
A Stealthier Partitioning Attack against Bitcoin Peer-to-Peer Network

Muoi Tran∗, Inho Choi∗, Gi Jun Moon†�, Anh V. Vu‡�, Min Suk Kang∗

∗National University of Singapore, {muoitran, inhochoi, kangms}@comp.nus.edu.sg
†Korea University, shangmoon@korea.ac.kr

‡Japan Advanced Institute of Science and Technology, anhvv@jaist.ac.jp

Abstract—Network adversaries, such as malicious transit au-
tonomous systems (ASes), have been shown to be capable of
partitioning the Bitcoin’s peer-to-peer network via routing-level
attacks; e.g., a network adversary exploits a BGP vulnerability
and performs a prefix hijacking attack (viz. Apostolaki et al. [3]).
Due to the nature of BGP operation, such a hijacking is globally
observable and thus enables immediate detection of the attack
and the identification of the perpetrator. In this paper, we present
a stealthier attack, which we call the EREBUS attack, that
partitions the Bitcoin network without any routing manipulations,
which makes the attack undetectable to control-plane and even
to data-plane detectors. The novel aspect of EREBUS is that it
makes the adversary AS a natural man-in-the-middle network of
all the peer connections of one or more targeted Bitcoin nodes
by patiently influencing the targeted nodes’ peering decision.
We show that affecting the peering decision of a Bitcoin node,
which is believed to be infeasible after a series of bug patches
against the earlier Eclipse attack [29], is possible for the network
adversary that can use abundant network address resources
(e.g., spoofing millions of IP addresses in many other ASes)
reliably for an extended period of time at a negligible cost. The
EREBUS attack is readily available for large ASes, such as Tier-1
and large Tier-2 ASes, against the vast majority of 10K public
Bitcoin nodes with only about 520 bit/s of attack traffic rate
per targeted Bitcoin node and a modest (e.g., 5–6 weeks) attack
execution period. The EREBUS attack can be mounted by nation-
state adversaries who would be willing to execute sophisticated
attack strategies patiently to compromise cryptocurrencies (e.g.,
control the consensus, take down a cryptocurrency, censor
transactions). As the attack exploits the topological advantage
of being a network adversary but not the specific vulnerabilities
of Bitcoin core, no quick patches seem to be available. We
discuss that some naive solutions (e.g., whitelisting, rate-limiting)
are ineffective and third-party proxy solutions may worsen the
Bitcoin’s centralization problem. We provide some suggested
modifications to the Bitcoin core and show that they effectively
make the EREBUS attack significantly harder; yet, their non-
trivial changes to the Bitcoin’s network operation (e.g., peering
dynamics, propagation delays) should be examined thoroughly
before their wide deployment.

I. INTRODUCTION

The robust consensus among large numbers of untrusted

nodes is undoubtedly one of the most important technical

underpinnings of cryptocurrencies and it can only be achieved

with highly dependable peer-to-peer networks. Particularly,

the peer-to-peer network of Bitcoin [35], one of the most

successful cryptocurrencies, has been an attractive target of

attacks in recent years. Notably, the Bitcoin hijacking at-

tack [3] demonstrates that a network adversary (e.g., a Tier-1

�This research was done while the authors were working as interns at
National University of Singapore.

or Tier-21 transit autonomous system (AS)) can manipulate

the inter-domain routes for a set of selected Bitcoin nodes

and ultimately partition the Bitcoin’s peer-to-peer network.

The attack exploits the well-known BGP prefix hijacking

vulnerability [8] to redirect all the peer connections of the

selected nodes to the adversary AS, effectively controlling all

of their peer communications.

The Bitcoin hijacking attack, however, has a serious draw-

back due to the nature of BGP operation. That is, the real iden-

tity of the perpetrator (i.e., the malicious AS) is immediately

revealed to the public.2 This can be a critical disadvantage to

large ASes with reputation.

In this paper, we present a stealthier Bitcoin attack, which

we call the EREBUS
3 attack, that allows a network adversary

to control the peer connections of a targeted Bitcoin node (i.e.,

the same attack capabilities and goals as the Bitcoin hijacking

attack [3]) without any route manipulation, thus leaving no

control-plane evidence of attacks. Since the attack uses only

data-plane attack messages, it is undetected by any control-

plane monitoring systems (e.g., public [39], [47] or private

BGP monitors [9]); even if data-plane traces of the attack are

captured, the perpetrator can easily deny the execution of the

attack. The EREBUS attack is shown to be readily available

for Tier-1 or large Tier-2 ISPs to target the vast majority

of 10K Bitcoin nodes in the system that accept incoming

connections from other peers. Thus, nation-state adversaries,

who may control large transit ISPs, are able to mount the

EREBUS attack.

Figure 1 illustrates the high-level overview of the EREBUS

attack, focusing on how an adversary AS network manages

to control all (only two shown here) the peer connections of

a targeted victim Bitcoin node. Instead of manipulating the

underlying routing protocols, the adversary AS changes the

existing outgoing peering connections (see the dashed blue

arrows) of a victim node (in AS V) to the new connections

(see the solid red arrows) with the Bitcoin nodes (in AS C

and D) whose victim-to-node inter-domain paths include the

adversary AS M . As a result, the adversary AS is eventually

placed on the paths of all the peer-to-peer connections of

the victim node. It is worth noting that influencing a remote

Bitcoin node’s peering decision is believed to be infeasible

1Note that not all networks are eligible for the Bitcoin hijacking attack
because some ASes (e.g., single-homed Tier-3 ASes) cannot launch BGP
interception attacks; viz. the analysis on BGP hijacking and interception [8].

2As an anecdotal evidence, a Canadian ISP hijacked Bitcoin prefixes in
2014 and faced backlash from the media [45].

3EREBUS is ancient Greek for “shadow” or “darkness”.

894

2020 IEEE Symposium on Security and Privacy

© 2020, Muoi Tran. Under license to IEEE.
DOI 10.1109/SP40000.2020.00027

������� �	
�
���
���	
�������
��

�������
���	
�������
��

�

��	�����
�
��
�
����

�

�

�

�

��������	
��

�

�

	

��
������

�����
����������

�

���
��
�
���
�
����

Figure 1: High-level overview of the EREBUS attack. A

malicious autonomous system (AS) M indirectly switches all

the peer connections of a targeted Bitcoin node in the AS V to

the other carefully-chosen Bitcoin nodes to locate itself in the

middle of all peer connections of the victim node. This attack

does not require any route manipulation (e.g., hijacking BGP

paths), rendering itself undetectable by control-plane anomaly

detection systems.

with the up-to-date Bitcoin core (version 0.18.0) [11] because

all the related bugs have been fixed after the earlier Eclipse

attacks [29]. To be specific, a remote attacker with thousands

of bots can no longer force a targeted Bitcoin node to connect

to her bots exclusively. We show that, contrary to the common

belief, the EREBUS network adversary can still affect the

peering decision of a Bitcoin node. Our attack is feasible

not because of any newly discovered bugs in the Bitcoin core

implementation but the fundamental topological advantage of

being a network adversary; that is, our EREBUS adversary

AS, as a stable man-in-the-middle network, can utilize a large

number of network addresses (e.g., impersonating millions or

more valid IP addresses) reliably over an extended period of

time (e.g., several weeks or more).

Our tests with four-month Bitcoin measurement data show

that any Tier-1 or large Tier-2 ASes can control a Bitcoin node

with only small bandwidth budget (e.g., 520 bit/s per targeted

node) and modest (e.g., 5–6 weeks) attack execution periods,

which can be further shortened via an adaptive attack strategy.

Note that the EREBUS adversary AS can concurrently attack

multiple, carefully-chosen Bitcoin nodes (e.g., gateways of

popular mining pools) for a strong Bitcoin partitioning attack.

As the EREBUS attack does not exploit specific vulnera-

bilities of the Bitcoin core implementation, no simple, quick

patches seem to be available. We first describe naive and

ineffective solutions, such as route measurements/simulation

for attack detection, or whitelisting or rate-limiting for attack

prevention. Then, we discuss third-party proxy based solu-

tions (e.g., SABRE [2]), which may undermine the Bitcoin’s

philosophy of decentralization. Finally, we suggest several

effective countermeasures that require non-trivial changes to

the Bitcoin core. We test the effectiveness of the suggested

countermeasures and discuss the potential concerns for their

wide deployment.

This paper targets Bitcoin as it is one of the most investi-

gated blockchain systems. The EREBUS attack can potentially

have similar attack effectiveness against many other cryptocur-

rencies that have peer-to-peer network protocols similar to

Bitcoin (e.g., Litecoin, Dash, Zcash). In fact, we found 19

such cryptocurrencies out of the top 50 on the market [17]; see

Table I in Appendix A. We leave the evaluation of the EREBUS

attack on the other cryptocurrencies for future works.

II. BACKGROUND: PARTITIONING BITCOIN NODES

As a background of partitioning attacks against Bitcoin peer-

to-peer network, we review the main motivations of these

attacks (§II-A). Then, we briefly review the two most notable

existing attacks: the Bitcoin hijacking [3] (§II-B) and the

Eclipse attack [29] (§II-C).

A. Motivations for Partitioning Bitcoin Network

We list some common objectives for partitioning Bitcoin

network:

• Attacking Bitcoin consensus. An adversary who partitions

a set of miners can waste their mining efforts by stalling

the transmission of the latest blockchain state to them.

Partitioning a fraction of miners (e.g., 30%) from the rest

of the network can make an adversary, who even does

not control the majority of the mining power (e.g., 40%),

launch the 51% attack [35]. Moreover, the adversary can

hijack the computation power of the partitioned miners to

mine her blockchain in the selfish mining attacks [19],

[24], [43], [36]. Also, the partitioned Bitcoin nodes (e.g.,

nodes connected to merchants, exchanges or SPV clients)

are vulnerable to double-spending attacks [30], even after

cautiously waiting for some block confirmations on the

blockchain [29].

• Attacking Bitcoin’s off-chain protocols. Marcus et al. [31]

sketch an attack on blockchain layer-two protocols, such

as Bitcoin’s Lighting Network [38], using the capability

of partitioning Bitcoin nodes. The adversary prevents the

partitioned victim node from settling the payment channels

on the blockchain and steals the victim’s funds from her

off-chain transactions.

• Taking down cryptocurrencies. A powerful adversary, such

as a nation-state attacker, may even aim to disrupt a large

portion of the underlying peer-to-peer network of a cryp-

tocurrency. At a small scale, the adversary can arbitrarily

censor the transactions from the victim.

B. Bitcoin Hijacking and Drawbacks

The Bitcoin hijacking [3] adversary hijacks the traffic to-

ward the most-specific (e.g., up to /24) IP prefixes that include

the IP addresses of the targeted Bitcoin nodes using BGP

hijacking [8]. When the adversary AS hijacks all the inter-

domain routes of the nodes, she controls (e.g., inject, drop,

modify, delay) the Bitcoin messages of the targeted nodes.

Also, the Bitcoin hijacking attack presents several algorithms

to find the set of targeted Bitcoin nodes that have to be hijacked

together to isolate all of them from the rest of the peer-to-peer

network with high probability.

895

The main drawback. One major drawback of the Bitcoin

hijacking attack is that the attacker’s identity is revealed to

the public immediately (e.g., 5–10 minutes) after the attack is

launched. It is well known that BGP hijacking messages for

Bitcoin hijacking attacks are propagated to the entire Internet

and thus eventually observed by the global route monitoring

systems (e.g., RIPE [39], RouteViews [47]); see an AS-level

BGP simulation result on this [46]. When the Bitcoin hijacking

messages are captured by the route monitoring systems, the

perpetrator of an attack is easily identified because its AS

number must be included in the hijacking messages.

This is a serious disadvantage to large network adversaries

who already have established some reputation in the transit

business. Worse yet, if launched by a nation-state attacker

(viz., the powerful routing and network capabilities of nation-

state attackers [32]), the Bitcoin hijacking attack could create

huge undesirable political controversies after the perpetrator is

disclosed.

Our BGP measurement study in Appendix B shows that

(potentially because of this main drawback) there has been no

sign of Bitcoin partitioning attacks in the four-month period

in 2018.

C. Eclipse Attacks and Countermeasures

As briefly reviewed earlier, the Eclipse attack [29] directly

manipulates the victim Bitcoin node’s peer selection decision.

A Bitcoin node maintains many connections with other peers

via both incoming peer connections (i.e., connections initiated

by other peers) and outgoing peer connections (i.e., connec-

tions initiated by the node itself). When choosing the outgoing

connections, the Bitcoin node chooses the peer IP addresses

from its internal database, particularly, the new (containing IP

addresses learned from its peers) and tried (containing IP

addresses the node has ever connected to) tables.

Before the Eclipse attack was introduced, the Bitcoin pro-

tocol had several vulnerabilities in managing and utilizing the

IP addresses in the two tables. Namely, any remote adversaries

were able to fill both tables of a targeted node with any

arbitrary IP addresses with minimal effort, thus ultimately

controlling the peer connection decision of the targeted node.

Deployed countermeasures. The Bitcoin community quickly

patched these vulnerabilities. The most notable one among

several countermeasures is the ban on direct access to one of

the two tables (i.e., tried table) from any remote attackers.

As a result, an attacker can only directly fill the other table

(i.e., new table) but not both. Moreover, filling the new table

has become much harder after the patches. These and several

other fixes make the Eclipse attacks infeasible to adversaries

with botnets. Interested readers are encouraged to refer to the

Eclipse attack paper [29].

III. OVERVIEW OF THE EREBUS ATTACK

In this section, we present an overview of the EREBUS

attack, beginning with the threat model we consider in this

paper (§III-A). We then introduce a naive version of the

EREBUS attack to introduce the main intuition of the attack

(§III-B) and then describe its full version (§III-C). Finally, we

summarize the three main attack properties that differentiate

our attack from previous attacks (§III-D).

A. Threat Model

Similar to the Bitcoin hijacking attack [3], we consider

a network adversary who has full control of a single AS

network, which we call an adversary AS. The adversary may

arbitrarily insert/modify/remove/delay any messages traversing

her network. Note that typical nation-state adversaries may

have such network capability [32]. The adversary’s goal is to

control all the peer connections of a target node in the Bitcoin

peer-to-peer network. We target around 10K Bitcoin nodes that

accept incoming connections. Bitcoin nodes that do not accept

incoming connections due to the lack of public IP interface

(e.g., nodes behind network address translations (NATs) or

connected via Tor bridges) are out of the scope of our attack.

Moreover, we consider that the targeted Bitcoin nodes have

reliable IP addresses during the entire attack execution period.

We assume that the main targets of Bitcoin partitioning attacks

would be well-known and influential nodes (e.g., gateway

nodes of popular mining pools) that would operate reliably

with stable IP addresses. Note that even when a targeted

node changes its IP address (e.g., DHCP), our adversary can

identify the same node with a different IP via the Bitcoin node

fingerprinting technique [10].

We assume that a Bitcoin node can be attacked by only one

adversary at any given time. When two or more adversaries

concurrently attack the same node, the attack success rates

may drop due to their competition. We leave the analysis of

such attack scenarios for future work.

B. Naive EREBUS Attack

Our network adversary, a malicious AS (e.g., AS M in

Figure 1), targets a benign Bitcoin node as a victim (e.g.,

a node in AS V in Figure 1). Since the adversary may not

be on the path of the original peer connections of the victim

node (see the dashed blue arrows), the attack goal is to force

the victim node to connect to other benign Bitcoin nodes (e.g.,

nodes in AS C or D) so that the changed peer connections (see

the solid red arrows) of the victim node traverse the adversary

AS. Note that the new Bitcoin peer nodes for the victim should

be chosen carefully so that the victim-to-node route (e.g., V -

to-D route) includes the attacker AS M as in Figure 1. The

adversary repeats this until it serves all the peer connections

of the victim node. As a natural man-in-the-middle network of

the peer connections of the victim node, the adversary AS now

can insert/modify/remove/delay any Bitcoin messages that are

delivered to the victim node from the Bitcoin peer nodes of

her choice, effectively controlling the victim node; i.e., the

attack goal is achieved!

Technical challenges. Though intuitively appealing, imple-

menting the naive EREBUS attack in practice is quite chal-

lenging due to several limited and unknown attack capabilities.

First, there may not exist a sufficient number of benign Bitcoin

nodes (such as nodes in AS C or D) whose communication

896

paths to a victim node happen to include the adversary AS.

Notice that currently a Bitcoin node may have up to 125

peering connections [11] and, thus, we need 125 or more

such Bitcoin peer nodes in the right locations for a reliable

attack. Second, even if a sufficient number of such Bitcoin

peer nodes exist, it is still hard to influence the peer selection

of any Bitcoin node, especially, after several countermeasures

have been deployed to thwart the Eclipse attack [29].

C. Full EREBUS Attack

From the high-level intuition of the naive version, we now

describe the full version of the EREBUS attack. Unlike its

naive version, the EREBUS adversary uses not only the existing

Bitcoin nodes but any valid IP addresses whose victim-to-IP-

address routes include the adversary AS. For example, the

adversary AS M in Figure 1 can enumerate large numbers

of valid IP addresses in AS C and D and force the victim

node to peer with any of the enumerated IP addresses. We

call such adversary-enumerated IP addresses shadow IPs. A

shadow IP represents a virtual (thus, potentially non-existent)

Bitcoin node whose would-be victim-to-node route includes

the adversary AS. It is important to note that the shadow IPs

are not necessarily used by real Bitcoin nodes or even any host.

The shadow IPs are used only to provide a logical view of the

peer-to-peer network to the victim and any attempt to connect

to them from the victim node is hijacked and completed with

normal Bitcoin message exchanges by the adversary AS.

We describe the EREBUS attack in the following two attack

phases: a reconnaissance phase (Step I) and an attack execution

phase (Step II).

[Step I] Harvesting the shadow IPs (§IV). In this reconnais-

sance step, the adversary aims to collect as many IP addresses

that can be used for the shadow IPs as possible. As illustrated

in Figure 2, this step consists of three substeps. In Step I-

�, the adversary evaluates the inter-domain routing state and

enumerates all the ASes that may have a node whose victim-

to-node packets would traverse its own network M . In Step

I-�, the adversary enumerates all the available IP addresses

in the selected ASes and use them for the victim-specific

shadow IPs, and inserts them into its database. In Step I-�,

the adversary tests if the packets from the victim node indeed

traverse its network towards the chosen shadow IPs. Note that

this test step can be integrated into the next attack execution

step. We show in Section IV that we can easily obtain tens or

hundreds of millions of shadow IPs for a large adversary AS

and a typical victim node.

[Step II] Creating victim-shadow peering connections (§V).

In this attack execution step, the adversary aims to patiently

influence the victim node to make peering connections only

to the shadow IPs it has harvested in Step I. Note that the

control of Bitcoin’s peering decision with some botnets [29]

is no longer possible. Our EREBUS adversary exploits the

fundamental advantage of being a network adversary. That is,

the adversary AS impersonates the millions or more shadow

IPs reliably for several weeks to slowly fill up the internal

database of a victim node. In Step II-�, the adversary creates

�

������
����

�

�

�

�

�

	

���������
��������	�

��
��
��
������
���
������
���
�����
	�
��
�������	

��
� ���
������ ����

������
��

	��
�
�
�����
��������

��
� �

������������
���

�����
��������

��
����
��

����������	�
 ����

���������
��������	�

�

 �

�
�

�

�

� � �

��
��
���
	���
���
��

� !������
�������

����

����
����

�
������
����

�

�

�

�

�

�

	

�

�
� ��������� �����

���
��
���
����
�����������

����	����
�

	��
� �����

��

� ���
������

����
����

	��
�
����
	��

������ ���

���
���
�����������
�������
�� !
�����

���������
���
������
����"

� � �

�
�
�

 � � � � #
version handshake

� addr!� addr!
� addr!
#

���
�
�
��������
�����������
����

�

�

ke

ddr!
#

�
�

�

�������
������

�����!��"����
��

Figure 2: Two main steps of the EREBUS attack. In the

first reconnaissance step, a network adversary collects large

numbers of shadow IPs that are used to steer the existing peer

connections of the targeted victim Bitcoin node towards. In

the second step, the adversary gradually migrates the existing

peer connections of the victim node to the shadow IPs by

indirectly and patiently influencing the victim node’s peer

selection algorithm.

incoming connections with the victim node on behalf of

several shadow IPs of its choice. In particular, the adversary

initiates the Bitcoin version handshake by spoofing shadow

IP addresses. Then, in Step II-�, the adversary floods the

victim node’s internal IP address tables with a large number

of shadow IPs in addr messages. After filling the internal

tables of the victim node, in Step II-�, the adversary waits

for existing outgoing connections of the victim to be naturally

disconnected and replaced by the connections to shadow IPs.

To expedite the process, the adversary may trigger the victim

node to reset and choose new connections from the internal

tables.

D. Attack Properties

The EREBUS attack has three properties:

• Undetectability. The biggest difference between the Bitcoin

hijacking attack [3] and the EREBUS attack is that the

former is a control-plane only attack while the latter is

a data-plane only attack. The EREBUS adversary does

not propagate any control-plane messages (e.g., routing

announcements) and thus it is completely invisible to

897

control-plane monitors, such as BGP message collectors and

analysis tools (e.g., RIPE [39], RouteView [47], CAIDA

BGPStream [37]). As the data-plane traffic is much larger

in volume, there exists no public repository of data-plane

traffic on the Internet, which makes the public scrutiny

for the EREBUS attack nearly impossible. Some cautious

and willing ASes may use their deep-packet inspection

(DPI) capability to capture all the Bitcoin messages from a

suspicious AS and try to identify any suspicious data-plane

messages of the EREBUS attack (e.g., Bitcoin messages

exchanged in Step II in Figure 2). However, the EREBUS

adversary can always deny the execution of attacks because

there is no way to identify the actual originator of packets

without any accountable Internet architecture; e.g., [1], [48].

• Immediate availability. The EREBUS attack is shown to

be readily available to any Tier-1 ASes against nearly all

(99.5%) of the 10K public Bitcoin nodes. Also, many large

Tier-2 ASes can target the majority of public Bitcoin nodes

in the network; see Section IV-B for our large-scale route

evaluations. The network coverage of the adversary ASes

matters because the larger the network coverage in the inter-

domain topology (e.g., Tier-1 ASes providing connectivity

to multiple continents), the more shadow IP addresses are

available in general for the EREBUS attack.

• Lack of trivial countermeasures. As the EREBUS attack does

not exploit any specific protocol vulnerabilities but only the

fundamental topological advantage of a network adversary,

simple, quick fixes are hard to find. Our investigation in Sec-

tion VII shows that potentially effective countermeasures are

either violating the Bitcoin’s philosophy of decentralization

(e.g., reliance on third-party proxies) or requiring non-trivial

(also not-yet-validated) changes to Bitcoin core.

IV. HARVESTING SHADOW IPS

In the reconnaissance step, an adversary AS enumerates

shadow IP addresses for a victim node of its choice. Shadow

IPs are adversary-and-victim specific and thus each adversary-

victim pair has a unique set of shadow IPs that are determined

by the topological relationship of the pair (§IV-A). We show

that many ASes (e.g., Tier-1 and large Tier-2 ASes) can

efficiently enumerate large numbers (e.g., millions or more) of

shadow IP addresses (§IV-B). We also show that shadow IPs

are geographically well distributed (e.g., shadow IPs are found

in all five continents), preventing the victim’s connections to

shadow IPs from looking suspicious (§IV-C).

A. Enumerating Shadow IPs

The main goal of the attacker in the reconnaissance step

is to harvest all available shadow IP addresses. This requires

an inter-domain path inference to understand the traffic routes

sent from the victim node, the enumeration of all shadow IPs,

and an optional verification for those IP addresses.

1) Infer BGP paths from a victim node: The adversary

infers the inter-domain routes from the victim node to the

rest of the world to see if they include the adversary AS.

Notice that the adversary AS is required to be on the victim-

to-shadow paths but not necessarily on shadow-to-victim paths

because being on the victim-to-shadow paths is sufficient for

impersonating the shadow IPs with IP address spoofing.

To infer the default AS-paths of the traffic routes from the

AS hosting the victim node (e.g., AS V in Figure 2), the

adversary can simulate the BGP propagation between ASes

with a given AS topology and the widely assumed packet

forwarding policies of the current Internet; see below in this

section. We call the ASes, whose victim-to-themselves paths

include the adversary AS, shadow ASes; e.g., AS C, D, and

E in Figure 2.

2) Collect all shadow IPs: From the inferred shadow ASes,

the adversary enumerates all shadow IPs owned by the shadow

ASes and stores them into her database.

3) Test if shadow node IPs are usable: The collected

shadow IPs are inferred results of the BGP route simulations,

which may contain some errors. Hence, the attacker may want

to verify that the adversary AS is indeed on the traffic routes

from the victim node to the shadow node IPs. The adversary

can easily test it by establishing a connection (e.g., TCP) with

the victim node on behalf of a supposedly shadow IP chosen

from a shadow AS. If the adversary does not receive any

packet (e.g., SYN/ACK) from the victim, she discards such

unusable shadow IPs and their prefixes. This sub-step can be

also done during the attack execution phase (see Section V).

B. How Many Shadow IPs are Available?

We evaluate how many shadow IPs are available for various

adversary-victim pairs through a comprehensive large-scale

BGP route simulations. We also investigate how the shadow

IPs are distributed, which is measured by the number of unique

prefix groups (i.e., the /16 of IPv4 addresses or /32 IPv6

addresses) within the entire shadow IPs pool. The number of

prefix groups is important for the EREBUS attack because IPs

in the same group can occupy only a small part of the Bitcoin

node’s peer database.

Evaluation setup. To infer the inter-domain routing between

ASes, we start by building the Internet topology of about 60K

ASes by using the CAIDA inferred AS business relationship

dataset [6], which describes the connectivity among ASes

based on their business relationships: provider, customer, peer

or sibling. We simulate the propagation of BGP advertisement

messages from all ASes, allowing all ASes to calculate the

default AS paths for the traffic sending to each other. We

assume that ASes apply the widely-perceived BGP policies

in order [22], [25]: (1) customer links are preferred over peer

links and peer links are preferred over provider links; (2) the

shortest AS-path length route is preferred; and (3) if multiple

best paths exist, an arbitrary method (e.g., AS numbers) is

used to break the tie.

We create two sets of attacker-victim ASes pairs for this

evaluation. First, we consider the adversaries are Tier-1 ASes

and the victim ASes are all ASes on the Internet hosting at

least one Bitcoin node [26], making this set contains about

24K of pairs in total. Second, we select the largest 100 ASes

898

100 102 104 106 108 1010

Number of shadow ASes, prefix groups, or shadow IPs

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

No. of shadow ASes
No. of unique prefix groups
No. of shadow IPs (existing)
No. of shadow IPs (virtual, IPv4 only)

(a) When attackers are Tier-1 ASes and victims are all
ASes in the Internet.

100 102 104 106 108 1010

Number of shadow ASes, prefix groups, or shadow IPs

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

di
st

rib
ut

io
n

fu
nc

tio
n

No. of shadow ASes
No. of unique prefix groups
No. of shadow IPs (existing)
No. of shadow IPs (virtual, IPv4 only)

(b) When attackers are top-100 ASes and victims are 100
random ASes.

Figure 3: Distributions of the number of shadow ASes, their

unique prefix groups (i.e., /16 of IPv4 and /32 of IPv6), and

the number of shadow IPs (i.e., legitimate Bitcoin IPs and

virtually-created IPs).

in the current Internet ranked by their customer cone size [5]

as the attacker ASes, which include all Tier-1 ASes and large

Tier-2 ASes. We select 100 random unique ASes from the list

of ASes hosting Bitcoin nodes as the victim ASes. We avoid

choosing a victim AS that is already chosen as an attacker AS.

Findings. We show in Figure 3 the number of shadow ASes,

how diverse their prefixes are, and the number of shadow

IPs (including both existing, real Bitcoin IPs and virtual IPs)

that can be used for the EREBUS attacks. Figure 3a shows

the analysis results when the adversary ASes are Tier-1 and

victims are in all the ASes in the Internet. In the majority of the

cases (e.g., 85%), there exist more than 100 available shadow

ASes; see the solid line. Although only a small number of

existing, real Bitcoin nodes can be used as shadow IPs (see

the dotted line), almost all Tier-1 ASes (e.g., in 99.5% of our

tested cases) can target victim nodes in any AS with more than

100 unique prefix groups distributed in more than a million of

shadow IPs (see the dashed and dash-dot lines).

Figure 3b shows the analysis results when the adversary

ASes are top-100 ASes and victims are 100 random ASes. The

top-100 ASes (which include many Tier-2 ASes) tend to have

less resource (e.g., shadow ASes, prefix groups, shadow IPs),

compared to the Tier-1 adversary ASes. Yet, in the majority

(e.g., 85%) cases, the adversary ASes still can utilize 100 or

more unique prefix groups; see the dashed line. Also, more

than a million shadow IP addresses are available in 80% of

cases; see the dash-dot line.

C. Geographical Distribution of Shadow IPs

In addition to the distribution in the IP address space,

we also investigate how shadow ASes are geographically

distributed. A cautious Bitcoin node may suspect the EREBUS

attack if its peers are located in a restricted geographic area;

e.g., it would look suspicious if all outgoing connections are

made to one geographic region.

In our case study, we consider Amazon (AS 16509) as

the AS hosting the victim node, as cloud providers host the

majority Bitcoin nodes and would be common targets of this

attack [23]. We choose five largest Tier-2 ASes in each of the

five continents, i.e., North America, South America, Europe,

Asia-Pacific, and Africa, as our adversary ASes.4 We show

the geographic distribution of the shadow ASes of the five

scenarios in Figure 4. Shadow ASes seem to be well dis-

tributed globally despite the location of the adversary ASes. In

particular, in four out of five tested scenarios, the adversary AS

has shadow ASes distributed in all five continents. This result

suggests that a strategic adversary can carefully select shadow

ASes so that the victim’s connections look geographically

diverse.

V. CREATING VICTIM-SHADOW PEERING CONNECTIONS

In this section, we describe the attack execution phase,

in which the adversary ultimately occupies all the peering

connections of a victim node with shadow IP addresses. We

begin with a brief overview of the Bitcoin peer-to-peer network

according to the most recent (as of June 2019) Bitcoin core

v0.18.0 [11], focusing on how a Bitcoin node establishes its

incoming and outgoing connections (§V-A). We then present

the attack strategies to dominate the two parts of the internal

peer database of a victim node with shadow IPs, i.e., the new

table (§V-B) and the tried table (§V-C), which subsequently

allow the adversary to occupy all outgoing connections of

the victim. We finally describe how an EREBUS adversary

occupies the incoming connections of a victim Bitcoin node

(§V-D).

A. Bitcoin’s Peer Connection Mechanisms

A Bitcoin node with a routable IP address can have several

peer connections with other nodes, particularly, up to 8 outgo-

ing peers and 117 incoming peers. Bitcoin nodes accept any

incoming connections from other peers with any IP addresses

unless the peers have been banned due to sending invalid

messages. Outgoing peers, however, are carefully selected

from the pool of IP addresses managed by individual Bitcoin

nodes. This pool contains IP addresses of other nodes in the

network, which Bitcoin nodes learn mainly from the addr

messages.5 The learned IP addresses are stored in the hard

disks in two tables: a new table contains the IPs it has received

but yet to connect and a tried table contains the IP addresses

that it has once successfully made an outgoing connection to.

The new and tried tables have 65,536 and 16,384 slots for

IP addresses, respectively. Bitcoin nodes select a random IP

4Tier-1 ASes have shadow IPs with much better geographic distribution.
5Particularly, each node periodically advertises its IP address via addr

messages to its peers, which are further relayed to the rest of the network.
DNS seeds, which contain a limited number of reliable Bitcoin nodes, can
also be another source of IPs when the Bitcoin nodes first join the network.

899

(a) North America (AS 6939) (b) South America (AS 16735) (c) Europe (AS 1273) (d) Asia-Pacific (AS 4637) (e) Africa (AS 37468)

Figure 4: Maps of geographic locations of shadow ASes (blue pins) in five case studies where victim AS (black pin) is Amazon

(AS 16509) and the attacker ASes (red pins) are the largest Tier-2 ASes in five continents.

address from the two tables to make an outgoing connection

to until all eight outgoing slots are occupied.

Why is occupying victim’s outgoing connections hard?

The adversary’s goal is to fill the two internal tables of the

victim node with shadow IPs as much as possible to maximize

the chance of a new outgoing connection made to a shadow

IP. This, however, is not trivial, particularly after a series of

countermeasures were deployed for Eclipse defense, because

IP addresses cannot be inserted into the tried table directly.

The EREBUS adversary aims to fill the new table first (see

Section V-B) and then occupy the tried indirectly with a

trickle-down attack strategy (see Section V-C).

B. Flooding the New Table with Shadow IPs

The EREBUS adversary selects a shadow node IP address,

say ipa, from the IPs harvested in the reconnaissance step and

makes a peering connection (i.e., a TCP session followed by

a version handshake) with the victim node on behalf of ipa
(i.e., the source IP spoofed with ipa). The replies (e.g., TCP

SYN/ACK, Bitcoin version/verack) from the victim node

to ipa are captured by the adversary AS because she is on the

victim-to-shadow path. The adversary sends addr messages,

each of which contains up to 1,000 shadow IP addresses, to

the victim node and the shadow IPs are inserted into the new

table of the victim node.

When a Bitcoin node inserts an IP address ip to its new

table, it hashes the IP prefix group (ip group) (i.e., the /16

of IPv4 addresses or /32 IPv6 addresses) and the prefix group

of the peer relayed that IP (peer group) to determine the

bucket for the IP among 1,024 buckets in total; i.e.,

h1 = H(SK, ip_group, peer_group)

h2 = H(SK, peer_group, h1 % 64)

new_bucket = h2 % 1024,

where H(·) is the SHA-256 hash function and SK is a secret

key of the node. The exact slot for ip in the bucket (which

contains 64 slots) is determined by hashing the bucket index

and the entire IP address; i.e.,

new_slot = H(SK, ′N′, new_bucket, ip) % 64.

If the slot is already occupied, the existing IP address is

tested with several checks to consider if it is terrible (e.g.,

the existing IP is more than 30 days old, has failed several

connecting attempts). If the existing IP is terrible, it is

replaced by the new IP that is being inserted; otherwise, the

IP being inserted is ignored. Note that IP addresses are stored

along with a timestamp. If the IP is already in the new table,

its timestamp is updated.

100 101 102 103

Number of Unique Prefix Groups

0

10000

20000

30000

40000

50000

60000

 N
um

be
r

of
 fi

lle
d

 s
lo

ts
 in

 n
ew

 ta
bl

e

Analysis
Simulation

(a)

102 103 104

Number of Unique Prefix Groups

0

500

1000

1500

2000

N
um

be
r

of
 a

dd
r

m
es

sa
ge

s
 s

en
t t

o
fil

l 9
9%

 n
ew

 ta
bl

e

Number of addr messages

(b)

Figure 5: Number of unique prefix groups to fill the new

table reliably. (a) Number of filled slots in new table versus

number of unique prefix groups with results from Equation (1)

and Simulation. (b) Number of addr messages (each contains

1,000 shadow IPs) sent to fill at least 99% of the new table.

Dominating the new table with shadow IPs. The adversary

repeatedly establishes incoming connections on behalf differ-

ent shadow IPs and inserts new shadow node IPs into the

new table at a much higher (e.g., ten times) rate than the rate

of incoming non-shadow IPs, which eventually replace most

existing IPs in the new table.6 We show that in Section VI

that the adversary can easily make the shadow IPs be the vast

majority (e.g., 99%) of all the reachable IP addresses in the

new table in about 30 days.

How many unique prefix groups are needed? The bucket

of an inserted shadow IP in the new table is determined by

its prefix group. Thus, the more unique prefix groups are

available in the pool of shadow IPs, the easier to flood all

the buckets. We evaluate how many unique prefix groups

are enough for the adversary AS to fill all the buckets (and

their slots) easily. Suppose that the adversary controls shadow

IPs in g unique prefix groups. When sending a shadow IP,

says ip, to the victim on behalf of a shadow node, says

peer, the allocated bucket in the new table is determined by

the prefix groups of two IPs; i.e., (ip group, peer group).

The adversary then may have at most g2 unique pairs of

(ip group, peer group). Considering each pair is allocated

randomly into a new bucket with the probability of 1

1024
and

X is the number of distinct new buckets allocated for g2 pairs,

the expected value of X is determined by:

E[X] = 1024×
(
1− (1−

1

1024
)g

2
)
. (1)

Figure 5a illustrates the relationship between the number of

unique prefix groups and the expected number of filled slots of

6The attack traffic rate, however, will be only about 1×–2× the rate of
normal conditions because the incoming rate of non-shadow IPs is already
reduced significantly (e.g., 10%).

900

a new table in Eq. (1) in the dotted line. The solid line denotes

the simulation of the IP allocation with the IPs selected from

the pool of available shadow IPs in 10K of attack-victim ASes

scenarios (enumerated in Section IV). We can see that the

analysis result matches well with the simulation result; all the

slots in a new table can be occupied reliably when g � 100.

We further test this with an experiment of sending shadow

IPs to an actual Bitcoin client running in our lab. As a baseline

attack script, we have implemented a rudimentary Bitcoin

client that is able to receive and send customized (e.g., source

IP spoofing) Bitcoin messages (see Section VI for implemen-

tation details). We sample 100 pairs of attacker-victim ASes

from the enumerated 10K of pairs (Section IV-B) and use the

actual shadow IPs from those pairs in our experiments. In

all tests, the victim node is freshly-born with its new table

initially empty. Our attack script floods the Bitcoin client with

addr messages with spoofed shadow IPs, each containing

1,000 unique shadow IP addresses; see Appendix C for our

efficient shadow IP selection algorithms. Figure 5b illustrates

the number of addr messages that should be sent in order to

have 99% slots of the new table occupied by the shadow IPs.

Figure 5b shows that, in general, 100 unique prefix groups are

sufficient to insert IPs into most of the slots in the new table.

Moreover, the more diverse the shadow IPs are, the fewer

number of IPs are needed. For instance, with 500 or more

prefix groups, one can easily occupy most of the new table

slots with as few as 500 addr messages, or 500K shadow IPs.

We omit 17 out of 100 cases in which we have less than 100

prefix groups from the Figure 5b because we cannot occupy

99% of the new table even after an extremely large number of

addr messages are sent.

Note that from Section IV we have observed that Tier-1

adversary ASes have at least 100 prefix groups with 99.5%

probability. With the above analysis, we confirm that Tier-1

ASes can target nearly all the 10K Bitcoin nodes that accept

incoming connections.

C. Trickle-down Migration to Fill the Tried Table

In the current Bitcoin implementation, the only way to insert

an IP address into the tried table is to move it from the

new table after a successful outgoing connection made to that

IP address. This is to ensure that (1) any remote adversaries

cannot directly insert IP addresses into the tried table; and

(2) the IPs in the tried table are likely reachable [33].

Nevertheless, our EREBUS attack indirectly and patiently fills

up the tried table with the shadow IP addresses by exploiting

what we call the trickle-down effect.

In particular, there are two scenarios for an IP address to be

migrated from new table to the tried table: (1) an outgoing

connection is made to an IP address in the new table and the

IP address is inserted to the tried table; and (2) periodically

(every two minutes) an IP address is randomly selected from

the new table and moved to the tried table if it is reachable.

First, when a new outgoing connection is made, a Bitcoin

node selects either the new or tried table with equal proba-

bility; then, it chooses a random IP address from the selected

table. If an IP address is selected from the new table and

successfully connected, it is moved to the tried table while

its copies are removed from the new table. When inserting the

IP to the tried table, a Bitcoin node uses the IP’s group to

determine its bucket and slot indexes; i.e.,

h1 = H(SK, ip)

h2 = H(SK, ip_group, h1 % 8)

tried_bucket = h2 % 256

tried_slot = H(SK, ′K′, tried_bucket, ip) % 64.

Second, a Bitcoin node makes an additional, ephemeral

outgoing connection, called a feeler connection, every two

minutes to test the reachability of a randomly selected IP

address from the new table [28].7 If the selected IP from the

new table is found to be reachable via the feeler connection,

it is inserted into the tried table. If the IP being inserted

collides with an existing IP in the same bucket and slot, the

existing one’s reachability is tested [27]. If the existing IP is

not reachable, the new IP address replaces the existing IP in

the tried table while the existing IP is inserted back to the

new table; otherwise, no change is made.

Trickle-down attack strategy. The EREBUS attack first occu-

pies the new table slots as much as possible with the shadow

IPs and then patiently waits for them to be migrated to the

tried table and ultimately dominate the tried table as well.

We call this a trickle-down attack strategy. We show that in

our evaluation in Section VI Tier-1 or large Tier-2 ASes can

inject enough numbers of shadow IPs into the tried table of

a victim node to control all the eight outgoing connections in

a few weeks of attack duration.

Adaptive attack strategy. We further propose an optional

adaptive attack strategy to speed up the attack execution phase.

In the baseline trickle-down attack strategy, an adversary AS

would wait until the probability of all the eight outgoing

connections made to shadow IPs becomes large enough (e.g.,

30% or 50%) and trigger a reboot of the victim node. Note

that rebooting a targeted Bitcoin node has been demonstrated

with several methods including, but not limited to, denial-of-

service or exploiting Bitcoin client’s vulnerabilities [29]. In

our adaptive attack strategy, an adversary AS keeps tracking

of the outgoing connections of the victim node that are already

made to shadow IPs. When the adversary AS is a large transit

AS, the victim node often has some outgoing connections

naturally made to shadow IPs even before attacks. Moreover,

as the attack progresses, some of existing outgoing connections

expire naturally and new outgoing connections can be made

to shadow IPs.

The adaptive adversary evaluates if a reboot before the final

stage of the attack would be beneficial (e.g., increase the

number of outgoing connections to shadow IPs) and triggers

a reboot if it would be helpful. We show that this adaptive

rebooting strategy indeed can shorten the attack duration to

about 40 days only with a couple of more reboots during the

attack; see Section VI-D for more details.

7To be more specific, a Bitcoin node establishes a feeler connection only
when all eight outgoing slots has been occupied and at least two minutes has
passed since the last feeler connection.

901

0 20 40 60 80 100 120

Node age (days)

0

20

40

60

80

100

120

N
um

be
r

of
 c

on
ne

ct
io

ns

Incoming Connection
Outgoing Connection

Number of connections = 117

Figure 6: Daily connection snapshots from one of our live

nodes. Outgoing slots are almost always fully occupied while

incoming connections tend to grow gradually.

D. Occupying Incoming Connections

As long as there exist any unused incoming connection slots,

the adversary AS can simply create an incoming connection to

the victim node with any of her shadow IPs. Figure 6 shows the

number of incoming and outgoing connections established by

one of our live Bitcoin nodes. While the node almost always

has all eight of its outgoing connections occupied, the number

of incoming connections is smaller than the maximum 117 in

most cases. Even when all incoming connection slots are full

at a moment, the adversary AS can still create an incoming

connection because the victim node should evict one existing

connection when it has 117 incoming connections, according

to a recent change to Bitcoin core [7]. Also, we found that

most of the incoming connections are very short-lived (e.g.,

a couple of minutes), the adversary, thus, can easily occupy

most of the incoming connections. For occupying nearly 100%

of all the incoming connections, the adversary AS may flood

the victim with connection requests from shadow IPs after

rebooting the victim node.

VI. EVALUATION

We implement the EREBUS attack’s execution phase in

a Python script and evaluate the attack effectiveness. Our

Python attack script is essentially a rudimentary Bitcoin core

client that can generate customized Bitcoin messages. We

particularly measure the required attack traffic rate and the

attack execution duration for various attack configurations.

Attacking a real node vs. an emulated node. In Sec-

tion V-B, we evaluate a partial attack functionality (i.e., filling

the new table) by demonstrating our EREBUS attack script

against a real operating Bitcoin client node isolated in a lab.

Attacking real nodes, however, is not a feasible option for

testing the entire EREBUS attack procedures because each

attack may take a few weeks to complete and it is hard

to test several attack instances with different configurations

and compare them. Worse yet, when attacking real nodes,

one cannot test the effectiveness of different combinations of

countermeasures in the same condition for a fair comparison.

Therefore, we develop and open-source an accurate Bitcoin

node emulator [13] that faithfully implements the behaviors

of the real Bitcoin nodes, especially IP address management

and outgoing connection establishment. For highly accurate

experiment results, we use the real Bitcoin addr messages

collected from our live nodes.

A. Accurate Bitcoin Emulation

Our emulator implements the two components of Bitcoin

core version 0.18.0, i.e., the address management and outgoing

connections establishment [13]. At a high level, it includes

the following Bitcoin nodes’ operations: (1) storing IPs into

the internal tables; (2) IP allocation; (3) adding IPs to the

new table; (4) outgoing connections establishment; (5) IPs

migration from the new to the tried table; and (6) feeler

connections. For the detailed description of our emulator, we

refer the interested readers to Appendix D.

We operate the emulation with the real Bitcoin addr

messages captured by our live nodes from both incoming

and outgoing connections. In particular, we collect Bitcoin

messages from six Bitcoin clients version 0.17.08 running for

120 days (i.e., from November 18, 2018, to March 18, 2019),

in five geographic regions of Amazon EC2 (i.e., US-East, US-

West, South America, Europe, and North-Asia) and one in

National University of Singapore.

To make the emulation more realistic, the rate of addr

messages is also adjusted accordingly to the emulated victim’s

state. Before the attack begins, the emulation is fed with

legitimate IPs from DNS seeders and addr messages collected

via incoming connections. During the attack execution, the

number of legitimate addr messages received via incoming

connection is reduced to 10%.9 Also, the legitimate addr

messages received via outgoing connections are set to be

proportional to the number of outgoing connections with non-

shadow IPs.

To accurately determine whether an IP address is reachable

at any given time, our experiments rely on the historical

Bitcoin nodes data from Bitnodes [26], which is widely used

by existing work [3], [29].

B. Attack Execution

In our attack script, we implement all the attack strategies

for creating victim-shadow peering connections (described in

Section V). We also implement some additional strategies in

the attack script for more realistic attack execution, as follows:

(1) the attack script guarantees that shadow IPs are always

reachable by replying to all connection attempts from the

victim node (i.e., outgoing connections and feeler connections)

with the corresponding spoofed source IPs; (2) the script

keeps the shadow IPs in the victim’s tables fresh by re-

advertising a same set of shadow IPs every 30 days; (3) to

deploy the adaptive attack strategy, the adversary evaluates

the number of outgoing connections it has occupied with

the estimated probability of shadow IPs in the two tables.

If the actual number of occupied outgoing connections is

less than the expected number for a certain threshold (e.g.,

2 connections in our experiments), the attack script reboots

the victim; and (4) once the estimated probability of all eight

8The network implementation of version 0.17.0 is almost identical to the
latest version 0.18.0.

9Note that 10% is a conservatively chosen value because an adversary in
practice can occupy most of the incoming connections and easily reduce the
legitimate addr message rate much lower than 10%.

902

0 5 10 15 20 25 30 35 40 45

Days after attack begins

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y

0

1

2

3

4

5

6

7

8

 N
um

be
r

of
 O

ut
go

in
g

 C
on

ne
ct

io
ns

 to
 S

ha
do

w
 IP

sProb. of single connection made to shadow IP (f)

Prob. of eight connections made to shadow IPs (f 8)
No. of outgoing connections made to shadow IPs
Rebooting the victim node

All outgoing
connections
controlled!

Figure 7: An emulation instance of the adaptive EREBUS

attack against a 30-day old node. (Bold lines) Probability of

one (f) and all eight (f8) outgoing connections to be made

to shadow IPs. (Normal line) The actual number of outgoing

connections under adversary’s control.

outgoing connections made to shadow IPs reaches a predefined

percentage (e.g., 15%), the attack script reboots the victim

every day until all eight outgoing connections are occupied

by the adversary.

C. Attack Setup

We evaluate the attack effectiveness (e.g., probability of

the outgoing connections made to shadow IPs) for varying

attack configurations: (1) adversary’s ranking indicates the

index of the adversary among all ASes sorted by their number

of available shadow IPs when targeting a specific victim; (2)

victim node’s age is defined as the total lifetime of a victim

node since its first operation, and (3) attack strategy indicates

whether the attack is adaptive or not.

When emulating all three configurations, the victim node

is hosted by Amazon (AS 16509). The adversary AS set

to Hurricane Electronic (AS 6939), except the experiments

with different adversary’s rankings, where we select various

adversary ASes based on their ranked number of available

shadow IPs to be used in the attacks. To analyze the impact

of the victim node’s age on the attack effectiveness, we run

several experiments with the victim’s age varying from 10-50

days. In all experiments, the attacks last for 50 days.

D. Experiment Results

1) Occupying All Outgoing Connections: Figure 7 shows

one instance of the EREBUS attack, illustrating how the adver-

sary gradually occupies all eight outgoing connections with the

adaptive attack strategy. Figure 7 describes the probability of

one and eight outgoing connections made to shadow IPs (i.e.,

f and f8, respectively) and the actual number of outgoing

connections occupied by the adversary. Both probabilities f

and f8 grows as the attack lasts longer; yet, f8 increases with

a much slower rate compared to f and starts acquiring non-

negligible probability only after 30 days has passed since the

attack starts.

We also observe the number of outgoing connections made

to shadow IPs gradually increases and eventually the adversary

successfully occupies all victim’s outgoing connections on day

40. Moreover, the adversary reboots the victim node only a few

times when the adversary expects to occupy more outgoing

connections and a couple of more times when the probability

of occupying all eight connections reaches 15%.

0 5 10 15 20 25 30 35 40 45 50

Attack duration (days)

0

10000

20000

30000

40000

50000

60000

N
um

be
r

of
 IP

s
in

 th
e

ne
w

 ta
bl

e

All IPs
Reachable IPs
Shadow (existing)
Shadow (virtual)

(a) new table

0 5 10 15 20 25 30 35 40 45 50

Attack duration (days)

0

2000

4000

6000

8000

10000

12000

14000

16000

N
um

be
r

of
 IP

s
in

 th
e

tr
ie

d
ta

bl
e

All IPs
Reachable IPs
Shadow (existing)
Shadow (virtual)

(b) tried table

Figure 8: Dominating the reachable IPs in new and tried

tables of a 30 days old node with shadow IPs. Number of

shadow IPs surges after attacking for 25–30 days in both tables

indicates that at the same time, a huge number of non-shadow

IPs become terrible and are evicted.

0 5 10 15 20 25 30 35 40 45 50

Attack duration (days)

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

of
 a

ll
ei

gh
t c

on
ne

ct
io

ns

 m

ad
e

to
 s

ha
do

w
 IP

s

Rank 1
Rank 10
Rank 30
Rank 50
Rank 70

(a) Adversaries with varying
rankings. Victim is hosted at
AS 16509.

0 5 10 15 20 25 30 35 40 45 50

Attack duration (days)

0

0.1

0.2

0.3

0.4

P
ro

ba
bi

lit
y

of
 a

ll
ei

gh
t c

on
ne

ct
io

ns

 m

ad
e

to
 s

ha
do

w
 IP

s

10 days old Victim
20 days old Victim
30 days old Victim
40 days old Victim
50 days old Victim

(b) Victim nodes with varying
ages. Adversary is AS 6939,
victim is hosted at AS 16509.

Figure 9: Probability of making all eight outgoing connections

to shadow IPs for varying adversary’s rankings and victim’s

ages. In all experiments, attacks are non-adaptive for fair

comparisons.

To better understand the adversary’s attack success prob-

ability, we illustrate how shadow IPs are inserted into the

two tables for the same attack instance in Figure 8. Overall,

the number of shadow IPs in both tables tends to increase.

Particularly, in the first 25 days of the attack, shadow IPs

are inserted with a relatively low rate. After day 25 of the

attack, the number of shadow IPs significantly increase as the

existing legitimate IPs in the new table become terrible and

get evicted; see Figure 8a. Similarly, Figure 8b also shows the

number of shadow IPs that are migrated to the tried table

increases significantly after attacking for 30 days. Note that

although the adversary cannot evict all legitimate IPs to occupy

all the slots, shadow IPs still dominates the reachable IPs in

both tables, which explains the increasing probability f of a

single outgoing connection is made to shadow IP.

2) Attack Effectiveness for Varying Victim’s Age and Ad-

versary AS’ Ranking: We show the attack effectiveness with

various attacker’s rankings in Figure 9a and with different

victim node’s ages in Figure 9b. Figure 9a shows similar

growth patterns of f8 with only minor differences. This

suggests that the topological advantages of among ASes even

with very different rankings are quite limited. The results from

Figure 9b shows that younger victim nodes tend to be more

vulnerable to the EREBUS attacks as the adversary’s success

rates when attacking these nodes are higher. However, the

903

adversary can still achieve a certain success rate (e.g., 18% in

our experiments with 50 days old nodes), which requires only

a few times of rebooting the victim until all of its outgoing

connections are occupied.

3) Required Attack Traffic Rate: We estimate the attack

traffic needed in the EREBUS attacks. In 50 days of the attack

emulations, our Python script sends shadow IPs to the victim

at the rate of 2 IPs per second. This rate is only slightly

higher than the IPs inserting rate before the attack starts

(about 1.3 IPs per second). Note that the rate of non-shadow

IPs is significantly reduced once the attack begins because

the attacker occupies most of the incoming connections as

well. Thus, the total rate of incoming IPs during the attack

is comparable to the typical rate of incoming IPs before the

attack. Considering every 500 seconds, the adversary needs to

send an addr message containing 1,000 shadow IPs over a

TCP connection made with the victim. The entire connection

(i.e., downstream and upstream) includes a TCP handshake

(214 bytes), a Bitcoin version handshake (614 bytes), an

addr message (30,093 bytes) and other packets such as TCP

ACKs and Bitcoin pings (about 1,500 bytes). Thus, in total,

the adversary needs to maintain only the traffic rate of about

520 bit/s to launch the EREBUS attack against one victim node.

4) Attack Scalability: The EREBUS attack is highly scal-

able. One adversary AS can target multiple Bitcoin nodes

at the same time in parallel without any extended attack

preparation and execution time. This is because an attack

execution against each Bitcoin node is independent of each

other.

For the concurrent attacks, the adversary AS must send

different attack Bitcoin messages to different Bitcoin nodes.

This simply requires a linear increase in attack traffic volume

as the number of targeted Bitcoin nodes increases. Considering

the low attack traffic rate per targeted node, attacking multiple

nodes (even tens or hundreds of nodes) still requires negligible

total attack traffic rate compared to the multi Tbit/s traffic

capacity of large ASes and it can be easily handled by a single

or a couple of commodity servers in the adversary AS.

The EREBUS adversary may want to choose the targeted

Bitcoin nodes carefully to achieve her ultimate attack goals;

e.g., controlling several mining pool gateways, attempting

double-spending. Detailed algorithms for determining the set

of targeted Bitcoin nodes with adaptive attacker strategies have

been discussed by Apostolaki et al. [3].

VII. COUNTERMEASURES

Since the EREBUS attack exploits no design or implemen-

tation bugs of Bitcoin core but only the enormous network

address resources of network adversaries, the prevention of

the attack (e.g., via fixing bugs) is hard. Fortunately, making

the EREBUS attack much harder is still possible.

For the sake of argument, we first discuss several naive,

ineffective countermeasures that do not work against the

EREBUS attack. Then, we discuss a couple of effective coun-

termeasures: the ones that do not change Bitcoin core, and the

ones that do require its changes.

A. Ineffective Countermeasures

We list six naive solutions that do not, unfortunately, work

in practice against the EREBUS attack.
1) Active route measurements: A victim Bitcoin node may

actively measure the end-to-end routes from itself to its peers

to test whether its connections traverse a common, potentially

malicious AS. However, the active route measurement is

ineffective because it can be easily spoofed by the EREBUS ad-

versary and the detection of such spoofing is hard. When route

probe packets (e.g., traceroute probes) traverse through

the adversary AS, she can alter the measured routes (e.g.,

by spoofing IPs of ICMP error messages for traceroute)

and make the routes look benign (i.e., not traversing the

adversary AS). Worse yet, the detection of such spoofing is

not straightforward. A victim node may try to detect such

spoofing by identifying unusual routes via IP-level route

analysis; however, the accuracy of such route manipulation

detection is yet unknown and also many false positives may

occur whenever router-level paths change.
2) Inter-domain route estimation: A victim node may try

to run BGP simulations to estimate the inter-domain routes of

its connections (just like the EREBUS adversary does) to detect

the EREBUS attack. This approach is, however, unfortunately

ineffective because it is hard for a victim node to validate

the estimated routes due to the lack of the ground truth route

measurement data (see above for why active route measure-

ment is hard). Without the validation of the routes, many

false positives and negatives may occur if the estimated routes

differ from the real ones. Note that, the EREBUS adversary, in

contrast, can accurately validate her route estimation because

she sees all the Bitcoin packets from the victim node if she is

on the end-to-end routes.
3) Whitelisting IP addresses: One way to prevent the

EREBUS attacks would be to maintain a whitelist of real

Bitcoin nodes in a central location and inform this to all

the Bitcoin nodes so that they can easily ignore shadow IPs.

Bitcoin, however, in principle allows any node to join and

leave the system at any point in time without any permission.

Thus, maintaining such whitelist strongly violates the permis-

sionless blockchain principle. Whitelisting can be centralized

or decentralized but either way, it is impractical to operate

one. A single (or a small number of) centralized whitelist can

be a perfect single point of failure of the system because the

compromise of the list can fully control the network graph.

A decentralized implementation of a whitelist is not trivial

because it requires building consensus on such lists among

large numbers of nodes itself.
4) Rate limiting addr messages: Another candidate so-

lution would be to limit the number of addr messages,

particularly, the number of IPs received from other Bitcoin

nodes to limit the EREBUS adversary’s capability. A victim

node can enforce a lower limit to the addr messages received

from incoming connections than the ones from outgoing

connections as most of shadow IPs are sent via incoming

connections. However, as we observe in our attack emulation

in Section VI, the number of IP addresses sent by an attacker

904

AS is not very different (e.g., only about 1×–2× of the normal

rate), making it hard to design a rate limiter in practice.

5) Rate limiting incoming connections: Similarly, one may

attempt to limit the number of incoming connections per unit

time to make the flooding of new incoming connections to a

victim node less effective. However, rate limiting the incoming

connections does not decrease the chance of adversary occupy-

ing the incoming connections when the adversary’s incoming

connection requests are indistinguishable from other requests.

6) Network-level data-plane detection: A benign, cautious

transit AS may attempt to detect the EREBUS attack launched

by a neighbor AS by monitoring any unusually large numbers

of Bitcoin messages (e.g., version, verack, addr) to multi-

ple Bitcoin nodes from the single transit AS. However, such

data-plane, in-network detection is hard because: (1) attack

traffic rate is not significantly higher than the benign cases;

and (2) one cannot definitively confirm the originator of any

suspicious Bitcoin messages.

B. Countermeasures without Bitcoin Protocol Changes

To test the reachability of an IP address with an EREBUS-

AS-free path, a Bitcoin node may rely on third-party proxies

(e.g., VPNs, Tor, relays [20], [2]). Although this approach

can potentially detect EREBUS attacks without modifying the

current Bitcoin protocol, there are a few caveats of designing

and using such third-party proxy systems:

• Limited scalability. It would be challenging if most of

Bitcoin nodes want to have their separate proxy-based

reachability tests. There exist around 10K potentially vul-

nerable nodes in the Bitcoin peer-to-peer system. Providing

multiple proxies (ideally in different locations) for all the

nodes would be difficult in practice; e.g., no single VPN

service has that many different VPN nodes (even Tor has

less than 1K exit nodes in total). Moreover, the reliance on

the external proxies would increase the attack surface; viz.,

several vulnerabilities of Bitcoin over Tor [10].

• Centralization. Due to the limited scalability, any proxy-

based approaches could easily end up with a small number

of centralized proxies; e.g., a handful of Bitcoin relays, a

few popular VPN servers. When a small number of proxies

become the centralized components in the peer-to-peer

system, they naturally have the power to control the peer-to-

peer network topology. Unless we have a highly trustworthy

proxy service for the Bitcoin peer-to-peer network, we

should critically evaluate the potential risk of centralization

in any proxy-based countermeasures.

C. Countermeasures with Bitcoin Protocol Changes

With some Bitcoin protocol changes, we can make the

EREBUS attack much harder. We discuss and evaluate several

potential countermeasures.

[C1] Table size reduction. The size of the new and tried

tables is an important system parameter that affects the prob-

ability of the adversary-injected IP addresses selected for out-

going connections. The Bitcoin community has increased the

table sizes four times as the countermeasure against the Eclipse

0 5 10 15 20 25 30 35 40 45 50 55 60 65

Attack duration (days)

0

0.1

0.2

0.3

0.4

0.5

0.6

 P
ro

ba
bi

lit
y

of
 a

ll
(8

 o
r

16
)

 c
on

ne
ct

io
ns

 to
 s

ha
do

w
 IP

Baseline
[C1]: Table size / 4
[C1]: Table size / 2
[C1]: Table size x 2
[C2]: No. of outgoing connections x 2
[C1] & [C2]: Table size / 4 &
 No. of outgoing connections x 2

Figure 10: Probability of all outgoing connections made to

shadow IPs for varying attack duration (days). In all experi-

ments, attacks are non-adaptive for fair comparisons. We test

various countermeasures in Section VII-C. The EREBUS attack

becomes harder as the probability decreases.

attack [29] because it increases the botnet cost of the Eclipse

attack. However, increasing the table sizes, in fact, makes

the EREBUS attack much easier; it is the table-size reduction

that makes the EREBUS attack harder. Figure 10 shows the

evaluated probability of all eight outgoing connections to be

made to shadow IPs for different countermeasures. As we

can see, if we increase the table size, the adversary achieves

much higher success probability. The reduction of the table

sizes makes the EREBUS attack less effective. Contrary to

the Eclipse attackers, an EREBUS adversary has much larger

bandwidth capability and significantly more IP addresses she

can utilize for attacks.

The actual deployment of this change, however, need much

more discussion in the community because the reduction of the

table sizes may limit the storage of benign and stable IPs in

the Bitcoin peer-to-peer network, which may affect the peering

dynamics of the system.

[C2] More outgoing connections. Another effective solution

is to increase the number of outgoing connections that can be

made in each Bitcoin node. The current maximum is eight and

by increasing it we make it harder to occupy all the outgoing

connections. As we can see in Figure 10, if we double it, the

EREBUS adversary achieves much lower success probability.

Note that the Eclipse attack paper also proposes a similar

countermeasure but this has not been adopted in Bitcoin

core. The increase of outgoing connections must be carefully

designed because this increase may immediately increase the

number of peer connections and the total traffic volume of the

system. This abrupt volume increase can easily increase the

delay of messages and blocks in the Bitcoin network.

[C1] and [C2] combined. We combine the two effective

Bitcoin protocol modifications and evaluate its final detection

effectiveness. The last line in Figure 10 shows the attack

success probability when a Bitcoin node reduces the table sizes

four times and doubles the number of outgoing connections.

This clearly shows that the combined approach does make

the EREBUS attack extremely difficult; e.g., only 5% success

probability even after two months of attack execution.

[C3] Incorporating AS topology in the peer selection.

Another highly promising countermeasure is to make the peer

selection algorithm aware of the AS-level topology so that

the peering decision itself makes the EREBUS attack much

905

harder. To be specific, we can use the AS numbers to group

IP addresses in the two tables instead of their prefix groups.

This way, the attack becomes harder or impossible for the

adversaries with IPs distributed in a large number of prefix

groups but hosted in a few ASes only. For example, as a result

of this defense, about 15% of Tier-1 ASes that do not have

at least 100 shadow ASes would not be able to launch the

EREBUS attack; see Figure 3 for the distribution of available

shadow ASes.

[C4] Eviction policy that protects peers providing fresher

block data. A cross-layer defense approach is to improve

the peer eviction policy so that the Bitcoin node keeps the

peers that have propagated more recent block data. As a

result, censoring a specific block or transaction from the

victim’s view becomes less effective if there exists a legitimate

incoming connection providing fresher blocks.

Status of our countermeasures. We disclosed our findings

with the Bitcoin core security team in early June 2019.

As of July 1, 2019, the Bitcoin core developers are pos-

itively considering the deployment of countermeasure [C3]

and [C4]. We will keep updating the status of these and

any new countermeasures on our public project webpage at

https://erebus-attack.comp.nus.edu.sg/.

VIII. RELATED WORK

A. Attacks against Blockchain Peer-to-peer Networks

As we discussed in detail in Section II, the Bitcoin hijacking

attack [3] and the Eclipse attack [29] are the closest to our

attack. The EREBUS attack shares the same attack capabilities

(e.g., being a large AS) and the goal (e.g., hijack all peering

connections of a targeted node) with the Bitcoin hijacking

attack; yet, the attack strategies are vastly different as the

EREBUS is a data-plane attack whereas the Bitcoin hijacking is

a control-plane attack. While the EREBUS has some similarity

to (and is partly inspired by) the Eclipse attack (e.g., inserting

non-existing Bitcoin IP addresses into the internal tables of a

targeted node for peering connection hijacking), the EREBUS

attack does not exploit the vulnerabilities used by the Eclipse

attack but only its topological advantage (which has not been

demonstrated before) to hijack the connections. The EREBUS’s

strategies (e.g., controlling a huge set of IPs persistently for

weeks) are in fact unique and dissimilar to those of the Eclipse

attack with botnets.

Biryukov et al. [10] proposed a network attack specifi-

cally targeting Bitcoin nodes connecting through Tor. The at-

tack exploits the Bitcoin’s denial-of-service (DoS) prevention

mechanism to force all connections through the adversary-

controlled Tor exit nodes. Recently, an Eclipse attack has been

demonstrated against the Ethereum peer-to-peer network [31].

For more comprehensive information about Bitcoin attacks,

we refer readers to a recent survey by Bonneau et al. [15].

B. Proxies for Enhancing Bitcoin Peer-to-peer Network

In Bitcoin, to enhance the block propagation speed, several

relays networks have been developed [20], [21]. A recent

study introduces SABRE [2], a secure Bitcoin relay network

designed to prevent the Bitcoin hijacking attack [3]. SABRE

provides an additional, reliable channel for Bitcoin nodes

to connect and get the mined blocks and transactions even

when their network prefixes are BGP hijacked. SABRE can

potentially mitigate the EREBUS attack as well. However, there

is one crucial concern that should be addressed before its wide

adoption. That is, it requires a blind trust on a few SABRE

relays. This approach does not solve the root problem of the

network adversary based attacks because SABRE relays can

be malicious and launch hijacking attacks in a similar way.

Worse yet, malicious ASes can simply provide the SABRE

relay services for easier hijacking attacks.

Compared to such third-party proxy-based solutions, our

countermeasures in Section VII-C are much desirable as they

do not require any trust on external third parties and do not

create any centralization in the Bitcoin network.

C. Studies on Blockchain Peer-to-peer Networks

Studying the underlying peer-to-peer networks of popular

blockchains has been an interesting research area in recent

years. Through a large-scale measurement study on Bitcoin

and Ethereum, Gencer et al. show that the two networks are

not decentralized in terms of mining power across network

resources and the network topology [23]. Apostolaki et al.

also show that only 13 ASes hosted 30% of Bitcoin nodes in

2017 [3]. A recent study found that the majority of Bitcoin

nodes usually do not have the latest copy of the blockchain,

making them naturally vulnerable to partitioning attacks [42].

Several studies also have tried to discover the topology

of the Bitcoin’s peer-to-peer network. Miller et al. present

AddressProbe [34], which uses timestamps to explore peer-to-

peer links between Bitcoin nodes. More recently, Delgado et

al. introduce TxProbe [18], a technique utilizing orphan trans-

actions to effectively reconstruct the connectivity structure of

the Bitcoin network.

IX. CONCLUSION

Whether it is a multi-billion dollar cryptocurrency or a toy

blockchain, as long as they are permissionless, their distributed

peer nodes heavily rely on the current Internet, where several

large autonomous systems (ASes) can mount dangerous at-

tacks. This paper shows that the topological advantage of these

large ASes allows them to control the peer connections of a

blockchain if its peer-to-peer protocol is not carefully designed

with the EREBUS attack in mind. We hope that our work sparks

new discussions on hardening thousands of cryptocurrencies

even against powerful, sophisticated (e.g., state-sponsored)

network adversaries.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of this paper and our

shepherd Neha Narula for their helpful feedback. We also

thank Adrian Perrig and Aziz Mohaisen for useful comments

on an early version of the paper. We thank Matt Corallo and

other Bitcoin core developers for the discussion on counter-

measures [C3] and [C4]. This research is supported by the

CRYSTAL Centre at National University of Singapore.

906

REFERENCES

[1] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, “Accountable Internet Protocol (AIP),” in ACM SIG-

COMM CCR, 2008.

[2] M. Apostolaki, G. Marti, J. Müller, and L. Vanbever, “SABRE: Protect-
ing Bitcoin against Routing Attacks,” in Proc. NDSS, 2019.

[3] M. Apostolaki, A. Zohar, and L. Vanbever, “Hijacking Bitcoin: Routing
attacks on cryptocurrencies,” in Proc. IEEE S&P, 2017.

[4] D. Ardelean, “libBGPdump,” https://bitbucket.org/ripencc/bgpdump/
wiki/Home, 2019.

[5] “AS Rank: A ranking of the largest Autonomous Systems (AS) in the
Internet.” http://as-rank.caida.org/, 2019.

[6] “AS Relationships by CAIDA,” http://www.caida.org/data/
as-relationships/, 2019.

[7] “Attempt To Evict Connection When Incoming Slots are Full,” https:
//github.com/bitcoin/bitcoin/blob/0.17/src/net.cpp#L1128-L1136, 2019.

[8] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the Internet,” in ACM SIGCOMM CCR, 2007.

[9] “BGPmon - Monitoring the Internet,” https://bgpmon.net/, 2019.

[10] A. Biryukov and I. Pustogarov, “Bitcoin over Tor isn’t a good idea,” in
Proc. IEEE S&P, 2015.

[11] “Bitcoin Core 0.18.0,” https://bitcoincore.org/en/releases/0.18.0/, 2019.

[12] “Bitcoin Core integration/staging tree,” https://github.com/bitcoin/
bitcoin, 2019.

[13] “Bitcoin Emulator,” https://github.com/Erebus-Attack/Bitcoin-Emulator,
2019.

[14] “Bitcoin Hijacking Detector,” https://github.com/Erebus-Attack/
Bitcoin-Hijack-Detector, 2019.

[15] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in IEEE S&P, 2015.

[16] A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira, “Jumpstarting BGP
security with path-end validation,” in Proc. ACM SIGCOMM, 2016.

[17] “Cryptocurrency Market Capitalizations,” https://coinmarketcap.com/,
2019.

[18] S. Delgado-Segura, S. Bakshi, C. Pérez-Solà, J. Litton, A. Pachulski,
A. Miller, and B. Bhattacharjee, “TxProbe: Discovering Bitcoin’s Net-
work Topology Using Orphan Transactions,” in Proc. FC, 2019.

[19] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” CACM, 2018.

[20] “Falcon - A Fast Bitcoin Backbone,” https://www.falcon-net.org/, 2019.

[21] “FIBRE - Fast Internet Bitcoin Relay Engine,” http://bitcoinfibre.org/,
2019.

[22] L. Gao, “On inferring autonomous system relationships in the Internet,”
IEEE/ACM TON, 2001.

[23] A. E. Gencer, S. Basu, I. Eyal, R. Van Renesse, and E. G. Sirer,
“Decentralization in Bitcoin and Ethereum networks,” in Proc. FC, 2018.

[24] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun, “On the Security and Performance of Proof of Work
Blockchains,” in Proc. ACM CCS, 2016.

[25] P. Gill, M. Schapira, and S. Goldberg, “A survey of interdomain routing
policies,” ACM SIGCOMM CCR, 2013.

[26] “Global Bitcoin nodes distribution,” https://bitnodes.earn.com/, 2019.

[27] E. Heilman, “net: Add test-before-evict discipline to addrman,” https:
//github.com/bitcoin/bitcoin/pull/9037, 2019.

[28] ——, “net: Feeler connections to increase online addrs in the tried table,”
https://github.com/bitcoin/bitcoin/pull/8282, 2019.

[29] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg, “Eclipse Attacks
on Bitcoin’s Peer-to-Peer Network,” in Proc. USENIX Security, 2015.

[30] G. O. Karame, E. Androulaki, and S. Capkun, “Double-spending fast
payments in bitcoin,” in Proc. ACM CCS, 2012.

[31] Y. Marcus, E. Heilman, and S. Goldberg, “Low-Resource Eclipse At-
tacks on Ethereum’s Peer-to-Peer Network,” Cryptology ePrint Archive,
Report 2018/236, 2018.

[32] B. Marczak, N. Weaver, J. Dalek, R. Ensafi, D. Fifield, S. McKune,
A. Rey, J. Scott-Railton, R. Deibert, and V. Paxson, “An Analysis of
China’s “Great Cannon”,” in Proc. USENIX FOCI, 2015.

[33] G. Maxwell, “Do not add random inbound peers to addrman,” https:
//github.com/bitcoin/bitcoin/pull/8594, 2019.

[34] A. Miller, J. Litton, A. Pachulski, N. Gupta, D. Levin, N. Spring, and
B. Bhattacharjee, “Discovering Bitcoin’s Public Topology and Influential
Nodes,” http://www.cs.umd.edu/projects/coinscope/coinscope.pdf, 2015.

[35] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” https:
//bitcoin.org/bitcoin.pdf, 2008.

[36] K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining: Gener-
alizing selfish mining and combining with an eclipse attack,” in Proc.

IEEE EuroS&P, 2016.

[37] C. Orsini, A. King, D. Giordano, V. Giotsas, and A. Dainotti, “BGP-
Stream: a software framework for live and historical BGP data analysis,”
in Proc ACM IMC, 2016.

[38] J. Poon and T. Dryja, “The Bitcoin Lightning Network:
Scalable Off-chain Instant Payments,” https://lightning.network/
lightning-network-paper.pdf, 2016.

[39] “RIPE Network Coordination Centre,” https://www.ripe.net/, 2019.

[40] “RIS Raw Data,” https://www.ripe.net/analyse/internet-measurements/
routing-information-service-ris/ris-raw-data, 2019.

[41] “Routeviews Prefix to AS mappings Dataset (pfx2as) for IPv4 and IPv6,”
https://www.caida.org/data/routing/routeviews-prefix2as.xml, 2019.

[42] M. Saad, V. Cook, L. Nguyen, M. T. Thai, and A. Mohaisen, “Parti-
tioning Attacks on Bitcoin: Colliding Space, Time, and Logic,” in Proc.

IEEE ICDCS, 2019.

[43] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal Selfish Mining
Strategies in Bitcoin,” in Proc. of FC, 2016.

[44] P. Sermpezis, V. Kotronis, P. Gigis, X. Dimitropoulos, D. Cicalese,
A. King, and A. Dainotti, “ARTEMIS: Neutralizing BGP hijacking
within a minute,” Proc. IEEE/ACM TON, 2018.

[45] A. Toonk, “The Canadian Bitcoin Hijack,” https://bgpmon.net/
the-canadian-bitcoin-hijack/, 2014.

[46] M. Tran, M. S. Kang, H.-C. Hsiao, W.-H. Chiang, S.-P. Tung, and Y.-S.
Wang, “On the Feasibility of Rerouting-based DDoS Defenses,” in Proc.

IEEE S&P, 2019.

[47] “University of Oregon Route Views Project,” http://www.routeviews.org/
routeviews/, 2019.

[48] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G.
Andersen, “SCION: Scalability, control, and isolation on next-generation
networks,” in Proc. IEEE S&P, 2011.

APPENDIX A

SURVEY ON CRYPTOCURRENCIES WITH NETWORK

IMPLEMENTATION SIMILAR TO BITCOIN

Bitcoin is the first widely adopted cryptocurrency and its

open source implementation [12], perhaps, is one of the most

frequently updated systems among more than two thousands of

cryptocurrencies existing today. Many other cryptocurrencies

follow or even reuse the network design and implementation

of Bitcoin.

Table I: List of 19 top-50 cryptocurrencies that have network

implementation similar to Bitcoin and are potentially vulner-

able to EREBUS attacks.

Rank Cryptocurrency

name

No. of new

buckets

No. of tried

buckets

No. of slots

per bucket

1 Bitcoin 1024 256 64

4 Litecoin 1024 256 64

6 Bitcoin Cash 1024 256 64

10 Bitcoin SV 1024 256 64

13 Dash 1024 256 64

18 Zcash 1024 256 64

22 Dogecoin 1024 256 64

23 Bitcoin Gold 1024 256 64

24 Qtum 1024 256 64

27 Digibyte 1024 256 64

29 ABBC Coin 256 64 64

34 Bitcoin Diamond 1024 256 64

35 Komodo 1024 256 64

37 Verge 1024 256 64

41 Ravencoin 1024 256 64

42 Project Pai 1024 256 64

45 Cryptonex 256 64 64

49 HyperCash 1024 64 64

50 Zcoin 1024 256 64

907

Sep
 w

1

Sep
 w

2

Sep
 w

3

Sep
 w

4

Oct
w1

Oct
w2

Oct
w3

Oct
w4

Nov
 w

1

Nov
 w

2

Nov
 w

3

Nov
 w

4

Dec
 w

1

Dec
 w

2

Dec
 w

3

Dec
 w

4
0

50

100

150

200

250

N
um

be
r

of
 h

ija
ck

in
g

m
es

sa
ge

s

Time Window = 10 minutes

Number of hijacking
messages = 30

1
2

3 - 5

6 7

Figure 11: Number of BGP hijacking messages that hijack

prefixes hosting Bitcoin nodes in the 4-month period (from

September 1, 2018, to December 31, 2018) presented in 10

minutes time window. There are 7 highly suspicious syn-

chronized, large-scale Bitcoin hijacking incidents: a single AS

creates BGP hijacking messages to attack 30 prefixes or more

in 10 minutes.

We survey the cryptocurrencies that have the network im-

plementation similar to Bitcoin, which thus can potentially be

vulnerable to the EREBUS attacks. In particular, we investigate

the source code of the top 50 cryptocurrencies ranked by their

market capitalization (as of March 2019) [17]. Table I shows

19 out of 50 cryptocurrencies have a similar network design

and implementation to Bitcoin, making them potential victims

of the EREBUS attacks.

APPENDIX B

LONGITUDINAL STUDY ON BITCOIN HIJACKING

We investigate if ASes do launch BGP hijacking attacks for

partitioning Bitcoin. We look for synchronized and large-scale

Bitcoin partitioning attacks with three conditions in mind:

(1) all the BGP hijacking messages are created by a single

(potentially malicious) AS; (2) all the messages are observed

within a 10-minute time window10; and (3) the group has 30 or

more unique prefixes, each hosts at least one Bitcoin node IP

(see [3] for the conditions for large-scale Bitcoin partitioning

attack). We have released our open-source analysis tool [14].

Methodology. Notice that BGP hijacking attempts for parti-

tioning the Bitcoin network are distinguishable from generic

BGP hijacking attacks because they are targeting network

prefixes that include Bitcoin nodes. Our analysis begins with

selecting raw BGP update messages for prefixes that host

at least one Bitcoin node IP address on the same day. We

then detect the BGP hijacking messages and categorize them

into two types, following the classification of BGP hijacking

attacks [44]: (1) origin-AS hijacking, where an AS announce

a BGP message claiming the fake ownership of a prefix; and

(2) next-AS hijacking, where the second last AS in the AS-

path announces a seemingly-legitimate BGP message with

the actual owner of a prefix as the last AS while in fact

having no peering relationship with it. We have observed more

complicated hijackings (e.g., when the nth (n > 2) peering

10This time window size is empirically determined to group BGP hijacks
with the same purpose.

link from the last AS is fake) as well but their occurrences

are negligible compared to the two types, which also has

been observed independently in a recent study [16]. Also, our

analysis eliminates some false positives, such as the prefixes

have multiple origin ASes and the last two ASes are both

the actual owners of the prefixes. Finally, we group the BGP

hijacking messages into campaigns based on the 10-minute

window and further investigate those incidents, e.g., finding

their perpetrators, measuring their impacts on the Internet.

Datasets. We analyze in total 48 billion raw BGP update

messages collected by 19 RIPE RIS vantage points from

September 1, 2018, to December 31, 2018 [40]. We use

bgpdump [4] to read and store the messages, each includes

several useful information for our analysis, such as the times-

tamp when the message is propagated, the prefix being updated

and the AS-path. We also reduce the size of this dataset

significantly by removing the redundant messages that update

the AS-path for the same prefix in a short period of time (e.g.,

120 seconds in our analysis).

For the list of Bitcoin node IPs in each day, we download all

Bitcoin network snapshots, which is recorded every 5 minutes

for the list of reachable Bitcoin IPs, from Bitnodes via its

APIs [26].

The prefix ownership data used in detecting the origin-AS

hijacking and the peering relationship used in detecting the

next-AS hijacking, however, are usually incomplete due to

the lack of ground truth data. We collect the AS-to-prefix

data and the AS peering relationship data (including peering

through Internet exchanges) from multiple sources and use

their superset data. In particular, our AS-to-prefix dataset is

merged from Routeviews Prefix-to-AS mapping [41], WHOIS

lookup from two domains RADb and NTT, and crawled data

from several web portals such as Hurricane Electric Internet

Services11 and ipinfo.io. Similarly, we compose our AS peer-

ing dataset from the CAIDA’s inferred AS relationships [6],

PeeringDB12, CAIDA’s IXPs dataset, and Hurricane Electric’s

web portal.

Results. We present the number of BGP messages that hijack

prefixes hosting Bitcoin nodes in 10 minutes time window

in Figure 11. The dashed line indicates the threshold of 30

BGP hijacking messages. Figure 11 shows that BGP hijacking

does impact Bitcoin nodes in practice; yet, the number of

affected nodes is rather small. Particularly, we observe only

seven incidents in the 4-month period in which there are 30

or more Bitcoin nodes are hijacked in 10 minutes, see the

numbered spikes.

We conduct an in-depth analysis of the seven highly sus-

picious Bitcoin hijacking incidents and show our detailed

findings in Table II. In all seven cases, the ASes generated

the hijacking messages are easily revealed from the hijacking

messages. Yet, the most important metric is shown to be the

level of global propagation of each incident, specifically, the

propagation of all hijacking messages stops after only one or

11https://bgp.he.net/
12https://www.peeringdb.com/

908

Table II: Seven highly suspicious cases for potential Bitcoin hijacking attacks occurred from September 1, 2018 to December

31, 2018. Yet, none of them are actual Bitcoin hijacking incidents.

Case Date of

incident

No. of hijacking messages

(Origin-AS, Next-AS)

AS number of the

perpetrator

No. of

hijacked ASes

No. of hops of announcement

propagation (avg ± stddev)

1 Oct 17, 2018 57 (0, 57) 14259 3 1.0±0.0

2 Nov 26, 2018 35 (36, 0) 17639 20 1.47±0.74

3 Nov 27, 2018 208 (0, 208) 8928 66 1.0±0.0

4 Nov 27, 2018 214 (0, 214) 8928 65 1.0±0.0

5 Nov 27, 2018 217 (0, 217) 8928 67 1.0±0.0

6 Dec 10, 2018 54 (0, 54) 14259 3 1.0±0.0

7 Dec 18, 2018 47 (0, 47) 14259 2 1.0±0.0

two hops (i.e., they failed to be propagated globally). Hence,

we conclude that none of these seven incidents are in fact

carefully crafted Bitcoin hijacking attacks.

APPENDIX C

SHADOW IP SELECTION ALGORITHM

Algorithm 1 Select a random shadow IP

Require: P: the set of enumerated prefixes.

Ensure: ip: a randomly chosen shadow IP.

1: procedure SELECTRANDOMSHADOWIP

2: G ← [] � Set of unique prefix groups.

3: D[] ← [] � Dictionary of prefixes based on groups.

4: for all pi ∈ P do

5: g ← getGroup(pi) � Get prefix’s group.

6: G ← G ∪ [g]
7: D[g] ← D[g] ∪ [pi]
8: end for

9: group ← getRandomElement(G)
10: prefix ← getRandomElement(D[group])
11: ip ← getRandomElement(prefix)
12: return ip

13: end procedure

We present our shadow IP selection algorithm in Algo-

rithm 1. In general, the harvested shadow prefixes are grouped

into a dictionary with the keys are their prefix groups (i.e., /16

for IPv4 addresses and /32 for IPv6 addresses), see Line 4–

7. Then, we choose a random prefix group for the selecting

shadow IP because we want the groups of multiple randomized

shadow IPs to be as much diversity as possible. Based on

the selected prefix group, we choose a random prefix with

probability proportional with the number of IPs each prefix

contains and finally randomly pick a shadow IP from the

chosen prefix.

APPENDIX D

BITCOIN EMULATOR OPERATIONS

Our Bitcoin emulator [13] includes the following Bitcoin

nodes’ operations:

• Storing IPs into the internal tables. We store IPs in a

database representing the new and tried tables. Each IP is

stored along with its context information and other statistics

just as the Bitcoin client does, such as the IP of the
peer relayed it, the last timestamp it is advertised, the last

timestamp the node attempts to connect to it and so on.

• IP allocation. Our emulation implements the deterministic

hashing mechanisms of Bitcoin core version 0.18.0 that

determine the bucket and slot of an IP address.

• Adding IPs to the new table. We accurately emulate the

procedure of adding an IP into the new table. For example,

if one or more copies of the inserted IP already exist in

the table, all of their last-heard timestamp in the table

are updated. If the inserted IP is allocated to an already

occupied slot, our emulation evicts the existing one in favor

of the inserted IP if the existing one is terrible. Our

emulation checks whether an IP stored in the new table

is terrible based on its timestamps and failed attempt

counter, e.g., an IP has not been heard in the last 30 days.

• Outgoing connections establishment. Our emulation also

describes the exact establishment of outgoing connections.

Whenever there exists an unoccupied outgoing slot, the node

attempts to connect to an IP randomly selected from the

new or tried tables. The node can have at most eight

outgoing peers and they must be in different prefix groups.

If an outgoing peer becomes unreachable according to the

Bitnodes database, the outgoing connection to the peer is

removed and a new outgoing connection is made.

• IPs migration from the new to the tried table. The emulator

migrates the IPs from the new to the tried when they

are connected as outgoing peers or via a feeler connection.

The emulation also resolves the collision if a migrated IP

collides with an existing IP; e.g., it queues the existing one

to be tested by a feeler connection.

• Feeler connections. Our emulation only establishes feeler

connection after all outgoing slots are occupied and at least

two minutes have passed since the last feeler connection,

as implemented in the Bitcoin client. Our feeler connection

implementation tests the colliding IP in the tried table first

to resolve IP collisions. If there is no collision, the emulation

randomly selects one IP from the new table to test.

909

