
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Functionality-Based Processing-In-Memory
Accelerator for Deep Convolutional Neural
Networks
MIN-JAE KIM1, JEONG-GEUN KIM1, SU-KYUNG YOON2, 3, and SHIN-DUG KIM1, Member,
IEEE
1Department of Computer Science, Yonsei University, Seoul 03722, Republic of Korea
2Division of Computer Science and Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
3Research Center for Artificial Intelligence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea

Corresponding author: SHIN-DUG KIM (sdkim@yonsei.ac.kr).

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (NRF-
2019R1A2C1008716).

ABSTRACT Processing-in-memory (PIM) architectures show the advantage of handling applications that
cause frequent memory accessing patterns despite lacking application utilization for complicated memory
request patterns. In particular, deep convolutional neural networks (DCNNs) processing that consists of
several functionalities could be highly optimized if PIM cores can extend the processing capability and data
accessibility. In this work, we propose a functionality-based PIM accelerator for DCNNs. We design
several modules in addition to the conventional PIM system based on hybrid memory cube (HMC). First,
we compose a new buffer module, namely, a shared cache, in which PIM cores are provided DCNN
functionalities and pre-trained weights. The PIM cores subsequently enhance the computational utilization
and data accessibility. Second, an efficient replacement method complements shared cache to optimize data
miss rate of DCNN processing. Third, we compose dual prefetchers that can deal with DCNN’s memory
access patterns, thereby reducing the system’s overall latency. Fourth, we compose a PIM scheduler for
PIM core-level autonomous request control. The PIM scheduler relieves the host processor of significant
computational loads, achieving the overall latency of the system and reducing the energy consumption. By
the performance evaluation based on the trace-driven HMC simulator, our proposed model improves
average latency and bandwidth by 38.9 and 27.9 % with only 18.7 % more energy consumption compared
with conventional HMC-based PIM systems. Our system also achieves scalable processing performance
because when the DCNN becomes deeper, it processes faster than conventional PIM systems.

INDEX TERMS 3D memory, Accelerator architectures, Artificial intelligence accelerator, Computer
system, Deep neural network, Prefetch, and Processing-in-memory.

I. INTRODUCTION
In the era of the fourth industrial revolution, various

cutting-edge technologies, such as artificial intelligence,
robotics, 5G network, and internet-of-things, have been
integrated for intelligent service automation. Consequently,
deep neural network (DNN) applications can be executed
on end-user devices. Among the many DNN operations,
deep convolutional neural networks (DCNNs) demonstrate
powerful performance in extracting image features, even
surpassing human recognition abilities [1]. In DCNN, the
convolutional layer convolves an input image having a size
of inputwidth × inputheight × inputchannels to a feature map

having a size of f_mapwidth × f_mapheight × f_mapchannels by
iteratively performing multiply-accumulate (MAC)
operations on corresponding matrix elements. Since the
DCNN includes many parameters, the number of MAC
computations significantly increases. Furthermore, in the
recent literature, small-sized convolution filters, such as 1 ×
1 or 3 × 3 size, were used to reduce the dimensions of
feature maps [2], and residual blocks were used to make
shortcuts in a feed-forward network [3], resulting in low
data locality and frequent memory accesses. These
computational overheads have increased the demand for
effective accelerating architectures.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

Processing-in-memory (PIM) systems are a promising
solution to this demand. PIMs have been designed using
through-silicon via [4] technology, making 3-dimensional
(3D) dynamic random-access memory (DRAM) die
stacking possible. The PIM system scales-out lightweight
processor cores to this 3D memory, thereby enabling fast
data accesses. With these features, PIM has shown scalable
performance on workloads requiring frequent memory
accesses and low spatial data locality [5]–[9]. However,
owing to the structural limitations of 3D memory (i.e.,
vulnerability to heat and low areal availability), PIM cores
have not been composed as general-purpose cores and are
restricted to processing only simple atomic operations.
Therefore, to design a PIM accelerator requires, the areal
constraints and energy budget must be carefully considered
[10],[11].

In this study, we developed a functionality-based PIM
accelerator for DCNNs supporting the computational
characteristics of frequent memory accesses and low spatial
data locality. We designed several modules on a
conventional 3D memory, i.e., hybrid memory cube (HMC),
based PIM system [12]. First, we composed a new buffer
module, namely, the shared cache, in the logic base of the
HMC so that our PIM system can process DCNN
functionalities. Specifically, the shared cache provides
functional primitives for convolutional neural networks
(CNNs) (e.g., image patch, vector resizing, and image
contraction) for the PIM cores to process more than atomic
operations which conventional PIM systems could only
process. Moreover, the shared cache stores the DCNN pre-
trained weights to be shared by multiple PIM cores to
reduce data access cost by utilizing the 3D memory’s high
bandwidth. We complemented this data caching method in
the shared cache by designing an effective replacement
algorithm to optimize data miss rate and improve overall
system latency. We also designed simple dual prefetchers
(Next-line [13] and Stride [14]) in each PIM core. These
two prefetchers are robust to the DCNN’s memory access
patterns, resulting in a significant latency reduction. Finally,
we designed a PIM Scheduler in the shared cache. Different
from the conventional PIM architectures (e.g., HMC
(Section II-A)) which used PIM cores only as distributed
near memory calculators to operate atomic instructions
offloaded from the host processors, the PIM scheduler
comprises several function calls that allow multiple PIM
cores to control DCNN’s requests autonomously. Thus, it
can break from the restriction of the conventional memory
hierarchy architecture and make operation requests de-
centralized manner.

A detailed description of each proposed module is given
in Section III. Considering the structural constraints of 3D
memory such as vulnerability to heat, and low areal
availability, we pursued minimal modifications to the
conventional HMC logic and focus on the efficient use of
limited resources. The experimental results show that the
proposed functionality-based PIM accelerator can achieve
latency and bandwidth improvements by 38.9 and 27.9 %

on average, respectively, consuming only an average of
18.7 % more energy than the conventional HMC-based
PIM accelerator. Moreover, our system shows more
scalable processing performance, because when DCNNs
become deeper, they can process faster than the same
baseline.

The key contributions of this study are as follows.
● We developed a new buffer-module, namely, the

shared cache, in the logic base of the HMC. The shared
cache stores trained weights of DCNNs to reduce data
access cost. A novel algorithm optimizes the data miss
ratio in the shared cache, thereby improving the overall
system latency.

● The shared cache provides the DCNN’s functional
primitives for the PIM cores. Eventually, DCNN
functionality-based requests could be processed by the
PIM core which is configured with simple in-order
core in our assumed PIM system.

● We composed simple dual prefetchers in each PIM
core to deal with patterned memory access of DCNN
workloads.

● We introduced a PIM scheduler with several functions
for PIM core-level autonomous request control. This
enabled PIM system to be an aggregation of
decentralized systems for processing DCNN
functionalities broken from conventional hierarchical
memory systems.

The rest of this paper is organized as follows. Section II
presents the HMC’s background and its limitations as an
accelerating system (Section II-A), the characteristics of a
CNN in the view of computations (Section II-B), and other
works related to the PIM system (Section II-C). Section III
details the proposed functionality-based PIM accelerator
structure. Section IV presents the experimental design and
the evaluations of the proposed architecture based on the
conventional PIM accelerator. Section V summarizes the
paper.

FIGURE 1. HMC structure.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

II. BACKGROUND AND RELATED WORK

A. HYBRID MEMORY CUBE
The HMC [12] is one of the most promising PIM

systems. As shown in Fig. 1, multiple DRAM dies are
vertically stacked on the logic base, which has vault
controllers that correspond to the PIM cores. The vault
controllers support simple atomic operations, e.g.,
addressing, arithmetic, bitwise, Boolean, and comparison
[12]; however, they cannot support a general-processing
core owing to thermal and areal restrictions. The
corresponding vertical dimensional position of the vault
controller and DRAM partitions comprise the vault unit,
which operate as a processing unit. When the HMC
processes operations that require access to a specific
memory space (e.g., DRAM partition A), its vertically
corresponding vault controller, vault controller A, brings
data from DRAM partition A and processes it. It imposes a
high penalty for vault controllers when importing broad
(not vertically partitioned) DRAM data because the data
should be moved out to the crossbar switch, which is the
communication hub module between the host processor and
the HMC memory. Then, it should be moved back to the
requesting vault controller. Due to this issue, conventional
HMC-based PIM systems face significant limitations, in
which the PIM cores are used only as distributed calculator
near memory in hierarchical system. To handle this issue,
multiple PIM studies based on the HMC have proposed
novel communicating solutions between multiple cores
(Section II-C).

Externally, the HMC is connected to the host processor
using high-speed SerDes links that provide up to 30 Gbps
rates and an aggregate (upstream to host processor,
downstream to HMC memory) bandwidth of 480 GBps.
The brief description of the operational flow of the HMC-
based PIM system is as follows. The host processor’s
instruction is packetized and down-streamed to the SerDes
link. Then, the packet arrives at the crossbar switch, which
transmits this packet to the appropriate HMC vault
according to the packet’s DRAM address’s 3D-partition.
The vault transforms the packet to DRAM commands and
processes the atomic operations involving the DRAM data.
Finally, the processing results or any unsupported
instruction’s DRAM data are repacketized and sent back to
the upstream modules.

FIGURE 2. Convolution operation.

B. CNN
CNNs deliver excellent performance when extracting

features from images. As Fig. 2 shows, a CNN operation
receives an input image represented as a matrix and
convolves it using feature maps (filters). The convolution
operation involves multiplying the matrices’ corresponding
location elements and accumulating them as one value,
which is a form of a MAC operation.

In machine-learning frameworks, such as TensorFlow
[15], the convolution is implemented with several
functionalities, such as image patch, vector resizing, and
image contraction. Image-patch functionality is the
operation of designating the location of the elements to be
calculated. This functionality is essential because large-
sized image vectors cannot be loaded immediately into a
register of limited size. The resize functionality rearranges
the vector elements in the contiguous register memory
space. The image contraction functionality pairs the
corresponding input image’s vector element with the filter’s
vector element. After pairing each vector element, the
MAC operation starts in the Eigen devices, such as CPUs
and GPGPUs.

C. RELATED WORK
Ahn et al. [5] proposed a programmable PIM accelerator

for large-scale graph processing workloads, having the
computational characteristic of low data locality, to enable
memory-capacity-proportional performance of 3D
integration technology. They also proposed efficient
communicating methods between the PIM cores that execute
remote function calls via message passing. The message
either blocks or non-blocks a PIM core’s state. A blocking
message is used when a remote function returns some values,
and it must return them to the calling PIM core. Conversely,
if the remote function is a void type, the message need not
preempt the remote PIM core and a non-blocking message is
used. Additionally, the researchers proposed dual prefetch
engines (i.e., list and message-triggered prefetchers), which
were implemented at each of the PIM cores to utilize the
memory bandwidth.

Gao et al. [16] proposed a detailed composition of PIM’s
hardware and software components for scaling big-data
workloads, which are operated on massive datasets with
limited temporal locality. The shared memory concept was
used for the host processor and PIM cores to observe the
same physical memory space, ensuring that the PIM cores
processed low temporal locality jobs, while the host
processor processed the remaining jobs. They also proposed
a 2-dimensional mesh network-on-chip module in the logic
base of 3D memory to communicate directly between the
PIM cores by improving the instruction bypass method
through crossbar switch when accessing remote data. A
software stack having a runtime module was additionally
implemented in the PIM cores to hide hardware details and
provide software environments that support coherency and
communicating across multiple cores. This enabled domain-

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

specific optimization of big-data workloads for scalable
processing.

Jeon et al. [10] modified a previous HMC [12] system to
accelerate MAC operations. A MAC unit that consisted of an
extra MAC register (composed of a multiplier and an
accumulator) and an operand buffer was configured in each
of the HMC’s vault controllers. They then evaluated the
system using the HMC’s cycle-accurate simulator [17].
When designing the HMC-based accelerator, they deeply
considered minimal modifications of the HMC logic base,
because 3D memory is vulnerable to heat.

Min et al. [18] modified an HMC-based MAC operation
accelerator [10] to adopt the DNN weight-sharing algorithm
proposed in [19]. Moreover, an asynchronous packet
communicating method was implemented to communicate
efficiently between the host processor and PIM cores. In
addition, they improved the HMC packet scheduling so that
multiple PIM cores were not crossed [10].

Tasi et al. [6] proposed various communication methods
and scheduling algorithms on the PIM system of an
asymmetric memory hierarchy. They composed the HMC-
based logic layer with four PIM cores, in which each PIM
core has a private cache. Externally, the HMC was linked
with the host processor by the crossbar switch and SerDes
links like conventional HMC models. However, similar to a
previous study [16], the host processor and PIM cores
shared the same physical address space, and the private
cache coherency of each PIM core was supported by the
software. This scheduler software autonomously identifies
operational subjects (proper hierarchy) dynamically based
on a high-quality productivity policy.

Nai et al. [26] introduced GraphPIM, which is a full-
stack solution to accelerate graph processing applications
based on PIM architecture. In GraphPIM, it exploits an
offloading mechanism for graph programs’ atomic
operations. GraphPIM only considered graph analysis
workloads.

Kim et al. [27] proposed NeuroCube architecture that
accelerates neural network processing. NeuroCube contains
programmable digital neuromorphic architectures with
HMC modules. Each processing element (PE) has
connection to its own vault (memory channel to 3D-stacked
memory module); hence the major operations of neural
network processing can be handled by domain-specific PEs
with high density of memory and high memory bandwidth
resource. However, it only evaluated the 2D convolution
layer and fully connected layer only.

Gu et al. [28] proposed iPIM, the in-memory image
processing accelerator. iPIM is based on 3D stacking
memory cube that has similar structures of HBM and HMC.
Moreover, iPIM provides the single-instruction-multiple-
bank (SIMB) ISA for exploiting the data-parallelism. This
ISA is specialized to support multiple bank parallelism to
maximize sustainable bandwidth of 3D-stacked memories.

III. DCNN FUNCTIONALITY-BASED PIM ACCELERATOR

A. OVERALL ARCHITECTURE

FIGURE 3. Overall architecture.

Fig. 3 shows the proposed architecture for accelerating
DCNNs. Based on the HMC memory, we composed three
major modules in the logic base: a shared cache, dual
prefetchers, and a PIM scheduler. The shared cache
(Section III-B) provides the DCNN’s functional primitive
sets and stores the DCNN’s trained weights. The dual
prefetchers (Section III-C) are composed of two simple
prefetch engines; the two prefetchers are next-line [13] and
stride [14] prefetchers that have an aggregated buffer size
of 4 KB. The PIM scheduler (Section III-D) consists of
several application programming interface (API) functions
that allow multiple PIM cores to control requests
autonomously without the aid of the host processor.
Moreover, we integrated the MAC unit from [10], which is
composed of a multiplier, an accumulator, and an operand
buffer to accelerate the MAC operation in the PIM cores of
the HMC memory. This module helps process floating-
point MAC operations in five HMC cycles. Finally, our
PIM core, which is shown as the vault controller in Fig. 3,
is configured with a simple in-order core. We carefully
considered the HMC’s areal (Section III-B) and energy
(Section IV-F) restrictions in preparing the proposed
modules.

B. SHARED CACHE

FIGURE 4. Functionality-based operation of the DCNN in multiple PIM
cores.

Owing to energy limitations of 3D memory, conventional
PIM cores cannot be used as general-purpose cores; they
are restricted to simple atomic cores. To use the PIM
system’s high bandwidth, several previous studies [5],[16]
configured domain-specific APIs in the logic modules of
3D memory, thus enabling the PIM cores to process more

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

than simple operations. To increase the PIM cores’
utilization during DCNN processing, we configured a
buffer module, namely, the shared cache, located in the
logic base of the HMC. The shared cache provides the
DCNN’s functional primitive sets, i.e., image patch,
contraction, and resizing vector (Section II-B). These sets
are used to generate instruction blocks that can be
processed by the simple in-order core. In an operational
flow, a PIM core loads requested functionality set from the
shared cache. It then processes instruction blocks in order.
The conceptual operation diagram of processing DCNN,
based on the functionality operations of multiple PIM cores,
is given in Fig. 4. We implemented the synchronization of
multiple PIM cores by blocking them and writing them
through just before the MAC operation started. In this work,
algorithmic functionalities, such as pooling, batch
normalization, and non-linear activation functions, are not
considered in the design of our accelerator model.

FIGURE 5. Processing of shared weights in the proposed modules.

During the DCNN’s inference phase, the filters’ weights,
previously trained at the training phase, are used to evaluate
the values of the output nodes. We designed the shared
cache to store these trained weights. As a result, each PIM
core can access the shared data regardless of vertically
corresponding DRAM partitions, thereby preventing broad
vault access penalties without the support of inter-PIM
cores communicating the solutions, such as in [5],[16],[6].
Fig. 5 shows how shared weights can be processed in a PIM
core. Assume that img A sized 224×224×3 (height, width,
color) is convolved with the DCNN layer 1’s trained filter
weight (W1), which is sized 3 × 3 × 64 (height, width,
channels) in PIM Core 1. The img A is stored in Core 1’s
vertical DRAM partition, DRAM 1. W1 is stored in the
shared cache. To perform MAC operations, the elements of
img A and W1 to be calculated are designated and paired by
image patch, resize, and contraction functionality
operations (Section II-B). Then, the paired floating-point
elements are fed to the operand buffer of Core 1’s MAC
unit. The MAC operation is processed according to the
HMC atomic operation cycle timing using Core 1’s
multiplier and accumulator.

While DCNN’s layers continue to forward values from
input nodes to output nodes, each PIM core requires new
weight elements to evaluate the output signal for each
neuron node. Our proposed model consists of a total of 32
PIM cores, hence, when any miss occurs at the shared
cache layer, it causes data hazard problems that would be a
critical issue to the entire PIM architecture’s performance.
Therefore, the reduction of data miss rate at the shared
cache layer can improve the overall system’s operational
latency.

TABLE I

PRE-TRAINED WEIGHT SIZES

Workload Pre-trained weight size

LeNet 740 KB

AlexNet 244 MB

ZFNet 239 MB

GoogLeNet 54 MB

VGGNet 553 MB

ResNet 232 MB

The total size of the shared cache is 32 MB. Considering

that a conventional HMC’s volume consumes 31 × 31 × 3.8
mm3 [12], out of the 961 mm2 areal space, we conservatively
assumed that the available free areal space for the shared
cache is 20 mm2, which is sufficient for a 32 MB buffer.
Determining the specific method of organizing the shared
cache in the logic base (e.g., scattered buffer structure) will
be a future study. The DCNN workloads’ pre-trained weight
sizes used for the evaluations are given in Table 1 (see
Section IV-B for more detailed descriptions). As shown in
Table 1, most of the pre-trained weights exceed our shared
cache size of 32 MB. Thus, they cannot be loaded into the
shared cache together, and this can cause data hazard in
parallel execution of the PIM cores. Accordingly, we
implemented an efficient algorithm for replacing cache lines
optimized for minimizing data miss rate in the shared cache.
The algorithm is given in Algorithm 1, in which two extra
global tables are composed: HyperTable and HistoryTable.
HyperTable manages information of the DCNN workload’s
configurations and processing status of the system.
HistoryTable (a first-in-first-out queue structure) manages
the loaded weights’ records in the shared cache. The
algorithm begins by bringing the weight information of the
currently processed point of the DCNN workload from the
HyperTable. Then, the number of the shared cache’s lines to
be replaced is calculated from the HistoryTable. The number
of victim lines is initially set based on the DCNN layer
granularity. To minimize the data miss rate of the share cache,
our algorithm tries to replace shared cache lines based on the
DCNN’s channel granularity. This is implemented by
linearly probing whether HistoryTable entries are marked,
which represents the previous channel has been processed by
the system. The new entries replace the shared cache lines

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

using the least recently used (LRU) concept with each line’s
time stamp and valid bits. Finally, HyperTable and
HistoryTable are updated to represent current state of DCNN
processing and the shared cache, respectively. The
replacement algorithm is synchronized with the specific
HMC cycle time, and the write-through policy is used when
updating the shared cache with two global tables. The
detailed parameters of cycle time and line size for the shared
cache are given in Table 4.

Algorithm 1: Cache Line Replacement Algorithm

curStatus HyperTable.processing_status()

Procedure replace_cache_lines():

 nextLayerInfo HyperTable.find_next(curStatus)

 filterSize nextLayerInfo.filterSize

 numChannels nextLayerInfo.numChannels

 numVictimLines HistoryTable.calc_lines(

filterSize, numChannels)

 layerGranularity true

 numChLines 0

 for (i from 0 to numVictimLines)

 if (HistoryTable.get(i) marked_channel())

 numChLines i

 layerGranularity false

 break

 channelGranularity ~layerGranularity

 if (layerGranularity)

 HistoryTable.delete_fifo(0, numVictimLines)

 shared_cache_load_layers(nextLayerInfo,

numVictimLines)

 HistoryTable.push_fifo(nextLayerInfo,

numVictimLines)

 else if (channelGranularity)

 HistoryTable.delete_fifo(0, numChLines)

 shared_cache_load_channels(nextLayerInfo,

numChLines)

 HistoryTable.push_fifo(nextLayerInfo,

numChLines)

HyperTable.update_processing_status()

HistoryTable.update_channel_mark()

TABLE II

PREFETCH METHODS AND PARAMETERS

Prefetch Buffer Size 4 KB

Read/Write Latency ~16 ns

Replacement Policy
(Stride Prefetcher)

LRU writeback on every 2000
HMC cycles

C. DUAL PREFETCHERS
We composed small-sized (4 KB) dual prefetch buffers on

each PIM core of the 3D memory. Each dual prefetch engine
used a simple next-line [13] and stride [14] algorithm,
respectively. The next-line prefetcher prefetches DRAM
elements of the next block from the previously accessed
address. The stride prefetcher observes the stride to the
accessed addresses and then prefetches the DRAM address of
the last accessed address + stride. These two prefetch
algorithms are robust for processes involving simple linear
memory access patterns resulting in overall system latency
reduction. The prefetchers’ detailed parameters and
replacement methods are given in Table 2.

When a PIM core needs to process memory data, it
preferentially accesses the next-line prefetch buffer. If the
data are not stored in the next-line prefetch buffer, it
sequentially accesses the stride prefetch buffer. If both
prefetch buffers lack the requested data, it finally accesses
the vertically partitioned DRAM memory since the shared
cache and the PIM scheduler prevent broad vault access.

TABLE III

FUNCTIONS IMPLEMENTED FOR THE PIM SCHEDULER
Functions Descriptions

AllocReq() Allocate request to a PIM core

ReceiveReq() PIM core loads DCNN resources from

the shared cache

ProcessReq() PIM core processes DCNN functionality

OffloadBack() Offload request to another PIM core

WriteToCache() Write outputs to the shared cache

D. PIM SCHEDULER
We improved the conventional HMC’s control flow (i.e.,

packets being down-streamed from the host processor to the
HMC) by configuring various functions’ APIs for the PIM
scheduler module of the shared cache. These functions
enable PIM core-level request control making system to be
an aggregation of decentralized systems broken from
conventional hierarchical memory systems. Table 3 shows
the functions controlling the operational flow of our PIM
system. Hence, the PIM scheduler can provide appropriate
managements for offloaded jobs based on simple APIs.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

These functions are similar to NVIDIA CUDA’s API and
OpenCL’s one, so programmers can easily exploit PIM’s
data-parallelism without the knowledge of PIM’s structure or
3D-stacked memory architectures.

FIGURE 6. Control flow of autonomous request processing at the PIM core

level.
When a user request arrives at the system, the host

processor offloads it to the HMC. Then, the crossbar switch
allocates the request to a PIM core using an AllocReq() call.
The PIM core loads the functional primitives and trained
weights from the shared cache using the ReceiveReq() call
and processes DCNN functionality using the ProcessReq()
call. Sometimes a request offload between PIM cores is
essential when data to be loaded to a specific PIM core is
stored in other vertical partition of 3D memory. Our system
solves this problem without relying on the decision from
being up-streamed to the host processor. Instead, a PIM
core autonomously requests offloading to another PIM core
of corresponding vertical partition. An offload is executed
by an OffloadBack() call, which must bypass the crossbar
switch to determine corresponding PIM core to process data.
The WriteToCache() call is used to maintain the coherency
of various logic base modules and inform the shared cache
of system’s processing status. Fig. 6 shows how our PIM
scheduler’s functions make the PIM cores’ level
autonomous request control possible.

IV. EVALUATIONS

A. EXPERIMENTAL ENVIRONMENTS
To evaluate the performance of the proposed model, we

used HMC-MAC [10] as a baseline. HMC-MAC performs
cycle-accurate simulations of the HMC memory,
accelerating MAC operation by composing additional MAC
registers in the vault controller. We modified HMC-MAC
to implement the proposed PIM modules: shared cache,
dual prefetchers, and PIM scheduler. Additionally, we used
the DDR3_1600_x64 standards for communicating and
timing factors between the logic base and 3D-stacked

DRAM memory of the HMC. The parameters are
configured with the same way as the Gem5 [20] model of
HMC-2500x32. Other specific experimental parameters are
given in Table 4, which are the same for the HMC-MAC
baseline to allow for a fair comparison.

TABLE IV

EXPERIMENTAL PARAMETERS OF THE CORE AND MEMORY

tCK(host), tCK (HMC, Cache) 0.5 ns, 0.8 ns

of PIM cores in a system 32

of Link, Link speed 4, 30 Gb/s

DRAM DDR3_1600_x64

Block and Cache line size 32 B

The shared cache module is included in the HMC as in a

PIM core as a logical base. As shown in Table IV, the
shared cache has the same parameter configuration as the
HMC’s DRAM. As in Algorithm 1, we designed the
synchronization policy that proceeds line replacement
operations based on the current DCNN’s processing status
to cope with the parallel execution issue. That method can
keep cache synchronized with PIM cores to reduce
performance degradation by data hazards. A series of tasks
were implemented according to the parameters in Table IV
by modifying HMC-MAC [10], a cycle-accurate HMC
architecture simulator.

The performance enhancement of our proposed model is
shown in Figure 8, it is about the latency improvement
compared to the conventional HMC structure. The clock
frequency of the conventional HMC is 0.8ns (tCK) as
suggested in Table IV.

B. DCNN WORKLOADS
For DCNN workloads, we used the ImageNet Large Scale

Visual Recognition Challenge winners and other popular
image classification algorithms (LeNet [21], AlexNet [22],
ZFNet [23], VGGNet [24] (16 layers), GoogLeNet [2],
ResNet [3] (152 layers)). The pre-trained weight sizes of
these workloads are given in Table 1. To simulate our system
on these DCNN workloads, we used Intel pin-tool [25] code
instrumentation program to extract memory access traces and
non-memory operation (MAC) counts. The TensorFlow
machine-learning framework [15] was used as our DCNN
workloads’ running environment. We marked each of the
convolutional operation’s functional primitive sets as the
region of interest in TensorFlow and recompiled it to
generate the simulator’s traces by executing the DCNN
workloads on the pin-tool.

In this article, we focused on accelerating the inference
step of pre-trained neural networks. In the inference phase,
the DCNN progress can be considered as atomic procedures.
Therefore, the batch size in the training phase would not
make any impact on the model we proposed.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

Since only the CNN layer, not the entire DCNN layer, was
sampled to evaluate the performance, providing an
enhancement compared to baseline rather can show a clear
visible effect on the model comparison of other researchers'
work. In the experiment, 1 tCK of HMC-MAC was set as
0.8ns, to compare with other studies using the same
configuration as Table IV.

LeNet takes an input image sized 32×32×1 (height, width,
color), which differs from other workloads. Accordingly,
we executed LeNet with the MNIST dataset of handwritten
digits pictures sized 28×28×1 each, which was resized to
32×32×1 with zero padding. Every other neural network
was executed with the ImageNet dataset, sized 224×224×3
each.

C. FUNCTIONALITY-BASED DCNN OPERATION
ANALYSIS

FIGURE 7. Proportion of three major operations in the convolutional layer

instructions set.

To evaluate the effect of processing DCNN
functionalities at the PIM cores, we analyzed our six
DCNN workloads’ computational configurations. Fig. 7
shows the proportion of three major operations in the
convolutional layer’s instructions. Our proposed model can
handle 47% of all the operations on average. The average
proportion of PIM core processes was approximately 39%,
including 14% HMC atomic operations (Section II-A) and
25% MAC operations. The DCNN functionality operations
(Section II-B) were 8% on average. Although the
proportion of the DCNN functionality operations was only
8%, we found that providing PIM cores with DCNN
functionality had more synergistic effects as resulted in
25.9 % of average speed gain by configuring the shared
cache (Section IV-D). These effects were attributed that the
DCNN functionality operations were highly related to
initiating the other two operations and DRAM memory
read/write commands. Specifically, our functionality-based
PIM system not only relieved the host processor of
processing extra 8% of the convolutional layer’s operations
but also saved the cost of initiating multiple modules and
maintaining their coherency. Therefore, the DCNN
functionalities provided to PIM cores significantly
accelerated the overall DCNN processing.

D. OPTIMAL SIZE OF THE PREFETCH BUFFER

FIGURE 8. Execution time with the prefetch buffer size.

The result of narrow scaling on Fig. 8 is about the

effectiveness of single PIM core. And the execution time
with different prefetch buffer sizes normalized to 512 B.
Most DCNN algorithms exhibited short execution times as
the buffer size increased. With the ZFNet and VGGNet
workloads, the execution time increased with prefetch
buffer sizes of 1 and 2 KB because of the prefetch miss
penalty. However, when the buffer size was larger than 4
KB, the execution time decreased significantly. With buffer
size of 8 KB or even larger, the execution time was similar
to the 4 KB buffer case. Considering that 3D memory is
vulnerable to heat, additional logic should occupy a small
physical area to reduce complexity. Therefore, a prefetch
buffer size of 4 KB was determined to be optimal.

E. EXECUTION TIME

FIGURE 9. Latency improvement (speed-up) performance.
To evaluate the comprehensive impact of our system, we

conducted ablation studies using the proposed modules.
Fig. 9 shows the latency improvement (speed-up)
percentage of the proposed model. The baseline system we
used for comparison is HMC-MAC [10]. The comparative
group consists of HMC-MAC with simple dual prefetcher

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

modules (column 1), a shared cache for DCNN
functionality processing and pre-trained weight sharing
(column 2), shared cache with the PIM scheduler for the
PIM core-level autonomous request control (column 3), and
the proposed model with all three modules (column 4). The
proposed PIM architecture with shared cache, dual
prefetchers, and the PIM scheduler showed a 38.9 %
average speed gain. Our model also demonstrated more
scalable processing performance than the baseline system,
because when the DCNN workloads deepen (left to right in
Fig. 9), greater speed gains were observed. Specifically, our
system showed the smallest average gain of 28.8 % in
LeNet, which was the shallowest network (five layers).
Conversely, our system showed the largest average speed
gain of 46.9 % in ResNet, which was the deepest network
(152 layers).

The impact of our dual prefetchers (column 1) produced
an average speed gain of 18.8 %. We confirmed that these
latency improvements were attributed to the computational
features of the DCNN exhibiting simple patterned memory
access. More details about the performance of each
prefetcher are given in Section IV-G.

The impact of the shared cache (column 2) showed a
25.9 % average speed gain. These improvements were
attributed to the DCNN’s weight-sharing and functionality-
based operations processing of multiple PIM cores, which
enabled increased use of local PIM core’s computational
utilization and data accessibility of 3D memory. More details
regarding the performance of our DCNN functionality-based
processing are given in Section IV-H.

FIGURE 10. HMC bandwidth.
The impact of the PIM scheduler (column 3) with the

shared cache showed a 27.6 % average speed gain, which is
not significantly different from the shared cache only
(column 2). However, we observed that the PIM scheduler
produced a significant improvement in terms of decrease in
energy attributed to the PIM core-level autonomous request
control. More detailed descriptions of the PIM scheduler’s
energy performance are given in Section IV-F.

F. BANDWIDTH
Fig. 10 shows the aggregated bandwidth (GB/sec) of the

HMC configured with 32 PIM cores. The proposed model,
which includes the dual prefetchers, shared cache, and PIM
scheduler (column 5), showed the highest bandwidth at an
average of 94.5 GB/sec, which is a 27.9 % increase over
our baseline model HMC-MAC (column 1). The baseline
model’s aggregated bandwidth averaged 73.9 GB/sec,
which is slightly lower than the conventional HMC’s
theoretical maximum bandwidth of 80 GB/sec (single-
directional) [12]. Additionally, we found that our shared
cache model (column 3) showed a slightly lower bandwidth
with an average of 83.5 GB/sec, than our dual prefetchers
model (column 2), which has an average of 84.8 GB/sec.
The PIM scheduler model (column 4) showed the same
average bandwidth as the dual prefetchers model (column
2). The high bandwidth of our proposed models was
attributed to the improved utilization of the PIM cores.
Specifically, each of the dual prefetchers, shared caches,
and PIM scheduler increased PIM cores’ utilization in
terms of data prefetch, DCNN functionalities processing
and autonomous request control.

In terms of bandwidth, the shared cache model shows
slimmer lower bandwidth than the dual prefetchers model,
which can be estimated to be the following two causes.
Firstly, the difference in utilization between the two models
in DCNN processing can be seen as the cause. In the case
of pre-trained weights, the former model is loaded from the
shared cache line while the latter is from DRAM, so it is
unlikely to make a big difference. On the other hand, the
utilization cost of functional primitives in the former model
may be less than the latter.

G. ENERGY CONSUPTION

FIGURE 11. Energy consumption of the PIM systems.
We modeled the energy consumption of the proposed

PIM system using the same metric as in [6], where the
dynamic energy consumption of the logic base was 10 pJ/b
and the SerDes link was 2 pJ/b. Fig. 11 shows the energy
consumption of the proposed models with six different
workloads, which are normalized to the baseline HMC-
MAC model. For each workload, the columns are organized
in the same order as Fig. 10. We observed that the energy
consumption tendencies of the five PIM systems were
similar for the six different DCNN workloads. The

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

proposed model (column 5 of each workload) consumed an
average of 18.7 % more energy than did the baseline
(column 1), which was attributed to the PIM cores’
increased utilization. However, we confirmed that this
increased energy consumption was within the power budget
based on the industrial research on thermal feasibility of
die-stacked PIM [11], which was also used in [5]. The other
proposed modules (dual prefetchers, shared cache, and PIM
scheduler (for columns 2–4)) consumed averages of 19.8,
30.8, and 6.3 % more energy, respectively. Although the
shared cache has high energy requirements because the
DCNN’s functional primitives are provisioned to multiple
PIM cores, the PIM system’s energy was significantly
reduced when the PIM scheduler was added, and the values
were lower than the baseline in LeNet (column 4 of LeNet
in Fig. 11), which represents the effect of a significant
energy reduction in the SerDes link (lighter colored at the
top of each bar in Fig. 11) as the PIM scheduler allowed for
PIM core-level autonomous request control without the aid
of the host processor.

H. PREFETCH PERFORMANCE

FIGURE 12. Dual prefetchers’ hit rate.

Fig. 12 shows the performance of each of our dual
prefetchers in detail. The total hit rate of our dual
prefetchers averaged 15.4 %, which consists of the next-
line prefetcher at 9.6 % and the stride prefetcher at 5.8 %.
The next-line prefetcher showed robust performance on the
large filters having a small number of channels because
these filters cause a continuous memory address access
pattern. Specifically, LeNet’s first convolutional layer is
configured with filters of 28×28 size and six channels,
showing a 21 % next-line prefetcher hit rate. Conversely,
GoogLeNet and ResNet are mostly configured with small-
sized 1×1, 3×3, and 5×5 filters, but a significantly large
number of 64, 128, 256, and 512 channels, showing a 6.1 %
and 6.4 % next-line prefetcher hit rate, respectively. The
stride prefetcher, which is used sequentially after the next-
line prefetch buffer is missed, complemented these small-
sized filters with numerous channels. The stride prefetcher
had the best hit rate (16.4 %) on GoogLeNet, and the
second best (15.5 %) on ResNet. This result confirms that
the stride prefetcher backed up the next-line prefetcher’s
misses, where DCNN workloads have the characteristics of
non-continuous memory address access while still
displaying simple (e.g., linear) patterned access.

V. CONCLUSION AND FUTURE WORK
In this article, we enhanced the HMC, which is a type of

PIM architectures, which provides six atomic operations to
accelerate the DCNN’s domain specific functionalities by
the HMC’s feasibilities. Therefore, we compared our model
to the conventional HMC based PIM architecture to
measure the difference on latency, bandwidth, and
scalability, and verified our model’s feasibility.

Therefore, we designed three new modules on a
conventional HMC-based PIM accelerator. These modules
provided the PIM cores with increased utilization in
computations. Specifically, our new modules (1) provided
PIM cores with DCNN functionalities by the shared cache,
(2) allowed for prefetching on the DCNN’s patterned
memory access by the dual prefetchers, and (3) enabled
PIM core-level autonomous request control by the PIM
scheduler. Both the shared cache and dual prefetchers
contributed to the significant improvements in latency and
bandwidth. Furthermore, the PIM scheduler showed a
significant impact on the 3D memory’s total energy
reduction. Our comprehensive evaluations showed that the
proposed functionality-based PIM system outperforms
conventional MAC-accelerating PIM system in both
latency and bandwidth within the power consumption limit
of the 3D memory. Furthermore, our system achieved
scalable processing performance, because even with deeper
DCNNs, it demonstrated faster execution times compared
with the conventional PIM system. We conservatively
measured the feasibility of our modules in both aspects of
areal availability and energy budget. Additionally, we
presented a specific model configuration for accelerating
multiple DCNN workloads. We concluded that providing
PIM cores with DCNN functionalities can be an efficient
alternative for emerging needs of accelerating image and
DCNN workloads processing.

REFERENCES
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:

Surpassing Human-Level Performance on ImageNet Classification,”
in IEEE I. C. Comput. Vis., Santiago, 2015, pp. 1026–1034. doi:
10.1109/ICCV.2015.123

[2] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, “D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich ‘Going deeper with convolutions,’.”
arXiv preprit arXiv:1409.4842, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for
image recognition.,” In Proc. IEEE Conf. Comput. Vis. Pattern
Recogn. 2016, pp. 770–778.

[4] M. Motoyoshi, “Through-silicon Via (TSV),” in Proc. IEEE, vol. 97,
no. 1, pp. 43-48, Jan. 2009.

[5] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable
processing-in-memory accelerator for parallel graph processing,” in
Proc. ACM/IEEE 42nd Ann. Intl. Symp. Comput. Archit., Portland,
OR, 2015, pp. 105-117. doi: 10.1145/2749469.2750386

[6] P. Tsai, C. Chen, and D. Sanchez, “Adaptive Scheduling for
Systems with Asymmetric Memory Hierarchies,” in Proc. 2018 51st
Ann. IEEE/ACM Intl. Symp. Microarch, Fukuoka, 2018, pp. 641-
654. doi: 10.1109/MICRO.2018.00058

[7] S. Gupta, M. Imani, H. Kaur, and T. S. Rosing, “NNPIM: A
Processing In-Memory Architecture for Neural Network
Acceleration,” IEEE Trans. Comput., vol. 68, no. 9, pp. 1325–1337,
1 Sept. 2019. doi: 10.1109/TC.2019.2903055

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2021.3122818, IEEE
Access

VOLUME XX, 2021 1

[8] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie,
and H. Yang, “GraphH: A Processing-in-Memory Architecture for
Large-Scale Graph Processing,” in IEEE Trans. Comput-Aid. Des.
Integr. Ckts Sys., vol. 38, no. 4, pp. 640–653, April 2019. doi:
10.1109/TCAD.2018.28215 65

[9] M. Zhang, Y. Zhuo, C. Wang, M. Gao, Y. Wu, K. Chen, C.
Kozyrakis, and X. Qian, “GraphP: Reducing Communication for
PIM-Based Graph Processing with Efficient Data Partition,” in Proc.
2018 IEEE Intl. Symp. High-per Comput. Archit., Vienna, 2018,
2018, pp. 544–557. doi: 10.1109/HPCA.2018.00053.

[10] D. Jeon, K. Park, and K. Chung, “HMC-MAC: Processing-in
Memory Architecture for Multiply-Accumulate Operations with
Hybrid Memory Cube,” in IEEE Comput. Archit. Letters, vol. 17, no.
1, pp. 5–8, 1 Jan.-June 2018, doi: 10.1109/LCA.2017.2700298

[11] Y. Eckert, N. Jayasena, and G. H. Loh, “Thermal feasibility of die-
stacked processing in memory,” Presented at 2nd Wkshp. Near-Data
Process., Cambridge, UK, Dec. 2014.

[12] Hybrid Memory Cube Consortium (HMCC), Hybrid Memory Cube
Specification 2.1, Online, 2016.

[13] A. J. Smith, “Sequential Program Prefetching in Memory
Hierarchies,” in Computer, vol. 11, no. 12, pp. 7-21, Dec. 1978. doi:
10.1109/C-M.1978.218016

[14] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride Directed
Prefetching in Scalar Processors,” in Proc. 25th Ann. Intl. Symp.
Microarchit. Vol. 25, Portland, OR, USA, 1992, pp. 102–110. doi:
10.1109/MICRO.1992.697004

[15] M. Abadi, et al. “TensorFlow: A system for large-scale machine
learning.” In Proc. 12th USENIX Symp. Oper. Sys. Design Implem.,
2016; pp 265−283.

[16] M. Gao, G. Ayers, and C. Kozyrakis, “Practical Near-Data
Processing for In-Memory Analytics Frameworks,” in Proc. Intl.
Conf. Parallel Archit. Compil., San Francisco, CA, 2015, pp. 113–
124. doi: 10.1109/PACT.2015.22

[17] D. I. Jeon and K. S. Chung, “CasHMC: A cycle-accurate simulator
for hybrid memory cube,“ IEEE Comput. Archit. Lett., 2016. doi:
10.1109/LCA.2016.2600601

[18] C. Min, J. Mao, H. Li, and Y. Chen, “NeuralHMC: an efficient
HMC-based accelerator for deep neural networks,” In Proc. 24th
Asia S. Pacif. Des. Autom. Conf. Assoc. Comput. Machin., New
York, NY, USA, 2019, pp. 394–399.

[19] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze. “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional
neuralnetworks,” IEEE J. Solid-State Ckts., vol. 52, no. 1, 2017.

[20] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, and R. Sen,
“The gem5 Simulator,” ACM SIGARCH Comput. Archit. News, vol.
39, no. 2, pp. 1–7, 2011.

[21] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based
learning applied to document recognition," in Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi:
10.1109/5.726791.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” In NIPS, pp.
1106–1114, 2012.

[23] M. D. Zeiler and R. Fergus. “Visualizing and understanding
convolutional networks,” In Comput. Vis. ECCV, pp. 818–833,
Springer, 2014.

[24] K. Simonyan and A. Zisserman. “Very deep convolutional networks
for large-scale image recognition,” CoRR, abs/1409.1556, 2014.

[25] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. “Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation,” In Proc.
ACM SIGPLAN Conf. Program. Lang. Des. Implem., 2005, pp. 190–
200.

[26] Nai, L., Hadidi, R., Sim, J., Kim, H., Kumar, P., and Kim, H.
“Graphpim: Enabling instruction-level pim offloading in graph
computing frameworks,” In Proc. IEEE International symposium on
high performance computer architecture (HPCA), 2017, pp. 457-
468.

[27] Kim, D., Kung, J., Chai, S., Yalamanchili, S., and Mukhopadhyay, S.
“Neurocube: A programmable digital neuromorphic architecture
with high-density 3D memory,” In Proc. ACM SIGARCH Computer

Architecture News, 44(3), 2016, pp. 380-392.
[28] Gu, P., Xie, X., Ding, Y., Chen, G., Zhang, W., Niu, D., and Xie, Y.

“iPIM: Programmable in-memory image processing accelerator
using near-bank architecture,” In Proc. ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA), 2020,
pp. 804-817.

MIN-JAE KIM received his B.S. degree in
Computer Science from Yonsei University, Seoul,
Korea in 2018. He received his M.S. degree from
the Department of Computer Science at Yonsei
University, Seoul, Korea in 2021. Currently, he
is a researcher at the TmaxAI, Seongnam, Korea.
His research interests include processing-in-
memory architecture design, AI accelerating
system, natural language processing, and
knowledge distillation.

JEONG-GEUN KIM received his B.S. degree in
Computer Science from Yonsei University, Seoul,
Korea in 2013. He obtained his Ph.D. in 2021
from the Department of Computer Science at
Yonsei University, Seoul, Korea, where he is
currently a postdoctoral researcher. His research
interests include memory hierarchy and
architecture design, hybrid (heterogeneous)
memory systems, software based micro-
architecture simulation, processing-in-memory

architecture design, and heterogeneous computing systems.

SU-KYUNG YOON received the B.S. degree in
Electronic Engineering from Kyung Hee
University, Suwon, Korea, in 2005, and the Ph.D.
degree in Computer Science from Yonsei
University, Seoul, Korea, in 2018. From 2005 to
2008, she worked at System LSI Division,
Device Solution, Samsung Electronics, Korea.
Currently, she is an assistant professor at the
Division of Computer Science and Engineering,
Jeonbuk National University, Korea. Her current

research interests include intelligent data management based on machine
learning, memory/storage hierarchy system, and emerging non-volatile
memories.

SHIN-DUG KIM (Member, IEEE) received his
B.S. degree in Electronic Engineering from
Yonsei University, Seoul, Korea, in 1982, and his
M.S. degree in Electrical & Computer
engineering from University of Oklahoma in
1987. In 1991, he received his Ph.D. from the
School of Electrical & Computer Engineering at
Purdue University, West Lafayette, Indiana, USA.
He was a Professor of the Computer Science at
Yonsei University, Seoul, Korea. Currently, he is

a Distinguished University Professor of Yonsei University. His research
interests include advanced computer systems, intelligent memory system
design, processing-in-Memory architecture design, and ubiquitous
computing platforms. He is also a member of the IEEE Computer Society.

