
1.  Introduction
Vortex streets formed in the cloudy wake of mountainous islands are the analogs of the classic Kármán 
vortex street observed in laboratory bluff-body flows. Atmospheric vortex streets develop in conditions char-
acterized by a well-mixed subcloud layer capped by a strong temperature inversion with a weaker stably 
stratified layer above and consist of mesoscale eddies, which span the entire marine boundary layer and 
have a nearly upright axis with no height variation in their properties (i.e., they are approximately 2D). 
Although the spatial arrangement (aspect ratio) of these spectacular vortex patterns has been studied ever 
since their first photographs were obtained at the dawn of the satellite era (e.g., Chopra & Hubert, 1965; 
Hubert & Krueger, 1962; Lyons & Fujita, 1968; Young & Zawislak, 2006), advances in modeling and observa-
tional capabilities have recently led to a renewed interest specifically in their dynamics. Numerical forecast 
models and large-eddy simulations are now capable of handling spatial grid resolutions at the lower end of 
the meso-gamma scale (2–20 km) in a sufficiently large domain (hundreds of kilometers on a side) required 
for the realistic modeling of island wakes (Heinze et al., 2012; Nunalee & Basu, 2014; Nunalee et al., 2015).

The spatial resolution of satellite wind retrievals has also reached the kilometer scale (2–8 km), at least in a 
research setting if not operationally, which allows to characterize the finer details of wake flows. The wind 
and vorticity field of atmospheric vortex streets was successfully measured by stereo cloud-motion winds 
from the Multiangle Imaging SpectroRadiometer (MISR; Horváth, 2013) and also by ocean surface winds 
from the Advanced Scatterometer (ASCAT; Vogelzang et al., 2017). These polar-orbiter instruments, how-
ever, only offer snapshots of the wind field. The latest generation geostationary imagers, in contrast, can 
provide high-cadence wind retrievals that capture the time evolution of the wake. Horváth et al. (2020) used 
the Advanced Baseline Imager (ABI) aboard Geostationary Operational Environmental Satellite-16 (GOES-
16) to derive 6 km resolution cloud-motion winds at 5 min frequency, to characterize the wake oscillations 
and to measure vortex shedding, advection, and decay in the lee of Guadalupe Island.
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High spatiotemporal-resolution winds represent both challenges and opportunities. The validation of satel-
lite winds is difficult due to the general lack of ground truth and traditionally relies on comparisons against 
sparse radiosonde observations. In recent years, aircraft observations have also been used to evaluate de-
rived winds, but even with this additional data source there are significant gaps in the in-situ measurement 
network. As a result, the quality control of operational satellite winds mostly relies on spatial and temporal 
self-consistency checks. The quality of retrievals is expressed by the level of vector, speed, and direction con-
sistency between neighboring as well as between consecutive wind vectors (Holmlund et al., 2001). These 
quality control schemes were designed with coarser-resolution global forecast models in mind, which re-
quire a description of the slowly varying large-scale flow. They are, however, inapplicable to unsteady wake 
flows that are characterized by large wind variations on small spatial and temporal scales, due to both small-
scale dynamics and measurement uncertainties. Furthermore, the observation of local wind vectors alone 
does not allow flow comparison on the scale of features such as vortices, as soon as those are in motion, 
because of the superimposed transport (Günther & Theisel, 2018).

The effective visualization of high-resolution winds is also challenging. Traditional vector plots (wind barbs 
or arrows) are unsuitable for time-dependent flow, due to their inability to separate features from the un-
derlying motion. In addition, spatially dense data sets suffer from occlusion of vectors. There are, however, 
alternative techniques that are similarly easy to calculate, yet are more informative, as they reveal under-
lying transport dynamics much more clearly. For example, a user survey of 2D vector field visualization 
methods found that techniques representing integral curves and conceptualizing particle advection tend 
to perform better in time-varying flows (Laidlaw et al., 2005). Recently, Bujack and Middel (2020) pointed 
out that atmospheric flows are visualized almost exclusively by basic techniques only (arrows, streamlines, 
or color coding the velocity magnitude) and recommended the more regular use of feature-based methods.

We believe there are opportunities for progress on both of these fronts. Complex spatiotemporal systems 
such as atmospheric vortex streets are highly structured, but nevertheless organize around a lower-di-
mensional skeleton of coherent features. We investigate selected techniques from direct, geometric, im-
age-based, and feature-based flow visualization regarding their potential to serve as diagnostic measure, 
leading up to Lagrangian Coherent Structures (LCS; Haller, 2015), which identify the most attracting, most 
repelling, or least shearing material lines of particle dynamics. Such material boundaries, which can now 
be calculated thanks to the high-frequency of ABI winds, are of interest, because they segment the flow into 
compartments of coherent behavior.

Although these techniques are well-known in the fluid dynamics and scientific visualization literature, 
they have not yet caught on with the wider satellite wind community. Therefore, one of the goals of the 
current work is to serve as a practical tutorial, demonstrating these methods on the real-world vortex street 
wind data set of Horváth et al. (2020). Furthering this goal, we provide a MATLAB implementation of the 
discussed feature extraction methods as well as time series animations and scripts to reproduce the figures 
in the study.

In addition, we aim to show that LCS and particle/texture advection methods applied to the Guadalupe 
wind data visually describe the emergence of the observed cloud vortex patterns well and thus indirectly 
confirm the quality of the satellite wind retrievals. We argue that after further development, these tech-
niques can serve as complementary tools for the quantitative validation, or at least consistency testing, of 
high spatiotemporal-resolution wind data. The atmospheric vortex street is a good case study, because we 
can also draw on and compare against well-known results obtained by the above techniques for the classic 
2D cylinder flow.

The study is organized as follows. In Section 2, we introduce the notation used and briefly describe our 
measurement and simulation data. Section 3 describes the pitfalls of direct visualization methods, such as 
arrow plots. Section 4 elaborates on the calculation and use of geometric visualization methods that are cen-
tered around particle integration. Section 5 increases the information density by image-based techniques 
such as line integral convolutions. Section 6 takes a feature-centered approach to visualize the coherent 
structures in fluid flow. Finally, Section 7 concludes with an outline of opportunities for future work.
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2.  Background and Data
2.1.  Notation

Throughout this work, we will refer to scalar numbers with italic letters, such as E s . Vector-valued quantities 
are expressed with bold letters, such as E v . Matrices are denoted with capitalized bold letters, such as E J .

A vector field is a map ( , ) ( , , ) :E t x y t D T D  v x v  that assigns each point E Dx  in the E two -dimensional 
domain 2E D    a vector:

( , , )
( , , )

( , , )
u x y t

x y t
v x y t
 

   
 

v� (1)

If E v depends on time it is called unsteady or time-dependent. Otherwise, the flow is called steady, that is, 

when the time partial derivative vanishes to zero: E
t





v 0 .

We explain all visualization methods through the examples of (a) a numerically simulated 2D vector field 
of the classic cylinder flow and (b) a satellite-retrieved real-world quasi-2D meteorological vector field con-
taining an atmospheric Kármán vortex street. In the following, we give a brief description of the data sets 
and explain the first visualization method.

2.2.  Data Sets

2.2.1.  Cylinder2D Flow

For reference, we apply the visualization methods to the well-known laboratory Kármán vortex street. This 
fluid flow was numerically simulated with the open source solver Gerris (Popinet, 2003). The spatial do-
main [ 0.5,7.5] [ 0.5,0.5]E     is filled with a viscous 2D fluid that is injected from the left into a channel with 
solid walls and slip boundary conditions. A circular obstacle is placed at (0,0)E  with radius 0.0625. The kine-
matic viscosity is 0.00078125E    , leading to a Reynolds number of Re 160E   . The data set is discretized onto 
a 640 80E   grid and the time range [0,15]E  is discretized with 1,501 time steps. The velocity vector field is pub-
licly available; for more details on its definition we refer to Günther, Gross, et al. (2017a). Figure 1a shows 
the periodic patterns forming in the wake of the cylinder. Arrows do not align with the flow structures 
(shown in white), which are instead revealed by visualizing structures that tracer particles are attracted to, 
that is, locations at which smoke would collect if it was released from the cylinder. The white structures are 
calculated by the (backward) finite-time Lyapunov exponent (FTLE), which is explained later.

2.2.2.  Guadalupe Flow

Satellite cloud-motion vectors (or “winds”) were derived for the atmospheric Kármán vortex street observed 
by GOES-16 in marine stratocumulus in the lee of Guadalupe Island off Baja California on May 9, 2018. For 
later reference, the reflectance map is displayed in Figure 2. The stratocumulus deck was located below the 
top of a low-level temperature inversion starting at a base height of 570 m, with cloud top heights varying 
between 600 and 900 m and having a median value of 750 m. The cloud-motion vectors thus represent hori-
zontal winds within a narrow layer (at a nearly constant level) and were extracted from 0.5 km resolution 
red band (0.64  E  m) imagery provided by ABI every 5 min. Retrievals were generated from consecutive image 
pairs for the 8-hr period between 14:32 and 22:37 UTC, totaling 96 time steps and covering a 602 E  602-pixel 
domain encompassing Guadalupe and its wake down to 26   N latitude. A 5 5E   -pixel (  2 5 2 5

2
. . km  ) sub-

scene was centered on each pixel in this domain and tracked forward in time by minimizing the sum of 
squared difference similarity measure between the target image subscene and the search image subscene 
(Bresky et al., 2012; Daniels et al., 2010). The resulting 2.5 km resolution local winds were then resampled 
onto a Universal Transverse Mercator (UTM) grid with a spacing of 6.3 km. To reduce noise, each UTM 
gridbox was assigned the median of the local wind vectors it contained. For more details, including a public 
link to the data repository, see Horváth et al. (2020).

An arrow plot of the island wake is shown in Figure 1b. Note that the arrows do not reveal the mushroom 
patterns visible in the clouds, since the arrow direction depends not only on the local motion indicated by 
the vortex pattern but also on its transport. Namely, the arrow direction is a superposition of flow features 
(e.g., vortical motion inside vortices) and the ambient transport (overall transport tendency). Thus, arrows 
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are unsuitable to study the correlation with the observed imagery. The satellite-retrieved data exhibit oc-
casional outliers with exceptionally high wind speed and strong deviation from surrounding vectors. In 
Horváth et  al.  (2020), the vertical component of relative vorticity calculated from the horizontal winds 
was smoothed with a simple 3 E  3 gridbox averaging window to reduce the effect of outliers. In the current 
study, we preprocess the flow using an energy-based smoothing, which is equivalent to a masked isotropic 
diffusion that is parameterized through a compromise between data similarity and smoothness rather than 
the specification of a filter size.

Let E  be the spatial domain of the data and let E   be the part of the domain inwhich the velocity 
values are available and not marked as outlier, that is, the absolute value of both velocity components is 
below 8m sec/ , a threshold we chose empirically. Given the original vector field ( , )E tv x  at each given time t  , 
we minimize the following energy E E to solve for a new vector field v x* ( , )t  such that

E t t
D

   


  v x v x x

v

( , ) ( , )
(

*

*
2

data similarity

  


xx

x

x

, )
min

t


 

2

smoothness

  
� (2)

Since the above energy is quadratic in its unknowns, it has one optimal solution that can be found by 
discretizing the domain and performing a linear least squares fit. Here, we fit a vector field to the satellite 
winds, wherever they are available, and we generally assume that the desired vector field is smooth, which 
is known as Tikhonov regularization. The parameter E  is thereby a smoothness weight, which we empir-
ically set to 0.2E    . Selecting the weight is a compromise between numerical stability and correctness in 

Figure 1.  Arrow plots of the Cylinder2D flow at 7.5E t   (a) and the Guadalupe flow at 17:03 UTC (b). The left image shows the full domain and the right image 
presents a close-up view of the leeward side of the obstacle.
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the location of extracted features. Compared to the smoothing of Horváth et al. (2020), our Tikhonov-based 
smoothing first removes outliers to not propagate false values into the neighborhood.

3.  Direct Methods
Direct visualization methods encode components of the vector field by color or place glyphs at discrete 
locations to convey derived information. For general vector field data, the most commonly used glyph is an 
arrow that depicts the wind direction; for the special case of meteorological wind fields an alternative is the 
wind barb. For a comprehensive introduction to glyph-based techniques, we refer to the survey of Borgo 
et al. (2013).

3.1.  Arrow Plots

Arrow plots visualize a vector field by placing a small arrow at each data grid point, indicating the direction 
of the flow using the arrow direction and the magnitude of the vector by the length of the arrow. Examples 
can be seen in Figure 1. Care must be taken not to make the arrows too long, as they start to overlap other-
wise. Because the exact magnitude might be difficult to discern when viewing vectors, meteorologists often 
prefer the use of wind barbs, which consist of a fixed-length shaft indicating direction and a combination 
of short and long barbs and pennants (collectively “feathers”) to indicate speed. Wind barb overlap, how-
ever, is even more of an issue for dense vector fields, due to the presence of the “feathers”. In interactive 

Figure 2.  For better comparison with various flow visualization techniques later on, we provide the reflectance map of 
the Guadalupe flow for May 9, 2018, 17:03 UTC.
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visualization applications, the number of arrows can be increased when the user zooms in to maintain a 
constant arrow density.

3.2.  Discussion

An arrow plot is generally ineffective in showing a time-dependent fluid flow phenomenon. In Figure 1a, 
for instance, the location of vortices and other fluid flow features is not apparent from the visualization. 
Arrow plots can therefore not form the basis of conclusions about flow behavior. The continuum mechan-
ical reason for this is that the physical interpretation of the vector orientation and length is not objective 
(Truesdell & Noll, 1965). Intuitively, lacking objectivity means that two different observers, for example 
one standing still and another one performing a rotation, might draw different conclusions when observing 
the same physical phenomenon, which is highly undesirable. Objectivity is a mathematical property that is 
obtained when a measure is invariant under uniform rotations and translations of the reference frame, that 
is, all observers will draw the same conclusion. Formally, let ( , )E tv x  be a vector-valued property observed in 
frame 1E   and ( , )E tw y  be the same vector-valued property observed in frame 2E   that is moving relative to 1E   by 
a Euclidean transformation:

( ) ( ),t t y Q x c� (3)
where ( )E tQ  is an arbitrary time-dependent rotation matrix, and ( )E tc  is an arbitrary time-dependent transla-
tion vector. Then, the vector-valued property is objective if it fulfills:

( , ) ( ) ( , ).t t tw y Q v x� (4)

Since arrow length and orientation are different for differently moving observers, arrows are not useful to 
study the behavior of particles in the fluid and their immediate value as quality metric in a vector field com-
parison is limited. Arrow plots can only reveal instantaneous structures, as for example needed in stream-
line-oriented topology (Günther & Baeza Rojo, 2021). Nevertheless, an arrow plot is a frequent first choice 
to get an initial impression of the vector data, for example to investigate the amount of noise present at 
individual grid points. A more sensible quality metric would inspect reference frame invariant features that 
are derived from the velocity field and would utilize the temporal coherence of those structures. In the fol-
lowing section, we take the first step in this direction by inspecting integral geometry that reveals patterns 
and may serve as structure along which coherence can be measured.

4.  Geometric Methods
4.1.  Flow Maps

In experimental flow visualization, a common approach to visualize a usually invisible fluid flow is to re-
lease tracers such as smoke or dye or hydrogen bubbles, which are advected by the flow, creating striking 
patterns (streaklines) that convey the motion of the fluid (Van Dyke, 1982). In atmospheric flows, this is 
partially mimicked by the observation of clouds, though their evolution is not strictly a matter of passive 
advection. Once vector fields are captured or numerically simulated, computational flow visualization pro-
vides a multitude of approaches to visualize the fluid flow structures, which identify the driving processes 
that govern the transport. We thereby distinguish between Eulerian approaches that analyze the flow per 
time step and Lagrangian approaches that derive an analysis from particle motion. Therefore, a key ingredi-
ent is the ability to trace virtual particles, which we cover below.

In an unsteady flow ( , )E tv x  , that is, when the flow is changing over time, the trajectory ( )E tx  of a massless 
tracer particle is called a pathline. For a given seed point 0E x  and seed time 0E t  , a pathline is the solution to the 
ordinary differential equation (ODE):

0 0
d ( ) ( ( ), ) with ( ) ,
d

t t t t
t

 x v x x x� (5)

that is, the pathline is always tangential to the flow. The trajectory is numerically calculated as an initial 
value problem for a given initial condition using:

0 0 00
( ) ( ) ( ( ), ) with ( ) .t

tt t d t    x x v x x x� (6)
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In an unsteady flow, each particle needs to store its current position and also its current time, since the 
vector field that describes where the particles goes next is time-dependent.

For notational convenience, it is common to introduce the flow map 00 ( ) :tE D D Φ x  , which maps a parti-
cle seeded at location 0E x  at time 0E t  to its destination after pathline integration for duration E   , cf., Haller (2015):

0
0 00 0

( ) ( ( ), ) .t
t t t t dt   Φ x x v x� (7)

For our data sets, the flow maps are visualized in Figure 3. In these figures, the position that a particle 
reaches after numerical integration is color-coded directly. The x-component is mapped to the red channel 
and the y-component is mapped to the green channel. For an integration duration of 0E    , as for the Cyl-
inder2D flow in Figure 3a (top), no particle has moved yet and thus we directly color-code the seed point 
location. However, it is remarkable that the vortex pattern immediately becomes apparent when visualizing 
the flow map after a short integration, as in Figure 3a (bottom). Here, the white areas denote locations from 
which the particle has left the domain during numerical integration. Thus, here the flow map is undefined. 
Similarly, the vortex pattern also becomes apparent in the Guadalupe flow in Figure 3b. The flow map is 
rarely visualized directly apart from debugging purposes. Instead structures and features are derived from 
it, which enables more quantification and guidance of attention, for instance for the detection of transport 
barriers and vortices. We will describe those approaches later in Section 6 in more detail.

4.2.  Integral Curves

Throughout the flow visualization literature, we can find a number of different line geometries that are 
used to study particle motion (McLoughlin et  al.,  2010). The trajectories of particles in a fluid flow are 
generally referred to as integral (or characteristic) curves, referring to the integral formulation of the ODE 
that defines them, see for example Equation 6. Depending on the type of fluid flow–steady or unsteady–dif-
ferent kinds of integral curves arise that have different meaning. In geometry-based flow visualization, we 
primarily distinguish four types of integral curves, which are illustrated in Figure 4a for the flow behind a 
Cylinder and in Figure 4b for the Guadalupe flow. In both cases, we would like a Kármán vortex street to 
appear. In the following, we will investigate how well the various types of integral curves are able to reveal 
this flow pattern.

1.	 �Streamlines are the tangent curves of steady vector fields, that is, d ( ) ( ( ))
d

E t t
t

r v r  where ( )E v x  is a steady 
(time-independent) vector field or a time slice of an unsteady flow. Usually, they are used to study in-
stantaneous vector fields such as magnetic fields or truly steady flows. In a time-dependent flow, they 
are calculated per time slice, which is not physically meaningful. Since actual particles move forward in 
time, that is, the flow is temporally changing as the particles are traveling, streamlines do not correspond 
to the physical trajectory of a real particle. When plotting streamlines in an unsteady flow, flow patterns 
such as vortices might become apparent. It should, however, always be clear that these structures do not 
actually exist and they should not be the foundation of an argumentation in flow analysis.

2.	 �Pathlines are defined as the solution to an initial value problem in Equation 6. Using the flow map in 
Equation 7, they are given by 00( ) ( )tE  p Φ x  and describe the paths of massless particles in fluid flows. 
These lines are in fact the trajectories of individual particles and are therefore the preferred choice when 
studying transport properties in time-dependent vector fields. Similar to streamlines, these lines are the 
result of an ODE, cf., Equation 5. Note how neither streamlines nor pathlines are able to reveal the vor-
tex street in the fluid flows. While it is generally not meaningful to view streamlines in time-dependent 
flows, it is not enough either to view pathlines when looking for flow patterns. A pathline is a series of 
locations that have been visited by a given particle at different moments in time. Pathlines are therefore 
not useful to depict flow patterns at one specific moment in time.

3.	 �Streaklines, on the other hand, are used to reveal flow patterns at one specific moment in time. They 
are assembled by continuously releasing particles from a seed point 0E x  at different times and advecting 
all particles to the same time slice, which is referred to as the observation time t  . Using the flow map in 
Equation 7, streaklines are defined as 0( ) ( )tE 

 s Φ x  . Conceptually, streaklines are the equivalent to the 
trail of smoke or ink released from a point source, which takes us much closer to experimental flow vis-
ualization methods. Note that streaklines are successful in revealing fluid flow patterns such as vortices, 
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Figure 3.  These flow map visualizations color-code at each pixel the coordinate that is reached after integration for a certain duration from that pixel. Here, 
the reached coordinates are visualized by color-coding the E x - and E y -coordinates with red and green. In (a), the Cylinder2D flow with duration 0E    (top, only 
shown for reference to illustrate the color-coding) and 1E    (bottom) are shown. In (b), the Guadalupe flow is depicted. After advection from 0E t   = 18:22 UTC for 
duration E    = 02:46:40 hr the flow structures become apparent.
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Figure 4.  In (a), we see integral curves in the Cylinder2D flow, from top to bottom: streamlines ( 0 10E t   , 9E    ), pathlines ( 0 6E t   , 9E    ), streaklines ( 0 7E t   , 
5E    ) and timelines ( 0 8E t   , 1.2E    ). Streaklines and timelines align with the flow patterns in the background. In (b), integral curves of the Guadalupe flow 

are shown ( 0E t   = 15:55:20 UTC, E    = 06:06:40 UTC) with satellite images in the background (for streamlines and pathlines at start time 0E t  , and for streaklines and 
timelines at end time 0E t   ).
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as long as the particles can reach those structures. Unlike streamlines and pathlines, which are comput-
ed by advecting a single particle, streaklines are computed by advecting a continuously growing list of 
particles forward in time. Whenever two subsequent particles are rapidly moving apart from each other, 
a new particle has to be inserted in-between them in order to maintain a sufficiently fine discretization 
of the streakline. Ideally, the new particle is inserted at the seed point and is traced up to the observation 
time. For simplicity, however, it is common to interpolate the new particle location at the observation 
time from the two particles that drifted too far apart, which is easier since it does not require access to 
previous time steps, but also introduces interpolation errors.

4.	 �Timelines are curves that are advected over time. For a seeding curve ( )E uc  at time 0E t  , the timeline at obser-
vation time 0E t   is 0( ) ( ( ))tE u ut Φ c  . Conceptually, timelines correspond to a line of ink that is injected 
at only one moment in time and then advected to the observation time. Similar to streaklines, particles 
on a timeline may separate away from each other, which requires an adaptive refinement. Both streak-
lines and timelines reveal physically meaningful flow patterns. The main difference between streaklines 
and timelines is in the analysis question they answer: how do particles evolve that were seeded at differ-
ent times but from the same location (streaklines) versus how do particles evolve that were seeded at the 
same time but from different locations (timelines).

In practice, pathlines and streaklines are computed for unsteady vector fields only, whereas streamlines are 
computed for steady flows as well as for the individual time steps of unsteady flows. While it is conceptu-
ally possible to calculate pathlines and streaklines in steady flow, the resulting line geometry is identical to 
streamlines. It is worth mentioning that similar to streamlines and pathlines, streaklines and timelines can 
also be calculated as tangent curves in a lifted higher-dimensional vector field computed from the spatial 
and temporal gradients of the flow map (Weinkauf et al., 2012).

When visualizing line geometry, we generally aim for less line intersections (in 2D) and less line occlusions 
(in 3D) in order to avoid visual clutter (Günther, Theisel, et al., 2017). An advantage of streamlines is that 
they cannot intersect, since only one trajectory can pass through each point in the domain. When pathlines 
are plotted in space they can intersect, since particles may pass through the same location at different times 
from a different direction. We can observe such intersections in Figure 4. Streaklines will only intersect 
if a streakline sweeps over the seed point of another streakline. Self-intersections are also possible when 
the streakline particles move over their own seed point. Finally, timelines will intersect when their seed 
curves intersect. When using line geometry to reveal flow patterns, we not only need an integration algo-
rithm, but we also need a good seed placement or line selection algorithm in order to avoid the aforemen-
tioned intersections and occlusions. Generally, these approaches are categorized into density-based (Jobard 
& Lefer, 1997; Mattausch et al., 2003) methods that evenly fill the domain with lines, feature-based (Ye 
et al., 2005; Yu et al., 2012) methods that place lines primarily around points of interest to ensure their vis-
ibility, and similarity-based (Chen et al., 2007) methods that avoid redundant lines that carry no additional 
information. For the streamlines in Figure 4, we used the placement algorithm of Jobard and Lefer (1997), 
which generates streamlines with uniform density. Such streamline seedings have also been the foundation 
for additional encodings along the lines such as the wind magnitude using glyphs (Pilar & Ware, 2013). We 
refer to Sane et al. (2020) for a recent survey.

4.3.  Discussion

The various types of integral geometry have different strengths and weaknesses and should be applied ac-
cordingly. Shared among all types of geometry is the seeding problem and the potential visual clutter when 
showing too many lines. Streamlines and pathlines are not suitable when searching for coherent structures, 
as they cannot reveal cloud patterns. While streaklines are preferred in this case, they have the downside 
that the time and place of formation of the revealed structures is unclear. For example, the streaklines in 
Figure 4a show more structure further downstream than directly behind the cylinder. This is because the 
structures have accumulated over the life time of the particles. Once a structure has formed it will be advect-
ed further down the flow, making it unclear whether the implied rotating motion is still ongoing or whether 
the structure has been advected only. Timeline particles, on the other hand, have all been advected for the 
same amount of time, making the structures more comparable.
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As Cimbala et al. (1988) pointed out, early experimental studies of bluff body wakes based on streakline 
photographs often arrived at erroneous conclusions about the local flow conditions due to this integrated 
memory effect. In order to accurately discern the flow at some location, the tracer source (smoke-wire, hy-
drogen bubble generator, or dye) must be placed at just the right distance upstream of that location (aka the 
seeding problem). If the source is too close to the observation point, the streaklines do not have enough time 
to deform. Figure 5 gives an example for such a setting in the Guadalupe flow, showing streaklines that were 
traced over the full time domain from different seeding lines, with the level of detail in the captured flow 
patterns clearly depending on how long the particles experienced rotating motion. Likewise if the source is 
too far upstream, the streakline pattern gets fixed and simply advects along with the mean flow. Laboratory 
streakline photographs may show well-defined vortex pairs far downstream of the obstacle, even though 
the local flow is nearly parallel. This is because vorticity decays at a much faster rate than smoke or dye 
diffuses. A similar disconnect between the visual appearance of far-wake cloud vortex patterns and vorticity 
also affects the Guadalupe flow, see later Section 6. An additional issue is line intersection. Streamlines can 
never intersect. Pathlines will intersect frequently, since they are assembled by particles living in different 
time steps. Streaklines will (self-)intersect whenever a streakline is advected over the seed point of another 
streakline–which is guaranteed to happen in any basic visualization tool without careful seed placement 
and streakline truncation–, and timelines will intersect when their initial seed curves intersect. The visual 
clutter caused by line intersection can be mitigated by truncating lines if their distance falls below a certain 
threshold.

Figure 5.  The geometric shape of streaklines is determined by the seeding location and the integration duration. The top row shows streaklines arising from 
three different seeding lines. Below, close-ups are displayed in which the same region is highlighted by the yellow box. In the left-most image, streakline 
particles in the box have been traced longer and thus accumulated more rotation than the streakline particles in the right-most image.
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5.  Image-Based Methods
The previous geometry-based methods require the seeding of line geometry. Even when placing lines with 
an even spacing between them, there is still empty space between lines for which the flow behavior is not 
visualized, potentially missing details. In the following, texture-based methods are described, which encode 
information at every output pixel.

5.1.  Texture Advection

A common approach to observe air and liquid flows in experimental flow visualization is by dye injection. 
Computationally, this can be reproduced by advecting a scalar field. The computational setting, however, 
allows us to inject patterns leading to more expressiveness. Since this advection is usually done on graphics 
processing units (GPUs), where scalar fields are best represented in texture memory, this technique is also 
known by the name texture advection. More formally, we can express the texture advection of a scalar field 
( )E s x  with the flow map 0 ( )tE Φ x  , cf., Section 4.1, by using

0
0

( , ) ( ( ))t t
ts t s x Φ x� (8)

which results in the time-dependent scalar field ( , )E s tx  , which is equal to the initial texture at 0E t t  . Concep-
tually, there are many different ways to implement the advection, such as numerically solving it as a partial 
differential equation (MacCormack, 2002), which would also allow for the modeling of effects like dissipa-
tion, or by taking a Lagrangian approach that advects a particle backwards to the seed time and fetches the 
texture value, as done in Equation 8. The latter method is illustrated in Figure 6, which is able to deform 
the texture, here a simple checkerboard pattern, without numerical dissipation. The black regions show 
locations from which the backward particle integration in Equation 8 left the flow domain. The deformation 
of individual squares becomes quickly apparent as they stretch under the repelling flow and roll up into 
vortices. In fact, structures emerge even when a noise texture is advected with the flow. Using patterns such 
as the checkerboard, we can also see where no deformation has occurred, which is less obvious in previous 
visualization methods. Note that edges in the checkerboard are timelines of the flow.

5.2.  Line Integral Convolution

The line integral convolution (LIC) (Cabral & Leedom, 1993) is among the most common flow visualization 
methods, which is used to visualize the streamlines of a steady vector field ( )E v x  . Given a texture ( )E T x  with 
random noise values in [0,1]E  and a convolution kernel ( )E k s  with a support in [ , ]E s l l   , the LIC computes a 
gray value image 0( )E I x  for every point 0E x  in the domain:

0
0 00

( ) ( ) ( ( )) ds l
s lI k s s T s s


  x s� (9)

where ( )E ss  is the streamline released at 0E x  that is traced in forward and backward direction for length  . 
Examples are shown in Figures 7a and 7b. Conceptually, the LIC integrates the noise values along a stream-
line, where the length of the streamline is a user parameter. For pixels located nearby on the same stream-
line, the integration accumulates almost identical noise values, resulting in very similar gray values along 
the streamline. Adjacent streamlines, however, sample an uncorrelated set of random values, resulting in 
a different gray value. It is important to note that the streamline should be arclength parameterized. If it 
were parameterized by the integration duration, too many identical noise values would be added once a 
streamline approaches a critical point or gets stuck at an obstacle, leading to noticeable artifacts and loss of 
visual contrast.

5.3.  Discussion

The effectiveness of texture advections depends on the patterns that are advected, for example, the size of 
the squares of a checkerboard pattern. The larger the patterns, the less localized information becomes visi-
ble. While the shape of the advected squares informs the reader whether a deformation occurred or not, the 
display of non-deformed black and white squares still grabs attention through the display of edges that do 
not carry a particular meaning.
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Despite their popularity, LICs are limited to the display of streamlines, making them unsuitable for the 
extraction of dynamical features in time-dependent flow. The LIC images plotted for a given time step in 
Figures  7a and 7b convey very similar information to the streamlines plotted in Figure  4. Their main ad-
vantage is that they cover the entire domain and avoid the seeding problem of the streamlines. While some 
extensions have been proposed that integrate along pathlines (Shen & Kao, 1997), those are less frequently 
used. A more common alternative is to subtract the ambient velocity from the flow in order to separate 
features such as vortices from their movement. In the literature, a number of approaches can be found, 

Figure 6.  Texture advection of a checkerboard pattern reveals how patches deform during advection. In (a), 
Cylinder2D flow from 0 10E t   for duration 0.5E    (top) and 1.0E    (bottom). In (b), Guadalupe flow from 0E t   = 20:22 
UTC for E    = 02:46:40.
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including the subtraction of an average inflow velocity (Weinkauf et al., 2007), or the harmonic component 
of a Helmholtz decomposition (Bhatia et al., 2014) to separate external from internal flow behavior. Alter-
natively, the ambient velocity can be described as the velocity of an observer that moves with flow features 
such as vortices. Motivated by the seminal observation of Lugt (1979) that there is no single observer that 
can follow all flow features in the domain at once, Günther, Gross, et al. (2017) searched for an observer 
locally that sees the vector field in an as-steady-as-possible way. The velocity field seen by this observer 
thereby becomes approximately steady, making the use of streamlines appropriate to reveal flow features. 
The result of such an unsteadiness minimization using the spatially varying formulation of Baeza Rojo and 
Günther (2020) is shown in Figures 7c and 7d, which now reveals the vortices. Similar optimizations have 
been done globally (Hadwiger et al., 2019) and on general manifolds (Rautek et al., 2021). The optimiza-
tion of reference frames is numerically challenging, especially on measured data, as it requires accurate 
derivative estimates. In the following, we move on to feature-based methods that are derived from pathline 
behavior.

6.  Feature-Based Methods
6.1.  Lagrangian Coherent Structures

Fluid flows are a continuum of particles. In a flow, there are distinguished sets of particles, so-called ma-
terial lines, that determine the behavior of the fluid. For a comparative fluid flow analysis, those material 

Figure 7.  Line integral convolution for the original flows (a and b), and after subtraction of the ambient motion (c and d). The ambient motion describes how 
flow features are advected. After subtraction, flow features are revealed. In (a) and (c), we see the Cylinder2D flow at time 0 10E t   for 0.2E    ((a) top), 1.0E    
((a) bottom), 0.1E    ((c) top) and 0.5E    ((c) bottom). In (b) and (d), the Guadalupe flow at 18:57 UTC is shown.



Journal of Geophysical Research: Atmospheres

GÜNTHER ET AL.

10.1029/2021JD035000

15 of 23

lines are of high interest, since they divide the domain into regions with coherent behavior, which could be 
compared among given vector fields. For instance, such material lines enclose vortices or denote transport 
barriers, which are both important objects when studying transport and mixing. In the fluid dynamics liter-
ature, these structures are called LCS (Lagrangian Coherent Structures). Recently, Haller (2015) gave a com-
prehensive overview of the types of LCS and their extraction algorithms. We refer to Onu et al. (2015) for 
more details on LCS extraction techniques. LCS structures can be derived from variational principles, that 
is, they are lines that maximize or minimize a certain behavior. Commonly, three types are distinguished:

1.	 �Hyperbolic LCS are material lines that repel or attract particles locally the strongest (Haller, 2011). These 
lines act as transport barriers and are found by observing flow behavior in forward and backward time.

2.	 �Elliptic LCS are the boundaries of vortices, which have been characterized as lines that bound coherent 
rotations (Haller et al., 2016), that show no stretching during advection (Serra & Haller, 2016), or that 
inhibit vorticity diffusion (Katsanoulis et al., 2019).

3.	 �Parabolic LCS are material lines along which material shearing is minimized (Farazmand et al., 2014), 
which identifies jet cores. In atmospheric flows, they have also been characterized as lines with maximal 
flow velocity (Kern et al., 2017).

In the following, we take a closer look at vortices and transport barriers, since those are the structures that 
can be found in Kármán vortex streets.

6.2.  Vortices

Vortex measures are categorized into region-based and line-based methods. Region-based methods return 
a scalar field that expresses how strong the vortical behavior is at a certain location. To extract vortices, 
a threshold needs to be applied, which is often not easy to set, since vortices decay over time or carry a 
varying amount of angular momentum throughout the domain. Line-based methods on the other hand 
return the so-called vortex coreline, which is the line that all other particles swirl around. In the following, 
we explain two of the most common vortex measures for two-dimensional flows. We refer to Günther and 
Theisel (2018) for a recent and comprehensive overview of vortex extraction techniques.

One of the most prominent region-based vortex measures is the vorticity scalar field ( , )E x y
( , ) ( , )( , ) v x y u x yx y

x y
  

 
 

� (10)

For meteorological flows, we let ( , )E x y  be the vorticity measured relative to the Earth’s rotation, which 
is then also referred to as relative vorticity. The sign of E  determines the rotation direction, whereas the 
magnitude relates to twice the angular velocity of a virtual tracer particle. It can be seen in Equation 10 
that the vorticity field requires an estimation of derivatives, which is challenging in noisy measurement 
data. It can be expected that the resulting vorticity scalar field contains patches of noise, which in fact are 
apparent in Figure 8. Rather than spatially averaging the values to remove the noise, as was done in Horváth 
et al. (2020), it is more suitable to average vorticity values along a pathline over time. This way, long-living 
vortex structures are revealed and short-lived noise is removed. Vorticity E  is only Galilean invariant–that 
is, invariant only in an inertial non-accelerating reference frame–because the rotation of an observer adds 
to the vorticity scalar, which is undesirable since ideally all observers should observe the feature in the 
same way. Fortunately, the difference between two spatially neighboring vorticity values cancels the added 
observer rotation, making not only vorticity extrema, but also the deviation of relative vorticity–that is, the 
difference to the local average vorticity–objective. Haller et al.  (2016) proposed the Lagrangian-averaged 
vorticity deviation, which averages the vorticity deviations along pathlines:

LAVD d( , ; ) | ( ( ), ) ( ( ), )|x x xt s s s
t

t

t

s t

avg t

s t       � (11)

where  avg Ut
U
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x

 
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d  is the average vorticity in a local neighborhood E U . LAVD is objective 

and locates temporally coherent structures. For the Cylinder2D flow in Figure 8a, LAVD (bottom) empha-
sizes locations that remain for a long time inside a vortex. Thus, the vortices in the immediate wake of the 
cylinder become more circular than with vorticity (top).
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In the Guadalupe flow, we not only see that LAVD removed the noise successfully, but the vortex locations 
are also well aligned with the circular cloud patterns. Moreover, the captured vortex decay is asymmetric: 
anticyclonic vorticity, marked with arrows, decreases significantly faster than cyclonic vorticity, which is ap-
parent by the decreased saturation of the blue color compared to the red color in vortex pairs. Such contrast 
is detectable in the visual appearance of the vortices too, because anticyclonic eddies have less well-pre-
served spiral cloud patterns than cyclonic eddies at the same downstream location. As discussed in Horváth 
et al. (2020), an asymmetric island wake is the expected behavior, predicted by both laboratory experiments 
and numerical simulations, which arises from the combined effects of Earth’s rotation and Guadalupe’s 
nonaxisymmetric shape resembling an inclined flat plate at low angle of attack. The good correspondence 
between the asymmetric LAVD field and the observed cloud structures indirectly confirms the fidelity of the 
fluid dynamics embedded in the measured wind field.

Figure 8.  Comparison of vorticity, which is calculated per time slice, with its temporally coherent extension named Lagrangian-averaged vorticity deviation 
(LAVD). In (a), the Cylinder2D flow is visualized by calculating vorticity (top) at time 0 12E t   , and using LAVD (bottom) at 0 12E t   , 2E    , 41 41E U    grid 
points. In (b), the Guadalupe flow is depicted by vorticity (left) at 17:02 UTC and by LAVD (right) from 0E t   = 15:47 UTC for duration E    = 02:46:40 hr and 

21 21E U    grid points, which covers 2252kmE  . Vorticity measures the rotations per time unit, whereas LAVD measures the rotations per time unit relative to the 
neighborhood region.
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6.3.  Material Boundaries

When releasing a small group of particles inside a finite-sized sphere, the small sphere is likely to deform 
under the action of advection over time. Locations at which a sphere elongates locally the strongest are part 
of a repelling hyperbolic LCS. The opposite attracting hyperbolic LCS are found by observing the transport 
behavior in backward time. In continuum mechanics, this local deformation is linearly approximated by the 
right Cauchy-Green deformation tensor:

( ) ( )( , ; )
T

t tt
 

  


 
Φ x Φ xC x

x x
� (12)

The gradient of the flow map, which is numerically calculated by central differences, is multiplied with its 
transpose to make this deformation measure invariant under rotations of the observer. The largest eigenval-
ues of this tensor (  maxE   ) encode the strongest linear elongation. Introducing normalizations to account for 
the squaring of the gradient in Equation 12, the exponentional separation rate, and the continued growth 
over the duration E   , leads to the finite-time Lyapunov exponent FTLE (Haller, 2001; Shadden et al., 2005):

FTLE( , ; )
| |

ln ( ( , ; ))x C xt t
max




 
1

� (13)

Ridges in this scalar field are frequently used as approximations to hyperbolic LCS. Figure 9 depicts forward 
FTLE (repelling behavior) and backward FTLE (attracting behavior) in the Cylinder2D and the Guadalupe 
flows. Attracting FTLE ridges are computed by backward integration within a time span [ , ]E t t  , that is, 
they reveal structures that have formed in the past up until the current time t  . The alignment of the attract-
ing FTLE ridges in the Guadalupe flow with the cloud patterns shows that the transport dynamics of the 
satellite-measured wind field are in agreement with the observed organization of clouds. Repelling FTLE 
ridges are computed by forward integration within a time span [ , ]E t t   , that is, they indicate regions that 
will show repelling behavior in the future. Figure 10 illustrates how these ridges can be interpreted. In a 
Kármán vortex street, the strongest repelling ridges (red) arise from particles that attract onto (or toward) 
an attracting FTLE ridge (blue), but will then separate in opposite directions along the blue FTLE ridge, as 
the separating particles get curled up in different vortices (orange). The red ridge line and the blue ridge line 
thereby separate vortex regions. In topological terms, the intersection of the red and blue ridge lines results 
in a bifurcation point.

6.4.  Space-Time Mapping

Time-dependent 2D flows have three dependent variables: the position coordinates E x and E y , and the time  . 
A rather natural form to visualize a time-dependent flow is to visualize each time slice independently and 
play the time series as a video. This form of animation is suitable to show the instantaneous changes around 
the currently observed time slices, but is not very effective in communicating motions that occurred across 
larger time spans, such as the path of a vortex in our vortex street. For such a 2D time-dependent flow, we 
can lift the domain one dimension up by mapping the time to the third spatial dimension, which leads to a 
so-called space-time visualization. We will denote a coordinate in space-time with ( , )E tx x  , which inciden-
tally also describes a coordinate in the phase space of a particle, thus making this a space that captures all 
dimensions of the dynamical system. There are two common space-time velocity fields that can be derived 
from the unsteady vector field, see Theisel et al. (2004):

( , , ) ( , , )
d d( ) ( , , ) ( ) ( , , )
d d

0 1

x u x y t x u x y t
y v x y t y v x y t

t t
t t

       
       

          
       
       

s x p x� (14)

which differ in the rate of change of the last dimension, that is, the time. The tangent curves in the field 
( )E s x  are streamlines, whereas the tangent curves of ( )E p x  are pathlines. A direct visualization of the flow 

features in these two fields immediately shows streamline-oriented and pathline-oriented vector field topol-
ogy. For fluid flows, we are primarily interested in ( )E p x  . Due to the mapping of the time axis to the third 
spatial dimension, the paths of vortices, later extracted as extremal lines of the LAVD field, become quickly 
apparent. For an introduction to the rendering and extraction of extremal features, we refer to Kindlmann 
et al. (2018).
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Figure 9.  The finite-time Lyapunov exponent reveals attracting (backward FTLE, blue) and repelling (forward FTLE, red) material lines in the domain that 
strongly influence the passive transport of particles. In the Cylinder2D flow, slice 0 10E t   is shown with an FTLE integration duration of 1.5E    . The Guadalupe 
flow is displayed at time 0E t   = 18:22 UTC with an FTLE integration duration of E    = 02:46:40 hr, both forward and backward. FTLE measures the linearized 
stretching rate on logarithmic scale per finite time interval E   .

Figure 10.  Ridge lines in the finite-time Lyapunov exponent (repelling in red, attracting in blue) separate the fluid 
domain into regions. Here, yellow arrows indicate the relative particle motion. In a Kármán vortex street, the separate 
regions may contain vortices (orange). The left panel shows the Cylinder2D flow and the right panel shows the 
Guadalupe flow using the same parameters as in Figure 9.
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In Figure 11, the previously introduced feature extraction methods are used to assess the quality of the 
vector field that was reconstructed from measured cloud motion. In Figure 11a, the visible band satellite 
image of the vortex street is overlayed with the elliptic LCS (in terms of LAVD) and attracting hyperbolic 
LCS (in terms of backward FTLE). We can clearly see that the emergence of patterns in the cloud field is 
constrained by and organized around the LCS, which provides strong evidence that the retrieved vector field 
exhibits the same fluid dynamical processes that the real-world clouds actually experienced. The space-time 
visualization in Figure 11b further sheds light onto the temporal evolution of the vortices, with the blue axis 
denoting time. In the first time step (bottom slice), the vortices are neatly organized in the common Kármán 
vortex street pattern. As time progresses, vortex 4 is pushed eastwards by a crosswind, where it blocks the 
path of vortex 3. As a result, vortex 3 quickly weakens and gets overtaken by vortex 1. Additionally, the 
space-time visualization makes the temporal stability of the extracted paths apparent, as the space-time 
curves are smooth and without noise.

6.5.  Discussion

Derived features, such as region-based vortex measures or the FTLE field as indicator for hyperbolic LCS, 
are not only useful for a qualitative visual comparison, but can also be useful for a feature-centered quanti-
tative evaluation. In both flow visualization and fluid dynamics, two important properties have been recog-
nized as essential characteristics that flow features should possess. First, the features should be seen by all 
rotating and translating observers in an equal manner, their motion notwithstanding, which is referred to as 
objectivity. Both LAVD and FTLE fulfill this property. Second, a Lagrangian coherent feature should–as the 
name suggests–be coherent when observed along pathlines over time. Thus, both LAVD and FTLE measure 
the fluid behavior over a certain time window. The length of this time window, thereby remains a crucial 
user parameter. A limitation of both LAVD and FTLE is that it is unclear where along the pathline the 
characteristic feature behavior was observed. For example, consider pathlines that stay close together most 
of the time and only separate strongly toward the end of the set time interval. This delayed separation is not 
immediately visible from the scalar field alone and is only revealed when the parameter-dependence of the 
features is explored, cf. Sagristà et al. (2020) for parameter analysis tools. Alternatively, features could be ex-
tracted locally per time slice and joined afterward in time to precisely determine the beginning and end of a 
feature’s life time. The latter motivates ongoing research on the temporally local analysis of time-dependent 
vector field topology (Baeza Rojo & Günther, 2020), which could deliver another set of features useful for a 
comparative analysis of scalar and vector fields. This direction of research is left for future work.

At present, we assumed that cloud motion is governed by passive particle motion, that is, the clouds move 
strictly in the direction of the vector field. Since the vector field is derived from the visible cloud patterns, 
this assumption is reasonable. Also note that the passive tracer assumption is the norm in all operational 
cloud-motion wind algorithms. However, if clouds were modeled as active tracers, the underlying flow 
field would be different. In that case, cloud dynamics would have to be calculated from an active particle 
model, the parameters of which are not trivial to determine. This has already been done in other application 
domains, for example by defining flow maps based on inertial particle models for bubbles or sand, which 
are easier to derive (Günther & Theisel, 2017). FTLE and LAVD are, however, straightforward to extend to 
active particle models.

7.  Conclusions
With the advent of the latest generation geostationary imagers, such as ABI on GOES-R, satellite wind 
retrievals on the km and minute scale have become a reality. These high spatiotemporal-resolution winds 
enable the study of mescoscale geophysical flows and are also in increasing demand as input data for the 
ever-finer resolution operational forecast models. However, the visualization and validation–or at least con-
sistency test–of these data sets is challenging and progress on these fronts will require moving beyond tradi-
tional techniques, such as grid point-based comparisons to radiosonde, aircraft, or reanalysis winds. To this 
end, we demonstrated advanced visualization and dynamical system analysis tools through the example of 
a high-resolution GOES-16 wind data set that captures an atmospheric Kármán vortex street in the lee of 
Guadalupe.
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Figure 11.  Feature-based quality assessment of the Guadalupe velocity field obtained by cloud tracking. In (a), 
overlaying vortices (Lagrangian-averaged vorticity deviation [LAVD] in red/blue) and attracting transport barriers 
(backward finite-time Lyapunov exponent [FTLE] in yellow) on visible imagery shows the agreement of the retrieved 
fluid dynamical processes with the observed cloud patterns. Here, at 0E t   = 18:22 UTC for an FTLE and LAVD integration 
duration of E    = 02:46:40. In (b), a space-time mapping of the flow reveals temporally coherent vortex paths with FTLE 
time slices from bottom to top at 14:32, 19:22, and 22:37 UTC.
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The fluid dynamics of the reconstructed vector field should give rise to flow features that correlate with 
the observed mesoscale cloud patterns, since those patterns are the result of a fluid dynamical evolution. 
We discussed the advantages and disadvantages of various visualization approaches. Direct methods such 
as arrow plots are able to show noise in the data, but are obscured by the ambient motion of features in 
time-dependent flow. Geometry-based methods (integral curves) require careful seeding and are primarily 
useful for qualitative analysis, and when shown in combination with an underlying scalar field that makes 
use of the non-occluded spaces. Texture-based techniques such as texture advection and LIC convey in-
formation more densely, but especially LIC must be used with care, since it displays streamlines, which 
are non-physical unless observed in a suitable unsteadiness-minimizing reference frame. Feature-based 
methods such as LAVD and FTLE, however, reveal LCS that drive the fluid dynamical processes. Both of the 
latter approaches are objective and incorporate the desirable temporal coherence of the features in question.

The LAVD and FTLE fields computed from the GOES-16 winds align well with the observed mushroom 
cloud patterns of the vortex street, indirectly validating the satellite retrievals. In the current introductory 
study, the comparison of observed and derived structures was qualitative (visual) only. Turning these meth-
ods into useful validation tools will, however, require putting the comparison on a quantitative basis, which 
is a non-trivial task. Fortunately, there are promising candidate metrics from the field of feature-based 
spatial forecast verification, which operate precisely on the type of coherent objects that are represented 
by the LCS of the flow. The FTLE ridges can be extracted from the satellite-retrieved wind field and then 
quantitatively compared to detected ridges in cloud images, using for instance the SAL technique (Wernli 
et al., 2008), which assesses the structure (size and shape), amplitude, and location of the identified objects. 
Other quantitative metrics could also be derived based on the presence and distance of vortices and trans-
port barriers.

The validation of mesoscale numerical models can also benefit from a comparison between the simulated 
and observed Lagrangian structures. In the next step, we will evaluate the ability of Weather Research and 
Forecasting model simulations to reproduce the satellite-retrieved LCS of the Guadalupe vortex street and 
investigate model sensitivity to the used boundary layer scheme, based on such feature-centered quality 
metrics.

Data Availability Statement
The GOES-16 ABI L1b radiances are available from the NOAA Comprehensive Large Array-data Steward-
ship System (CLASS) archive (https://www.avl.class.noaa.gov). The high-resolution GOES-16 wind retriev-
als are available from the Zenodo data repository (https://doi.org/10.5281/zenodo.3534276). The code to 
reproduce the images in the study, as well as the data can be found online at https://github.com/tobguent/
vislcs-guadalupe.
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