n

n
(44)

where the logarithm is in natural base, a, b are two positive constants.

6Ties can be broken arbitrarily; assume that an error is declared in case of ties to simplify the
expressions.
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4.2.1 Converse

Recall that exact recovery cannot be solved in a regime where the graph is dis-
connected with high probability, because two disconnected components cannot be
correctly labelled with a probability tending to one. So this gives us already a
condition:

Lemma 5 (Disconnectedness). Exact recovery is not solvable if

a + b

2
< 1. (45)

Proof. Under this condition, the graph is disconnected with high probability [ER60].

As we will see, this condition is not tight and exact recovery requires more than
connectivity:

Theorem 5. Exact recovery is not solvable if

a + b

2
< 1 +

p
ab () |

p
a�
p

b| <
p

2. (46)

We will now describe the main obstruction for exact recovery. First assume
without loss of generality that the planted community is given by

x
0

= (1, . . . , 1, 2, . . . , 2), (47)

with resulting communities

C
1

= [1 : n/2], C
2

= [n/2 : n], (48)

and let

G ⇠ PG|X(·|x
0

) (49)

be the SBM graph generated from this planted community assignment.

Definition 9. We define the set of bad pairs of vertices by

B(G) := {(u, v) : u 2 C
1

, v 2 C
2

, PG|X(G|x
0

)  PG|X(G|x
0

[u$ v])}, (50)

where x
0

[u$ v] denotes the vector obtained by swapping the values of coordinates u
and v in x

0

.

Lemma 6. Exact recovery is not solvable if B(G) is non-empty with non-vanishing
probability.
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Proof. If there exists (u, v) in B(G), we can swap the coordinates u and v in x
0

and
increase the likelihood of the partition, obtaining thus a di↵erent partition than the
planted one that is as likely as the planted one, and thus a probability of error of at
least 1/2.

We now examine the condition PG|X(G|x
0

)  PG|X(G|x
0

[u $ v]). This is a
condition on the number of edges that vertex u and v have in each of the two
communities. Note first that an edge between vertex u and v stays in the cut if
the two vertices are swapped. So the likelihood can only vary based on the number
of edges that u has in its community and in the other community ignoring v, and
similarly for v.

Definition 10. For a vertex u, define d
+

(u) and d�(u) as the number of edges that
u has in its own and other community respectively. For vertices u and v in di↵erent
communities, define d�(u \ v) as the number of edges that a vertex u has in the other
community ignoring vertex v.

We then have

PG|X(G|x
0

)  PG|X(G|x
0

[u$ v]), d
+

(u) + d
+

(v)  d�(u \ v) + d�(v \ u). (51)

We can now define the set of bad vertices (rather than bad pairs) in each community.

Definition 11.

Bi(G) := {u : u 2 Ci, d+(u)  d�(u)� 1}, i = 1, 2. (52)

Lemma 7. If B
1

(G) is non-empty with probability 1/2 + ⌦(1), then B(G) is non-
empty with non-vanishing probability.

Proof. If u 2 C
1

and v 2 C
2

are such that d
+

(u)  d�(u)� 1 and d
+

(v)  d�(v)� 1,
then d

+

(u)+d
+

(v)  d�(u)+d�(v)�2, and since d�(u)  d�(u\v)+1, this implies
d
+

(u) + d
+

(v)  d�(u \ v) + d�(v \ u). Therefore

P{9(u, v) 2 B(G)} � P{9u 2 B
1

(G), 9v 2 B
2

(G)}. (53)

Using the union bound and the symmetry in the model, we have

P{9u 2 B
1

(G), 9v 2 B
2

(G)} � 2P{9u 2 B
1

(G)}� 1. (54)

We can now see the theorem’s bound appearing: the probability that a given vertex
is bad is essentially the genie-aided hypothesis test of previous section, which has a

probability of n
�
⇣p

a�
p
bp

2

⌘
2

+o(1)
, and there are order n vertices in each community, so

under “approximate independence,” there should exists a bad vertex with probability

n
1�

⇣p
a�

p
bp

2

⌘
2

+o(1)
which gives the theorem’s bound. We now handle the “approximate

independence” part.
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Lemma 8. If
p

a�
p

b <
p

2, then

P{9u 2 B
1

(G)} = 1� o(1). (55)

Proof. We have

P{9u 2 B
1

(G)} = 1� P{8u 2 C
1

, u /2 B
1

(G)} (56)

If the events {u /2 B
1

(G)}u2C
1

were pairwise independent, then we would be done.
The technical issue is that for two vertices u and v, the events are not exactly
independent since the vertices can share an edge. This does not however create
significant dependencies. Let

Bu := 1{d
+

(u)  d�(u)� 1}. (57)

By the second moment bound,

P{8u 2 C
1

, u /2 B
1

(G)} = P{
n
X

u=1

Bu = 0} (58)

 Var
Pn

u=1

Bu

E(
Pn

u=1

Bu)2
(59)

thus

P{9u 2 B
1

(G)} � (E
Pn

u=1

Bu)2

E(
Pn

u=1

Bu)2
(60)

=
(nP{B

1

= 1})2

nP{B
1

= 1} + (n(n� 1)/2)P{B
1

= 1, B
2

= 1} + (n2/2)P{B
1

= 1, Bn/2+1

= 1}
(61)

and the last bound tends to 1 if the following three conditions hold

nP{B
1

= 1} = !(1), (62)

P{B
1

= 1|B
2

= 1}
P{B

1

= 1} = 1 + o(1), (63)

P{B
1

= 1|Bn/2+1

= 1}
P{B

1

= 1} = 1 + o(1). (64)

The first condition follows from the genie-aided hypothesis test7 and reveals the
bound in the theorem; the second (or third) condition amounts to say that B

1

and
B

2

(or B
1

and Bn/2+1

) are asymptotically independent.

7In this case, one of the two Binomial random variables has n� 1 trails rather than n, with a
trial replace by 1, which makes no di↵erence in the result as mentioned in Remark 3.
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We now show the second condition; the third is handled analogously. We have

P{B
1

= 1|B
2

= 1} = P{d
+

(1)  d�(1)� 1|d
+

(2)  d�(2)� 1} (65)

= P{B(n/2� 2, q
in

) + B
1,2  B(n/2, q

out

)� 1 (66)

|B0(n/2� 2, q
in

) + B
1,2  B0(n/2, q

out

)� 1} (67)

where B(m, C) or B0(m, C) denotes a Binomial random variable with m trials and
success probability C, B

1,2 is Bernoulli(q
in

), and the five di↵erent random variables
appearing in (67) are mutually independent. Thus,

P{B
1

= 1|B
2

= 1} (68)

=
X

b=0,1

P{B(n/2� 2, q
in

) + b  B(n/2, q
out

)� 1 (69)

|B0(n/2� 2, q
in

) + b  B0(n/2, q
out

)� 1, B
1,2 = b} (70)

· P{B
1,2 = b|B0(n/2� 2, q

in

) + B
1,2  B0(n/2, q

out

)� 1} (71)

=
X

b=0,1

P{B(n/2� 2, q
in

) + b  B(n/2, q
out

)� 1} (72)

· P{B
1,2 = b|B0(n/2� 2, q

in

) + B
1,2  B0(n/2, q

out

)� 1}. (73)

Let

� := B(n/2� 2, q
out

)�B(n/2� 2, q
in

)� 1. (74)

We have

P{B
1,2 = b|B

1,2  �} =
P{B

1,2 = b}P{b  �}
P

b=0,1 P{B
1,2 = b}P{b  �} (75)

and since P{B
1,2 = 1}  P{B

1,2 = 0} = 1 � o(1) and P{1  �}  P{0  �}, we
have

X

b=0,1

P{B
1,2 = b}P{b  �} = P{0  �}(1 + o(1)), (76)

P{B
1,2 = 0|B

1,2  �} = P{B
1,2 = 0}(1 + o(1)) = 1 + o(1), (77)

P{B
1,2 = 1|B

1,2  �} = o(1) (78)

Thus

(73) = P{0  �}(1 + o(1)) + P{1  �}o(1) = P{0  �}(1 + o(1)). (79)

On the other hand, for a random variable B0 that is Bernoulli(q
in

) and independent
of �, we have

P{B
1

= 1} = P{B(n/2� 2, q
in

) + B0  B(n/2, q
out

)� 1} (80)

= P{B0  �} = P{0  �}(1 + o(1)) (81)
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Thus,

P{B
1

= 1|B
2

= 1}
P{B

1

= 1} = 1 + o(1), (82)

which concludes the proof.

4.2.2 Achievability

The next result shows that the previous bound is tight.

Theorem 6. Exact recovery is solvable if

|
p

a�
p

b| >
p

2. (83)

We will discuss the boundary case |
p

a�
p

b| >
p

2 later on (it is still possible to
solve exact recovery in this case as long as both a and b are non-zero). To prove this
theorem, one can proceed with di↵erent approaches:

1. Showing k-swaps are dominated by 1-swaps. The converse shows that below
the threshold, there exists a bad pair of vertices in each community that can
be swapped (and thus placed in the wrong community) while increasing the
likelihood (i.e., reducing the cut). To show that the min-bisection gives the
planted bisection, we need to show instead that there is no possibility to swap
k vertices from each community and reduce the cut for any k 2 {1, . . . , n/4}
(we can use n/4 because the communities have size n/2). That is, above the
threshold,

P{9S
1

✓ C
1

, S
2

✓ C
2

: (84)

|S
1

| = |S
2

|, d
+

(S
1

) + d
+

(S
2

)  d�(S
1

\ S
2

) + d�(S
2

\ S
1

)} (85)

= o(1). (86)

For T
1

✓ C
1

, T
2

✓ C
2

such that |T
1

| = |T
2

| = k, define

Pe(k) := P{|d
+

(T
1

) + d
+

(T
2

)  d�(T
1

\ T
2

) + d�(T
2

\ T
2

)}. (87)

Then, by a union bound,

P{9S
1

✓ C
1

, S
2

✓ C
2

: (88)

|S
1

| = |S
2

|, d
+

(S
1

) + d
+

(S
2

)  d�(S
1

\ S
2

) + d�(S
2

\ S
1

)} (89)

= P{9k 2 [n/4], S
1

✓ C
1

, S
2

✓ C
2

: |S
1

| = |S
2

| = k, (90)

d
+

(S
1

) + d
+

(S
2

)  d�(S
1

) + d�(S
2

)} (91)

=

n/4
X

k=1

✓

n/4

k

◆✓

n/4

k

◆

Pe(k) (92)

= (n/4)2Pe(1) + R (93)
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where R :=
Pn/4

k=2

�n/4
k

��n/4
k

�

Pe(k). Note that Pe(1) behaves like the error
probability of the genie-aided test squared (we look at two vertices instead
of one), and one can show that the product n2Pe(1) is vanishing above the
threshold. So it remains to show that the reminder R is also vanishing, and in
fact, one can show that R = O(n2Pe(1)), i.e., the first term (1-swaps) dominates
the other terms (k-swaps). This approached is used in [ABH16].

2. Using graph-splitting. The technique of graph-splitting is developed in [ABH16,
AS15a] to allow for multi-round methods, where solutions are successively
refined. The idea is split the graph G into two new graphs G

1

and G
2

on
the same vertex set, by throwing each edge independently from G to G

1

with probability � and keeping the other edges in G
2

. In sparse enough
regime, such as logarithmic degrees, one can further treat the two graphs
as essentially independent SBMs on the same planted community. Taking
� = log log(n)/ log(n), one obtains for G

1

an SBM with degrees that scale
with log log(n), and it is not too hard to show that almost exact recovery can
be solved in such a diverging-degree regime. One can then use the almost
exact clustering obtained on G

1

and refine it using the edges of G
2

, using a
genie-aided test for each vertex, where the genie is not an exact genie as in
Section 4.1, but an almost-exact genie obtained from G

1

. One then shows that
the almost-exact nature of the genie does not change the outcome, and the
same threshold emerges. This approach is discussed in more details in Section
7.1 when we consider exact recovery in the general SBM.

3. Using the spectral algorithm. While it is not necessary to use an e�cient algo-
rithm to establish the information-theoretic threshold, the spectral algorithm
o↵ers a nice algebraic intuition to the problem. This approach is discussed in
details in next section.

4.3 Achieving the threshold

4.3.1 Spectral algorithm

In this section, we show that the vanilla spectral algorithm discussed in Section 3.2
achieves the exact recovery threshold. The proof is based on [AFWZ17]. Recall that
the algorithm is a relaxation of the min-bisection, changing the integral constraint
on the community labels to an Euclidean-norm constraint. This suggest that taking
the second largest eigenvector of A, i.e., the eigenvector corresponding to the second
largest eigenvalue of A, and rounding it, gives a plausible reconstruction. Techniques
from random matrix theory are naturally relevant here, as used in various works
such as [NN12, Vu07, Vu14, OVW18, YP14b, PWBM16b] and references therein.

Denote by A0 the adjacency matrix of the graph with self-loops added with
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probability p for each vertex. Therefore,

EA0 = n
p + q

2
�̄
1

�̄t
1

+ n
p� q

2
�̄
2

�̄t
2

(94)

where

�̄
1

= 1n/
p

n, (95)

�̄
2

= [1n/2;�1n/2]/
p

n. (96)

We will work with the “centered” adjacency matrix which we denote by A in this
section (with an abuse of notation compared to previous sections) where we subtract
the top expected eigenvector:

A := A0 � n
q
in

+ q
out

2
�̄
1

�̄t
1

. (97)

The slight advantage is that Ã is now rank 1 in expectation:

Ā := EA = n
p� q

2
�̄
2

�̄t
2

(98)

= ��̄�̄t (99)

where we renamed

�̄ :=
(a� b) log(n)

2
(100)

�̄ := �̄
2

(101)

We now want to show that the top eigenvector � of A has all its components
aligned with �̄ in terms of signs (up to a global flip). Define, for i 2 [n],

X
spec

(i) =

(

1 if �(i) � 0,

2 if �(i) < 0.
(102)

Theorem 7. The spectral algorithm that outputs X
spec

solves exact recovery when

|
p

a�
p

b| >
p

2. (103)

Note that the algorithm runs in polynomial time in n, at most n3 counting loose
and less using the sparsity of A. Note also that we do not have to worry about the
case where the resulting community is not balanced, as this enters the vanishing
error probability. Another way to write the theorem is as follows:

Theorem 8. In the regime q
in

= p logn
n , q

out

= b logn
n , a 6= b, a, b > 0, |

p
a�
p

b| 6=p
2,

P{X
spec

⌘ X
MAP

} = 1� o(1) whenever P{X ⌘ X
MAP

} = 1� o(1), (104)

i.e., the spectral and MAP estimators are equivalent whenever MAP succeeds at
recovering the true X.

38



This an interesting phenomena that seems to take place for more than one
problem in combinatorial statistics, see for example discussion in [AFWZ17].

We now proceed to prove Theorem 8. We will break the proof in several parts.
A first important result gives a bound on the norm of A� Ā:

Lemma 9 (Refined Feige-Ofek [AFWZ17]). For any a, b > 0, there exists c
1

, c
2

> 0
such that

P{kA� Āk
2

� c
1

p

log(n)}  c
2

n�3. (105)

This implies a first reassuring fact, i.e., the first eigenvalue � of A is in fact
asymptotic to �̄ in our regime. This follows from the Courant-Fisher Theorem:

Lemma 10 (Courant-Fisher or Weyl’s Theorem). The following holds surely,

|�� �̄|  kA� Āk
2

. (106)

This implies that � ⇠ �̄ with high probability, since �̄ ⇣ log(n). However, this
does not imply anything for the eigenvectors yet. A classical result to convert bounds
on the norm A� Ā to eigenvector alignments is the Davis-Kahan Theorem. Below
we present a user-friendly version based on the Lemma 3 in [AFWZ17].

Theorem 9 (Davis-Kahan Theorem). Suppose that H̄ =
Pn

j=1

µ̄j ūj ūt
j and H =

H̄+E, where µ̄
1

� · · · � µ̄n, kūjk2 = 1 and E is symmetric. Let uj be an eigenvector
of H corresponding to its j-th largest eigenvalue, and � = min{µ̄j�1

� µ̄j , µ̄j� µ̄j+1

},
where we define µ̄

0

= +1 and µ̄n+1

= �1. We have

min
s=±1

ksuj � ūjk2 .
kEk

2

�
. (107)

In addition, if kEk
2

 �, then

min
s=±1

ksuj � ūjk2 .
kEūjk2
�

, (108)

where both . only hide absolute constants.

Corollary 2. For any a, b > 0, with high probability,

|h�, �̄i| = 1� o(1). (109)

While this gives a strong alignment, it this does not give any result for exact
recovery. One can use a graph-splitting step to leverage this result into an exact
recovery result by using a cleaning phase to the eigenvector (see item 2 in Section
4.2.2). Interestingly, one can also proceed directly using a sharper spectral analysis,
and show that the sign of the eigenvector � directly recovers the communities. This
was done in [AFWZ17] and is covered below.
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A first attempt would be to show that � and �̄ are close enough in each component,
i.e., that with high probability,

|�i � �̄i|
?

< |�̄i|, 8i 2 [n] (110)

() k�� �̄k1
?

< 1/
p

n (111)

or k�� (��̄)k1
?

< 1/
p

n since we must allow for a global flip due to symmetry. This
would imply that rounding the components of � to their signs would produce with
high probability the same signs as �̄ (or ��̄), which solves exact recovery.

Unfortunately the above inequality does not hold all the way down to the exact
recovery threshold, which makes the problem more di�cult. However, note that it is
not necessary to have (110) in order to obtain the correct sign by rounding �: one
can have a large gap for |�i � �̄i| which still produces the good sign as long as this
gap in “on the right side,” i.e., �i can be much larger than �̄i if �̄i is positive and
�i can be much smaller than �̄i if �̄i is negative (or the reverse statement for ��̄).
This is illustrated in Figure 4 and is shown below.
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Figure 4: The second eigenvector and its first-order approximation in SBM. The
left plot: The histogram of coordinates of

p
n u

2

computed from a single realization
of adjacency matrix A, where n is 5000, a is 4.5 and b is 0.25. Under this regime,
exact recovery is expected, and indeed coordinates form two well-separated clusters.
The right plot: boxplots showing four di↵erent distance/errors (up to sign) over 100
realizations. (i)

p
n ku

2

� u⇤
2

k1, (ii)
p

n kAu⇤
2

/�⇤
2

� u⇤
2

k1, (iii)
p

n ku
2

�Au⇤
2

/�⇤
2

k1.
These boxplots show that Au⇤

2

/�⇤
2

is a good approximation of u
2

under `1 norm
even though ku

2

� u⇤
2

k1 may be large.
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The main idea is to show that the components of � are well approximated by
the components of A�̄/�̄ (rather than �̄), i.e.,

� = A�/� ⇡ A�̄/�̄ = �̄+ (A� EA)�̄/�̄. (112)

Formally:

Theorem 10. Let a > b > 0. There exist constants C and c such that for su�ciently
large n,

P
✓

min
s=±1

ks��A�̄/�̄k1 
cp

n log log n

◆

� 1� Cn�2. (113)

Note that A�̄ is familiar to us: it contains exactly the random variable entering
the error event for the genie-aided hypothesis test in (41), i.e.,

(A�̄)
1

(d)
= Bin(n/2, p)�Bin(n/2, q), (114)

which we know from Lemma 4 has probability n�1�⌦(1) to be negative (i.e., to move
to “the other side”) above the exact recovery threshold. Since A�̄ is normalized
by �̄, we will use a stronger version of Lemma 4, namely the Lemma of Appendix
11, which gives a similar bound. We now give the proof for Theorem 7, and then
proceed to proving Theorem 10.

Proof of Theorem 7. Define the following events,

E
1

:=

⇢

min
i2[n]

|(A�̄/�̄)i| �
2"

(a� b)
p

n

�

\
�

sgn(A�̄/�̄) = ±sgn(�̄)
 

(115)

E
2

:=

⇢

min
s=±1

ks��A�̄/�̄k1 
cp

n log log n

�

. (116)

Note that Theorem 10 says that E
2

takes place with high probability. Therefore if E
1

takes place with high probability as well, the event

sgn(�) = ±sgn(�̄) (117)

must take place with high probability, because (up to a global flip) � is at distance
O( 1p

n log logn
) from A�̄/�̄, and A�̄/�̄ is at distance ⌦( 1p

n
) from the origin, so the noise

that takes �̄ to � cannot make � cross the origin and change sign since |�̄| = 1/
p

n
(though it could take � far on the other side).

We now show that E takes place with high probability. We have

P (E
1

) (118)

� P
✓

min
i2[n]

|(A�̄/�̄)i| �
2"

(a� b)
p

n

◆

+ P
�

sgn(A�̄/�̄) = ±sgn(�̄)
�

� 1 (119)

� 1�
✓

1� P
✓

|(A�̄/�̄)
1

| � 2"

(a� b)
p

n

◆◆n

+ P
�

sgn(A�̄/�̄) = ±sgn(�̄)
�

� 1

(120)

41



When
p

a �
p

b >
p

2, we can choose some " = "(a, b) > 0 such that (
p

a �p
b)2/2 � " log(a/b)/2 > 1. Thus from the strong genie-aided error bound in the

Appendix Lemma,

P
✓

|(A�̄/�̄)
1

| � 2"

(a� b)
p

n

◆

 n�(

p
a�

p
b)2/2+" log(a/b)/2 = n�1�⌦(1) (121)

and a fortiori,

P
�

sgn(A�̄/�̄) = ±sgn(�̄)
�

= 1� o(1), (122)

since each component of A�̄/�̄ is at least strictly positive or strictly negative (de-
pending on the global flip on �̄) with probability n�1�⌦(1). Therefore,

P (E
1

) = 1� o(1). (123)

We now proceed with the proof of Theorem 10.

Proof of Theorem 10. To simplify the notation, assume that � is chosen such that
�t�̄ � 0, so that we can remove the sign variable s. We want to obtain a bound on

k��A�̄/�̄k1 = k��A�/�̄+ A�/�̄�A�̄/�̄k1 (124)

 k��A�/�̄k1 + kA�/�̄�A�̄/�̄k1 (125)

=
|�̄� �|
�̄
k�k1 +

1

�̄
kA(�� �̄)k1. (126)

Let us define the event

E := {kA� Āk
2

 c
1

p

log(n)}. (127)

Recall that Weyl’s theorem gives |���̄|  kA�Āk
2

, and thus under the event E , which
takes place with high probability from Lemma 9, we must have |�� �̄| = O(

p

log(n)).
Given that �̄ = ⇥(log(n)), we must have under E

�̄/2  �  2�̄ (128)

and a fortiori |¯���|
¯�

= O(1/
p

log(n)). Therefore, under E , we have that the first
term in (126) is bounded as

|�̄� �|
�̄
k�k1  O(k�k1/

p

log(n)). (129)

Before worrying about estimating k�k1, we move to the second term in (126). One
di�culty in estimating kA(� � �̄)k1 is that A and (� � �̄) are dependent since �
is an eigenvector of A. Thus, to bound the m-th component of A(� � �̄), namely
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Am(� � �̄), where Am is the m-row of A, we cannot use directly a concentration
result that applies to expressions of the kind Amw where w is an independent test
vector. To decouple the dependencies, we use a leave-one-out technique, as used for
example in [BBEKY13], [JM15], and [ZB17].

Define n auxiliary matrices {A(m)}nm=1

✓ Rn⇥n as follows: for any m 2 [n], let

(A(m))ij = Aij�{i 6=m,j 6=m}, 8i, j 2 [n]

where �A is the indicator function on the event A. Therefore, A(m) is obtained from
A by zeroing out the m-th row and column. Let �(m) be the leading eigenvector of
A(m). Again, �(m) is chosen such that (�̄)t�(m) � 0. We can write

(A(�� �̄))m = Am(�� �̄) = Am(�� �(m)) + Am(�(m) � �̄) (130)

and thus

|(A(�� �̄))m|  |Am(�� �(m))| + |Am(�(m) � �̄)| (131)

 kAmk2k�� �(m)k
2

+ |Am(�(m) � �̄)| (132)

 kAk
2!1k�� �(m)k

2

| {z }

T
1

+ |Am(�(m) � �̄)|
| {z }

T
2

(133)

where we used the Cauchy-Schwarz Inequality in the first inequality, and kAk
2!1 :=

maxm2[n] kAmk2 in the second inequality. The point of introducing A(m) is that for

the second term in (133), we have that Am and (�(m) � �̄) are now independent.
Thus this term can be tackled with concentration results. We now handle both terms
in (133). Recall the definition of the event E in (127).

Claim 1: Under E, T
1

= kAk
2!1k�� �(m)k

2

= O(
p

log(n)k�k1).
To prove this claim, assume that E takes place. To bound ku� �(m)k

2

, we will
view A(m) as a perturbation of A and apply Davis-Kahn Theorem (Theorem 9).

We first show that

E ✓
⇢

k�(m) � �k
2

= min
s=±1

ks�(m) � �k
2

�

. (134)

Note that

kA(m) �Ak
2

 kA(m) �AkF 
p

2kAk
2!1, (135)

and

kAk
2!1  kA� Āk

2

+ kĀk
2!1 .

p

log n +
log np

n
.
p

log n. (136)

Therefore, (135) and (136) imply that

kA(m) � Āk
2

 kA(m) �Ak
2

+ kA� Āk
2

.
p

log n. (137)
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By definition we have (�̄)T� � 0 and (�̄)T�(m) � 0. Using Theorem 9, we have

k�(m) � �̄k
2

= min
s=±1

ks�(m) � �̄k
2

. kA(m) � Āk
2

/�̄ . 1/
p

log n, (138)

k�� �̄k
2

= min
s=±1

ks�� �̄k
2

. kA� Āk
2

/�̄ . 1/
p

log n. (139)

and thus

k�(m) � �k
2

. 1/
p

log n. (140)

When n is large enough, we have that k�(m) � �k
2

 1, which implies (134) since
{±1} 3 s 7! ks�(m) � �k

2

= 2� sh�(m),�i has its minima below 1 for s = 1.
By Weyl’s inequality, maxi |�i(A)��i(Ā)|  kA� Āk

2

. Recall that we are under
E , thus

�
1

(A)� �
2

(A) � �̄� 2kA� Āk
2

& �̄ & log n. (141)

Moreover from (137) we have that for n large enough,

kA(m) �Ak
2

< �
1

(A)� �
2

(A). (142)

Therefore (142) provides the condition for Theorem 9. Combined with (134),
this yields

k�(m) � �k
2

= min
s=±1

ks�(m) � �k
2

. k(A
(m) �A)�k

2

�
1

(A)� �
2

(A)
. k(A�A(m))�k

2

�̄
. (143)

Note that ((A� A(m))�)m = Am� = ��m and ((A� A(m))�)i = Aim�m for i 6= m.
By (128) and (136),

k(A�A(m))�k
2

=

0

@�2|�m|2 +
X

i 6=m

A2

im�
2

m

1

A

1/2

 |�m|
q

�2 + kAk2
2!1 . |�m|�̄.

Using this with (143), we have that there exists C
1

> 0 such that

k�(m) � �k
2

 C
1

|�m|  C
1

k�k1, 8m 2 [n]. (144)

Finally, from (136) and (144), there exists C
2

> 0 such that

T
1

= kAk
2!1k�� �(m)k

2

 C
2

p

log(n)k�k1, (145)

which proves Claim 1.
Claim 2: Under E, T

2

= |Am(�(m) � �̄)| = O(log(n)k�k1/ log log(n)).
To prove this claim, we work again under E and use a concentration bound.

This is where we exploit the independence between �(m) � �̄ and {Ami}ni=1

to
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control |Am(�(m) � �̄)|. From concentration bounds, namely taking w = �(m) � �̄,
{Xi}ni=1

= {A0
mi}ni=1

(note that Ami � Āmi = A0
mi � EA0

mi), p = (a _ b) lognn and
↵ = 3/(a _ b) in Lemma 10 from [AFWZ17], we get
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Since
�

�

�

�
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n
X
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. log np
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,

there exists a choice of C
3

> 0 in the definition of E(m)

1

such that

P(E(m)

1

) > 1� 2n�3, (148)

and from the union bound,

P(Ec
1

)  2n�2. (149)

From (140), we have

E ✓
n
\

m=1

n

k�(m) � �̄k
2

 C
4

/
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log n
o

(150)

for some constant C
4

� 1. Define � = C
4

/
p

log n, which is smaller than 1 for large
enough n. It follows from direct algebraic manipulations that

E \ E(m)
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✓
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�
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< 2C
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Note that under E , (144) leads to

k�(m) � �̄k1  k�(m) � �k1 + k�� �̄k1  k�(m) � �k
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+ k�k1 + k�̄k1

 (C
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where we used k�k1 � 1/
p

n. Hence, recalling that � = C
4

/
p

log n, we have that
under E \ E

1

there exists C
5

> 0 such that
�

�

�

Am(�(m) � �̄)
�

�

�

<
C
5

log(n)k�k1
log log n

, 8m 2 [n], (151)

which implies Claim 2.
Let us use now plug the bounds from Claim 1 and 2 in (133), which gives under

E \ E
1

,

1

�̄
kA(�� �̄)k1 . k�k1

log log(n)
. (152)

Putting this back in (126) together with (129), we obtain under E \ E
1

,

k��A�̄/�̄k1 . k�k1
log log(n)

. (153)

We are now left to show that k�k1 = O(1/
p

n), which implies the theorem’s
statement since E \ E

1

take place with probability 1� ⌦(n�2).
Claim 3: k�k1 = O(1/

p
n).

To prove this claim, note that from (153) and k�k1  k��A�̄/�̄k1 +kA�̄/�̄k1,
we have k�k1 . kA�̄k1/�̄. Hence it remains to show that kA�̄k1 . lognp

n
. Observe

that |Am�̄|  k�̄k1
Pn
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where the last inequality holds for n large enough. Moreover from (136),

n
X

i=1
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2A2

mi +
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log n  2kAk2
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Therefore,
�

�A�̄
�

�

1 . lognp
n

, which proves Claim 3 and the theorem.

4.3.2 SDP algorithm

Recall that the idea of SDPs is to lift the variables to change the quadratic optimiza-
tion into a linear optimization (as for max-cut [GW95]). Since tr(AB) = tr(BA) for
any matrices of matching dimensions, we have

xtAx = tr(xtAx) = tr(Axxt), (154)

hence defining X := xxt, we can write (154) as

X̂
map

(g) = argmax
X⌫0

X

ii

=1,8i2[n]

rankX=1

X1

n

=0

tr(AX). (155)
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The first three constraints on X force X to take the form xxt for a vector x 2
{+1,�1}n, as desired, and the last constraint gives the balance requirement. The
advantage of (155) is that the objective function is linear in the lifted variable X.
The constraint rankX = 1 is responsible for hardness of the optimization. We hence
simply remove that constraint to obtain an SDP relaxation:

X̂sdp(g) = argmax
X⌫0

X

ii

=1,8i2[n]

X1

n

=0

tr(AX). (156)

A possible approach to handle the constraint X1n = 0 is to replace the adjacency
matrix A by the matrix B such that Bij = 1 if there is an edge between vertices i
and j, and Bij = �1 otherwise. Using �T for a large T instead of �1 for non-edges
would force the clusters to be balanced, and it turns out that �1 is already su�cient
for our purpose. This gives another SDP:

X̂SDP (g) = argmax
X⌫0

X

ii

=1,8i2[n]

tr(BX). (157)

The dual of this SDP is given by

min
Y

ij

=081i 6=jn

Y ⌫B

tr(Y ). (158)

Since the dual minimization gives an upper-bound on the primal maximization, a
solution is optimal if it makes the dual minima match the primal maxima. The
Ansatz here consists in taking Y = 2(Din�Dout)+In as a candidate for the diagonal
matrix Y , which gives the primal maxima. It we thus have Y ⌫ B(g), this is a
feasible solution for the dual, and we obtain a dual certificate. The following is
shown in [ABH16] based on this reasoning.

Definition 12. Define the SBM Laplacian for G drawn under the symmetric SBM
with two communities by

L
SBM

= D(Gin)�D(Gout)�A, (159)

where D(Gin) (D(Gout)) are the degree matrices of the subgraphs of G containing
only the edges inside (respectively across) the clusters, and A is the adjacency matrix
of G.

Theorem 11. [ABH16] The SDP solves exact recovery in the symmetric SBM with
2 communities if 2L

SBM

+ 11t + In ⌫ 0 and �
2

(2L
SBM

+ 11t + In) > 0.

The second requirement above is used for the uniqueness of the solution. This
condition is verified all the way down to the exact recovery threshold. In [ABH16],
it is shown that this condition holds in a regime that does not exactly match
the threshold, o↵ roughly by a factor of 2 for large degrees. This gap is closed
in [BH14, Ban15], which show that SDPs achieve the exact recovery threshold in
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the symmetric case. Results for unbalanced communities were also obtained in
[PW15], although it is still open to achieve the general CH threshold with SDPs.
Many other works have studied SDPs for the stochastic block model, we refer to
[AL14, ABH16, Ban15, ABKK15, BH14, MS16, PW15] for further references. In
particular, [MS16] shows that SDPs allow to approach the threshold for weak recovery
in the two-community SSBM arbitrarily close when the expected degrees diverge.

5 Weak recovery for two communities

The focus on weak recovery, also called detection, was initiated8 with [CO10,
DKMZ11]. Note that weak recovery is typically investigated in SBMs where vertices
have constant expected degree, as otherwise the problem can trivially be resolved by
exploiting the degree variations.

The following conjecture was stated in [DKMZ11] based on deep but non-rigorous
statistical physics arguments, and is responsible in part for the resurged interest on
the SBM:

Conjecture. [DKMZ11, MNS15] Let (X, G) be drawn from SSBM(n, k, a/n, b/n),
i.e., the symmetric SBM with k communities, probability a/n inside the communities

and b/n across. Define SNR = (a�b)2

k(a+(k�1)b) . Then,

(i) For any k � 2, it is possible to solve weak recovery e�ciently if and only if
SNR > 1 (the Kesten-Stigum (KS) threshold);

(ii) If9 k � 4, it is possible to solve weak recovery information-theoretically (i.e.,
not necessarily in polynomial time in n) for some SNR strictly below 1.10

It was proved in [Mas14, MNS14b] that the KS threshold can be achieved
e�ciently for k = 2, and [MNS15] shows that it is impossible to detect below the
KS threshold for k = 2. Further, [DAM15] extends the results for k = 2 to the case
where a and b diverge while maintaining the SNR finite. So weak recovery is closed
for k = 2 in SSBM.

Theorem 12. [Converse in [MNS15], achievability in [Mas14, MNS14b]] Weak
recovery is solvable (and e�ciently so) in SSBM(n, 2, a/n, b/n) when a, b = O(1) if
and only if (a� b)2 > 2(a + b).

8The earlier work [RL08] also considers detection in the SBM.

9The conjecture states that k = 5 is necessary when imposing the constraint that a > b, but
k = 4 is enough in general.

10[DKMZ11] made in fact a more precise conjecture, stating that there is a second transition
below the KS threshold for information-theoretic methods when k � 4, whereas there is a single
threshold when k = 3.
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Theorem 13. [DAM15] Weak recovery is solvable (and e�ciently so) in SSBM(n, 2, an/n, bn/n)
when an, bn = !(1) and (an � bn)2/(2(an + bn))! � if and only if � > 1.

Theorem 13 is discussed in Section 6 in the context of partial recovery. We
discuss here Theorem 12. An additional result is obtained in [MNS15], showing that
when SNR  1, the symmetric SBM with two communities is in fact contiguous to
the Erdős-Rénti model with edge probability (a + b)/(2n), i.e, distinguishability is
not solvable in this case. Contiguity is further discussed in Section 8.

For several communities, it was also shown in [BLM15] that for SBMs with mul-
tiple communities that are balanced and that satisfy a certain asymmetry condition
(i.e., the requirement that µk is a simple eigenvalue in Theorem 5 of [BLM15]), the
KS threshold can be achieved e�ciently. The achievability parts of previous onjecture
for k � 3 are resolved in [AS15c, AS17]. We discuss these in Section 7.2.

Note that the terminology ‘KS threshold’ comes from the reconstruction problem
on trees problem [KS66, EKPS00, MP03, MM06], referring to the first paper by
Kesten-Stigum (KS). A transmitter broadcasts a uniform bit to some relays, which
themselves forward the received bits to other relays, etc. The goal is to reconstruct
the root bit from the leaf bits as the depth of the tree diverges. In particular, for
two communities, [MNS15] makes a reduction between failing in the reconstruction
problem in the tree setting and failing in weak recovery in the SBM. This is discussed
in more details in next section. The fact that the reconstruction problem on tree also
gives the positive behavior for e�cient algorithm requires a more involved argument
discussed in Section 5.3.

Achieving the KS threshold raises an interesting challenge for community detection
algorithms, as standard clustering methods fail to achieve the threshold, as discussed
in Section 5.3.1. This includes spectral methods based on the adjacency matrix
or standard Laplacians, as well as SDPs. For standard spectral methods, a first
issue is that the fluctuations in the node degrees produce high-degree nodes that
disrupt the eigenvectors from concentrating on the clusters. A classical trick is to
suppress such high-degree nodes, by either trimming or shifting the matrix entries
[JY13, LLV15, CO10, Vu14, GV16, CRV15], throwing away some information, but
this does not su�ce to achieve the KS threshold [KK15]. SDPs are a natural
alternative, but they also appear to stumble before the KS threshold [GV16, MS16,
MPW16], focusing on the most likely rather than typical clusterings. As shown in
[Mas14, MNS14b, BLM15, AS15c], approximate BP algorithms or spectral algorithms
on more robust graph operators allow instead to achieve KS.

5.1 Warm up: broadcasting on trees

As for exact recovery, we start with a simpler problem that will play a key role
in understanding weak recovery. The idea is similar to that of the exact recovery
warm up, except that we do not reveal only the direct neigbors of a vertex, but the
neighbords at a short depth. In particular, at depth (1/2� ") log(n)/ log((a + b)/2),
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the SBM neigborhood of a vertex can be coupled with a Galton-Watson tree, and
so we will consider trees for the warm up. In contrast to exact recovery, we will
not be interested in reconstructing the isolated vertex with probability tending to
1, but with probability greater than 1/2. This is known in the literature as the
reconstruction problem for broadcasting on tree. We refer to [MP03] for a survey on
this topic.

The problem consists in broadcasting a bit from the root of a tree down to its
leaves, and trying to guess back this bit from the leaf bits at large depth. Consider
first the case of a deterministic tree with fixed degree c + 1, i.e., each vertex has
exactly c descendants (note that the root has degree c). Assume that on each branch
of the tree the incoming bit is flipped with probability " 2 [0, 1], and that each
branch flips independently. Let X(t) be the bits received at depth t in this tree, with
X(0) being the root bit, assumed to be drawn uniformly at random in {0, 1}.

We now define weak recovery in this context. Note that E(X(0)|X(t)) is a random
variable that gives the probability that X(0) = 1 given the leaf bits, as a function of
the leaf bits X(t). If this probability is equal to 1/2, then the leaf bits provide no
useful information about the root, and we are interested in understanding whether
this takes place in the limit of large t or not.

Definition 13. Weak recovery (usually called reconstruction in this context) is
solvable in the broadcasting on regular tree if limt!1 E|E(X(0)|X(t)) � 1/2| > 0.
Equivalently, weak recovery is solvable if limt!1 I(X(0);X(t)) > 0, where I is the
mutual information.

Note that the above limits exist due to monotonicity arguments. The first result
on this model is due to Kesten-Stigum:

Theorem 14. In the tree model with constant degree c and flip probability ",

• [KS66] weak recovery is solvable if c(1� 2")2 > 1,

• [BRZ95, EKPS00] weak recovery is not solvable11 if c(1� 2")2  1.

In fact, one can show a seemingly stronger result where weak recovery fails in
the sense that, when c(1� 2")2  1,

lim
t!1

E(X(0)|X(t)) = 1/2 a.s. (160)

Thus weak recovery in the tree model is solvable if and only if c(1� 2")2 > 1, which
gives rise to the so-called Kesten-Stigum (KS) threshold in this tree context. Note
that [MP03] further shows that the KS threshold is sharp for “census reconstruction,”
i.e., deciding about the root-bit by taking majority on the leaf-bits, which is shown

11The proof from [EKPS00] appeared first in 1996.
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to still hold in models such as the multicolor Potts model where the KS threshold is
no longer sharp for reconstruction.

To see this result, let us compute the moments of the number 0-bits minus
1-bits at generation t. First, consider ±1 variables rather than bits, i.e., redefine

X(t)
i  (�1)X

(t)

i , and consider the di↵erence variable:

�(t) =
X

i2[ct]

X(t)
i . (161)

Note that, if there are x bits of value 1 and y bits of value �1 at generation t,
then �(t+1) would be the sum of xc Radamacher(1� ") and yc Radamacher(") (all
independent), and since the expectation of Radamacher(1 � ") is 1 � 2" and the
variance of Radamacher(1� ") or Radamacher(") is 2"(1� 2"), we have

E(�(t+1)|�(t)) = c(1� 2")�(t), (162)

Var�(t+1) = Var(�(t+1)|X(0)) = c2"(1� ")ct. (163)

Since X(0) ��(t) ��(t+1) forms a Markov chain and E(�(0)|X(0)) = X(0),

E(�(t+1)|X(0)) = E(E(�(t+1)|�(t))|X(0)) (164)

= c(1� 2")E(�(t)|X(0)) (165)

= ct+1(1� 2")t+1X(0). (166)

Therefore, we have

(E(�(t)|X(0) = 1), Var(�(t)|X(0) = 1)) ⇣ (ct(1� 2")t, ct), (167)

(E(�(t)|X(0) = �1), Var(�(t)|X(0) = �1)) ⇣ (�ct(1� 2")t, ct). (168)

Therefore, defining the signal-to-noise ratio as the term that is exponentiated in the
ratio of the expectation magnitude by the standard-deviation, i.e., SNR =

p
c(1�2"),

we have that the statistics �(t) will preserve information about X(0), in that the
standard deviation of each posterior will not overflow the magnitude of their respective
means, if (

p
c(1� 2"))t gets amplified as t grows, i.e., if SNR > 1.

Conversely, irrespective of the statistics used, one can show that the mutual
information I(X(0); X(t)) vanishes as t grows if SNR < 1. In the binary case, it turns
out that the mutual information is subadditive among leaves [EKPS00], i.e.,

I(X(0); X(t)) 
ct
X

i=1

I(X(0); X(t)
i ) = ctI(X(0); X(t)

1

).

Note that this subadditivity holds in greater generality for the first layer, i.e., if
we have a Markov chain Y

1

�X � Y
2

, such as happens when a root variable X is
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broadcasted on two independent channels producing Y
1

and Y
2

, then

I(X; Y
1

) + (X; Y
2

)� I(X; Y
1

, Y
2

) (169)

= H(Y
1

)�H(Y
1

|X) + H(Y
2

)�H(Y
2

|X)�H(Y
1

, Y
2

) + H(Y
1

, Y
2

|X) (170)

= H(Y
1

)�H(Y
1

|X) + H(Y
2

)�H(Y
2

|X)�H(Y
1

, Y
2

) + H(Y
1

|X) + H(Y
2

|X)
(171)

= H(Y
1

) + H(Y
2

)�H(Y
1

, Y
2

) (172)

= I(Y
1

; Y
2

) � 0. (173)

However, going to depth 2 of the tree, there is no simple inequality as the above
that shows the subadditivity, and in fact, the subadditivity is not true in general for
binary non-symmetric noise or for non-binary labels. For binary labels and symmetric
channels, it is shown in [EKPS00] that “detaching” the tree paths produces a degraded
channel which implies the inequality.

Further, the channel between X(0) and a one leaf-bit such as X(t)
1

corresponds
to t Bernoulli(") random variables added, and the mutual information scales as
(1� 2")2t,

I(X(0); X(t)
1

) = O((1� 2")2t) (174)

which implies with the subadditivity

I(X(0); X(t)) = O(ct(1� 2")2t). (175)

Therefore, if c(1� 2")2 < 1,

I(X(0); X(t)) = o(1)

and the information of the root-bit gets lost in the leaves.
We will soon turn to the connection between the reconstruction on tree problem

and weak recovery in the SBM. It is easy to guess that the tree for us will not
be a fixed degree tree, but the local neighborhood of an SBM vertex, which is
a Gaton-Watson tree with Poisson o↵spring. We first state the above results for
Galton-Walton trees.

Definition 14. A Galton-Walton tree with o↵spring distribution µ on Z
+

is a rooted
tree where the number of descendants from each vertex is independently drawn under
the distribution µ. We denote by T (t) ⇠ GW (µ) a Galton-Walton tree with o↵spring
µ and t generations of descendants, where T (0) is the root vertex.

Define as before X(t) as the variables at generation t obtained from broadcasting
the root-bit on a Galton-Watson tree T (t).

Definition 15. Weak recovery is solvable in the broadcasting on Galton-Waston tree
{T (t)}t�0

if limt!1 E|E(X(0)|X(t), T (t)) � 1/2| > 0. Equivalently, weak recovery is
solvable if limt!1 I(X(0); X(t)|T (t)) > 0, where I is the mutual information.
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In [EKPS00], it is shown that the threshold c(1 � 2")2 > 0 is necessary and
su�cient for weak recovery for a large class of o↵spring distributions, where c is the
expectation of µ, such as the Poisson(c) distribution of particular interest to us:

Theorem 15. [EKPS00] In the broadcasting model with Galton-Watson tree of
Poisson(c) o↵spring and flip probability ", weak recovery is solvable if and only if

c(1� 2")2 > 1.

Another important extension is the ‘robust reconstruction’ problem [JM04], where
the leaves are not revealed exactly but with the addition of independent noise. It
was shown in [JM04] that for very noisy leaves, the KS threshold is also tight.

5.2 The information-theoretic threshold

We discuss in this Section the proof for the threshold of Theorem 12, i.e., that weak
recovery is solvable in SSBM(n, 2, a/n, b/n) (and e�ciently so) if and only if

(a� b)2 > 2(a + b).

We focus in particular on the information-theoretic converse. Interestingly, for the
achievability part, there is currently not a simpler proof available in the literature
than the proof that are directly giving an e�cient algorithm. We discuss below some
attempt, and move to Section 5.3 for the (e�cient) achievability.

5.2.1 Converse

We will now prove the converse putting aside two important technical steps: (1) the
coupling of a neighborhood of the SBM with the broadcasting on Galton-Watson
tree, (2) the weak e↵ect of non-edges outside a neighborhood. The second point
refers to the fact that two vertices that are not connected by an edge are not in
the same community with probability exactly 1/2; in fact, P{X

1

= X
2

|E
1,2 = 0} =

1�a/n
1�a/n+1�b/n = 1/2(1 + (b� a)/2n) + o(1/n), and there is a slight repulsion towards
being in the same community.

Using two lemmas proved in [MNS15] to cover the above two points, [MNS15]
shows the following result:

Theorem 16. [MNS15] Let (X, G) ⇠ SSBM(n, 2, a/n, b/n), the SBM with two
symmetric communities. If (a� b)2  2(a + b),

P{X
1

= 1|G, X
2

= 1}! 1/2 a.a.s. (176)

Here we will give the following equivalent result that also implies the impossibility
of weak recovery:
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Theorem 17. [MNS15] Let (X, G) ⇠ SSBM(n, 2, a/n, b/n) with (a� b)2  2(a + b).
Then,

I(X
1

; X
2

|G) = o(1). (177)

Note that the role of vertex 1 and 2 is arbitrary above, it could be any fixed pair
of vertices (not chosen based on the graph).

The connection between the warm-up problem and the SBM comes from the fact
that if one picks a vertex v in the SBM graph, its neighborhood at small enough
depth behaves likes a Galton-Watson tree of o↵spring Poissonc, c = ((a + b)/2), and
the labelling on the vertices behaves like the broadcasting process discussed above
with a flip probability of " = b/(a+b). Note that the latter parameter is precisely the
probability that two vertices have di↵erent labels given that there is an edge between
them. More formally, if the depth is t  (1/2 � �) log(n)/ log(a + b)/2) for some
� > 0, then the true distribution and the above one have a vanishing total variation
when n diverges. This depth requirement can be understood from the fact that the
expected number of leaves in that case is in expectation n1/2��, and by the birthday
paradox, no collision will likely occur between two vertices neighborhoods if � > 0
(hence no loops take place and the neighborhood is a tree with high probability).

To establish the converse of Theorem 12, it is su�cient to argue that, if it
impossible to detect a single vertex when a genie reveals all the leaves at such a
depth, it must be impossible to detect. In fact, consider P{Xu = xu|G = g, Xv = xv},
the posterior distribution given the graph and an arbitrary vertex revealed (here u
and v are arbitrary and chosen before the graph is drawn). With high probability,
these vertices will not be at small graph-distance of each other, and one can open
a small neighborhood around u of depth, say, log log(n). Now reveal not only the
value of Xv but in fact all the values at the boundary of this neighborhood. This is
an easier problem since the neighborhood is a tree with high probability and since
there is approximately a Markov relationship between these boundary vertices and
the original Xv (note that ‘approximately’ is used here since there is a negligible
e↵ect due to non-edges). We are now back to the broadcasting problem on tree
discussed above, and the requirement c(1�2")2  0 gives the theorem’s bound (since
c = (a + b)/2 and " = b/(a + b)).

The reduction extends to more than two communities (i.e., non-binary labels
broadcasted on trees) and to asymmetrical communities, but the tightness of the KS
bound is no longer present in these cases. For two asymmetrical communities, the
result still extends if the communities are roughly symmetrical, using [BCMR06] and
[MNS13, pri]. For more than three symmetric communities, new gap phenomena
take place [AS17], see Section 8.

We now proceed to proving Theorem 17. The first step is to formalize what is
meant by the fact that the neighborhoods of the SBM look like a Galton-Watson
tree. Let G
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Lemma 11. [MNS15] Let (X, G) ⇠ SSBM(n, 2, a/n, b/n) and R = R(n) = b 1

10

log(n)/ log(2(a+
b))c. Let BR := {v 2 [n] : dG(1, v)  R} be the set of vertices at graph distance at
most R from vertex 1, GR be the restriction of G on BR, and let XR = {Xu : u 2 BR}.
Let TR be a Galton-Watson tree with o↵spring Poisson(a + b)/2 and R generations,
and let X̃(t) be the labelling on the vertices at generation t obtained by broadcasting the

bit X̃(0) := X
1

from the root with flip probability b/(a + b). Let X̃R = {X̃(t)
u : t  R}.

Then, there exists a coupling between (GR, XR) and (TR, X̃R) such that

(GR, XR) = (TR, X̃R) a.a.s. (178)

The second technical lemma that we need is regarding the negligible e↵ect of
non-edges outside from our local neighborhood of a vertex. The di�culty here is
that these non-edges are negligible if the vertices labels are more or less balanced;
for example, the e↵ect of non-edges would not be negligible if the vertices had all
the same labels.

Lemma 12. [MNS15] Let (X, G) ⇠ SSBM(n, 2, a/n, b/n), R = R(n) = b 1

10

log(n)/ log(2(a+
b))c and X@R = {Xu : dG(u, 1) = R}. Then,

P{X
1

|X@R, X
2

, G} = (1 + o(1))P{X
1

|X@R, G} (179)

for a.a.e. (X, G).

The statement means that the probability that (X, G) is such that (179) holds
tends to one as n tends to infinity. Note that R could actually be c log(n)/ log((a +
b)/2)c for any c < 1/2 for the above to still hold; we keep the same R as in previous
lemma to reduce the number of parameters.

Corollary 3. Using the same definition as in Lemma 12,

H(X
1

|X@R, G, X
2

) = H(X
1

|X@R, G) + o(1). (180)

We can now prove Theorem 17.

Proof of Theorem 17. Let TR and {X̃(t)}Rt=0

be the random variables appearing in
the coupling of Lemma 11. We have,

1 � H(X
1

|G, X
2

) � H(X
1

|G, X
2

, X@R) (181)

= H(X
1

|X@R, G) + o(1) (182)

= H(X̃(1)|X̃(R), TR) + o(1) (183)

= 1 + o(1) (184)

where (181) follows from the fact that conditioning reduces entropy, (182) follows
from the asymptotic conditional independence of Lemma 12, (183) from the fact
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that the neighbordhood of a vertex can be coupled with the broadcasting on Galton-
Watson tree, i.e., Lemma 11, and (184) follows from the fact that below the KS
threshold weak recovery is not solvable for the broadcasting problem on tree problem,
i.e., Lemma 15. Therefore,

I(X
1

; X
2

|G) = 1�H(X
1

|G, X
2

) = o(1). (185)

5.2.2 Achievability

Interestingly, the achievability part of Theorem 12 was directly proved for an e�cient
algorithm, discussed in the next section. Using an e�cient algorithm should a priori
require more work than what could be achieved if complexity considerations were put
aside, but a short information-theoretic proof has not been given in the literature
yet. Here we sketch how this could be potentially achieved, although there may be
simpler ways. In Section 8, we discuss an alternative approach that is simpler than
the approach described below; however, it does not provide the right constant for
two communities.

Since (a� b)2 > 2(a + b) is the threshold for weak recovery in the broadcasting
on tree problem (when the expected degree is (a + b)/2 and the flip probability
is b/(a + b)), one would hope to find a proof that reduces weak recovery in the
SBM to this broadcasting on tree problem. For a converse argument, it is fairly
easy to connect to this problem since one can always use a genie that gives further
information in a converse argument, in this case, the values at the boundary of a
vertex’ neighborhood. How would one connect to the broadcasting on tree problem
for an achievability result?

We will next discuss how one can hope to replace the genie by many random
guesses. First consider the e↵ect of making a random guess about each vertex.
Let (X, G) ⇠ SSBM(n, 2, a/n, b/n) and let X(") = {Xv + Berv(1/2 � ") : v 2 [n]}
be the noisy genie, i.e., a corruption of each community labels with independent
additive Bernoulli noise for each vertex with flip probability 1/2� ", with " 2 [0, 1/2].
Note that X(0) is pure noise, so we can assume that we have access to (X(0), G)
rather than G only (which may seem irrelevant). Next we argue that we can replace
(X(0), G) with (X(⇥(1/

p
n)), G), i.e., not a purely noisy genie but a genie with a

very small bias of order ⇥(1/
p

n) towards the truth.

Lemma 13. If weak recovery is solvable by observing (X(1/
p

n), G), then it is
solvable by observing G only.

The proof follows by noting that if weak recovery is solvable using (X(0), G), then
it is solvable using G only since X(0) is independent of (X, G). But X(0) produces
with high probability a bias of ⇥(

p
n) vertices on either the good or bad size (by the

Central Limit Theorem); since both are equivalent in view of weak recovery, we can
assume that we have a genie that gives ⇥(

p
n) vertices on the good side.

56



Naive plan: as one can obtain a weak genie ‘for free’ by random guessing, one
may hope to connect to the broadcasting problem on trees by amplifying this weak
genie for each vertex at tree-like depth. That is, take a vertex v in the graph, open
a neighborhood at depth R(n) as in the converse argument of previous section, and
re-decide for the vertex v by solving the broadcasting on tree problem using the
noisy vertex labels at the leaves. Do this for each vertex in parallel; assuming that
correlations between di↵erent vertices are negligible.

We next explain why this plan is doomed to fail, because the depth R(n) is too
short to amplify such a weak genie. In fact, For a vertex v and integer t, let Nt(v)
be the number of vertices t edges away from v, �t(v) be the di↵erence between the
number of vertices t edges away from v that are in community 1 and the number of
vertices t edges away from v that are in community 2, and e�t(v) be the di↵erence
between the number of vertices t edges away from v that are in C

1

and the number
of vertices t edges away from v that are in C

2

. For small t,

E[Nt(v)] ⇣
✓

a + b

2

◆t

and

E[�t(v)] ⇣
✓

a� b

2

◆t

· (�1)Xv

For any fixed values of Nt(v) and �t(v), the probability distribution of e�t(v)
is essentially a Gaussian distribution with a mean of ⇥(�t(v)/

p
n) and a variance

of ⇡ Nt(v) because it is the sum of Nt(v) nearly independent variables that are
approximately equally likely to be 1 or �1. So, e�t(v) is positive with a probability
of 1

2

+⇥(�t(v)/
p

|Nt(v)|n). In other words, if v is in community 1 then e�t(v) is
positive with a probability of

1

2
�⇥

 

✓

a� b

2

◆t

·
✓

a + b

2

◆�t/2 1p
n

!

and if v is in community 2 then e�t(v) is positive with a probability of

1

2
+⇥

 

✓

a� b

2

◆t

·
✓

a + b

2

◆�t/2 1p
n

!

If (a� b)2  2(a + b), then this is not improving the accuracy of the classification, so
this technique is useless. On the other hand, if (a� b)2 > 2(a + b), the classification
becomes more accurate as t increases. However, this formula says that to classify
vertices with an accuracy of 1/2 + ⌦(1), we would need to have t such that

✓

a� b

2

◆

2t

= ⌦

 

✓

a + b

2

◆t

n

!
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However, unless a or b is 0, that would imply that

✓

a + b

2

◆

2t

= !

 

✓

a� b

2

◆

2t
!

= !

 

✓

a + b

2

◆t

n

!

(186)

which means that (a+b
2

)t = !(n). It is obviously impossible for Nt(v) to be greater
than n, so this t is too large for the approximation to hold. In any case, this shows
that working at the tree-like regime is not going to su�ce.

Figure 5: The left figure shows the neighborhood of vertex v pulled from the SBM
graph at depth c log�

1

n, c < 1/2, which is a tree with high probability. If one had
an educated guess about each vertex’s label, of good enough accuracy, then it would
be possible to amplify that guess by considering only such small neighborhoods
(deciding with the majority at the leaves). However, we do not have such an educated
guess. We thus initialize our labels purely at random, obtaining a small advantage of
roughly

p
n vertices by luck (i.e., the central limit theorem), in either an agreement

or disagreement form. This is illustrated in agreement form in the right figure.

This takes us to two possibilities:

• Go deeper. In order to amplify our weak bias of order 1/
p

n to a constant
bias, we can go deeper in the neighborhoods, leaving the regime where the
neighborhood is tree-like. In fact, according to (186), this requires going
beyond the diameter of the graph whcih is log(n)/ log((a + b)/2), and having
to repeat vertices (i.e., count walks). The problem is, the above approximation
assumes that each vertex at a distance of t� 1 from v has one edge leading
back towards v, and that the rest of its edges lead towards new vertices. Once
a significant fraction of the vertices are less than t edges away from v, a
significant fraction of the edges incident to vertices t� 1 edges away from v
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are part of loops and thus do not lead to new vertices. This creates obviously
significant complications. This is the approach that is discussed in the next
section, using nonbacktracking walks. In fact, we re-derive this approach in
the next section from our principles on weak recovery from Section 5.3.1. Note
also that this approach is e�cient, and it is thus legitimate to ask whether a
simpler argument could be obtained information-theoretically, which takes us
to the next point;

• Repeat guessing. A single random guess gives a bias of order 1/
p

n. However,
if we keep guessing again and again, eventually one random guess will be
atypically correlated with the ground truth. In particular, with enough guesses,
one would get a strong enough correlation for the random guess that the
naive plan described above could work at the tree-like depth (connecting us
to the (robust) broadcasting on tree problem, as desired). Of course, a new
di�culty is now to identify which of these many random guesses leads to a
good reconstruction. For this, we propose to use a graph-splitting argument as
discussed next.

Achieving KS information-theoretically: attempt.
(1) Graph-split G into G

1

and G
2

such that G
1

is above the KS threshold.
(2) Take M = M(n) independent random guesses (i.e., partitions of [n]) and amplify
each at the three-like depth on G

1

. Let X̂
1

, . . . , X̂M be the amplified guesses; these
are each partitions of [n].
(3) Test the edge density of the residue graph G

2

on each partition X̂i, and output
the first X̂i that gives a typical edge density (i.e., above a constant factor of what a
purely random partition typically gives for the edge density).

We conjecture that there exists an appropriate choice of M such that (i) a “good
guess” will come up whp, i.e., a guess with enough initial correlation that the naive
plan described above amplifies that guess to a weak recovery solution using G

1

, (ii)
the “good guess” amplification is tested positive on the residue graph G

2

before
any bad guess amplification is potentially tested positive. Note that one could
use variants for testing the validity of the good guess, for example, using the �t

statistics of previous section to set the validity test. The advantage of this plan is
that its analysis would mainly be based on estimates at tree-like depths and moments
computations.

5.3 Achieving the threshold

In previous section we mentioned two plans to amplify a random guess to a valid
weak recovery reconstruction: (i) one can repeat guessing exponentially many time
until one hits an atypically good random guess that can be amplified on shallow
neighorhoods to a valid weak recovery solution; (ii) on can take a single random
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guess and amplify it on deep neighborhoods to reach directly a valid weak recovery
construction. We now discuss the latter plan, which can be run e�ciently.

For this, we continue the reasoning from previous section that explained why the
tree-like regime was not su�cient to amplify a random guess. An obvious way to
solve the problem caused by running out of vertices would be to simply count the
walks of length t from v to vertices in C

1

or C
2

. Recall that a walk is a series of
vertices such that each vertex in the walk is adjacent to the next, and a path is a
walk with no repeated vertices. The last vertex of such a walk will be adjacent to an
average of approximately a/2 vertices in its community outside the walk and b/2
vertices in the other community outside the walk. However, it will also be adjacent
to the second to last vertex of the walk, and maybe some of the other vertices in the
walk as well. As a result, the number of walks of length t from v to vertices in C

1

or
C
2

cannot be easily predicted in terms of v’s community. So, the numbers of such
walks are not useful for classifying vertices.

We could deal with this issue by counting paths12 of length t from v to vertices in
C
1

and C
2

. The expected number of paths of length t from v is approximately (a+b
2

)t

and the expected di↵erence between the number that end in vertices in the same
community as v and the number that end in the other community is approximately
(a�b

2

)t. The problem with this is that counting all of these paths is ine�cient.
A compromise is to count nonbacktracking walks ending at v, i.e. walks that

never repeat the same edge twice in a row. We can e�ciently determine how many
nonbacktracking walks of length t there are from vertices in Ci to v. Furthermore,
most nonbacktracking walks of a given length that is logarithmic in n are paths, so
it seems reasonable to expect that counting nonbacktracking walks instead of paths
in our algorithm will have a negligible e↵ect on the accuracy.

12This type of approach is considered in [BB14].
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Figure 6: This figure extends Figure 5 to a larger neighborhood. The ABP algorithm
amplifies the belief of vertex v by considering all the walks of a given length that
end at it. To avoid being disrupted by backtracking or cycling the beliefs on short
loops, the algorithm considers only walks that do not repeat the same vertex within
r steps, i.e., r-nonbacktracking walks. For example, when r = 3 and when the walks
have length 7, the green walk starting at vertex v

1

is discarded, whereas the orange
walk starting at the vertex v

2

is counted. Note also that the same vertex can lead to
multiple walks, as illustrated with the two magenta walks from v

3

. Since there are
approximately equally many such walks between any two vertices, if the majority
of the vertices were initially classified as blue, this is likely to classify all of the
vertices as blue. We hence need a compensation step to prevent the classification
from becoming biased towards one community.

5.3.1 Linearized BP and the nonbacktracking matrix

To derive the algorithm more formally, we now switch to a more principled approach,
starting from the weak recovery figure of merit discussed in Section 3.4. The idea
of using nonbacktracking walks results from a series of papers [KMM+13, MNS14b,
BLM15, AS15c], as discussed in Section 1.4.

Recall that the Belief Propagation algorithm presented in Section 3.4 as a
derivation of the Bayes Optimal estimator. Recall also that we purposely work
with a slightly more general SBM to break the symmetry: i.e., a weakly symmetric
SBM with community prior p = (p

1

, p
2

) and connectivity channel W = Q/n such
that diag(p)Q has constant row sums, i.e., the expected degrees in the graph are
constant d. As mentioned in Section 3.4, the BP algorithm ends with a probability
distribution for the community of each vertex, and taking for each vertex the most
likely assignment is conjectured to give a weak recovery solution. However, this
algorithm has several downsides. First of all, it uses a nonlinear formula to calculate
each sucessive set of probability distributions (Bayes rule), and its analysis remains to
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date challenging. From a practical point of view, one needs to know the parameters
of the model in order to run the algorithm, which makes it model-dependent.

We now discuss how both issues can be mitigated by “linearizing” the algorithm.
Recall first that our original guesses of the vertice’s communities gives only a very
weak bias. As such, it may be useful to focus on the first order approximation of
our formula when our beliefs about the communities of v

1

, ..., vm are all close to the
prior probabilities for a vertex’s community. In this case, every entry of Qp must be
equal to d. So, we have that

P [Xv
0

= i|G = g] ⇡
pi
Qm

j=1

(Qqj)i
Pk

i0=1

pi0
Qm

j=1

(Qqj)i0

=
pi
Qm

j=1

[d + (Q(qj � p))i]
Pk

i0=1

pi0
Qm

j=1

[d + (Q(qj � p))i0 ]

⇡
pi[1 +

Pm
j=1

(Q(qj � p))i/d]
Pk

i0=1

pi0 [1 +
Pm

j=1

[(Q(qj � p))i0/d]

=
pi[1 +

Pm
j=1

(Q(qj � p))i/d]

1 +
Pm

j=1

p · Q(qj � p)/d

= pi + pi

m
X

j=1

(Q(qj � p))i/d

We can then rewrite BeliefPropagationAlgorithm using this approximation in
order to get the following:

PseudoLinearizedBeliefPropagationAlgorithm(t, p, Q, q, G):

1. Set ✏(0)v,v0 = qv,v0 � p for all (v, v0) 2 E(G).

2. For each 0 < t0 < t, and each v 2 G, set

✏(t
0
)

v,v0 =
X

v00:(v0,v00)2E(G),v00 6=v

PQ✏(t
0�1)

v0,v00 /d

3. For each (v, v0) 2 E(G), set

q(t)v = p +
X

v0:(v,v0)2E(G)

PQ✏(t�1)

v,v0 /d
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4. Return q(t).

It is time to bring up an issue that was swept under the rung until now, i.e., the
e↵ect of non-edges. If one has access to a good initial guess and operates a short
depth, then the non-edges have negligible e↵ects and the above algorithm can be
used. However, in the current context where we will run the iteration at large depth,
the non-edges need to be factored in. The fundamental problem is that the absence of
an edge between v and v0 provides slight evidence that these vertices are in di↵erent
communities, and this algorithm fails to take that into account. Generally, as long as
our current estimates of vertices communities assign the right number of vertices to
each community, each vertex’s nonneigbors are balanced between the communities,
so the nonedges provide negligible amounts of evidence. However, if they are not
taken into account, then any bias of the estimates towards one community can grow
over time, and one may end up classifying all vertices in the community that was
initially more represented.

Re-deriving BP by taking into account the non-edges in Bayes rule and writing
down the proper linearization leads to the following algorithm:

LinearizedBeliefPropagationAlgorithm(t, p, Q, q, G):

1. Set ✏(0)v,v0 = qv,v0 � p for all (v, v0) 2 E(G).

2. Set ✏(0)v = qv � p for all v 2 G.

3. For each 0 < t0 < t:

(a) For each (v, v0) 2 E(G), set

✏(t
0
)

v,v0 =
X

v00:(v0,v00)2E(G),v00 6=v

PQ✏(t
0�1)

v0,v00 /d�
X

v00:(v0,v00) 62E(G),v00 6=v0

PQ✏(t
0�1)

v00 /n

(b) For each v 2 G, set

✏(t
0
)

v =
X

v0:(v,v0)2E(G)

PQ✏(t
0�1)

v,v0 /d�
X

v0:(v,v0) 62E(G),v0 6=v

PQ✏(t
0�1)

v0 /n

4. For each v 2 G, set

q(t)v = p +
X

v0:(v,v0)2E(G)

PQ✏(t�1)

v,v0 /d�
X

v0:(v,v0) 62E(G),v0 6=v

PQ✏(t�1)

v0 /n

5. Return q(t).
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We will now discuss a spectral implementation of this algorithm, as the above
resemble a power iteration method on a linear operator. Define the graph’s nonback-
tracking walk and adjusted nonbacktracking matrix as follows.

Definition 16. Given a graph (V, E), the graph’s nonbacktracking walk matrix, B,
is a matrix of dimension |E

2

|⇥ |E
2

|, where E
2

is the set of directed edges on E (i.e.,
|E

2

| = 2|E|), such that for two directed edges e = (i, j), f = (k, l),

Be,f = 1(l = i, k 6= j). (187)

In other words, B maps a directed edge to the sum of all directed edges starting at
its end, except for the reversal edge.

Definition 17. Given a graph G, and d > 0, the graph’s adjusted nonbacktracking
walk matrix, bB is the (|E

2

| + n)⇥ (|E
2

| + n) matrix such that for all w in the vector
space with a dimension for each directed edge and each vertex, we have that bBw = w0,
where w0 is defined such that

w0
v,v0 =

X

v00:(v0,v00)2E(G),v00 6=v

wv0,v00/d�
X

v00:(v0,v00) 62E(G),v00 6=v0

wv00/n

for all (v, v0) 2 E(G) and

w0
v =

X

v0:(v,v0)2E(G)

wv,v0/d�
X

v0:(v,v0) 62E(G),v0 6=v

wv0/n

for all v 2 G.

These definitions allows us to state the following fact:

Theorem 18. When LinearizedBeliefPropagationAlgorithm is run, for every 0 <
t0 < t, we have that

✏(t
0
) =

⇣

bB ⌦ PQ
⌘t0

✏(0)

This follows from the definition of bB and the fact that the propagation step of

LinearizedBeliefPropagationAlgorithm gives ✏(t
0
) =

⇣

bB ⌦ PQ
⌘

✏(t
0�1) for all 0 < t0 <

t.
In other words, LinearizedBeliefPropagationAlgorithm is essentially a power

iteration algorithm that finds the eigenvector of bB ⌦ PQ with the largest eigenvalue.
bB ⌦ PQ has an eigenbasis consisting of tensor products of eigenvectors of bB and
eigenvectors of PQ, with eigenvalues equal to the products of the corresponding
eigenvalues of bB and PQ. As such, this suggests that for large t0, ✏(t

0
) would be

approximately equal to a tensor product of eigenvectors of bB and PQ with maximum
corresponding eigenvalues. For the sake of concreteness, assume that w and ⇢ are
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eigenvectors of bB and PQ such that ✏(t
0
) ⇡ w ⌦ ⇢. That corresponds to estimating

that
P [Xv = i|G = g] ⇡ pi + wv⇢i

for each vertex v and community i. If these estimates are any good, they must
estimate that there are approximately pin vertices in community i for each i. In other
words, it must be the case that the sum over all vertices of the estimated probabilities
that they are in community i is approximately pin. That means that either ⇢ is small,
in which case these estimates are trivial, or

P

v2G wv ⇡ 0. Now, let the eigenvalue
corresponding to w be �. If

P

v2G wv ⇡ 0, then for each (v, v0) 2 E(G), we have that

�wv,v0 ⇡
X

v00:(v0,v00)2E(G),v00 6=v

wv0,v00/d

=
X

v00:(v0,v00)2E(G)

B
(v0,v00),(v,v0)wv0,v00/d

So, the restriction of w to the space spanned by vectors corresponding to directed
edges will be approximately an eigenvector of B with an eigenvalue of approximately
�/d. Conversely, any eigenvector of B that is balanced in the sense that its entries
add up to approximately 0 should correspond to an eigenvector of bB. So, we
could try to determine what communities vertices were in by finding some of the
balanced eigenvectors of B with the largest eignvalues, adding together the entries
corresponding to edges ending at each vertex, and thresholding.The eigenvector of
B with the largest eigenvalue will have solely nonnegative entries, so it will not be
balanced. However, it is reasonable to expect that its next few eigenvectors would
be relatively well balanced.

This approach has a couple of advantages over the full BP algorithm. First of all,
one does not need to know anything about the graph’s parameters to find the top
few eigenvectors of B, so this algorithm works on a graph drawn from an SBM with
unknown parameters. Secondly, the approximation of the top few eigenvectors of B
will tend to be simpler than the analysis of the BP algorithm. Note that balanced
eigenvectors of B will be approximately eigenvectors of B � �

1

n 1, where �
1

is the
largest eigenvalue of B and 1 is the matrix thats entries are all 1. Therefore, we
could also look for the main eigenvectors of B � �

1

n 1 instead of looking for the main
balanced eigenvectors of B. We next give two variants of the resulting algorithm for
the case of the SSBM.13

Nonbacktracking eigenvector extraction algorithm [KMM+13, BLM15].
Input: A graph G and a parameter ⌧ 2 R.
(1) Construct the nonbacktracking matrix B of the graph G.

13Note that the symmetry breaking is used to derived the algorithm but we can now apply it
equally well to the symmetric SBM.
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(2) Extract the eigenvector ⇠
2

corresponding to the second largest eigenvalue of B.
(3) Assign vertex v to the first community if

P

e:e
2

=v ⇠2(e) > ⌧/
p

|V (G)| and to the
second community otherwise.

Theorem 19. [BLM15] If (a � b)2 > 2(a + b), then there exists ⌧ 2 R such that
previous algorithm solves weak recovery in SSBM(n, 2, a/n, b/n).

Extracting the second eigenvector of the nonbacktracking matrix directly may
not be the most e�cient way to proceed, specially as the graph gets denser. A power
iteration method is a natural implementation, which requires additional proofs as
done in [AS17]. Below is the message-passing implementation.

Approximate Belief Propagation (ABP) algorithm. [AS16, AS17]
Inputs: A graph G and a parameter m 2 Z

+

.

(1) For each adjacent v and v0 in G, randomly draw y(1)v,v0 from a Gaussian distribution

with mean 0 and variance 1. Assign y(t)v,v0 to value of 0 for t < 1.
(2) For each 1 < t  m, set

z(t�1)

v,v0 = y(t�1)

v,v0 �
1

2|E(G)|
X

(v00,v000)2E(G)

y(t�1)

v00,v000

for all adjacent v and v0.

(3) Set y0v =
P

v0:(v0,v)2E(G)

y(m)

v,v0 for all v 2 G. Return ({v : y0v > 0}, {v : y0v  0}).

In [AS17], an extension of the above algorithm that prohibits backtrack of higher
order (i.e, avoiding short loops rather than just self-loops) is shown to achieve the
threshold for weak recovery in the SBM when m = 2 log(n)/ log(SNR) + !(1). The
idea of prohibiting short loops is further discussed in the next section.

5.3.2 Algorithms robustness and graph powering

The quick intuition on why the nonbacktracking matrix is more amenable for com-
munity detection than the adjacency matrix can be seen by taking powers of these
matrices. In the case of the adjacency matrix, powers are counting walks from a
vertex to another, and these get amplified around high-degree vertices since the walk
can come in and out in many ways. This creates large eigenvalues with eigenvectors
localized around high-degree vertices. This phenomenon is well documented in the
literature; see Figure 7 for a illustration of a real output of the spectral algorithm on
a SBM with two symmetric communities (above the KS threshold).

Instead, by construction of the nonbacktracking matrix, taking powers forces a
directed edge to leave to another directed edge that does not backtrack, preventing
such amplifications around high-degree vertices. So nonbacktracking gives a way to
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Figure 7: The communities obtained with the spectral algorithm on the adjacency
matrix in a sparse symmetric SBM above the KS threshold (n = 100000, a = 2.2, b =
0.06): one community corresponds to the neighborhood of a high-degree vertex, and
all other vertices are put in the second community.

mitigate the degree-variations and to avoid localized eigenvector (recall discussion
in Section 3). Note also that one cannot simply remove the high-degree vertices in
order to achieve the threshold; one would have to remove too many of them and the
graph would loose the information about the communities. This is one of the reason
why the weak recovery regime is interesting.

This robustness property of the nonbacktracking matrix is reflected in its spectrum,
which has for largest magnitude eigenvalue �

1

(which is real positive), and for second
largest magnitude eigenvalue �

2

which appears before
p
�
1

above the KS threshold:
p

�
1

< |�
2

| < �
1

. (188)

Then weak recovery can then be solved by using the eigenvector corresponding to
�
2

; see previous section. Figure 8 provides an illustration for the SBM with two
symmetric communities.

However the robustness of the NB matrix may not be as strong as desired. It
happens that in the SBM, being pushed away from a high-degree vertex makes it
unlikely for the walk to go back to a high-degree vertex. Therefore, avoiding direct
backtracks su�ces. Unfortunately, in many real data graphs, loops are much more
frequent than they are in the SBM. Consider for example the geometric block model
with two Gaussians discussed in Section 9; in such a model, being pushed away
from a high degree vertex likely brings the walk back to another neighbor of that
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Nonbacktracking matrix spectrum

a � b

2

a + b

2
0

a � b
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a + b

2
0

Adjacency matrix spectrum

Figure 8: Illustration of the spectrum of the adjacency and nonbacktracking matrices
for the SBM with two symmetric communities above the KS threshold.

same high degree vertex, and prohibiting direct backtracks does not help much. In
fact, this issue is also present for BP itself (rather than linearized BP), which is
originally designed14 for locally tree-like models as motived in Section 3.4, although
BP has the advantage over ABP to pass probability messages that cannot grow out
of proportions (being bounded to [0, 1]).

A natural attempt to improve on this is to then extend the notion of nonback-
tracking beyond direct backtracks, prohibiting any repeat of a vertex within r steps
of the walk (rather than just 2 steps). In fact, this idea was already used in [AS17]
for the SBM, as the increased robustness also helped with simplifying the proofs
(even though it is likely unnecessary for the final result to hold). We now define
formally the r-NB matrix of a graph:

Definition 18. [The r-nonbacktracking (r-NB) matrix.] Let G = (V, E) be a simple
graph and let ~Er be the set of directed paths of length r � 1 obtained on E. The
r-nonbacktracking matrix B(r) is a | ~Er|⇥ | ~Er| matrix indexed by the elements of ~Er

14Although it also works in some loopy context [?]; in addition to the AMP framework that
applies to the cases of denser graphs
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Figure 9: A graph drawn from the mixture-GBM(n, 2, T, S) defined in Section 9,
where n/2 points are sampled i.i.d. from an isotropic Gaussian in dimension 2
centered at (0, 0) and n/2 points are sampled i.i.d. from an isotropic Gaussian in
dimension 2 centered at (S, 0), and any points at distance less than T are connected
(here n = 10000, S = 2 and T = 10/

p
n). The spectral algorithm on the NB matrix

gives the right plot, which puts a small fraction of densely connected vertices (a
tangle) in a community, and all other vertices in the second community. The right
plot is the desired community output, that graph powering produces.

such that, for e = (e
1

, . . . , er�1

), f = (f
1

, . . . , fr�1

) 2 ~Er,

B(r)
e,f =

r�1

Y

i=1

1((ei+1

)
2

= (fi)1)1((e
1

)
1

6= (fr�1

)
2

), (189)

i.e., entry (e, f) of B(r) is 1 if f extends e by one edge (i.e., the last r� 1 edges of e
agree with the first r � 1 edges of f) without creating a loop, and 0 otherwise.

Figure 10: Two paths of length 3 that contribute to an entry of 1 in B(4).

Remark 4. Note that B(2) = B is the classical nonbacktracking matrix from Def-
inition ??. As for r = 2, we have that ((B(r))k�1)e,f counts the number of r-
nonbacktracking walks of length k from e to f .
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While one gains further robustness by using r-NB with larger r, one may still
require r to be impractically large in cases where a large number of cliques and
tangles are present in the graph (such as in the two-Gaussian geometric block model
mentioned before). We now discuss three alternatives to further increase such ro-
bustness.

(1) SDPs. While the SDP in Section 3.2 was motivated as a relaxation of the
min-bisection estimator that is optimal for exact recovery but not necessarily for
weak recovery, one may still use SDPs for weak recovery as well. In fact, the SDP
benefits from a key feature; recall that the SDPs discussed in Section 3.2 takes the
form:

X̂SDP (g) = argmax
X⌫0

X

ii

=1,8i2[n]

tr(BX). (190)

for a matrix B which is a centered version of the adjacency matrix. The key feature
is that the constraint

Xii = 1

on the matrix X does not make the above optimization hard, as opposed to the
original min-bisection problem that requires

x2

i = 1

on the vector x, which makes min-bisection an NP-hard integral optimization problem.
The advantage is that Xii = 1 prohibits the entries of X to grow out of proportion (X
needs to be also PSD), and the SDP does not produce as much localized eigenvector.

Several works have investigated SDPs for SBMs [AL14, ABH16, Ban15, BH14,
PW15], with a precise picture about for weak recovery from [GV16, MS16, JMR16].
We now mention one important result from [MS16] that shows that SDPs allow to
approach the threshold for weak recovery in the two-community SSBM arbitrarily
close when the expected degrees diverge.

Theorem 20. [MS16] There exists �(a, b) satisfying �(a, b)! 0 as (a+b)!1, such

that if (a�b)2

2(a+b) > 1+�(a, b), then the SDP solves weak recovery in SSBM(n, 2, a/n, b/n).

So for large degrees, SDPs are both performing well and a↵ord further robustness
compared to NB spectral methods. For example, [MPW16] shows that SDPs are
robust to certain monotone adversary, that can add edges within clusters and remove
edges across clusters. Such adversary could instead create trouble to NB spectral,
e.g., by adding a clique within a community to create a localized eigenvector of large
eigenvalue.

On the flip side, SDPs have two issues: (1) they do not perform as well in very
sparse regime; take for instance the example covered in Section 3.2 showing that
the SDP fails to give the clusters when they are disjoint and which can generalize
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to more subtle cases where the sparsest cut is at the periphery of the graph rather
than in the middle of the two clusters; (2) most importantly, SDPs are not truly
practical15 which makes their direct application di�cult in graphs that are not small.
One may use various tricks to initalized or accelerate SDPs, but these make instead
the analysis more challenging.

(2) Laplacian and Normalized Laplacian. In contrast to SDPs, spectral methods
a↵ord much better complexity attributes. A possibility to improve their robustness
to degree variations would be to simply normalize the matrix by taking into accounts
degree variations, such as

L := D �A (191)

L
norm

:= I �D�1/2AD�1/2 , D�1/2AD�1/2 (192)

These can also be viewed as relaxations of min-cuts where one does not constrain the
number of vertices to be strictly balanced in each community, but where one weighs
in the volume of the communities in terms of the number of vertices of degrees:

normcut
1

:=
|@(S)|
|S||Sc| |V | =

|@(S)|
|S| +

|@(S)|
|Sc| (193)

normcut
2

:=
|@(S)|

d(S)d(Sc)
d(V ) =

|@(S)|
d(S)

+
|@(S)|
d(Sc)

(194)

where d(S) =
P

v2S degree(v), V = [n].
One can now look for a {0, 1}-valued vector, i.e., the indicator vectors on a subset

S, that minimizes these normalized cuts. This is still an NP-hard problem, but
its spectral relaxation obtained by removing the integral constraints leads to the
smallest eigenvector of the matrices in (191), (192) (ignoring the 0 eigenvalue), which
have now some balanceness properties embedded.

These a↵ord in fact better robustness to high-degree vertices. However, they
tend to overdo the degree correction and can have trouble with low-degree regions of
the graph in models such as the SBM. Attached are two examples of SBMs that are
above the weak recovery threshold, but where these two normalized spectral method
produce communities that are peripheral, i.e., cutting a small tail of the graph that
has a sparse normalized cut — see Figure 11.

In fact, we conjecture that none of these two operators achieves the weak recovery
threshold for general parameters. But, more importantly, one should be reminded of
the principled approach pursued here: The normalized Laplacians are motivated by
combinatorial benchmarks, i.e., normalized cuts, which do not have a clear connection
to the Bayes optimal estimator.

15The complexity may be of the order of n5.

71



Figure 11: The communities obtained with the spectral algorithm on the Laplacian
matrix in a sparse symmetric SBM above the KS threshold (n = 100000, a = 2.2, b =
0.06): one community corresponds to a “tail” of the graph (i.e., a small region
connected by a single edge to the giant component), and all other vertices are put in
the second community. The same outcome takes place for the normalized Laplacian.

(3) Graph powering. We conclude with a recent proposal to bridge the advantage
of spectral methods with robustness attributes, while keeping a Bayes-inspired
construction. The method is developed in [?] and relies on the following operator.

Definition 19 (Graph powering). We give two equivalent definitions:

• Given a graph G and a positive integer r, define the r-th graph power of G
as the graph G(r) with the same vertex set as G and where two vertices are
connected if there exists a path of length  r between them in G.

Note: G(r) contains the edges of G and adds edges between any two vertices at
distance  r in G. Note also that one can equivalently ask for a walk of length
 r, rather than a path.

• If A denotes the adjacency matrix of G with 1 on the diagonal (i.e., put self-
loops to every vertex of G), then the adjacency matrix A(r) of G(r) is defined
by

A(r) = 1(Ar � 1). (195)

Note: Ar has the same spectrum as A (up to rescaling), but the action of the
non-linearity 1(· � 1) gives a key modification to the spectrum.
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Definition 20 (Deep cuts). For a graph G, a r-deepcut in G corresponds to a cut
in G(r), i.e.,

@r(S) = {u 2 S, v 2 Sc : (A(r))u,v = 1}, S ✓ V (G). (196)

We now discuss two key attributes of graph powering:

• Deep cuts as Bayes-like cuts. The cut-based algorithms discussed previously
for A, L or L

norm

can be viewed as relaxation of the MAP estimator, i.e.,
min-bisection. As said multiple times, this is not the right figure of merit
for weak recovery. Let us illustrate again the distinction on a toy example,
illustrated in Figure 12.

1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2

Figure 12: In the left graph, assumed to come from SSBM(n, 2, 3/n, 2/n), the root
vertex is labelled community 1 from the ML estimator given the leaf labels, which
corresponds to the min-cut around that vertex. In contrast, the Bayes optimal
estimator puts the root vertex in community 2, as the belief of its right descendent
towards community 2 is much stronger than the belief of its two left descendents
towards community 1. This corresponds in fact to the min-deep-cut obtained from
the right graph, where 2-deep edges are added by a graph-power.

Imagine that a graph drawn from SSBM(n, 2, 3/n, 2/n) contained the following
induced subgraph. v

0

is adjacent to v
1

, v
2

, and v
3

. v
1

and v
2

are each adjacent
to two outside vertices that are known to be in community 1, and v

3

is adjacent
to a large number of vertices that are known to be in community 2. v

1

and v
2

are more likely to be in community 1 than they are to be in community 2, and
v
3

is more likely to be in community 2 than it is to be in community 1. So, the
single most likely scenario is that v

0

, v
1

, and v
2

are in community 1 while v
3

is
in community 2. In particular, this puts v

0

in the community that produces
the sparsest cut (1 edge in the cut vs 2 edges in the other case). However, v

3

is almost certain to be in community 2, while if we disregard any evidence
provided by their adjacency to v

0

, we would conclude that v
1

and v
2

are each
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only about 69% likely to be in community 1. As a result, v
0

is actually slightly
more likely to be in community 2 than it is to be in community 1.

The reason why powering and deepcuts matter is that it helps getting feedback
from vertices that are further away, producing a form of combinatorial likelihood
that is measured by the number of vertices that are not just directly connected
to a vertex, but also neighbors at a deeper depth. The deepcuts are thus more
“Bayes-like” and less “MAP-like,” as seen in the previous example where vertex
1 is now assigned to community 2 using 2-deepcuts rather than community 1
using standard cuts (i.e., 1-deepcuts).

• Powering to homogenize the graph. Powering further helps mitigating the
degree variations, and more generally density variations in the graph, both
with respect to high and low densities. Since the degree of all vertices is raised
with powering, both high and low density regions are not contrasting as much
under powering. Large degree vertices do not stick out as much, tails (as in
Figure 11) are thickened, and the more macroscopic properties of the graph
can prevail.

Of course, powering is useful only if the power r is not too low or not too large.
If it is too low, say r = 2, powering may not help much. If it is too large, say
r � diameter(G), then powering turns any graph to a complete graph, which
destroys all the useful information. However, powering with r below the diameter
and larger than log log(n), such as r = b

p

log(n)c, allows to regularize the SBM
graph to achieve the weak recovery threshold with the vanilla spectral algorithm.

The key property is captured by the following pictural representation of the
spectrum of A(r) (say for r = b

p

log(n)c):
Note also that a similar picture to Figure 13 holds in the SBM when taking

a di↵erent operator, namely W where Wij counts the number of paths of length
r between i and j, as shown by Massoulié in the first proof of the KS threshold
achievability [Mas14]. The key di↵erence is that the operator W su↵ers from the
same issues as discussed above for the nonbacktracking operator: it allows to mitigate
high-degree vertices, but not denser regions such as tangles. In particular, planting a
moderately small clique in a community of the SBM or taking the mixture GBM as
in Figure 9 can drive the spectral algorithm on W to produce localized eigenvector,
while the powering operator is more robust due to the non-linearity 1(· � 1) that
flattens out the entries of large magnitude.

A down side of powering approaches is that they densify the graph, so one would
ideally combine graph powering with degree normalizations to reduce the number
of powers (since powering raises the density of the graph, normalization may no
longer have the issues mentioned above) or some form of graph sparsification (such
as [SS11]). Note that powering and sparsifying do not cancel each other: powering
adds edges to “complete the graph” where edges should be present, while sparsifying
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graph-powered adjacency matrix A 

Figure 13: Illustration of the spectrum of the adjacency matrix of the powered graph
for a two community symmetric SBM above the KS threshold. The power must be
below half the diameter and larger than ⌦(log log(n)), such as r = (log log(n))2 or
r = " log n, " small enough. The bulk is delimited by the eigenvalues of random
vectors, while the localized eigenvectors on high-degree vertices mark the next
transition (note that previous two regions may not appear separated as in the
figure on a real plot), followed by the isolated eigenvalue containing the community
information, and at last the Perron-Frobenius eigenvalue close to the average degree.
A similar picture takes place for the operator of [Mas14], which does not use the
non-linearity of graph-powering, but which is more sensitive to tangles as for the NB
operator in Figure 9.

prunes down the graph by adding weights on other edges. Finally, one may also
remove leaves (with a few recursion) and paths to further reduce the powering.

6 Partial recovery for two communities

We discuss in this section various results for partial recovery.

6.1 Almost Exact Recovery

Almost exact recovery, also called weak consistency in the statistics literature, or
strong recovery, has been investigated in various papers such as [YP14b, AL14,
GMZZ15, MNS14a, YP14a, AS15a].

Theorem 21. Almost exact recovery is solvable in SSBM(n, 2, an/n, bn/n) (and
e�ciently so) if and only if

(an � bn)2

2(an + bn)
= !(1). (197)

Note that the constant 2 above is not necessary but it makes the connection to
the SNR of previous section more explicit. This result appeared in several papers;
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a first appearance is from [YP14b] where it results from the case of non-adaptive
random samples, and it is also shown in [MNS14a, AS15a].

We point out two approaches to obtain this result:

• Boosting weak recovery with graph-splitting. One can use graph-splitting
repeatedly to turn the result of previous section on weak recovery into Theorem
21. This requires however having an algorithm to solve weak recovery first,
which represents more work than needed to obtain Theorem 21. We mention
nonetheless how one can cut shorter assuming such an algorithm.

The idea is to graph-split G with equiprobable probabilities into G
1

, . . . , Gk

with k = b
p

log(n)c. Note that each Gi is marginally an SBM with parameters
an = a

p

log(n), bn = b
p

log(n), so largely above the KS threshold. Apply now
the algorithm that solves weak recovery in each of these graphs, to obtain a
collection of k clusterings X̂

1

, . . . , X̂k. One can now boost the accuracy by
doing a voting for each pair of vertices over these di↵erent clusterings. E.g.,
take vertices 1 and 2, and define

V
1,2 =

k
X

i=1

1(X̂i(1) = X̂i(2)), (198)

which counts how many times vertices 1 and 2 have been classified as being
in the same community over the k trials. If these graphs were independently
drawn, since P(X̂i(1) = X̂i(2)) = 1/2+" from the weak recovery algorithm, and
as V

1,2 concentrates towards its mean, one can decide with probability 1� o(1)
whether 1 and 2 are in the same community or not. The conclusion stays the
same with graph-splitting as one has an approximate independence. The reason
is that the graphs are in a sparse enough regime. In particular, the probability
that vertex 1 and 2 would receive multiple edges from k truly independent such
SBMs is only 1� (1� p

+

)2 � 2(1� p
+

)p
+

= O(p
+

) = O(
p

log(n)/n), where
p
+

is the probability of placing an edge given by p
+

= (a + b)
p

log(n)/(2n).

• Sphere comparison. While previous argument cuts shorter if one has a weak
recovery algorithm, one can also obtain almost exact recovery directly. One
possibility is to count the common neighbors at large enough depth between
each pair of vertices. This uses “two poles” for comparison rather than a
“single pole” as used in previous section for weak recovery (where we decided for
each vertex by looking at the neighbors at large depths, rather than comparing
two neighborhoods). We found that it is simpler to use a single pole when
having to work at very large depth as needed for the sparse regime of weak
recovery, whereas if one has the advantage of having diverging degrees, and
thus the possibility of working at shorter depth, then using two poles allows
for simplifications. The name “sphere comparision” used in [AS15a] refers to
the fact that one compares the “spheres” of two vertices, i.e., the neighbors
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at a given depth from each vertex. This goes for example with the general
intuition that the social spheres of two like-minded people should be more
similar. In particular, the count of common neighbors is a natural benchmark
of comparison.

The depth at which spheres need to be compared needs to be above half
the graph diameter, so that spheres can overlap. However, in contrast to
the constant degree regime, diverging degrees allow us to compare spheres
at depths below the diameter, circumventing the use of walks. In [AS15a],
graph splitting is also used to inject independence in the comparisons of the
sphere, as the direct count of common neighbors is a challenging quantity to
analyze due to dependencies. Instead, [AS15a] graph-splits the original graph
into a work-graph and a bridge-graph, counting how many edges from the
bridge-graph connect two spheres in the work-graph. We provide next more
formal statements about this approach.

Definition 21. For any vertex v, let Nr[G]

(v) be the set of all vertices with shortest
path in G to v of length r. We often drop the subscript G if the graph in question is
the original SBM.

For an arbitrary vertex v and reasonably small r, there will be typically about
dr vertices in Nr(v) (recall d = (a + b)/2), and about (a�b

2

)r more of them will be
in v’s community than in each other community. Of course, this only holds when
r < log n/ log d because there are not enough vertices in the graph otherwise. The
obvious way to try to determine whether or not two vertices v and v0 are in the same
community is to guess that they are in the same community if |Nr(v)\Nr(v0)| > d2r/n
and di↵erent communities otherwise. Unfortunately, whether or not a vertex is in
Nr(v) is not independent of whether or not it is in Nr(v0), which compromises this
plan. This is why we use the graph-splitting step: Randomly assign every edge in G
to some set E with a fixed probability c and then count the number of edges in E
that connect Nr[G\E]

and Nr0[G\E]

:

Definition 22. For any v, v0 2 G, r, r0 2 Z, and subset of G’s edges E, let Nr,r0[E]

(v ·
v0) be the number of pairs (v

1

, v
2

) such that v
1

2 Nr[G\E]

(v), v
2

2 Nr0[G\E]

(v0), and
(v

1

, v
2

) 2 E.

Figure 14 provides an illustration of the used statistics. Further, [AS15d] develops
an invariant statistics that does not require the knowledge of the model parameters
in order to compare the spheres:

Definition 23. Let G be a graph and let E be the edge set obtained by sampling
each edge with probability c (i.e., the graph-split). For two vertices v, v0 in G, define
the sign-invariant statistics as

Ir,r0[E]

(v · v0) := Nr+2,r0[E]

(v · v0) · Nr,r0[E]

(v · v0)�N2

r+1,r0[E]

(v · v0). (199)
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Figure 14: Sphere comparison: The algorithm takes a graph-splitting of the graph
with a constant probability, and decides whether two vertices are in the same
community or not based on the number of crossing edges (in the first graph of the
graph-split) between the two neighborhoods’ spheres at a given depth of each vertices
(in the second graph of the graph-split). A careful (unbalanced) choice of r, r0 allows
to reduce the complexity of the algorithm, but in general, r = r0 = 3

4

log n/ log d
su�ces for the algorithm to succeed (where d is the average degree).

The key property is that this statistics Ir,r0[E]

is with high probability scaling as

c2(1� c)2r+2r0+2

n2

·
✓

d� a� b

2

◆

2

· dr+r0+1

✓

a� b

2

◆r+r0+1

(2�X
v

,X
v

0 � 1). (200)

In particular, for r + r0 odd, Ir,r0[E]

(v · v0) will tend to be positive if v and v0 are in
the same community and negative otherwise, irrespective of the specific values of
a, b. That suggests the following agnostic algorithm for partial recovery:

Agnostic-sphere-comparison. Input: an n-vertex graph and a parameter ⌧  0. Let
d be the average degree of the graph:

1. Set r = r0 = 3

4

log n/ log d and put each of the graph’s edges in E with
probability c = 1/10.

2. Find two vertices u
1

, u
2

of maximal degrees such that Ir,r0[E]

(u
1

· u
2

)  ⌧ , and
assign each of these to a di↵erent community. Assign each vertex u /2 {u

1

, u
2

}
to the community i 2 {1, 2} maximizing Ir,r0[E]

(u · ui).

A variant of this algorithm (that applies to the general SBM) is shown in [AS15d]
to solve almost exact recovery e�ciently under the condition of Theorem 21. We
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conclude this section by noting that one can also study more specific almost exact
recovery requirements, allowing for a specified number of misclassified vertices s(n).
This is investigated in [YP15] when s(n) is moderately small (at most logarithmic),
with an extension of Theorem 21 that applies to this more general setting. The
case where s(n) is linear, i.e., a constant fraction of errors, is more challenging and
discussed in the next sections.

6.2 Partial recovery at finite SNR

Recall that partial recovery refers to the a fraction of misclassified vertices that is
constant, whereas previous section investigates a fraction of misclassified vertices
that is vanishing.

In the symmetric SSBM(n, 2, a/n, b/n), the regime for partial recovery takes
place when the following notion of SNR is finite:

SNR :=
(a� b)2

2(a + b)
= O(1). (201)

This takes place under two circumstances:

I. If a, b are constant, i.e., the constant degree regime,

II. If a, b are functions of n that diverge such that the numerator and denominator
in SNR scale proportionally.

Our main goal is to identify the optimal tradeo↵ between SNR and the fraction of
misclassified vertices, or between SNR and the MMSE or the mutual information of
the reconstruction. The latter has in particular application to the compression of
graphs [Abb16, AAV17b]. We first mention some bounds.

Upper bounds on the fraction of incorrectly recovered vertices were demonstrated,
among others, in [AS15a, YP14a, CRV15, GMZZ15], taking form C exp(�cSNR)
when SNR is large. A bound that applies to the general SBM with arbitrary
connectivity matrix W = Q/n is also provided in [AS15a]. In [YP14a], a spectral
algorithm is shown to reach an upper bounded of C exp{�SNR/2} for the two
symmetric case, and in a suitable asymptotic sense. An upper bound of the form
C exp(�SNR/4.1)—again for a spectral algorithm—was obtained earlier in [CRV15].
Further, [GMZZ15] also establishes minimax optimal rate of C exp{�SNR/2} in the
case of large SNR and for certain types of SBMs, further handling a growing number
of communities (to the expense of looser bounds).

The optimal fraction of nodes that can be recovered was obtained in [MNS13] for
two symmetric communities when the degrees are constant but the SNR is su�ciently
large, connecting to the broadcasting problem on tree problem [EKPS00]. This result
is further discussed below. It remains open to establish such a result at arbitrary
finite SNR.
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We next describe a result that gives the optimal tradeo↵ between the SNR and
the MMSE (or the mutual information) for the two-symmetric SBM in the second
regime, where SNR is finite (and arbitrary) but where degrees diverge. After that,
we discuss results for constant degrees but large enough SNR.

6.3 Mutual Information-SNR tradeo↵

In this section, we study the finite SNR regime with diverging degrees and show
that the SBM is essentially equivalent to a spiked Wigner model, where the spiked
signal has a block structure (rather than a sparse structure as in sparse PCA ??).
To compare the two models, we use the mutual information.

For (X,G) ⇠ SSBM(n, 2, pn, qn), the mutual information of the SBM is I(X; G),
where

I(X; G) = H(G)�H(G|X) = H(X)�H(X|G),

and H denotes the entropy. We next introduce the normalized MMSE of the SBM:

MMSEn(SNR) ⌘ 1

n(n� 1)
E
n

�

�XXT � E{XXT|G}
�

�

2

F

o

. (202)

= min
bx
12

:G
n

!R
E
�⇥

X
1

X
2

� bx
12

(G)
⇤

2

 

. (203)

To state the result that provides a single-letter characterization of the per-vertex
MMSE (or mutual information), we need to introduce the e↵ective Gaussian scalar
channel. Namely, define the Gaussian channel

Y
0

= Y
0

(�) =
p
�X

0

+ Z
0

, (204)

where X
0

⇠ Unif({+1,�1}) independent of Z
0

⇠ N(0, 1). We denote by mmse(�)
and I(�) the corresponding minimum mean square error and mutual information:

I(�) = E log
ndpY |X(Y

0

(�)|X
0

)

dpY (Y
0

(�))

o

, (205)

mmse(�) = E
�

(X
0

� E {X
0

|Y
0

(�)})2
 

. (206)

Note that these quantities can be written explicitly as Gaussian integrals of elementary
functions:

I(�) = � � E log cosh
�

� +
p
� Z

0

�

, (207)

mmse(�) = 1� E
�

tanh(� +
p
� Z

0

)2
 

. (208)

We are now in position to state the result.
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Theorem 22. [DAM15] For any � > 0, let �⇤ = �⇤(�) be the largest non-negative
solution of the equation

� = �
�

1�mmse(�)
�

(209)

and

 (�,�) =
�

4
+
�2

4�
� �

2
+ I(�) . (210)

Let (X, G) ⇠ SSBM(n, 2, pn, qn) and define16 SNR := n (pn�qn)2/(2(pn+qn)(1�
(pn + qn)/2)). Assume that, as n!1, (i) SNR! � and (ii) n(pn + qn)/2(1� (pn +
qn)/2)!1. Then,

lim
n!1

MMSEn(SNR) = 1� �⇤(�)2

�2
(211)

lim
n!1

1

n
I(X; G) =  (�⇤(�),�) . (212)

Further, this implies limn!1MMSEn(SNR) = 1 for �  1 (i.e., weak recovery
unsolvable) and limn!1MMSEn(SNR) < 1 for � > 1 (i.e., weak recovery solvable).

Corollary 4. [DAM15] When pn = a/n, qn = b/n, where a, b are bounded as n
diverges, there exists an absolute constant C such that

lim sup
n!1

�

�

�

1

n
I(X; G)� (�⇤(�),�)

�

�

�

 C�3/2p
a + b

. (213)

Here �,  (�,�) and �⇤(�) are as in Theorem 22.

A few remarks about previous theorem and corollary:

• Theorem 22 shows that the normalized MMSE (or mutual information) is
non-trivial if and only if � > 1. This extends the results on weak recovery
[Mas14, MNS15] discussed in Section 7.2 for the regime of finite SNR with
diverging degrees, completing weak recovery in the SSBM with two communities
and any choice of parameters;

• Theorem 22 also gives upper and lower bound for the optimal agreement. Let

Overlapn(SNR) =
1

n
sup

bs:G
n

!{+1,�1}n
E
�

|hX, bs(G)i|
 

.

Then,

1�MMSEn(SNR) + O(n�1)  Overlapn(SNR) (214)


p

1�MMSEn(SNR) + O(n�1/2). (215)

16Note that this is asymptotically the same notion of SNR as defined earlier when p

n

, q

n

vanish.
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• In [MX15], tight expressions similar to those obtained in Theorem 22 for
the MMSE are obtained for the optimal expected agreement with additional
scaling requirements. Namely, it is shown that for SSBM(n, 2, a/n, b/n) with
a = b + µ

p
b and b = o(log n), the least fraction of misclassified vertices is in

expectation given by Q(
p

v⇤) where v⇤ is the unique fixed point of the equation

v = µ2

4

E tanh(v + v
p

Z), Z is normal distributed, and Q is the Q-function for
the normal distribution. Similar expressions were also derived in [ZMN16] for
the overlap metric, and [LKZ15] for the MMSE.

• Note that Theorem 22 requires merely diverging degrees (arbitrarily slowly),
in contrast to general results from random matrix theory such as [BBAP05]
that would require poly-logarithmic degrees to extract communities from
the spiked Wigner model point of view. We refer to [PWBM16b, PWB16]
for generalizations of the spiked Wigner model discussed here with a sharp
statistical and algorithmic analysis.

Figure 15: Asymptotic mutual information per vertex of the symmetric stochastic
block model with two communities, as a function of the signal-to-noise ratio �. The
dashed lines are simple upper bounds: limn!1 I(X; G)/n  �/4 and I(X; G)/n 
log 2.

6.4 Proof technique and connections to spiked Wigner models

Theorem 22 gives an exact expression for the normalized MMSE and mutual infor-
mation in terms of an e↵ective Gaussian noise channel. The Gaussian distribution
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emerge due to a universality result established in the proof: in the regime of the
theorem, the SBM model is equivalent to a spiked Wigner model given by

Y =
p

�/nXXt + Z

where Z is a Wigner random matrix (i.e., symmetric with i.i.d. Normal entries), and
where we recall that � corresponds to the limit of SNR.

The formal statement of the equivalence is as follows:

Theorem 23 (Equivalence of SBM and a spiked Wigner model). Let I(X;G) be
the mutual information of SSBM(n, 2, pn, qn) with SNR! � and n(pn + qn)/2(1�
(pn + qn)/2)!1, and I(X; Y ) be the mutual information for spiked Wigner model
Y =

p

�/nXXt + Z. Then, there is a constant C independent of n such that

1

n

�

�I(X; G)� I(X; Y )
�

�  C

 

�3/2
p

n(pn + qn)/2(1� (pn + qn)/2)
+ |SNR� �|

!

.

(216)

To obtain the limiting expression for the normalized mutual information in
Theorem 22, notice first that for Y (�) =

p

�/nXXt + Z,

1

n
I(X; Y (0)) = 0

1

n
I(X; Y (1)) = log(2).

Next, (i) use the fundamental theorem of calculus to express these boundary condi-
tions as an integral of the derivative of the mutual information, (ii) use the I-MMSE
identity [GSV05] to express this derivative in terms of the MMSE, (iii) upper-bound
the MMSE using a specific estimator obtained from the AMP algorithm [DMM09] (or
any algorithm performing optimally in this regime), (iv) evaluate the asymptotic per-
formance of the AMP estimate using the density evolution technique [BM11, DM14],
and (v) note that the obtained bound matches the original value of log(2) in the
limit of n tending to infinty:

log(2)
(i)
=

1

n

Z 1

0

@

@�
I(XXt; Y (�)) d� (217)

(ii)
=

1

4n2

Z 1

0

MMSE(XXt|Y (�)) d� (218)

(iii)

 1

4n2

Z 1

0

E(XXt � x̂
AMP,�(1)x̂t

AMP,�(1))2 d� (219)

(iv)
=  (�⇤(1),1)� (�⇤(0), 0) + on(1) (220)

(v)
= log(2) + on(1). (221)

This implies that (iii) is in fact an equality asymptotically, and using monotonicity
and continuity properties of the integrant, the identify must hold for all SNR as
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stated in the theorem. The only caveat not discussed here is the fact that AMP
needs an initialization that is not fully symmetric to converge to the right solution,
which causes the insertion in the proof of a noisy genie on the true labels X at
the channel output to break the symmetry for AMP. The genie is then removed by
taking noise parameters that are arbitrarily large.

6.5 Partial recovery for constant degrees

Obtaining the expression for the optimal agreement at finite and arbitrary SNR
when the degrees are constant remains an open problem (see also Sections 6.1 and
10). The problem is settled for high enough SNR in [MNS13], with the following
expression relying on reconstruction error for the broadcasting on tree problem.

Define the optimal agreement fraction as

PG
n

(a, b) :=
1

2
+ sup

f
E| 1

n

X

v

1(f(v, Gn) = Xv)�
1

2
|. (222)

Note that the above expression takes into account the symmetry of the problem
and can also been interpreted both as a normalized agreement and probability. Let
PG(a, b) := lim supg PG

n

(a, b). Define now the counter-part for the broadcasting

problem on tree: Back to the notation of Section 5.1, define T (t) as the Galton-
Watson tree with Poisson((a + b)/2) o↵spring, flip probability b/(a + b) and depth t,
and define the optimal inference probability of the root as

PT (a, b) :=
1

2
+ lim

t!1
E|E(X(0)|X(t))� 1/2|. (223)

The reduction from [MNS15] discussed in Section 5.1 allows to deduce that PG(a, b) 
PT (a, b), and this is shown to be an equality for large enough SNR:

Theorem 24. [MNS13] There exists C large enough such that if SNR > C then
PG(a, b) = PT (a, b), and this normalized agreement is e�ciently achievable.

The theorem in [MNS13] has a weaker requirement of SNR > C log(a + b), but
later developments on weak recovery allow to obtain for free the version stated above.
Note that PT (a, b) gives an implicit expression for the optimal fraction, though it
admits a variational representation due to [MM06]. The e�cient algorithm is a
variant of belief propagation.

In [DKMZ11], it is conjectured that BP gives the optimal agreement at all SNR.
However, as discussed in Section 3.4, BP is hard to analyze it in the context of
loopy graphs with a random initialization. Another strategy is to proceed with a
two-round procedure, which is used to establish the above results in [MNS13] for
two communities. The idea is to use a simpler algorithm to obtain a non-trivial
reconstruction when SNR > 1, see Section 7.2, and then to improve the accuracy
using full BP at shorter depth. To show that the accuracy achieved is optimal, one
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has to also show that a noisy version of the reconstruction on tree problem [JM04],
where leaves do not have exact labels but noisy labels, leads to the same probability
of error at the root. This is expected to take place for two communities at all SNR
above the KS threshold, and it was shown in [MNS13] for the case of large enough
SNR. This type of claim is not expected to hold for general k. For more than two
communities, one needs to convert first the output of the algorithm discussed in
Section 5.3.1, which gives two sets that correlated with their communities, into a
nontrivial assignment of a belief to each vertex; this is discussed in [AS17]. Then
one can use these beliefs as starting probabilities for a belief propagation algorithm
of depth log(n)/3 log(�

1

), which runs now on a tree-like graph.

7 The general SBM

In this section we discuss results for the general SBM, where communities can
take arbitrary relative sizes and where connectivity rates among communities are
arbitrary.

7.1 Exact recovery and CH-divergence

We provide the fundamental limit for exact recovery in the general SBM, in the
regime of the phase transition where W scales like log(n)Q/n for a matrix Q with
positive entries.

Theorem 25. [AS15a] Exact recovery in SBM(n, p, log(n)Q/n) is solvable and
e�ciently so if

I
+

(p, Q) := min
1i<jk

D
+

((diag(p)Q)ik(diag(p)Q)j) > 1

and is not solvable if I
+

(p, Q) < 1, where D
+

is defined by

D
+

(µk⌫) := max
t2[0,1]

X

x

⌫(x)ft(µ(x)/⌫(x)), ft(y) := 1� t + ty � yt. (224)

Remark 5. Regarding the behavior at the threshold: If all the entries of Q are non-
zero, then exact recovery is solvable (and e�ciently so) if and only if I

+

(p, Q) � 1.
In general, exact recovery is solvable at the threshold, i.e., when I

+

(p, Q) = 1, if and
only if any two columns of diag(p)Q have a component that is non-zero and di↵erent
in both columns.

Remark 6. In the symmetric case SSBM(n, k, a log(n)/n, b log(n)/n), the CH-
divergence is maximized at the value of t = 1/2, and it reduces in this case to
the Hellinger divergence between any two columns of Q; the theorem’s inequality
becomes

1

k
(
p

a�
p

b)2 > 1,

matching the expression obtained in Theorem 3 for 2 symmetric communities.
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We discuss now some properties of the functional D
+

governing the fundamental
limit for exact recovery in Theorem 25. For t 2 [0, 1], let

Dt(µk⌫) :=
X

x

⌫(x)ft(µ(x)/⌫(x)), ft(y) = 1� t + ty � yt, (225)

and note that D
+

= maxt2[0,1] Dt. Since the function ft satisfies

• ft(1) = 0

• ft is convex on R
+

,

the functional Dt is what is an f -divergence [Csi63], like the KL-divergence (f(y) =
y log y), the Hellinger divergence, or the Cherno↵ divergence. Such functionals have a
list of common properties described in [Csi63]. For example, if two distributions are
perturbed by additive noise (i.e., convolving with a distribution), then the divergence
always increases, or if some of the elements of the distributions’ support are merged,
then the divergence always decreases. Each of these properties can be interpreted
in terms of community detection (e.g., it is easier to recovery merged communities,
etc.). Since Dt collapses to the Hellinger divergence when t = 1/2 and since it
matches the Cherno↵ divergence for probability measures, we call Dt (and D

+

) the
Cherno↵-Hellinger (CH) divergence in [AS15a].

Theorem 25 gives thus a new operational meaning to an f -divergence, showing that
the fundamental limit for data clustering in SBMs is governed by the CH-divergence,
similarly to the fundamental limit for data transmission in DMCs being governed
by the KL-divergence. If the columns of diag(p)Q are “di↵erent” enough, where
di↵erence is measured in CH-divergence, then one can separate the communities.
This is analog to the channel coding theorem that says that when the output’s
distributions are “di↵erent” enough, where di↵erence is measured in KL-divergence,
then one can separate the codewords.

7.1.1 Converse

Let (X, G) ⇠ SBM(n, p, W ). Recall that to solve exact recovery, we need to find
the partition of the vertices, but not necessarily the actual labels. Equivalently, the
goal is to find the community partition ⌦ = ⌦(X) as defined in Section 2. Recall
also that the optimal estimator (see Section 4) is the MAP estimator ⌦̂

map

(·) that
maximizes the posterior distribution

P{⌦ = s|G = g}, (226)

or equivalently

X

x2[k]n:⌦(x)=s

P{G = g|X = x}
k
Y

i=1

p|⌦i

(x)|
i , (227)
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and any such maximizer can be chosen arbitrarily. If MAP fails in solving exact
recovery, no other algorithm can succeed.

We proceed similarly to the symmetric case to obtain the impossibility part of
Theorem 25, i.e., we reduce the problem to a genie hypothesis test for recovering
a single vertex given the other vertices. However, we now work in the Bernoulli
community prior model, for slight conveniences.

Imagine that in addition to observing G, a genie provides the observation of
X⇠u = {Xv : v 2 [n] \ {u}}. Define now X̂v = Xv for v 2 [n] \ {u} and

X̂u,map

(g, x⇠u) = arg max
i2[k]

P{Xu = i|G = g, X⇠u = x⇠u}, (228)

where ties can be broken arbitrarily if they occur (we assume that an error is declared
in case of ties to simplify the analysis). If we fail at recovering a single component
when all others are revealed, we must fail at solving exact recovery all at once, thus

P{⌦̂
map

(G) 6= ⌦} � P{9u 2 [n] : X̂u,map

(G, X⇠u) 6= Xu}. (229)

This lower bound may appear to be loose at first, as recovering the entire communities
from the graph G seems much more di�cult than classifying each vertex by having all
others revealed (we call the latter component-MAP). As shown for the two symmetric
case in Section 4, the obtained bound is however tight.

Let Eu := {X̂u,map

(G, X⇠u) 6= Xu}. If the events Eu were independent, we
could write P{[uEu} = 1 � P{\uEc

u} = 1 � (1 � P{E
1

})n � 1 � e�nP{E
1

} and if
P{E

1

} = !(1/n), this would drive P{[uEu}, and thus Pe, to 1. The events Eu are
not independent, but their dependencies are weak enough that previous reasoning
still applies, and Pe is driven to 1 when P{E

1

} = !(1/n). In Section 4, we used
the second moment method to obtained this statement, showing that the events are
asymptotically independent, which we also pursue below. In [AS15a], a variant of
this method is used to obtain the conclusion.

Recall that for the second moment method, one defines

Z =
X

u2[n]

1(X̂u,map

(G, X⇠u) 6= Xu),

which counts the number of components where component-MAP fails. Note that the
right hand side of (229) corresponds to P{Z � 1} as desired. Our goal is to show

that VarZ
(EZ)

2

stays strictly below 1 in the limit, or equivalently, EZ2

(EZ)

2

stays strictly

below 2 in the limit. In fact, the latter tends to 1 in the converse of Theorem 25.
Note that Z =

P

u2[n] Zu where Zu := 1(X̂u,map

(G, X⇠u) 6= Xu) are binary

random variables with EZu = EZv for all u, v. Hence, EZ2

(EZ)

2

tends to 1 if

1

nP{Z
1

= 1} +
P{Z

2

= 1|Z
1

= 1}
P{Z

1

= 1} = 1 + o(1) (230)
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which takes place if nP{Z
1

= 1} = !(1) and P{Z
2

=1|Z
1

=1}
P{Z

2

=1} = 1 + o(1).

The location of the threshold is then dictated by requirement that nP{Z
1

= 1}
diverges, and this where the CH-divergence threshold emerges from a moderate
deviation analysis. We next summarize what we obtained with the above reasoning,
and then specialized to the regime of Theorem 25.

Theorem 26. Let (X, G) ⇠ SBM(n, p, W ) and Zu := 1(X̂u,map

(G, X⇠u) 6= Xu),
u 2 [n]. If p, W are such that E

1

and E
2

are asymptotically independent, then exact
recovery is not solvable if

P{X̂u,map

(G, X⇠u) 6= Xu} = !(1/n). (231)

The next lemma gives the behavior of P{Z
1

= 1} in the logarithmic degree
regime.

Lemma 14. [AS15a] Consider the hypothesis test where H = i has prior probability
pi for i 2 [k], and where observable Y is distributed Bin(np, Wi) under hypothesis
H = i. This is called degree-profiling in [AS15a], and is illustrated in Figure
??. Then the probability of error Pe(p, W ) of MAP decoding for this test satisfies
1

k�1

Over(n, p, W )  Pe(p, W )  Over(n, p, W ) where

Over(n, p, W ) =
X

i<j

X

z2Zk

+

min(P{Bin(np, Wi) = z}pi, P{Bin(np, Wj) = z}pj),

and for a symmetric Q 2 Rk⇥k
+

,

Over(n, p, log(n)Q/n) = n�I
+

(p,Q)�O(log log(n)/ logn), (232)

where I
+

(p, Q) = mini<j D
+

((diag(p)Q)i, (diag(p)Q)j).

Corollary 5. Let (X,G) ⇠ SBM(n, p, W ) where p is constant and W = Q logn
n .

Then

P{X̂u,map

(G, X⇠u) 6= Xu} = n�I
+

(p,Q)+o(1). (233)

A robust extension of this Lemma is proved in [AS15a] that allows for a slight
perturbation of the binomial distributions.

7.1.2 Achievability

Two-rounds algorithms have proved to be powerful in the context of exact recovery.
The general idea consists in using a first algorithm to obtain a good but not necessarily
exact clustering, solving a joint assignment of all vertices, and then to switch to a
local algorithm that “cleans up” the good clustering into an exact one by reclassifying
each vertex. This approach has a few advantages:
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Figure 16: The genie-aided hypothesis test (degree-profiling) to classify a vertex
based given the labels of all other vertices consists in a multi-hypotheses test with
multivariate Poisson distributions of means corresponding to the di↵erent community
profiles. The probability of error of that test scales as n�I

+

(p,Q) where I
+

(p, Q) is
given by the CH-divergence D

+

between the community profiles as in Lemma 14.

• If the clustering of the first round is accurate enough, the second round becomes
approximately the genie-aided hypothesis test discussed in previous section,
and the approach is built in to achieve the threshold;

• if the clustering of the first round is e�cient, then the overall method is
e�cient since the second round only performs computations for each single
node separately and has thus linear complexity.

Some di�culties need to be overome for this program to be carried out:

• One needs to obtain a good clustering in the first round, which is typically
non-trivial;

• One needs to be able to analyze the probability of success of the second round,
as the graph is no longer independent of the obtained clusters.

To resolve the latter point, we rely in [ABH16] a technique which we call “graph-
splitting” and which takes again advantage of the sparsity of the graph.

Definition 24 (Graph-splitting). Let G be an n-vertex graph and � 2 [0, 1]. The
graph-splitting of G with split-probability � produces two random graphs G

1

, G
2

on
the same vertex set as G. The graph G

1

is obtained by sampling each edge of G
independently with probability �, and G

2

= G \ G
1

(i.e., G
2

contains the edges from
G that have not been subsampled in G

1

).

Graph splitting is convenient in part due to the following fact.

Lemma 15. Let (X, G) ⇠ SBM(n, p, log nQ/n), (G
1

, G
2

) be a graph splitting of G
with parameters � and (X, G̃

2

) ⇠ SBM(n, p, (1� �) log nQ/n) with G̃
2

independent
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of G
1

. Let X̂ = X̂(G
1

) be valued in [k]n such that P{A(X, X̂) � 1�o(n)} = 1�o(1).
For any v 2 [n], d 2 Zk

+

,

P{Dv(X̂, G
2

) = d}  (1 + o(1))P{Dv(X̂, G̃
2

) = d} + n�!(1), (234)

where Dv(X̂, G
2

) is the degree profile of vertex v, i.e., the k-dimensional vector
counting the number of neighbors of vertex v in each community using the clustered
graph (X̂, G

2

).

The meaning of this lemma is as follows. We can consider G
1

and G
2

to be approx-
imately independent, and export the output of an algorithm run on G

1

to the graph
G

2

without worrying about dependencies to proceed with component-MAP. Further,
if � is to chosen as � = ⌧(n)/ log(n) where ⌧(n) = o(log(n)), then G

1

is distributed
as SBM(n, p, ⌧(n)Q/n) and G

2

remains approximately as SBM(n, p, log nQ/n). This
means that from our original SBM graph, we produce essentially ‘for free’ a prelim-
inary graph G

1

with ⌧(n) expected degrees that can be used to get a preliminary
clustering, and we can then improve that clustering on the graph G

2

which has still
logarithmic expected degree.

Our goal is to obtain on G
1

a clustering that is almost exact, i.e., with only a
vanishing fraction of misclassified vertices. If this can be achieved for some ⌧(n)
that is o(log(n)), then a robust version of the genie-aided hypothesis test described
in Section ?? can be run to re-classify each node successfully when I

+

(p, Q) > 1.
Luckily, as we shall see in Section 6.1, almost exact recovery can be solved with
the mere requirement that ⌧(n) = !(1) (i.e., ⌧(n) diverges). In particular, setting
⌧(n) = log log(n) does the job. We next describe more formally the previous
reasoning.

Theorem 27. Assume that almost exact recovery is solvable in SBM(n, p,!(1)Q/n).
Then exact recovery is solvable in SBM(n, p, log nQ/n) if

I
+

(p, Q) > 1. (235)

To see this, let (X, G) ⇠ SBM(n, p, ⌧(n)Q/n), and (G
1

, G
2

) be a graph splitting
of G with parameters � = log log n/ log n. Let (X, G̃

2

) ⇠ SBM(n, p, (1� �)⌧(n)Q/n)
with G̃

2

independent of G
1

(note that the same X appears twice). Let X̂ = X̂(G
1

)
be valued in [k]n such that P{A(X, X̂) � 1 � o(1)} = 1 � o(1); note that such
an X̂ exists from the Theorem’s hypothesis. Since A(X, X̂) = 1 � o(1) with high
probability, (G

2

, X̂) are functions of G and using a union bound, we have

P{⌦̂
map

(G) 6= ⌦}  P{⌦̂
map

(G) 6= ⌦|A(X, X̂) = 1� o(1)} + o(1) (236)

 P{⌦̂
map

(G
2

, X̂) 6= ⌦|A(X, X̂) = 1� o(1)} + o(1) (237)

 nP{X
1,map

(G
2

, X̂⇠1

) 6= X
1

|A(X, X̂) = 1� o(1)} + o(1). (238)

We next replace G
2

by G̃
2

. Note that G̃
2

has already the same marginal as G
2

, the
only issue is that G

2

is not independent from G
1

since the two graphs are disjoint,
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and since X̂ is derived from G
2

, some dependencies are carried along with G
1

.
However, G̃

2

and G
2

are ‘essentially independent’ as stated in Lemma 15, because
the probability that G̃

2

samples an edge that is already present in G
1

is O(log2 n/n2),
and the expected degrees in each graph is O(log n). This takes us to

P{⌦̂
map

(G) 6= ⌦}  nP{X
1,map

(G̃
2

, X̂⇠1

) 6= X
1

|A(X, X̂) = 1� o(1)}(1 + o(1)) + o(1).
(239)

We can now replace X̂⇠1

with X⇠1

to the expense that we may blow up this the
probability by a factor no(1) since A(X, X̂) = 1 � o(1), using again the fact that
expected degrees are logarithmic. Thus we have

P{⌦̂
map

(G) 6= ⌦}  n1+o(1)P{X
1,map

(G̃
2

, X⇠1

) 6= X
1

|A(X, X̂) = 1� o(1)} + o(1)
(240)

and the conditioning on A(X, X̂) = 1�o(1) can now be removed due to independence,
so that

P{⌦̂
map

(G) 6= ⌦}  n1+o(1)P{X
1,map

(G̃
2

, X⇠1

) 6= X
1

} + o(1). (241)

The last step consists in closing the loop and replacing G̃
2

by G, since 1�� = 1�o(1),
which uses the same type of argument as for the replacement of G

2

by G̃
2

, with a
blow up that is at most no(1). As a result,

P{⌦̂
map

(G) 6= ⌦}  n1+o(1)P{X
1,map

(G, X⇠1

) 6= X
1

} + o(1), (242)

and if

P{X
1,map

(G, X⇠1

) 6= X
1

} = n�1�" (243)

for " > 0, then P{⌦̂
map

(G) 6= ⌦} is vanishing as stated in the theorem.
Therefore, in view of Theorem 27, the achievability part of Theorem 25 reduces

to the following result.

Theorem 28. [AS15a] Almost exact recovery is solvable in SBM(n, p,!(1)Q/n),
and e�ciently so.

This follows from Theorem 31 discussed below, based on the Sphere-comparison
algorithm discussed in Section 6.

In conclusion, in the regime of Theorem 25, exact recovery can be shown by
using graph-splitting and combining almost exact recovery with degrees that grow
sub-logarithmically and an additional clean-up phase. The behavior of the component-
MAP error (i.e., the probability of misclassifying a single node when others have
been revealed) pings down the behavior of the threshold: if this probability is !(1/n),
exact recovery is not possible, and if it is o(1/n), exact recovery is possible. Decoding
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for the latter is then resolved by obtaining the exponent of the component-MAP
error, which brings the CH-divergence in.

Local to global amplification. Previous two sections give a lower bound and an
upper bound on the probability that MAP fails at recovering the entire clusters, in
terms of the probability that MAP fails at recovering a single vertex when others
are revealed. Denoting by P

global

and P
local

these two probability of errors, we
essentially17 have

1� 1

nP
local

+ o(1)  P
global

 nP
local

+ o(1). (244)

This implies that P
global

has a threshold phenomena as P
local

varies:

P
global

!
(

0 if P
local

⌧ 1/n,

1 if P
local

� 1/n.
(245)

Moreover, deriving this relies mainly on the regime of the model, rather than the
specific structure of the SBM. In particular, it mainly relies on the exchangeability
of the model (i.e., vertex labels have no relevance) and the fact that the vertex
degrees do not grow rapidly. This suggests that this ‘local to global’ phenomenon
takes place in a more general class of models. The expression of the threshold for
exact recovery in SBM(n, p, log nQ/n) as a function of the parameters p, Q is instead
specific to the model, and relies on the CH-divergence in the case of the SBM, but
the moderate/large deviation analysis of P

local

for other models may reveal a di↵erent
functional or f -divergence.

The local to global approach has also an important implication at the computa-
tional level. The achievability proof described in previous section gives directly an
algorithm: use graph-splitting to produce two graphs; solve almost exact recovery on
the first graph and improve locally the latter with the second graph. Since the second
round is by construction e�cient (it corresponds to n parallel local computations),
it is su�cient to solve almost exact recovery e�ciently (in the regime of diverging
degrees) to obtain for free an e�cient algorithm for exact recovery down to the
threshold. This thus gives a computational reduction. In fact, the process can be
iterated to further reduce almost exact recovery to a weaker recovery requirements,
until a ‘bottle-neck’ recovery problem is attained.

7.2 Weak recovery and generalized KS threshold

We recall the conjecture stated in [DKMZ11]:

17The upper bound discussed in Section 7.1.2 gives n1+o(1)

P

local

+ o(1), but the analysis can be
tighten to yield a factor n instead of n1+o(1).
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Conjecture 1. [DKMZ11, MNS15] Let (X, G) be drawn from SSBM(n, k, a/n, b/n),
i.e., the symmetric SBM with k communities, probability a/n inside the communities

and b/n across. Define SNR = (a�b)2

k(a+(k�1)b) . Then,

(i) For any k � 2, it is possible to solve weak recovery e�ciently if and only if
SNR > 1 (the Kesten-Stigum (KS) threshold);

(ii) If18 k � 4, it is possible to solve weak recovery information-theoretically (i.e.,
not necessarily in polynomial time in n) for some SNR strictly below 1.19

It was also shown in [BLM15] that for SBMs with communities that are balanced
and for parameters that satisfy a certain asymmetry condition, i.e., the requirement
that µk is a simple eigenvalue in Theorem 5 of [BLM15], the KS threshold can be
achieved e�ciently. The conditions of [BLM15] do not cover Conjecture 1 for k � 3.
In [AS15c, AS17], the two positive parts of the above conjecture are proved, with an
extended result applying to the general SBM. We discuss next these various results.

Given parameters p and Q in the general model SBM(n, p, Q/n), let P be the
diagonal matrix such that Pi,i = pi for each i 2 [k]. Also, let �

1

, ...,�h be the distinct
eigenvalues of PQ in order of nonincreasing magnitude.

Definition 25. Define the signal-to-noise ratio of SBM(n, p, Q/n) by

SNR = �2
2

/�
1

.

In the k community symmetric case where vertices in the same community are
connected with probability a/n and vertices in di↵erent communities are connected

with probability b/n, we have SNR = (a�b
k )2/(a+(k�1)b

k ) = (a� b)2/(k(a + (k� 1)b)),
which matches the quantity in Conjecture 1 and in all previous sections dealing with
two communities.

Theorem 29. [BLM15] Let G ⇠ SBM(n, p, Q/n) such that p = (1/k, . . . , 1/k) and
such that PQ has an eigenvector with corresponding eigenvalue in (

p
�
1

,�
1

) of single
multiplicity. If SNR > 1, then weak recovery is e�ciently solvable.

Theorem 30. [AS15c, AS17] Let G ⇠ SBM(n, p, Q/n) for p, Q arbitrary. If SNR >
1, then weak recovery is e�ciently solvable.

Theorem 30 implies the achievability part of Conjecture 1 part (i).

18The conjecture states that k = 5 is necessary when imposing the constraint that a > b, but
k = 4 is enough in general.

19[DKMZ11] made in fact a more precise conjecture, stating that there is a second transition
below the KS threshold for information-theoretic methods when k � 4, whereas there is a single
threshold when k = 3.
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The algorithm used in [BLM15] is a spectral algorithm using the second eigenvector
of the NB matrix discussed in Section 5.3.1. The algorithm used in [AS17] is an
approximate acyclic belief propagation (ABP) algorithm, which corresponds to a
power iteration method to extract the second eigenvector of the r-NB matrix.

Remark 7. Note also that it is important to use the notion of weak recovery defined
in Section ??, where the agreement is normalized by the sizes of the communities.
Without this normalization, the conjecture may not be true. In particular, the
conjecture from [DKMZ11] that max-detection is e�ciently solvable if and only if
SNR > 1 for the general SBM is not true; a counter-example is given in [AS17]
where max-detection is not solvable if SNR > 1.

We conjecture that Theorem 30 is tight, i.e., if SNR < 1, then e�cient weak
recovery is not solvable. However, establishing formally such a converse argument
seems out of reach at the moment: as we shall see in next section, except for a
few possible cases with low values of k (e.g., symmetric SBMs with k = 2, 3), it is
possible to detect information-theoretically when SNR < 1, and thus one cannot get
a converse for e�cient algorithms by considering all algorithms.

7.3 Partial recovery

The Sphere-comparison algorithm discussed in Section 6.1 gives the following result:

Theorem 31. [AS15b] For any k 2 Z, p 2 (0, 1)k and Q with no two rows equal,
there exist ✏(c) = O(1/ log(c)) such that for all su�ciently large c, Sphere-comparison
detects communities in SBM(n, p, cQ/n) with accuracy 1 � e�⌦(c) and complexity
On(n1+✏(c)).

Tight expressions for partial recovery in the general SBM and at a finite SNR
is open. We note the exception of a result obtained recently in [CKPZ16], which
requires the assortative regime. We also refer to [GMZZ15, YP14a].

8 The information-computation gap

We discuss in this section SBM regimes where weak recovery can be solved information-
theoretically. As stated in Conjecture 1 and proved in Theorem 30, the information-
computation gap—defined as the gap between the KS and IT thresholds—takes place
when the number of communities k is larger than 4. We provide an information-
theoretic (IT) bound for SSBM(n, k, a/n, b/n) that confirms this, showing further
that the gap can grow fast with the number of communities.

The information-theoretic bound described below is obtained by using a non-
e�cient algorithm that samples uniformly at random a clustering that is typical, i.e.,
that has the right proportions of edges inside and across the clusters. We describe
below how this gives a tight expression in various regimes. Note that to capture
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the exact information-theoretic threshold in all regimes, one would have to rely on
tighter estimates on the posterior distribution of the clusters given the graph. A
possibility is to estimate the limit of the normalized mutual information between the
clusters and the graph, i.e., 1

nI(X;G), as done in [DAM15] for the regime of finite
SNR with diverging degrees20—see Section 6.3. Recent results also obtained the
expression for the finite degree regime in the disassortative case [CKPZ16]. Another
possibility is to estimate the limiting total variation or KL-divergence between the
graph distribution in the SBM vs. Erdős-Rényi model of matching expected degree.
The limiting total variation is positive if and only if an hypothesis test can distinguish
between the two models with a chance better than half. The easy implication of this
is that if the total variation is vanishing, the weak recovery is not solvable (otherwise
we would detect virtual clusters in the Erdős-Rényi model). This used in [BM16]
to obtain a lower-bound on the information-theoretic threshold, using a contiguity
argument, see further details at the end of this section.

8.1 Crossing KS: typicality

To obtain our information-theoretic upper-bound, we rely on the following sampling
algorithm:

Typicality Sampling Algorithm. Given an n-vertex graph G and � > 0, the
algorithm draws X̂

typ

(G) uniformly at random in

T�(G) ={x 2 Balanced(n, k) :

k
X

i=1

|{Gu,v : (u, v) 2
✓

[n]

2

◆

s.t. xu = i, xv = i}| � an

2k
(1� �),

X

i,j2[k],i<j

|{Gu,v : (u, v) 2
✓

[n]

2

◆

s.t. xu = i, xv = j}|  bn(k � 1)

2k
(1 + �)},

where the above assumes that a � b; flip the above two inequalities in the case a < b.

The bound that is obtained below is claimed to be tight at the extremal regimes
of a and b. For b = 0, SSBM(n, k, a/n, 0) is simply a patching of disjoint Erdős-Rényi
random graph, and thus the information-theoretic threshold corresponds to the giant
component threshold, i.e., a > k, achieved by separating the giants. This breaks
down for b positive, however small, but we expect that the bound derived below
remains tight in the scaling of small b. For a = 0, the problem corresponds to planted
coloring, which is already challenging [AK97]. The bound obtained below gives in this
case that weak recovery is information-theoretically solvable if b > ck log k + ok(1),
c 2 [1, 2]. This scaling is further shown to be tight in [BM16], which also provides a

20Similar results were also obtained recently in a more general context in [CLM16, LM16].
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simple upper-bound that scales as k log k for a = 0. Overall, the bound below shows
that the KS threshold gives a much more restrictive regime than what is possible
information-theoretically, as the latter reads b > k(k � 1) for a = 0.

Theorem 32. Let d := a+(k�1)b
k , assume d > 1, and let ⌧ = ⌧d be the unique

solution in (0, 1) of ⌧e�⌧ = de�d, i.e., ⌧ =
P

+1
j=1

jj�1

j! (de�d)j. The Typicality

Sampling Algorithm detects21 communities in SSBM(n, k, a/n, b/n) if

a log a + (k � 1)b log b

k
� a + (k � 1)b

k
log

a + (k � 1)b

k
(246)

> min

✓

1� ⌧
1� ⌧k/(a + (k � 1)b)

2 log(k), 2 log(k)� 2 log(2)e�a/k(1� (1� e�b/k)k�1)

◆

.

(247)

This bound strictly improves on the KS threshold for k � 4. See [AS17] for a
numerical example.

Corollary 6. Conjecture 1 part (ii) holds.

Note that (247) simplifies to

1

2 log k

✓

a log a + (k � 1)b log b

k
� d log d

◆

>
1� ⌧

1� ⌧/d
=: f(⌧, d), (248)

and since f(⌧, d) < 1 when d > 1 (which is needed for the presence of the giant),
weak recovery is already solvable in SBM(n, k, a, b) if

1

2 log k

✓

a log a + (k � 1)b log b

k
� d log d

◆

> 1. (249)

The above bound corresponds to the regime where there is no bad clustering that is
typical with high probability. The analog of this bound in the unbalanced case already
provides examples to crossing KS for two communities, such as for p = (1/10, 9/10)
and Q = (0, 81; 81, 72). However, the above bound is not tight in the extreme regime
of b = 0, since it reads a > 2k as opposed to a > k, and it only crosses the KS
threshold at k = 5. Before explaining how to obtain tight interpolations, we provide
further insight on the bound of Theorem 32.

Defining ak(b) as the unique solution of

1

2 log k

✓

a log a + (k � 1)b log b

k
� d log d

◆

(250)

= min

 

f(⌧, d), 1� e�a/k(1� (1� e�b/k)k�1) log(2)

log(k)

!

(251)

and simplifying the bound in Theorem 32 gives the following.

21Setting � > 0 small enough gives the existence of " > 0 for weak recovery.
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Corollary 7. Weak recovery is solvable

in SBM(n, k, 0, b) if b >
2k log k

(k � 1) log k
k�1

f(⌧, b(k � 1)/k), (252)

in SBM(n, k, a, b) if a > ak(b), where ak(0) = k. (253)

Remark 8. Note that (253) approaches the optimal bound given by the presence of
the giant at b = 0, and we further conjecture that ak(b) gives the correct first order
approximation of the information-theoretic bound for small b.

Remark 9. Note that the k-colorability threshold for Erdős-Rényi graphs grows as
2k log k [AN05]. This may be used to obtain an information-theoretic bound, which
would however be looser than the one obtained above.

It is possible to see that this gives also the correct scaling in k for a = 0, i.e.,
that for b < (1� ")k log(k) + ok(1), " > 0, weak recovery is information-theoretically
impossible. To see this, consider v 2 G, b = (1� ✏)k log(k), and assume that we know
the communities of all vertices more than r = log(log(n)) edges away from v. For
each vertex r edges away from v, there will be approximately k✏ communities that
it has no neighbors in. Then vertices r � 1 edges away from v have approximately
k✏ log(k) neighbors that are potentially in each community, with approximately
log(k) fewer neighbors suspected of being in its community than in the average
other community. At that point, the noise has mostly drowned out the signal and
our confidence that we know anything about the vertices’ communities continues to
degrade with each successive step towards v.

A di↵erent approach is developed in [BM16] to prove that the scaling in k is in
fact optimal, obtaining both upper and lower bounds on the information-theoretic
threshold that match in the regime of large k when (a� b)/d = O(1). In terms of
the expected degree, the threshold reads as follows.

Theorem 33. [BM16, BMNN16] When (a � b)/d = O(1), the critical value of d

satisfies d = ⇥
⇣

d2k log k
(a�b)2

⌘

, i.e., the critical SNR satisfies SNR = ⇥(log(k)/k).

The upper-bound in [BM16] corresponds essentially to (249), the regime in which
the first moment bound is vanishing. The lower-bound is based on a contiguity
argument and second moment estimates from [AN05]. The idea is to compare the
distribution of graphs drawn from the SBM, i.e.,

µ
SBM

(g) :=
X

x2[k]n
P{G = g|X = x}P{X = x} (254)

with the distribution of graphs drawn from the Erdős-Rényi model with matching
expected degree, call it µ

ER

. If one can show that

kµ
SBM

� µ
ER

k
1

! 0, (255)
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then upon observing a graph drawn from either of the two models, say with probability
half for each, it is impossible to decide from which ensemble the graph is drawn
with probability asymptotically greater than half. Thus it is not possible to solve
weak recovery (otherwise one would detect clusters in the Erdős-Rényi model). A
su�cient condition to imply (255) is to show that µ

SBM

E µ
ER

, i.e., for any sequence
of event En such that µ

ER

(En)! 0, it must be that µ
SBM

! 0. In particular, µ
SBM

and µ
ER

are called contiguous if µ
SBM

E µ
ER

and µ
ER

E µ
SBM

, but only the first of
these conditions is needed here. Further, this is implied from Cauchy-Schwarz if the
ratio function

⇢(G) := µ
SBM

(G)/µ
ER

(G)

has a bounded second moment, i.e.,

EG⇠ER

⇢2(G) = O(1),

which is shown in [BM16]; see also [Moo17] for more details.

8.2 Nature of the gap

The nature of such gap phenomena can be seen from di↵erent perspectives. One
interpretation comes from the behavior of belief propagation. See also [Moo17] for
further discussions.

Above the Kesten-Stigum threshold, the uniform fixed point is unstable and BP
does not get attracted to it and reaches on most initialization a non-trivial solution.
In particular, the ABP algorithm discussed in Section 5.3.1, which starts with a
random initialization with order

p
n vertices towards the true partition (due to the

Central Limit Theorem), is enough to make linearized BP reach a non-trivial fixed
point. Below the information-theoretic threshold, the non-trivial fixed points are
no longer present, and BP settles in a solution that represents a noisy clustering,
i.e., one that would also take place in the Erős-Rényi model due to the model
fluctuations. In the gap region, non-trivial fixed points are still present, but the
trivial fixed points are locally stable and attracts most initializations. One could try
multiple initializations until a non-trivial fixed point is reached, using for example the
graph-splitting technique discussed in Section 5.2.2 to test such solutions. However,
it is believed that an exponential number of initializations is needed to reach such a
good solution.

This connects to the energy landscape of the possible clusterings: in this gap
region, the non-trivial fixed-points have a very small basin of attraction, and they
can only attract an exponentially small fraction of initializations. To connect to
the results from Section 7.1 and the two-rounds procedure, there too the picture is
related the energy landscape. Above the CH threshold, an almost exact solution
having n� o(n) correctly labeled vertices can be converted to an exact solution by
the degree-profiling hypothesis test. This is essentially saying that BP at depth 1,
i.e., computing the likelihood of a vertex based on its direct neighbors, allows to
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reach the global maxima of the likelihood function with such a strong initialization.
In other words, the BP view, or more precisely understanding how accurate our
initial beliefs need to be in order to amplify these to non-trivial levels based on
neighbords at a given depth, is related to the landscape of the objective function.

The gap phenomenon also admits a local manifestation in the context of ABP,
having to do with the approximation discussed in Section 5.3.1, where the non-linear
terms behave di↵erently from k = 3 to k = 4 due to the loss of a diminishing return
property. Understanding better such gap phenomena is an active research area.

8.3 Proof technique for crossing KS

We explain in this section how to obtain the bound in Theorem 32. A first question
is to estimate the likelihood that a bad clustering, i.e., one that has an overlap close
to 1/k with the true clustering, belongs to the typical set. As clusters sampled from
the TS algorithm are balanced, a bad clustering must split each cluster roughly
into k balanced subgroups that belong to each community, see Figure 17. It is thus
unlikely to keep the right proportions of edges inside and across the clusters, but
depending on the exponent of this rare event, and since there are exponentially many
bad clusterings, there may exist one bad clustering that looks typical.

Figure 17: A bad clustering roughly splits each community equally among the k
communities. Each pair of nodes connects with probability a/n among vertices
of same communities (i.e., same color groups, plain line connections), and b/n
across communities (i.e., di↵erent color groups, dashed line connections). Only some
connections are displayed in the Figure to ease the visualization.

As illustrated in Figure 17, the number of edges that are contained in the clusters
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of a bad clustering is roughly distributed as the sum of two Binomial random
variables,

E
in

·⇠ Bin

✓

n2

2k2

,
a

n

◆

+ Bin

✓

(k � 1)n2

2k2

,
b

n

◆

,

where we use
·⇠ to emphasize that this is an approximation that ignores the fact that

the clustering is not exactly bad and exactly balanced. Note that the expectation of
the above distribution is n

2k
a+(k�1)b

k . In contrast, the true clustering would have a

distribution given by Bin(n
2

2k , a
n), which would give an expectation of an

2k . In turn,
the number of edges that are crossing the clusters of a bad clustering is roughly
distributed as

E
out

·⇠ Bin
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n2(k � 1)

2k2

,
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n

◆

+ Bin
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n2(k � 1)2

2k2

,
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◆
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which has an expectation of n(k�1)

2k
a+(k�1)b

k . In contrast, the true clustering would

have the above replaced by Bin(n
2

(k�1)

2k , b
n), and an expectation of bn(k�1)

2k .
Thus, we need to estimate the rare event that the Binomial sum deviates from

its expectations. While there is a large list of bounds on Binomial tail events, the
number of trials here is quadratic in n and the success bias decays linearly in n,
which require particular care to ensure tight bounds. We derive these in [AS15c],
obtaining that P{x

bad

2 T�(G)|x
bad

2 B✏} behaves when ", � are arbitrarily small as

exp
⇣

�n

k
A
⌘

where A := a+b(k�1)

2

log k
a+(k�1)b + a

2

log a + b(k�1)

2

log b. One can then use the fact

that |T�(G)| � 1 with high probability, since the planted clustering is typical with
high probability, and using a union bound and the fact that there are at most kn

bad clusterings:

P{X̂(G) 2 B✏} = EG
|T�(G) \B✏|

|T�(G)| (256)

 EG|T�(G) \B✏| + o(1) (257)

 kn · P{x
bad

2 T�(G)|x
bad

2 B✏} + o(1).

Checking when the above upper-bound vanishes already gives a regime that
crosses the KS threshold when k � 5 for symmetric communities, when k � 2
for asymmetric communities (deriving the version of the bound for asymmetric
communities), and scales properly in k when a = 0. However, it does not interpolate
the correct behavior of the information-theoretic bound in the extreme regime of
b = 0 and does not cross at k = 4. In fact, for b = 0, the union bound requires
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a > 2k to imply no bad typical clustering with high probability, whereas as soon
as a > k, an algorithm that simply separates the two giants in SBM(n, k, a, 0) and
assigns communities uniformly at random for the other vertices solves weak recovery.
Thus when a 2 (k, 2k], the union bound is loose. To remediate to this, we next take
into account the topology of the SBM graph to tighten our bound on |T�(G)|.

Since the algorithm samples a typical clustering, we only need the number of
bad and typical clusterings to be small compared to the total number of typical
clusterings, in expectation. Namely, we can get a tighter bound on the probability
of error of the TS algorithm by obtaining a tighter bound on the typical set size
than simply 1, i.e., estimating (256) without relying on the loose bound from (257).
We proceed here with three level of refinements to bound the typical set size. In
each level, we construct a random labelling of the vertices that maintain the planted
labelling a typical one, and then use entropic estimates to count the number of such
typical labellings.

First we exploit the large fraction of nodes that are in tree-like components outside
of the giant, and the labels are distributed on such trees as in the broadcasting on
tree problem 5.1. Specifically, for a uniformly drawn root node X, each edge in
the tree acts as a k-ary symmetric channel. Thus, labelling the nodes in the trees
according to the above distribution and freezing the giant to the correct labels leads
to a typical clustering with high probability. The resulting bound matches the giant
component bound at b = 0, but is unlikely to scale properly for small b. To improve
on this, we next take into account the vertices in the giant that belong to planted
trees, and follow the same program as above, except that the root node (in the giant)
is now frozen to the correct label rather than being uniformly drawn. This gives a
bound that we claim is tight at the first order approximation when b is small. Finally,
we also take into account vertices that are not saturated, i.e., whose neighbors do
not cover all communities and who can thus be swapped without a↵ecting typicality.
The final bound allows to cross at k = 4.

9 Other block models

There are various extensions of the basic SBM discussed in previous section. The
variations increase yearly, and we mention here a few basic variants:

• Labelled SBMs: allowing for edges to carry a label, which can model intensi-
ties of similarity functions between vertices; see for example [HLM12, XLM14,
JL15, YP15]; see also [Abb17] for a reduction from labelled edges to unlabelled
edges for certain recovery requirements;

• Degree-corrected SBMs: allowing for a degree parameter for each vertex
that scales the edge probabilities in order to makes expected degrees match
the observed degrees; see for example [KN11] and [?, GLM15] for sharp results
on such models;
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Figure 18: Illustration of the topology of SBM(n, k, a, b) for k = 2. A giant component

covering the two communities takes place when d = a+(k�1)b
k > 1; a linear fraction of

vertices belong to isolated trees (including isolated vertices), and a linear fraction of
vertices in the giant are on planted trees. The following is used to estimate the size
of the typical set in [AS17]. For isolated trees, sample a bit uniformly at random for
a vertex (green vertices) and propagate the bit according to the symmetric channel
with flip probability b/(a + (k � 1)b) (plain edges do not flip whereas dashed edges
flip). For planted trees, do the same but freeze the root bit to its true value.

• Overlapping SBMs: allowing for the communities to overlap, such as in the
mixed-membership SBM [ABFX08], where each vertex has a profile of com-
munity memberships or a continuous label—see also [For10, NP15, BKN11b,
Pei15, PDFV05, GB13, AS15a]; also [Abb17] for reductions to non-overlapping
community models in some cases and recent results that sharp for MMSBM in
[?];

• Metric and geometric SBMs: allowing for labels at the vertices that leave
in metric spaces, e.g., a grid, an Euclidean space or a sphere, and where
connectivity depends on the distance between the vertices labels as further
discussed below; see for example [BRS16, AMM+17, SB17, SAB, GMPS17,
ABS];

Definition 26 (Geometric block models). We define here two geometric block
models with two communities, the sphere-GBM and the mixture-GBM. For each
model, Xn = (X

1

, . . . , Xn) has i.i.d. Bernoulli(1/2) components, which represents
the abstract community labels for each vertex. We next add a geometric label for
each vertex, and draw the graph depending on both the abstract and geometric labels:
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• In the sphere-GBM(n, d, ⌧, a, b), Un = (U
1

, . . . , Un) has i.i.d. components drawn
uniformly at random on a sphere of dimension d; the graph G = ([n], E) is drawn
with edges independent conditionally on Xn, Un, such that for 1  i < j  n,

P{Eij = 1|Xn = xn, Un = un} =

8

>

<

>

:

a if kui � ujk  ⌧ and xi = xj

b if kui � ujk  ⌧ and xi 6= xj

0 if kui � ujk > ⌧

(258)

and P{Eij = 0|Xn = xn, Un = un} = 1� P{Eij = 1|Xn = xn, Un = un}. One
can have a variant with a special symbol ? that indicates if kui � ujk > ⌧ .

• In the mixture-GBM(n, d, s, ⌧), Un = (U
1

, . . . , Un) has independent compo-
nents conditionally on Xn with Ui drawn from N (0d, Id) if Xi = 0 and from
N ((s, 0d�1), Id) if Xi = 1 (two isotropic Gaussians in dimension d at distance
s); the graph G = ([n], E) is drawn with edges independent conditionally on
Un, such that for 1  i < j  n,

P{Eij = 1|Un = un} =

(

1 if kui � ujk  ⌧
0 if kui � ujk > ⌧

(259)

and P{Eij = 0|Un = un} = 1� P{Eij = 1|Un = un}.
In dimension d, we want ⌧ to be at least of order n�1/d with a large enough

constant in order for the graphs to have giant components, and (log(n)/n)1/d with a
large enough constant for connectivity.

Previous models have a much larger number of short loops than the SBM does,
which captures a feature of various real world graphs having transitive attributes
(“friends of friends are more likely to be friends”). On the flip side, these models do
not have ‘abstract edges’ as in the SBM, that can also occur frequently in applications
given the “small-world phenomenon”. The latter says that real graphs often have
relatively low diameter (about 6 in the case of Milgram’s experiment), which is not
taking place in purely geometric block models. Therefore, a natural candidate is
to superpose an SBM and a GBM to form an hybrid block model (HBM), see for
example [ABS]. The many loops of the GBM can be challenging for some of the
algorithms discussed in this monograph, in particular for basic spectral methods and
even belief propagation; we discussed in Section 5.3.2 how graph powering provides
a more robust alternative in such cases.

Another variant that circumvents the discussions about non-edges is to consider
a censored block model (CBM), defined as follows (see [ABBS14a]).

Definition 27 (Binary symmetric CBM). Let G = ([n], E) be a graph and " 2 [0, 1].
Let Xn = (X

1

, . . . , Xn) with i.i.d. Bernoulli(1/2) components. Let Y be a random
vector of dimension

�

n
2

�

taking values in {0, 1, ?} such that

P{Yij = 1|Xi = Xj , Eij = 1} = P{Yij = 0|Xi 6= Xj , Eij = 1} = " (260)

P{Yij = ?|Eij = 0} = 1. (261)
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The case of an Erdos-Renyi graph is discussed in [ABBS14a, ABBS14b, CRV15,
SKLZ15, CHG14, CG14] and the case of a grid in [AMM+17]. For a random
geometric graph on a sphere, it is closely related to the above sphere-GBM. Inserting
the ? symbol simplifies a few aspects compared to SBMs, such as Lemma 12 needed
in the weak recovery converse of the SBM. In that sense, the CBM is a more
convenient model than the SBM from a mathematical viewpoint, while behaving
similarly to the SBM (when G is an Erdos-Renyi graph of degree (a + b)/2 and
" = b/(a + b) for the two community symmetric case). The CBM can also be viewed
as a synchronization model over the binary field, and more general synchronization
models have been studied in [PWBM16b, PWBM16a], with a complete description
both at the fundamental and algorithmic level (generalizing in particular the results
from Section 6.3).

Note all previously mentioned models are di↵erent forms of latent variable
models. Focusing on the graphical nature, on can also consider the more general
inhomogenous random graphs [BJR07], which attach to each vertex a label in
a set that is not necessarily finite, and where edges are drawn independently from
a given kernel conditionally on these labels. This gives in fact a way to model
mixed-membership, and is also related to graphons, which corresponds to the case
where each vertex has a continuous label.

It may be worth saying a few words about the theory of graphons and its
implications for us. Lovász and co-authors introduced graphons [LS06, BCL+08,
Lov12] in the study of large graphs (also related to Szemerédi’s Regularity Lemma
[Sze76]), showing that22 a convergent sequence of graphs admits a limit object, the
graphon, that preserves many local and global properties of the sequence. Graphons
can be represented by a measurable function w : [0, 1]2 ! [0, 1], which can be
viewed as a continuous extensions of the connectivity matrix W used throughout
this paper. Most relevant to us is that any network model that is invariant under
node labelings, such as most models of practical interests, can be described by an
edge distribution that is conditionally independent on hidden node labels, via such
a measurable map w. This gives a de Finetti’s theorem for label-invariant models
[Hoo79, Ald81, DJ07], but does not require the topological theory behind it. Thus
the theory of graphons may give a broader meaning to the study of block models,
which are precisely building blocks to graphons, but for the sole purpose of studying
exchangeable network models, inhomogeneous random graphs give enough degrees
of freedom.

Further, many problems in machine learning and networks are also concerned
with interactions of items that go beyond the pairwise setting. For example, citation
or metabolic networks rely on interactions among k-tuples of vertices. These can be
captured by extending previous models to hypergraphs.23

22Initially in dense regimes and more recently for sparse regimes [BCCZ14].

23Recent results for community detection in hypergraphs were obtained in [KBG17].
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10 Concluding remarks and open problems

One may cast the SBM and the previously discussed variants into a comprehensive
class of conditional random field [Laf01] or channel model [AM15], where edge labels
depend on vertex labels.

Definition 28. Let V = [n] and G = (V, E(G)) be a hypergraph with N = |E(G)|.
Let X and Y be two finite sets called respectively the input and output alphabets, and
Q(·|·) be a channel from X k to Y called the kernel. To each vertex in V , assign a
vertex-variable in X , and to each edge in E(G), assign an edge-variable in Y. Let
yI denote the edge-variable attached to edge I, and x[I] denote the k node-variables
adjacent to I. We define a graphical channel with graph G and kernel Q as the
channel P (·|·) given by

Quantities that are key to understand how much information can be carried in
such graphical channels are:

how “rich” is the observation graph G and
how “noisy” is the connectivity kernel Q.

This survey quantifies the tradeo↵s between these two quantities in the SBM (which
corresponds to a discrete X , a specific graph G and a specific kernel Q), in order
to recover the input from the output. It shows that depending on the recovery
requirements, di↵erent phase transitions take place: For exact recovery, the CH
threshold is e�ciently achievable for any fix number of communities. For weak
recovery, the KS threshold is e�ciently achievable for any fix number of communities,
but it is not necessarily the information-theoretic threshold, leaving a question mark
on whether the KS threshold is indeed the fundamental limit for e�cient weak
recovery algorithms.

In the quest of achieving these thresholds, novel algorithmic ideas emerged,
similarly to the quest of achieving the capacity in channel coding, with sphere-
comparison, graph-splitting, linearized BP, nonbacktracking operators and graph
powering. This program can now be pursued in di↵erent directions, refining the
models, improving the algorithms and expanding the realm of applications. In
particular, similar tradeo↵s are expected to take place in other graphical channels,
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such as ranking, synchronization, topic modelling, collaboration filtering, planted
embedding and more. We list below a series of possible open problem.

• Exact recovery for sub-linear communities. The survey gives a comprehensive
treatment for exact recovery with linear-size communities, i.e., when the entries
of p and its dimension k do not scale with n. If k = o(log(n)), most of
the developed techniques tend to extend. What happens for larger k? In
[ABKK15, YC14], some of this is captured by looking at coarse regimes of the
parameters. It would be interesting to pursue sub-linear communities in the
lens of phase transitions and information-computation gaps.

• Partial recovery. What is the fundamental tradeo↵ between the SNR and the
distortion (MMSE, agreement or mutual information) for partial recovery and
arbitrary constant degrees? As a preliminary result, one may attempt to show
that I(X; G)/n admits a limit in the constant degree regime. This is proved in
[AM15] for two symmetric disassortative communities, but the assortative case
remains open. A recent result from [CKPZ16] further gives the expression for
the limit in the disassortative case, but the assortative case remains open.

• The information-computation gap:

– Related to the last point; can we locate the exact information-theoretic
threshold for weak recovery when k � 3? Recent results and precise
conjectures were recently obtained in [CLM16], for the regime of finite
SNR with diverging degrees discussed in Section 6.3. Arbitrary constant
degrees remain open.

– Can we strengthen the evidences that the KS threshold is the compu-
tational threshold? In the general sparse SBM, this corresponds to the
following conjecture:

Conjecture 2. Let k 2 Z
+

, p 2 (0, 1)k be a probability distribution, Q
be a k ⇥ k symmetric matrix with nonnegative entries. If �2

2

< �
1

, then
there is no polynomial time algorithm that can solve weak recovery (using
Definition 4) in G drawn from SBM(n, p, Q/n).

• Learning the general sparse SBM. Under what conditions can we learn the
parameters in SBM(n, p, Q/n) e�ciently or information-theoretically?

• Scaling laws: What is the optimal scaling/exponents of the probability of error
for the various recovery requirements? How large need the graph be, i.e., what
is the scaling in n, so that the probability of error in the discussed results24 is
below a given threshold?

24Recent work [YDHD+16] has investigated finite size information-theoretic analysis for weak
recovery.
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• Beyond the SBM:

– How do previous results and open problems generalize to the extensions
of SBMs with labels, degree-corrections, overlaps, etc. In the related line
of work for graphons [CWA12, ACC13, BCS15], are there fundamental
limits in learning the model or recovering the vertex parameters up to a
given distortion? The approach of [AS15a] and sphere-comparison were
generalized to the case of overlapping communities in [BCLS17] with
applications to collaborative filtering. Can we establish fundamental
limits and algorithms achieving the limits for other unsupervised machine
learning problems, such as topic modelling, ranking, Gaussian mixture
clustering, low-rank matrix recovery (see [DM14] for sparse PCA) or
general graphical channels?

– How robust are the thresholds to model perturbations or adversaries? It
was shown in [MPW16, MMV15] that monotone adversaries can interest-
ingly shift the threshold for weak recovery; what is the threshold for such
adversarial models or adversaries having a budget of edges to perturb?
What are robust algorithms (see also Section 5.3.2)? What are the exact
and weak recovery thresholds in geometric block models (see also previous
section)?

• Semi-supervised extensions: How do the fundamental limits change in a semi-
supervised setting,25 i.e., when some of the vertex labels are revealed, exactly
or probabilistically?

• Dynamical extensions: In some cases, the network may be dynamical and one
may observe di↵erent time instances of the network. How does one integrate
such dynamics to understand community detection?26
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