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ABSTRACT Processing-in-memory (PIM) architectures show the advantage of handling applications that 
cause frequent memory accessing patterns despite lacking application utilization for complicated memory 
request patterns. In particular, deep convolutional neural networks (DCNNs) processing that consists of 
several functionalities could be highly optimized if PIM cores can extend the processing capability and data 
accessibility. In this work, we propose a functionality-based PIM accelerator for DCNNs. We design 
several modules in addition to the conventional PIM system based on hybrid memory cube (HMC). First, 
we compose a new buffer module, namely, a shared cache, in which PIM cores are provided DCNN 
functionalities and pre-trained weights. The PIM cores subsequently enhance the computational utilization 
and data accessibility. Second, an efficient replacement method complements shared cache to optimize data 
miss rate of DCNN processing. Third, we compose dual prefetchers that can deal with DCNN’s memory 
access patterns, thereby reducing the system’s overall latency. Fourth, we compose a PIM scheduler for 
PIM core-level autonomous request control. The PIM scheduler relieves the host processor of significant 
computational loads, achieving the overall latency of the system and reducing the energy consumption. By 
the performance evaluation based on the trace-driven HMC simulator, our proposed model improves 
average latency and bandwidth by 38.9 and 27.9 % with only 18.7 % more energy consumption compared 
with conventional HMC-based PIM systems. Our system also achieves scalable processing performance 
because when the DCNN becomes deeper, it processes faster than conventional PIM systems. 

INDEX TERMS 3D memory, Accelerator architectures, Artificial intelligence accelerator, Computer 
system, Deep neural network, Prefetch, and Processing-in-memory. 

I. INTRODUCTION 
In the era of the fourth industrial revolution, various 

cutting-edge technologies, such as artificial intelligence, 
robotics, 5G network, and internet-of-things, have been 
integrated for intelligent service automation. Consequently, 
deep neural network (DNN) applications can be executed 
on end-user devices. Among the many DNN operations, 
deep convolutional neural networks (DCNNs) demonstrate 
powerful performance in extracting image features, even 
surpassing human recognition abilities [1]. In DCNN, the 
convolutional layer convolves an input image having a size 
of inputwidth × inputheight × inputchannels to a feature map 

having a size of f_mapwidth × f_mapheight × f_mapchannels by 
iteratively performing multiply-accumulate (MAC) 
operations on corresponding matrix elements. Since the 
DCNN includes many parameters, the number of MAC 
computations significantly increases. Furthermore, in the 
recent literature, small-sized convolution filters, such as 1 × 
1 or 3 × 3 size, were used to reduce the dimensions of 
feature maps [2], and residual blocks were used to make 
shortcuts in a feed-forward network [3], resulting in low 
data locality and frequent memory accesses. These 
computational overheads have increased the demand for 
effective accelerating architectures. 
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Processing-in-memory (PIM) systems are a promising 
solution to this demand. PIMs have been designed using 
through-silicon via [4] technology, making 3-dimensional 
(3D) dynamic random-access memory (DRAM) die 
stacking possible. The PIM system scales-out lightweight 
processor cores to this 3D memory, thereby enabling fast 
data accesses. With these features, PIM has shown scalable 
performance on workloads requiring frequent memory 
accesses and low spatial data locality [5]–[9]. However, 
owing to the structural limitations of 3D memory (i.e., 
vulnerability to heat and low areal availability), PIM cores 
have not been composed as general-purpose cores and are 
restricted to processing only simple atomic operations. 
Therefore, to design a PIM accelerator requires, the areal 
constraints and energy budget must be carefully considered 
[10],[11]. 

In this study, we developed a functionality-based PIM 
accelerator for DCNNs supporting the computational 
characteristics of frequent memory accesses and low spatial 
data locality. We designed several modules on a 
conventional 3D memory, i.e., hybrid memory cube (HMC), 
based PIM system [12]. First, we composed a new buffer 
module, namely, the shared cache, in the logic base of the 
HMC so that our PIM system can process DCNN 
functionalities. Specifically, the shared cache provides 
functional primitives for convolutional neural networks 
(CNNs) (e.g., image patch, vector resizing, and image 
contraction) for the PIM cores to process more than atomic 
operations which conventional PIM systems could only 
process. Moreover, the shared cache stores the DCNN pre-
trained weights to be shared by multiple PIM cores to 
reduce data access cost by utilizing the 3D memory’s high 
bandwidth. We complemented this data caching method in 
the shared cache by designing an effective replacement 
algorithm to optimize data miss rate and improve overall 
system latency. We also designed simple dual prefetchers 
(Next-line [13] and Stride [14]) in each PIM core. These 
two prefetchers are robust to the DCNN’s memory access 
patterns, resulting in a significant latency reduction. Finally, 
we designed a PIM Scheduler in the shared cache. Different 
from the conventional PIM architectures (e.g., HMC 
(Section II-A)) which used PIM cores only as distributed 
near memory calculators to operate atomic instructions 
offloaded from the host processors, the PIM scheduler 
comprises several function calls that allow multiple PIM 
cores to control DCNN’s requests autonomously. Thus, it 
can break from the restriction of the conventional memory 
hierarchy architecture and make operation requests de-
centralized manner. 

A detailed description of each proposed module is given 
in Section III. Considering the structural constraints of 3D 
memory such as vulnerability to heat, and low areal 
availability, we pursued minimal modifications to the 
conventional HMC logic and focus on the efficient use of 
limited resources. The experimental results show that the 
proposed functionality-based PIM accelerator can achieve 
latency and bandwidth improvements by 38.9 and 27.9 % 

on average, respectively, consuming only an average of 
18.7 % more energy than the conventional HMC-based 
PIM accelerator. Moreover, our system shows more 
scalable processing performance, because when DCNNs 
become deeper, they can process faster than the same 
baseline. 

The key contributions of this study are as follows. 
● We developed a new buffer-module, namely, the 

shared cache, in the logic base of the HMC. The shared 
cache stores trained weights of DCNNs to reduce data 
access cost. A novel algorithm optimizes the data miss 
ratio in the shared cache, thereby improving the overall 
system latency. 

● The shared cache provides the DCNN’s functional 
primitives for the PIM cores. Eventually, DCNN 
functionality-based requests could be processed by the 
PIM core which is configured with simple in-order 
core in our assumed PIM system. 

● We composed simple dual prefetchers in each PIM 
core to deal with patterned memory access of DCNN 
workloads. 

● We introduced a PIM scheduler with several functions 
for PIM core-level autonomous request control. This 
enabled PIM system to be an aggregation of 
decentralized systems for processing DCNN 
functionalities broken from conventional hierarchical 
memory systems. 

The rest of this paper is organized as follows. Section II 
presents the HMC’s background and its limitations as an 
accelerating system (Section II-A), the characteristics of a 
CNN in the view of computations (Section II-B), and other 
works related to the PIM system (Section II-C). Section III 
details the proposed functionality-based PIM accelerator 
structure. Section IV presents the experimental design and 
the evaluations of the proposed architecture based on the 
conventional PIM accelerator. Section V summarizes the 
paper. 

 
FIGURE 1. HMC structure. 
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II. BACKGROUND AND RELATED WORK 

A. HYBRID MEMORY CUBE 
The HMC [12] is one of the most promising PIM 

systems. As shown in Fig. 1, multiple DRAM dies are 
vertically stacked on the logic base, which has vault 
controllers that correspond to the PIM cores. The vault 
controllers support simple atomic operations, e.g., 
addressing, arithmetic, bitwise, Boolean, and comparison 
[12]; however, they cannot support a general-processing 
core owing to thermal and areal restrictions. The 
corresponding vertical dimensional position of the vault 
controller and DRAM partitions comprise the vault unit, 
which operate as a processing unit. When the HMC 
processes operations that require access to a specific 
memory space (e.g., DRAM partition A), its vertically 
corresponding vault controller, vault controller A, brings 
data from DRAM partition A and processes it. It imposes a 
high penalty for vault controllers when importing broad 
(not vertically partitioned) DRAM data because the data 
should be moved out to the crossbar switch, which is the 
communication hub module between the host processor and 
the HMC memory. Then, it should be moved back to the 
requesting vault controller. Due to this issue, conventional 
HMC-based PIM systems face significant limitations, in 
which the PIM cores are used only as distributed calculator 
near memory in hierarchical system. To handle this issue, 
multiple PIM studies based on the HMC have proposed 
novel communicating solutions between multiple cores 
(Section II-C). 

Externally, the HMC is connected to the host processor 
using high-speed SerDes links that provide up to 30 Gbps 
rates and an aggregate (upstream to host processor, 
downstream to HMC memory) bandwidth of 480 GBps. 
The brief description of the operational flow of the HMC-
based PIM system is as follows. The host processor’s 
instruction is packetized and down-streamed to the SerDes 
link. Then, the packet arrives at the crossbar switch, which 
transmits this packet to the appropriate HMC vault 
according to the packet’s DRAM address’s 3D-partition. 
The vault transforms the packet to DRAM commands and 
processes the atomic operations involving the DRAM data. 
Finally, the processing results or any unsupported 
instruction’s DRAM data are repacketized and sent back to 
the upstream modules. 

FIGURE 2. Convolution operation. 

B. CNN 
CNNs deliver excellent performance when extracting 

features from images. As Fig. 2 shows, a CNN operation 
receives an input image represented as a matrix and 
convolves it using feature maps (filters). The convolution 
operation involves multiplying the matrices’ corresponding 
location elements and accumulating them as one value, 
which is a form of a MAC operation. 

In machine-learning frameworks, such as TensorFlow 
[15], the convolution is implemented with several 
functionalities, such as image patch, vector resizing, and 
image contraction. Image-patch functionality is the 
operation of designating the location of the elements to be 
calculated. This functionality is essential because large-
sized image vectors cannot be loaded immediately into a 
register of limited size. The resize functionality rearranges 
the vector elements in the contiguous register memory 
space. The image contraction functionality pairs the 
corresponding input image’s vector element with the filter’s 
vector element. After pairing each vector element, the 
MAC operation starts in the Eigen devices, such as CPUs 
and GPGPUs. 

C. RELATED WORK 
Ahn et al. [5] proposed a programmable PIM accelerator 

for large-scale graph processing workloads, having the 
computational characteristic of low data locality, to enable 
memory-capacity-proportional performance of 3D 
integration technology. They also proposed efficient 
communicating methods between the PIM cores that execute 
remote function calls via message passing. The message 
either blocks or non-blocks a PIM core’s state. A blocking 
message is used when a remote function returns some values, 
and it must return them to the calling PIM core. Conversely, 
if the remote function is a void type, the message need not 
preempt the remote PIM core and a non-blocking message is 
used. Additionally, the researchers proposed dual prefetch 
engines (i.e., list and message-triggered prefetchers), which 
were implemented at each of the PIM cores to utilize the 
memory bandwidth. 

Gao et al. [16] proposed a detailed composition of PIM’s 
hardware and software components for scaling big-data 
workloads, which are operated on massive datasets with 
limited temporal locality. The shared memory concept was 
used for the host processor and PIM cores to observe the 
same physical memory space, ensuring that the PIM cores 
processed low temporal locality jobs, while the host 
processor processed the remaining jobs. They also proposed 
a 2-dimensional mesh network-on-chip module in the logic 
base of 3D memory to communicate directly between the 
PIM cores by improving the instruction bypass method 
through crossbar switch when accessing remote data. A 
software stack having a runtime module was additionally 
implemented in the PIM cores to hide hardware details and 
provide software environments that support coherency and 
communicating across multiple cores. This enabled domain-
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specific optimization of big-data workloads for scalable 
processing. 

Jeon et al. [10] modified a previous HMC [12] system to 
accelerate MAC operations. A MAC unit that consisted of an 
extra MAC register (composed of a multiplier and an 
accumulator) and an operand buffer was configured in each 
of the HMC’s vault controllers. They then evaluated the 
system using the HMC’s cycle-accurate simulator [17]. 
When designing the HMC-based accelerator, they deeply 
considered minimal modifications of the HMC logic base, 
because 3D memory is vulnerable to heat. 

Min et al. [18] modified an HMC-based MAC operation 
accelerator [10] to adopt the DNN weight-sharing algorithm 
proposed in [19]. Moreover, an asynchronous packet 
communicating method was implemented to communicate 
efficiently between the host processor and PIM cores. In 
addition, they improved the HMC packet scheduling so that 
multiple PIM cores were not crossed [10]. 

Tasi et al. [6] proposed various communication methods 
and scheduling algorithms on the PIM system of an 
asymmetric memory hierarchy. They composed the HMC-
based logic layer with four PIM cores, in which each PIM 
core has a private cache. Externally, the HMC was linked 
with the host processor by the crossbar switch and SerDes 
links like conventional HMC models. However, similar to a 
previous study [16], the host processor and PIM cores 
shared the same physical address space, and the private 
cache coherency of each PIM core was supported by the 
software. This scheduler software autonomously identifies 
operational subjects (proper hierarchy) dynamically based 
on a high-quality productivity policy. 

Nai et al. [26] introduced GraphPIM, which is a full-
stack solution to accelerate graph processing applications 
based on PIM architecture. In GraphPIM, it exploits an 
offloading mechanism for graph programs’ atomic 
operations. GraphPIM only considered graph analysis 
workloads.  

Kim et al. [27] proposed NeuroCube architecture that 
accelerates neural network processing. NeuroCube contains 
programmable digital neuromorphic architectures with 
HMC modules. Each processing element (PE) has 
connection to its own vault (memory channel to 3D-stacked 
memory module); hence the major operations of neural 
network processing can be handled by domain-specific PEs 
with high density of memory and high memory bandwidth 
resource. However, it only evaluated the 2D convolution 
layer and fully connected layer only. 

Gu et al. [28] proposed iPIM, the in-memory image 
processing accelerator. iPIM is based on 3D stacking 
memory cube that has similar structures of HBM and HMC. 
Moreover, iPIM provides the single-instruction-multiple-
bank (SIMB) ISA for exploiting the data-parallelism. This 
ISA is specialized to support multiple bank parallelism to 
maximize sustainable bandwidth of 3D-stacked memories. 

III. DCNN FUNCTIONALITY-BASED PIM ACCELERATOR 

A. OVERALL ARCHITECTURE 

FIGURE 3. Overall architecture. 

Fig. 3 shows the proposed architecture for accelerating 
DCNNs. Based on the HMC memory, we composed three 
major modules in the logic base: a shared cache, dual 
prefetchers, and a PIM scheduler. The shared cache 
(Section III-B) provides the DCNN’s functional primitive 
sets and stores the DCNN’s trained weights. The dual 
prefetchers (Section III-C) are composed of two simple 
prefetch engines; the two prefetchers are next-line [13] and 
stride [14] prefetchers that have an aggregated buffer size 
of 4 KB. The PIM scheduler (Section III-D) consists of 
several application programming interface (API) functions 
that allow multiple PIM cores to control requests 
autonomously without the aid of the host processor. 
Moreover, we integrated the MAC unit from [10], which is 
composed of a multiplier, an accumulator, and an operand 
buffer to accelerate the MAC operation in the PIM cores of 
the HMC memory. This module helps process floating-
point MAC operations in five HMC cycles. Finally, our 
PIM core, which is shown as the vault controller in Fig. 3, 
is configured with a simple in-order core. We carefully 
considered the HMC’s areal (Section III-B) and energy 
(Section IV-F) restrictions in preparing the proposed 
modules. 

B. SHARED CACHE 

FIGURE 4. Functionality-based operation of the DCNN in multiple PIM 
cores. 

Owing to energy limitations of 3D memory, conventional 
PIM cores cannot be used as general-purpose cores; they 
are restricted to simple atomic cores. To use the PIM 
system’s high bandwidth, several previous studies [5],[16] 
configured domain-specific APIs in the logic modules of 
3D memory, thus enabling the PIM cores to process more 
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than simple operations. To increase the PIM cores’ 
utilization during DCNN processing, we configured a 
buffer module, namely, the shared cache, located in the 
logic base of the HMC. The shared cache provides the 
DCNN’s functional primitive sets, i.e., image patch, 
contraction, and resizing vector (Section II-B). These sets 
are used to generate instruction blocks that can be 
processed by the simple in-order core. In an operational 
flow, a PIM core loads requested functionality set from the 
shared cache. It then processes instruction blocks in order. 
The conceptual operation diagram of processing DCNN, 
based on the functionality operations of multiple PIM cores, 
is given in Fig. 4. We implemented the synchronization of 
multiple PIM cores by blocking them and writing them 
through just before the MAC operation started. In this work, 
algorithmic functionalities, such as pooling, batch 
normalization, and non-linear activation functions, are not 
considered in the design of our accelerator model. 

FIGURE 5. Processing of shared weights in the proposed modules. 

During the DCNN’s inference phase, the filters’ weights, 
previously trained at the training phase, are used to evaluate 
the values of the output nodes. We designed the shared 
cache to store these trained weights. As a result, each PIM 
core can access the shared data regardless of vertically 
corresponding DRAM partitions, thereby preventing broad 
vault access penalties without the support of inter-PIM 
cores communicating the solutions, such as in [5],[16],[6]. 
Fig. 5 shows how shared weights can be processed in a PIM 
core. Assume that img A sized 224×224×3 (height, width, 
color) is convolved with the DCNN layer 1’s trained filter 
weight (W1), which is sized 3 × 3 × 64 (height, width, 
channels) in PIM Core 1. The img A is stored in Core 1’s 
vertical DRAM partition, DRAM 1. W1 is stored in the 
shared cache. To perform MAC operations, the elements of 
img A and W1 to be calculated are designated and paired by 
image patch, resize, and contraction functionality 
operations (Section II-B). Then, the paired floating-point 
elements are fed to the operand buffer of Core 1’s MAC 
unit. The MAC operation is processed according to the 
HMC atomic operation cycle timing using Core 1’s 
multiplier and accumulator. 

While DCNN’s layers continue to forward values from 
input nodes to output nodes, each PIM core requires new 
weight elements to evaluate the output signal for each 
neuron node. Our proposed model consists of a total of 32 
PIM cores, hence, when any miss occurs at the shared 
cache layer, it causes data hazard problems that would be a 
critical issue to the entire PIM architecture’s performance. 
Therefore, the reduction of data miss rate at the shared 
cache layer can improve the overall system’s operational 
latency. 

TABLE I 

PRE-TRAINED WEIGHT SIZES 

Workload Pre-trained weight size 

LeNet 740 KB 

AlexNet 244 MB 

ZFNet 239 MB 

GoogLeNet 54 MB 

VGGNet 553 MB 

ResNet 232 MB 

 
The total size of the shared cache is 32 MB. Considering 

that a conventional HMC’s volume consumes 31 × 31 × 3.8 
mm3 [12], out of the 961 mm2 areal space, we conservatively 
assumed that the available free areal space for the shared 
cache is 20 mm2, which is sufficient for a 32 MB buffer. 
Determining the specific method of organizing the shared 
cache in the logic base (e.g., scattered buffer structure) will 
be a future study. The DCNN workloads’ pre-trained weight 
sizes used for the evaluations are given in Table 1 (see 
Section IV-B for more detailed descriptions). As shown in 
Table 1, most of the pre-trained weights exceed our shared 
cache size of 32 MB. Thus, they cannot be loaded into the 
shared cache together, and this can cause data hazard in 
parallel execution of the PIM cores. Accordingly, we 
implemented an efficient algorithm for replacing cache lines 
optimized for minimizing data miss rate in the shared cache. 
The algorithm is given in Algorithm 1, in which two extra 
global tables are composed: HyperTable and HistoryTable. 
HyperTable manages information of the DCNN workload’s 
configurations and processing status of the system. 
HistoryTable (a first-in-first-out queue structure) manages 
the loaded weights’ records in the shared cache. The 
algorithm begins by bringing the weight information of the 
currently processed point of the DCNN workload from the 
HyperTable. Then, the number of the shared cache’s lines to 
be replaced is calculated from the HistoryTable. The number 
of victim lines is initially set based on the DCNN layer 
granularity. To minimize the data miss rate of the share cache, 
our algorithm tries to replace shared cache lines based on the 
DCNN’s channel granularity. This is implemented by 
linearly probing whether HistoryTable entries are marked, 
which represents the previous channel has been processed by 
the system. The new entries replace the shared cache lines 
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using the least recently used (LRU) concept with each line’s 
time stamp and valid bits. Finally, HyperTable and 
HistoryTable are updated to represent current state of DCNN 
processing and the shared cache, respectively. The 
replacement algorithm is synchronized with the specific 
HMC cycle time, and the write-through policy is used when 
updating the shared cache with two global tables. The 
detailed parameters of cycle time and line size for the shared 
cache are given in Table 4. 
 

Algorithm 1: Cache Line Replacement Algorithm 

curStatus  HyperTable.processing_status() 

Procedure replace_cache_lines(): 

   nextLayerInfo  HyperTable.find_next(curStatus) 

   filterSize  nextLayerInfo.filterSize 

   numChannels  nextLayerInfo.numChannels 

   numVictimLines  HistoryTable.calc_lines( 

filterSize, numChannels) 

   layerGranularity  true 

   numChLines  0 

   for (i from 0 to numVictimLines) 

      if (HistoryTable.get(i)  marked_channel()) 

         numChLines  i 

         layerGranularity  false 

         break 

   channelGranularity  ~layerGranularity 

   if (layerGranularity) 

      HistoryTable.delete_fifo(0, numVictimLines) 

      shared_cache_load_layers(nextLayerInfo, 

numVictimLines) 

      HistoryTable.push_fifo(nextLayerInfo, 

numVictimLines) 

   else if (channelGranularity) 

      HistoryTable.delete_fifo(0, numChLines) 

      shared_cache_load_channels(nextLayerInfo, 

numChLines) 

      HistoryTable.push_fifo(nextLayerInfo, 

numChLines) 

HyperTable.update_processing_status() 

HistoryTable.update_channel_mark() 

 

TABLE II 

PREFETCH METHODS AND PARAMETERS 

Prefetch Buffer Size 4 KB 

Read/Write Latency ~16 ns 

Replacement Policy 
(Stride Prefetcher) 

LRU writeback on every 2000 
HMC cycles 

 

C. DUAL PREFETCHERS 
We composed small-sized (4 KB) dual prefetch buffers on 

each PIM core of the 3D memory. Each dual prefetch engine 
used a simple next-line [13] and stride [14] algorithm, 
respectively. The next-line prefetcher prefetches DRAM 
elements of the next block from the previously accessed 
address. The stride prefetcher observes the stride to the 
accessed addresses and then prefetches the DRAM address of 
the last accessed address + stride. These two prefetch 
algorithms are robust for processes involving simple linear 
memory access patterns resulting in overall system latency 
reduction. The prefetchers’ detailed parameters and 
replacement methods are given in Table 2. 

When a PIM core needs to process memory data, it 
preferentially accesses the next-line prefetch buffer. If the 
data are not stored in the next-line prefetch buffer, it 
sequentially accesses the stride prefetch buffer. If both 
prefetch buffers lack the requested data, it finally accesses 
the vertically partitioned DRAM memory since the shared 
cache and the PIM scheduler prevent broad vault access. 
 

TABLE III 

FUNCTIONS IMPLEMENTED FOR THE PIM SCHEDULER 
Functions Descriptions 

AllocReq() Allocate request to a PIM core 

ReceiveReq() PIM core loads DCNN resources from 

the shared cache 

ProcessReq() PIM core processes DCNN functionality 

OffloadBack() Offload request to another PIM core 

WriteToCache() Write outputs to the shared cache 

 

D. PIM SCHEDULER 
We improved the conventional HMC’s control flow (i.e., 

packets being down-streamed from the host processor to the 
HMC) by configuring various functions’ APIs for the PIM 
scheduler module of the shared cache. These functions 
enable PIM core-level request control making system to be 
an aggregation of decentralized systems broken from 
conventional hierarchical memory systems. Table 3 shows 
the functions controlling the operational flow of our PIM 
system. Hence, the PIM scheduler can provide appropriate 
managements for offloaded jobs based on simple APIs. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

 

VOLUME XX, 2021 1 

These functions are similar to NVIDIA CUDA’s API and 
OpenCL’s one, so programmers can easily exploit PIM’s 
data-parallelism without the knowledge of PIM’s structure or 
3D-stacked memory architectures. 

FIGURE 6. Control flow of autonomous request processing at the PIM core 

level. 
When a user request arrives at the system, the host 

processor offloads it to the HMC. Then, the crossbar switch 
allocates the request to a PIM core using an AllocReq() call. 
The PIM core loads the functional primitives and trained 
weights from the shared cache using the ReceiveReq() call 
and processes DCNN functionality using the ProcessReq() 
call. Sometimes a request offload between PIM cores is 
essential when data to be loaded to a specific PIM core is 
stored in other vertical partition of 3D memory. Our system 
solves this problem without relying on the decision from 
being up-streamed to the host processor. Instead, a PIM 
core autonomously requests offloading to another PIM core 
of corresponding vertical partition. An offload is executed 
by an OffloadBack() call, which must bypass the crossbar 
switch to determine corresponding PIM core to process data. 
The WriteToCache() call is used to maintain the coherency 
of various logic base modules and inform the shared cache 
of system’s processing status. Fig. 6 shows how our PIM 
scheduler’s functions make the PIM cores’ level 
autonomous request control possible. 

IV. EVALUATIONS 

A. EXPERIMENTAL ENVIRONMENTS 
To evaluate the performance of the proposed model, we 

used HMC-MAC [10] as a baseline. HMC-MAC performs 
cycle-accurate simulations of the HMC memory, 
accelerating MAC operation by composing additional MAC 
registers in the vault controller. We modified HMC-MAC 
to implement the proposed PIM modules: shared cache, 
dual prefetchers, and PIM scheduler. Additionally, we used 
the DDR3_1600_x64 standards for communicating and 
timing factors between the logic base and 3D-stacked 

DRAM memory of the HMC. The parameters are 
configured with the same way as the Gem5 [20] model of 
HMC-2500x32. Other specific experimental parameters are 
given in Table 4, which are the same for the HMC-MAC 
baseline to allow for a fair comparison. 

TABLE IV 

EXPERIMENTAL PARAMETERS OF THE CORE AND MEMORY 

tCK(host), tCK (HMC, Cache) 0.5 ns, 0.8 ns 

# of PIM cores in a system 32 

# of Link, Link speed 4, 30 Gb/s 

DRAM DDR3_1600_x64 

Block and Cache line size 32 B 

 
The shared cache module is included in the HMC as in a 

PIM core as a logical base. As shown in Table IV, the 
shared cache has the same parameter configuration as the 
HMC’s DRAM. As in Algorithm 1, we designed the 
synchronization policy that proceeds line replacement 
operations based on the current DCNN’s processing status 
to cope with the parallel execution issue. That method can 
keep cache synchronized with PIM cores to reduce 
performance degradation by data hazards. A series of tasks 
were implemented according to the parameters in Table IV 
by modifying HMC-MAC [10], a cycle-accurate HMC 
architecture simulator. 

The performance enhancement of our proposed model is 
shown in Figure 8, it is about the latency improvement 
compared to the conventional HMC structure. The clock 
frequency of the conventional HMC is 0.8ns (tCK) as 
suggested in Table IV. 

B. DCNN WORKLOADS 
For DCNN workloads, we used the ImageNet Large Scale 

Visual Recognition Challenge winners and other popular 
image classification algorithms (LeNet [21], AlexNet [22], 
ZFNet [23], VGGNet [24] (16 layers), GoogLeNet [2], 
ResNet [3] (152 layers)). The pre-trained weight sizes of 
these workloads are given in Table 1. To simulate our system 
on these DCNN workloads, we used Intel pin-tool [25] code 
instrumentation program to extract memory access traces and 
non-memory operation (MAC) counts. The TensorFlow 
machine-learning framework [15] was used as our DCNN 
workloads’ running environment. We marked each of the 
convolutional operation’s functional primitive sets as the 
region of interest in TensorFlow and recompiled it to 
generate the simulator’s traces by executing the DCNN 
workloads on the pin-tool. 

In this article, we focused on accelerating the inference 
step of pre-trained neural networks. In the inference phase, 
the DCNN progress can be considered as atomic procedures. 
Therefore, the batch size in the training phase would not 
make any impact on the model we proposed. 
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Since only the CNN layer, not the entire DCNN layer, was 
sampled to evaluate the performance, providing an 
enhancement compared to baseline rather can show a clear 
visible effect on the model comparison of other researchers' 
work. In the experiment, 1 tCK of HMC-MAC was set as 
0.8ns, to compare with other studies using the same 
configuration as Table IV. 

LeNet takes an input image sized 32×32×1 (height, width, 
color), which differs from other workloads. Accordingly, 
we executed LeNet with the MNIST dataset of handwritten 
digits pictures sized 28×28×1 each, which was resized to 
32×32×1 with zero padding. Every other neural network 
was executed with the ImageNet dataset, sized 224×224×3 
each. 

C. FUNCTIONALITY-BASED DCNN OPERATION 
ANALYSIS 

FIGURE 7. Proportion of three major operations in the convolutional layer 

instructions set. 

 

To evaluate the effect of processing DCNN 
functionalities at the PIM cores, we analyzed our six 
DCNN workloads’ computational configurations. Fig. 7 
shows the proportion of three major operations in the 
convolutional layer’s instructions. Our proposed model can 
handle 47% of all the operations on average. The average 
proportion of PIM core processes was approximately 39%, 
including 14% HMC atomic operations (Section II-A) and 
25% MAC operations. The DCNN functionality operations 
(Section II-B) were 8% on average. Although the 
proportion of the DCNN functionality operations was only 
8%, we found that providing PIM cores with DCNN 
functionality had more synergistic effects as resulted in 
25.9 % of average speed gain by configuring the shared 
cache (Section IV-D). These effects were attributed that the 
DCNN functionality operations were highly related to 
initiating the other two operations and DRAM memory 
read/write commands. Specifically, our functionality-based 
PIM system not only relieved the host processor of 
processing extra 8% of the convolutional layer’s operations 
but also saved the cost of initiating multiple modules and 
maintaining their coherency. Therefore, the DCNN 
functionalities provided to PIM cores significantly 
accelerated the overall DCNN processing. 

D. OPTIMAL SIZE OF THE PREFETCH BUFFER 

FIGURE 8. Execution time with the prefetch buffer size. 

 
The result of narrow scaling on Fig. 8 is about the 

effectiveness of single PIM core. And the execution time 
with different prefetch buffer sizes normalized to 512 B. 
Most DCNN algorithms exhibited short execution times as 
the buffer size increased. With the ZFNet and VGGNet 
workloads, the execution time increased with prefetch 
buffer sizes of 1 and 2 KB because of the prefetch miss 
penalty. However, when the buffer size was larger than 4 
KB, the execution time decreased significantly. With buffer 
size of 8 KB or even larger, the execution time was similar 
to the 4 KB buffer case. Considering that 3D memory is 
vulnerable to heat, additional logic should occupy a small 
physical area to reduce complexity. Therefore, a prefetch 
buffer size of 4 KB was determined to be optimal. 

E. EXECUTION TIME 

FIGURE 9. Latency improvement (speed-up) performance. 
To evaluate the comprehensive impact of our system, we 

conducted ablation studies using the proposed modules. 
Fig. 9 shows the latency improvement (speed-up) 
percentage of the proposed model. The baseline system we 
used for comparison is HMC-MAC [10]. The comparative 
group consists of HMC-MAC with simple dual prefetcher 
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modules (column 1), a shared cache for DCNN 
functionality processing and pre-trained weight sharing 
(column 2), shared cache with the PIM scheduler for the 
PIM core-level autonomous request control (column 3), and 
the proposed model with all three modules (column 4). The 
proposed PIM architecture with shared cache, dual 
prefetchers, and the PIM scheduler showed a 38.9 % 
average speed gain. Our model also demonstrated more 
scalable processing performance than the baseline system, 
because when the DCNN workloads deepen (left to right in 
Fig. 9), greater speed gains were observed. Specifically, our 
system showed the smallest average gain of 28.8 % in 
LeNet, which was the shallowest network (five layers). 
Conversely, our system showed the largest average speed 
gain of 46.9 % in ResNet, which was the deepest network 
(152 layers). 

The impact of our dual prefetchers (column 1) produced 
an average speed gain of 18.8 %. We confirmed that these 
latency improvements were attributed to the computational 
features of the DCNN exhibiting simple patterned memory 
access. More details about the performance of each 
prefetcher are given in Section IV-G. 

The impact of the shared cache (column 2) showed a 
25.9 % average speed gain. These improvements were 
attributed to the DCNN’s weight-sharing and functionality-
based operations processing of multiple PIM cores, which 
enabled increased use of local PIM core’s computational 
utilization and data accessibility of 3D memory. More details 
regarding the performance of our DCNN functionality-based 
processing are given in Section IV-H. 

FIGURE 10. HMC bandwidth. 
The impact of the PIM scheduler (column 3) with the 

shared cache showed a 27.6 % average speed gain, which is 
not significantly different from the shared cache only 
(column 2). However, we observed that the PIM scheduler 
produced a significant improvement in terms of decrease in 
energy attributed to the PIM core-level autonomous request 
control. More detailed descriptions of the PIM scheduler’s 
energy performance are given in Section IV-F. 

F. BANDWIDTH 
Fig. 10 shows the aggregated bandwidth (GB/sec) of the 

HMC configured with 32 PIM cores. The proposed model, 
which includes the dual prefetchers, shared cache, and PIM 
scheduler (column 5), showed the highest bandwidth at an 
average of 94.5 GB/sec, which is a 27.9 % increase over 
our baseline model HMC-MAC (column 1). The baseline 
model’s aggregated bandwidth averaged 73.9 GB/sec, 
which is slightly lower than the conventional HMC’s 
theoretical maximum bandwidth of 80 GB/sec (single-
directional) [12]. Additionally, we found that our shared 
cache model (column 3) showed a slightly lower bandwidth 
with an average of 83.5 GB/sec, than our dual prefetchers 
model (column 2), which has an average of 84.8 GB/sec. 
The PIM scheduler model (column 4) showed the same 
average bandwidth as the dual prefetchers model (column 
2). The high bandwidth of our proposed models was 
attributed to the improved utilization of the PIM cores. 
Specifically, each of the dual prefetchers, shared caches, 
and PIM scheduler increased PIM cores’ utilization in 
terms of data prefetch, DCNN functionalities processing 
and autonomous request control. 

In terms of bandwidth, the shared cache model shows 
slimmer lower bandwidth than the dual prefetchers model, 
which can be estimated to be the following two causes. 
Firstly, the difference in utilization between the two models 
in DCNN processing can be seen as the cause. In the case 
of pre-trained weights, the former model is loaded from the 
shared cache line while the latter is from DRAM, so it is 
unlikely to make a big difference. On the other hand, the 
utilization cost of functional primitives in the former model 
may be less than the latter. 

G. ENERGY CONSUPTION 

FIGURE 11. Energy consumption of the PIM systems. 
We modeled the energy consumption of the proposed 

PIM system using the same metric as in [6], where the 
dynamic energy consumption of the logic base was 10 pJ/b 
and the SerDes link was 2 pJ/b. Fig. 11 shows the energy 
consumption of the proposed models with six different 
workloads, which are normalized to the baseline HMC-
MAC model. For each workload, the columns are organized 
in the same order as Fig. 10. We observed that the energy 
consumption tendencies of the five PIM systems were 
similar for the six different DCNN workloads. The 
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proposed model (column 5 of each workload) consumed an 
average of 18.7 % more energy than did the baseline 
(column 1), which was attributed to the PIM cores’ 
increased utilization. However, we confirmed that this 
increased energy consumption was within the power budget 
based on the industrial research on thermal feasibility of 
die-stacked PIM [11], which was also used in [5]. The other 
proposed modules (dual prefetchers, shared cache, and PIM 
scheduler (for columns 2–4)) consumed averages of 19.8, 
30.8, and 6.3 % more energy, respectively. Although the 
shared cache has high energy requirements because the 
DCNN’s functional primitives are provisioned to multiple 
PIM cores, the PIM system’s energy was significantly 
reduced when the PIM scheduler was added, and the values 
were lower than the baseline in LeNet (column 4 of LeNet 
in Fig. 11), which represents the effect of a significant 
energy reduction in the SerDes link (lighter colored at the 
top of each bar in Fig. 11) as the PIM scheduler allowed for 
PIM core-level autonomous request control without the aid 
of the host processor. 

H. PREFETCH PERFORMANCE 

FIGURE 12. Dual prefetchers’ hit rate. 

Fig. 12 shows the performance of each of our dual 
prefetchers in detail. The total hit rate of our dual 
prefetchers averaged 15.4 %, which consists of the next-
line prefetcher at 9.6 % and the stride prefetcher at 5.8 %. 
The next-line prefetcher showed robust performance on the 
large filters having a small number of channels because 
these filters cause a continuous memory address access 
pattern. Specifically, LeNet’s first convolutional layer is 
configured with filters of 28×28 size and six channels, 
showing a 21 % next-line prefetcher hit rate. Conversely, 
GoogLeNet and ResNet are mostly configured with small-
sized 1×1, 3×3, and 5×5 filters, but a significantly large 
number of 64, 128, 256, and 512 channels, showing a 6.1 % 
and 6.4 % next-line prefetcher hit rate, respectively. The 
stride prefetcher, which is used sequentially after the next-
line prefetch buffer is missed, complemented these small-
sized filters with numerous channels. The stride prefetcher 
had the best hit rate (16.4 %) on GoogLeNet, and the 
second best (15.5 %) on ResNet. This result confirms that 
the stride prefetcher backed up the next-line prefetcher’s 
misses, where DCNN workloads have the characteristics of 
non-continuous memory address access while still 
displaying simple (e.g., linear) patterned access. 

V. CONCLUSION AND FUTURE WORK 
In this article, we enhanced the HMC, which is a type of 

PIM architectures, which provides six atomic operations to 
accelerate the DCNN’s domain specific functionalities by 
the HMC’s feasibilities. Therefore, we compared our model 
to the conventional HMC based PIM architecture to 
measure the difference on latency, bandwidth, and 
scalability, and verified our model’s feasibility. 

Therefore, we designed three new modules on a 
conventional HMC-based PIM accelerator. These modules 
provided the PIM cores with increased utilization in 
computations. Specifically, our new modules (1) provided 
PIM cores with DCNN functionalities by the shared cache, 
(2) allowed for prefetching on the DCNN’s patterned 
memory access by the dual prefetchers, and (3) enabled 
PIM core-level autonomous request control by the PIM 
scheduler. Both the shared cache and dual prefetchers 
contributed to the significant improvements in latency and 
bandwidth. Furthermore, the PIM scheduler showed a 
significant impact on the 3D memory’s total energy 
reduction. Our comprehensive evaluations showed that the 
proposed functionality-based PIM system outperforms 
conventional MAC-accelerating PIM system in both 
latency and bandwidth within the power consumption limit 
of the 3D memory. Furthermore, our system achieved 
scalable processing performance, because even with deeper 
DCNNs, it demonstrated faster execution times compared 
with the conventional PIM system. We conservatively 
measured the feasibility of our modules in both aspects of 
areal availability and energy budget. Additionally, we 
presented a specific model configuration for accelerating 
multiple DCNN workloads. We concluded that providing 
PIM cores with DCNN functionalities can be an efficient 
alternative for emerging needs of accelerating image and 
DCNN workloads processing. 
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