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Abstract

This paper proposes a microgrid adaptive robust optimal dispatch model with different
robust adjustment parameters to improve the operating economy and safety of large-scale
renewable distributed energy integration into the microgrid system. Through a robust
equivalent process, considering the uncertain characteristics of the renewable energy out-
put and load demand in the microgrid, the uncertain parameters are converted into corre-
sponding definite parameters. A two-stage robust optimization model is established to min-
imize the operating cost of the microgrid under the premise of ensuring the robustness of
the microgrid. An improved Benders algorithm is proposed to solve the established opti-
mization model. The different robust adjustment parameters can be obtained adaptively
through the optimization program. The optimized adaptive robust adjustment parameters
can better reflect the balance between the economy and robustness of the microgrid oper-
ation, and are more suitable for the operation of the microgrid. The improved Benders
algorithm can effectively speed up the solution and improve the efficiency of the solution.
The simulation of the modified IEEE39-bus system verifies the rationality of the proposed
optimization model and the advantages of the improved algorithm.

1 INTRODUCTION

The severe situation of global climate change and fossil fuel
pollution prevention has promoted the rapid development of
renewable energy. Renewable energy has the advantages of
clean, pollution-free and sustainable supply, but it also has
unfavourable factors such as intermittency and volatility, which
brings great challenges to the safe and stable operation of the
energy system [1]. With the further increase in the proportion
of renewable energy, the penetration rate of renewable energy in
some areas has exceeded 100%, reflecting the characteristics of
a completely renewable energy system. However, due to insuf-
ficient local absorption capacity, it is easy to cause serious fail-
ures, such as power reverse transmission and voltage overrun
[2], which pose a great threat to the safe and stable operation of
the power grid. This in turn leads to phenomena such as ‘aban-
donment of wind’ and ‘abandonment of solar’, which reduce the
economics of renewable energy.

As one of the effective ways to connect distributed power
sources to the grid, microgrids have also received extensive
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attention. A microgrid is a small power generation and distri-
bution system that integrates distributed power, energy storage,
and loads [3]. Through the coordination and collaboration of
internal sources and load storage units, the microgrid can realize
autonomous operation and friendly grid-connected interaction.
It is an effective carrier for large-scale distributed renewable
energy to connect to the grid [4].

As a core technology of microgrid, optimal dispatching of
the microgrid is an important support to deal with the uncer-
tainty of renewable energy and load and ensure the economic
and reliable operation of the microgrid [5, 6]. Regarding the
optimal dispatch of microgrids, a large number of references
have been studied. According to the optimization goals, the
optimal dispatch of microgrids can be divided into microgrid-
level optimization, demand-side response-level optimization
and distribution network-level optimization [7]. The optimal
dispatch method of microgrid needs to be based on the predic-
tion of uncertain factors. Many statistical models and physics-
based methods have been used to predict renewable distributed
energy, such as autoregressive moving average models [8] and
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artificial neural networks [9, 10]. Although wind power forecast-
ing, photovoltaic power generation forecasting and load fore-
casting technologies have become increasingly mature, accurate
forecasting is still a difficult task. According to the optimization
method, the optimization dispatch method of microgrid can be
divided into deterministic method and uncertainty method.

The deterministic method takes the predicted value of renew-
able distributed power as an accurate known quantity and then
optimizes the dispatch of the microgrid. The rolling view strat-
egy is applied to the mixed integer nonlinear programming
model to optimize the operation of multiple buildings in the
microgrid in a centralized manner [11], aiming to solve the data
uncertainty problem by reducing the amount of forecast data
required. Reference [12] proposed a two-stage mixed integer
linear programming model based on 24-hour advance forecast
data to reduce the operating cost of microgrids. This deter-
ministic method does not consider the uncertainty of the pre-
diction parameters, which will bring bias to the optimization
results.

Aiming at the uncertainty method in the optimization and
dispatching of microgrid operations, the main solutions in exist-
ing research include spinning reserve capacity [13], stochas-
tic planning [14], scenario analysis [15], and robust optimiza-
tion [16]. Regarding spinning reserve capacity, related research
is mainly to optimize spinning reserve capacity so that it can
invest in the smallest capacity and achieve an economically opti-
mal operation effect [17]. A simple and effective optimization
method is a major advantage of using the spinning reserve
capacity method to solve uncertain problems [18]. However, the
solution to the spinning reserve capacity method is that suffi-
cient reserve capacity is needed to deal with uncertain problems,
and the corresponding reserve capacity will increase the oper-
ating cost of the microgrid. Stochastic planning is a common
method to solve the uncertain problem of microgrids, which
need to be optimized according to the probability distribution
of uncertain parameters [19]. However, the probability distribu-
tion of uncertain parameters is difficult to accurately describe
and may cause errors in the optimization results. It is difficult
to accurately determine the probability distribution, which also
hinders the application of stochastic programming. The sce-
nario analysis method generates typical scenarios through sce-
nario generation and scenario reduction [20], and optimizes the
microgrid according to the typical scenarios. The generation of
the scene tree will produce high-dimensional and complex oper-
ations, resulting in a problem of low solution efficiency. Scene
reduction will also cause the problem of reduced solution accu-
racy [21].

Compared with other uncertain methods, robust optimiza-
tion has the following advantages. Robust optimization does
not need to know the specific probability distribution func-
tion of the uncertainty parameter, and only needs to know the
boundary information to construct an optimization model con-
taining the uncertain parameter [22]. The optimization results
obtained by the robust optimization method are robust. When
the uncertain factors fluctuate within the set range, the opti-
mization results can ensure the stability and feasibility of the
system.

Robust optimization methods have been applied to many
types of research on microgrids. Aiming at the frequency
deviation problem caused by the volatility of renewable dis-
tributed energy and load demand, reference [23] proposed a
two-stage robust optimization model to ensure the flexible
operation of the microgrid. A variety of robust optimization
methods are used for the optimal dispatch control problem
of the microgrid energy storage system. The robust optimiza-
tion method combined with the piecewise linearization tech-
nology of the nonlinear efficiency graph ensures robustness
in terms of reducing operating costs and accurate calcula-
tions [24]. For integrated energy systems and multi-microgrid
systems, robust optimization is still widely used. In order
to cope with the microgrid optimization scheduling prob-
lem of combined cooling, heating, and power (CCHP), refer-
ence [25] applies a coordinated adaptive robust optimization
method with multiple time scales to optimize microgrids with
multiple different energy types. A stakeholder-parallel adap-
tive robust optimization model is proposed in [26], which is
used to solve the optimal dispatching problem among multiple
microgrids.

Robust optimization is more applied to the research of opti-
mal dispatching of the microgrid. Reference [27] proposed a
resource cost-constrained adaptive robust optimization model
with binary resource variables to solve the problem of opti-
mal scheduling of source and load uncertainties. A distributed
robust optimization method is to combine stochastic program-
ming and robust optimization to find the worst-case probability
distribution on the fuzzy sets [28], and use the fuzzy set to rep-
resent the uncertain variables in the sub-Brussels optimization
model, and finally get the lowest operating costs in the worst
case. Reference [29] proposes a microgrid energy management
system based on robust convex optimization, which is used to
solve the energy optimization management problem of a micro-
grid when the random load demand is large and the renewable
energy supply is insufficient. Reference [30] solves the uncer-
tainty problem in the microgrid from the perspective of load
response and is based on price demand response. Compared
with other methods of dealing with uncertain problems, robust
optimization has obvious advantages. However, the traditional
robust optimization method used in the above-mentioned
research is based on the worst-case scenario of uncertain factors
to carry out the economic optimization operation of the micro-
grid. So, it can ensure that the microgrid has sufficient robust-
ness. But, this method will inevitably cause the problem of too
conservative optimization results, increase the operating cost of
the microgrid, and cannot guarantee the economics of micro-
grid operation. Aiming at the problem that traditional robust
optimization methods are too conservative, a robust optimiza-
tion method based on historical correlation drive (HCD) to
formulate interval boundaries is proposed in [31]. Although
the HCD robust optimization method can avoid unreasonable
scenarios, it still cannot discuss the economy and robustness
of microgrid operation at the same time. Reference [32] pro-
poses a robust mixed integer second-order cone programming
model, but the established optimization model is only pro-
posed for microgrid operation in island mode. Considering the
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economy and robustness of microgrid operations, reference [33]
uses robust equivalent characterization to deal with uncertain
factors. However, using the same robust adjustment parame-
ter processing for different uncertain factors will still lead to a
conservative solution. Reference [34] uses the uncertainty fac-
tor budget method to deal with the wind power uncertainty and
achieve a robust optimization operation solution for the micro-
grid with a natural gas network. However, more uncertainties
should be considered.

In view of the above-mentioned problems, this paper pro-
poses an adaptive robust optimization model for a microgrid
with different robust adjustment parameters, which can effec-
tively take into account the balance of economy and robustness
of microgrid operation. The main contributions to this work are
summarized as follows:

1. The adaptive multi-parameters robust equivalent character-
ization method is used to convert uncertain parameters
into definite adjustable parameters. The robust adjustment
parameters in the multi-parameters robust equivalent rep-
resentation can be adaptively obtained through the opti-
mization program, which conforms to the characteristics of
uncertain factors.

2. The robust adjustment parameters are obtained by an opti-
mization procedure, so that the optimal dispatch of the
microgrid can adaptively adjust the robustness of uncer-
tain factors. The proposed robust adjustment parameters can
reflect the balance between economy and robustness better,
which are most suitable for microgrid operation.

3. The established robust optimization model is suitable for the
two operating modes, grid-connected mode and island mode
respectively. The optimization model proposed in this paper
has better applicability, which is more in line with engineering
needs.

4. The established robust optimization model adopts the struc-
ture of Min-max-min, which can be solved by the improved
Benders algorithm. The improved Benders algorithm uses
acceleration parameters 𝜍 in the constraints of the main
problem to increase the lower limit of the original problem.
The proposed improved Benders dual algorithm can speed
up the solution process and improve the solution efficiency
as shown in the simulation.

The rest of this paper is organized as follows. The micro-
grid system structure is given in Section 2. Robust equivalent
representations with different robust adjustment parameters are
given in Section 3. The adaptive robust optimization model of
the microgrid is presented in Section 4. Section 5 proposes
an improved Benders algorithm to optimize the optimization
model. Simulation and analysis are given in Section 6. The con-
clusion is given in Section 7.

2 MICROGRID SYSTEM STRUCTURE

The content of this paper is the optimization of the micro-
grid in grid-connected mode and island mode. When the micro-

FIGURE 1 Schematic diagram of microgrid system structure

grid is connected to the grid, the surplus power of the micro-
grid can be traded to the main network, and the shortfall
power of the microgrid can also be purchased from the main
network. When the microgrid operates in island mode, there
is no power interaction between the microgrid and the main
grid, and the microgrid can only achieve a balance of energy
supply and demand among its internal units. The microgrid
studied in this paper includes traditional distributed power
sources, renewable distributed power sources, energy storage
systems, and loads. Among them, traditional distributed power
sources include micro gas turbines, and renewable distributed
power sources include wind generators and photovoltaic power
sources.

The schematic diagram of the microgrid system structure is
shown in Figure 1. Among them, there is only information flow
interaction between the energy management centre and each
unit of the microgrid. Based on the historical power genera-
tion data and load historical usage data of the renewable dis-
tributed power sources, the energy management centre predicts
the forecast data of the microgrid renewable distributed power
output and load demand in the next time period. The energy
management centre then performs robust optimization calcula-
tions based on the predicted data, and obtains an optimized dis-
patching plan for the microgrid in the scenario with the smallest
operating cost of the microgrid, and completes the optimized
dispatch of the microgrid.

3 ROBUST EQUIVALENT
CHARACTERIZATION OF UNCERTAIN
PARAMETERS

The robust equivalent characterization of uncertain parameters
proposed in this paper includes the robust equivalent charac-
terization of renewable energy power generation and the robust
equivalent characterization of load demand. Renewable energy
power generation includes photovoltaic power generation and
wind power generation.
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3.1 Robust equivalent characterization
of photovoltaic power output

Assume that the probability density function of photovoltaic
output obeys the Beta distribution, as shown in Equation (1):

pPV
p,t ∼ Beta(𝛼p,t , 𝛽p,t ) (1)

where pPV
p,t is the probability density function of the photo-

voltaic generator set on node p in the time period t . 𝛼p,t and
𝛽p,t are the two parameters of the Beta distribution respectively.
Among them, 𝛼p,t is the shape parameter of photovoltaic
output, and 𝛽p,t is the rate of photovoltaic output.

However, the probability density of photovoltaic output does
not accurately represent the photovoltaic output, and there are
errors. Therefore, the probability density of photovoltaic out-
put needs to be adjusted. The robust equivalent characteriza-
tion process of photovoltaic output is shown in Equations (2)
and (3):

PPV
p,t = CDF−1

p,t

(
P̃PV

p,t − 𝜁PV

)
∀p ∈ ΩPV (2)

P̃PV
p,t =

EPV ,t

∫
−∞

pPV
p,t dx (3)

where PPV
p,t is the robust equivalent characterization of photo-

voltaic output. CDF−1(∙) is the inverse function of the cumu-
lative distribution function. P̃PV

p,t is the cumulative distribution
function of photovoltaic output. 𝜁PV is the robust adjustment
parameter of photovoltaic output. ΩPV is the collection of all
nodes configured with photovoltaic power. EPV ,t is the expec-
tation of photovoltaic output, calculated based on photovoltaic
output.

3.2 Robust equivalent characterization
of wind turbine output

Assuming that the probability density function of wind
power output obeys the Weibull distribution, as shown in
Equation (4):

pWT
𝜔,t ∼ Weibull(𝜅𝜔,t , 𝜆𝜔,t ) (4)

where pWT
𝜔,t is the probability density function of the wind tur-

bine output at a node 𝜔 in a time period t . 𝜅𝜔,t and 𝜆𝜔,t are the
two parameters of the Weibull distribution respectively. Among
them, 𝜅𝜔,t is the shape parameter of wind power output, and
𝜆𝜔,t is the scale of wind power output.

However, similar to the probability density of photovoltaic
output, the probability density of wind power output cannot
accurately represent the wind power output, and there are
errors. Therefore, the probability density of wind power output
needs to be adjusted. The robust equivalent characterization

process of wind power output is shown in Equations (5)
and (6):

PWT
𝜔,t = CDF−1

𝜔,t

(
P̃WT
𝜔,t − 𝜁WT

)
∀𝜔 ∈ ΩWT (5)

P̃WT
𝜔,t =

EWT ,t

∫
−∞

pWT
𝜔,t dx (6)

where PWT
𝜔,t is the robust equivalent characterization of the wind

turbine output. P̃WT
𝜔,t is the cumulative distribution function of

wind turbine output. 𝜁WT is the robust adjustment parameter
of wind turbine output. ΩWT is the set of all nodes configured
with wind turbines. EWT ,t is the expectation of the wind turbine
output, calculated according to the wind turbine output.

3.3 Robust equivalent characterization
of load demand

Assuming that the probability density function of load demand
obeys the normal distribution function, as shown in Equation
(7):

pD
i,t ∼ N (𝜇P

i,t , 𝜎
P
i,t ) (7)

where pD
i,t is the active power probability density function of

the load demand of the node i in the time period t . 𝜇P
i,t and 𝜎P

i,t
are the average value and standard deviation of the active power
demand of node i in a time period t .

Similarly, the probability density of load demand cannot accu-
rately represent load demand because of errors. Therefore, the
probability density of load demand needs to be adjusted. The
robust equivalent characterization process of load demand is
shown in Equations (8) and (9):

PD
i,t = CDF−1

i,t

(
P̃D

i,t + 𝜁D

)
∀i ∈ ΩD (8)

P̃D
i,t =

EP ,t

∫
−∞

pD
i,t dx (9)

where PD
i,t is the robust equivalent representation of the active

power and reactive power of the load demand of a node i in
the time period t . P̃D

i,t is the cumulative distribution function of
the active power and reactive power of the load demand of a
node i in the time period t . 𝜁D is the robust adjustment param-
eter of load demand. ΩD is a collection of all nodes configured
with load. EP ,t is the expectation of load active demand, which
is calculated based on the load value.

3.4 Robust adjustment parameters

The calculation methods of the robust adjustment parame-
ters mentioned in Equations (2), (5) and (8) are as shown in
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Equations (10), (11) and (12) respectively:

𝜁PV = A ∗ ΥPV (10)

𝜁WT = A ∗ ΥWT (11)

𝜁D = A ∗ ΥD (12)

where ΥPV , ΥWT , and ΥD are the adjustment coefficients of
photovoltaic output, wind turbine output and load demand, and
the value range is 0 < ΥPV ∕WT ∕D < 1. The calculation method
of the parameter A is shown in Equations (13)–(15):

A = min
{

P , 1 − P̄
}

(13)

P = max
{

P̃D
i,t , P̃PV

p,t , P̃WT
𝜔,t

}
(14)

P = min
{

P̃D
i,t , P̃PV

p,t , P̃WT
𝜔,t

}
(15)

Unlike the uncertainty parameters in [29] that use the same
robust adjustment parameters, this paper uses different robust
adjustment parameters to perform robust equivalent charac-
terization of the uncertainty parameters. By optimizing differ-
ent robust adjustment parameter values, the robust adjustment
parameter values of uncertain parameters can be adaptively
obtained respectively, so as to obtain the optimized scheduling
result of microgrid operation better.

4 ROBUST OPTIMIZATION
MODELLING OF MICROGRID

4.1 Objective function

The microgrid robust optimization model takes the microgrid
operating cost as the optimization goal. The objective function
is shown in Equation (16):

min
∑

t∈ΩT

Δt

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

||||||
∑
i∈Ω

c ls
i

(
Ψi,t P

D
i,t

)
+

∑
b∈ΩESS

(
c

ESS ,dc

b
P

ESS ,dc

b,t

−

|||||| c
ESS ,ch
b

P
ESS ,ch

b,t

)
+max

𝜁
min

(∑
i∈ΩS

cS
t ΨS PS

i,t

+

||||||
∑

g∈ΩDG

cDG
g PDG

g,t + Σ
p∈ΩPV

cPV
p PPV

p,t + Σ
𝜔∈ΩWT

cWT
𝜔 PWT

𝜔,t

)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(16)

where Δt is the length of the time period within the optimization
period t . c ls

i is the unit load reduction cost at a node i. Ψi,t is the
binary variable related to load reduction in a node i in the time
period t . When load reduction is required, Ψi,t = 1. When load
reduction is not required,Ψi,t = 0. c

ESS ,dc

b
is the unit discharge cost

of the energy storage device at a node b. P
ESS ,dc

b,t is the discharge
power of the energy storage device at the node b. c

ESS ,ch
b

is the unit

charging cost of the energy storage device at the node b. P
ESS ,ch

b,t is
the charging power of the energy storage device at the node b. cS

t

is the unit cost of input power from the main network during a
time t . ΨS is a 0–1 variable. ΨS = 1 indicates that the microgrid is
in grid-connected mode. ΨS = 0 indicates that the microgrid is
in island mode.PS

i,t is the power input by a node i from the main
network during a time period t . cDG

g is the unit cost of traditional
distributed power generation at a node g. PDG

g,t is the generation
power of the traditional distributed power supply at node g in the
time period t . cPV

p is the unit cost of photovoltaic power genera-
tion at a node p. cWT

𝜔 is the unit cost of wind turbines at the node
𝜔. Ω is the set of all nodes included in the microgrid. ΩESS is the
set of all nodes that configure the energy storage system. ΩS is a
set of nodes containing the point of common coupling (PCC).
ΩDG is a set of all nodes configured with traditional distributed
power.

In (16), cls
i (Ψi,t PD

i,t ) is the load shedding cost of the microgrid.

(cESS ,dc
b

P
ESS ,dc

b,t − c
ESS ,ch
b

P
ESS ,ch

b,t ) is the charge and discharge cost

of the energy storage system. cS
t ΨS PS

i,t is the electricity interac-

tion cost between the microgrid and the main grid. cDG
g PDG

g,t

is the cost of traditional distributed power supply. cPV
p PPV

p,t +

cWT
𝜔 PWT

𝜔,t is the cost of renewable distributed power output,
including photovoltaic costs and wind turbine costs.

4.2 Constraints

The power flow constraint is an indispensable constraint in the
microgrid. This paper establishes the power flow constraints of
the microgrid through the DC power flow model, as shown in
Equations (17)–(19). The establishment of DC power flow con-
straints in the microgrid is similar to the reference [33]. Equa-
tion (17) shows the power balance of the node. Equations (18)
and (19) show the branch power flow constraint:

ΨS

∑
i∈ΩS

PS
i,t +

∑
g∈ΩDG

PDG
g,t +

∑
b∈ΩESS

(
P

ESS ,dc
b,t − P

ESS ,ch
b,t

)
+

∑
p∈ΩPV

PPV
p,t +

∑
𝜔∈ΩWT

PWT
𝜔,t +

∑
(i, j )∈Ωn

P(i, j ),t = Ψn,t PD
n,t

(17)

B(i, j )
(
𝜃i,t − 𝜃 j ,t

)
− P(i, j ),t +

(
1 − z(i, j )

)
M ≥ 0 (18)

B(i, j )
(
𝜃i,t − 𝜃 j ,t

)
− P(i, j ),t −

(
1 − z(i, j )

)
M ≤ 0 (19)

where P(i, j ),t is the active power of the corresponding DC power
flow line (i, j ) in the time period t . PD

n,t is the load of a node n at
a time t . Ωn is the set of lines connected to node n. Ψn,t is the
binary variable related to load reduction in a node n in a time
period t . When load reduction is required Ψn,t = 1. When load
reduction is not required, Ψn,t = 0. B(i, j ) is the admittance of
the corresponding DC power flow line (i, j ). 𝜃i,t is the voltage
phase angle of the node i. M is a sufficiently large positive value.
When z(i, j ) = 1, the term contained M is 0, it is necessary to
satisfy the branch tide constraints. When z(i, j ) = 0, the line is
disconnected, the branch flow restriction does not work.
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Since the microgrid system optimized in this paper contains
traditional distributed power sources (micro gas turbine units),
the constraints of traditional distributed power sources are also
indispensable. The micro gas turbine unit constraints are shown
in Equations (20)–(25) [29, 33]:

(
PDG

g,t

)2
+
(

QDG
g,t

)2 ≤ Πg,t

(
S

DG

g

)2

(20)

PDG
g,t tan

[
cos−1

(
p fg

)] ≥ QDG
g,t (21)

Rdw
g ≤ PDG

g,t − PDG
g,t−1 ≤ R

up
g (22)

Fg,t = Fg,t−1 −
Δt PDG

g,t

𝜂
f
g FCgHg

(23)

Fg,t ≥ F
g

(24)

Πg,t ∈ {0, 1} ∀g ∈ ΩDG (25)

where PDG
g,t is the active power emitted by the micro gas turbines

units in the time period t of the node g. QDG
g,t is the reactive

power emitted by the micro gas turbines units in the time period

t of the node g. S
DG

g is the maximum output power of the micro
gas turbine units in a node g in a time period t .Πg,t is the binary
variable of node g related to the micro gas turbine units in a
time period t . When the micro gas turbine units are put into
operationΠg,t = 1, and when the micro gas turbine units are not
put into operation, Πg,t = 0. p fg is the power factor limitation
of the micro gas turbine units. Rdw

g is the falling limit of micro

gas turbine units. R
up
g is the climbing limit of micro gas turbine

units. Fg,t is the remaining fuel (%) of micro gas turbine units. 𝜂
f
g

is the fuel efficiency of the micro gas turbine units. FCg is the
fuel capacity of the micro gas turbine units. Hg is the calorific
value of unit fuel of micro gas turbine units. F

g
is the minimum

fuel for the micro gas turbine units.
Similarly, the optimized microgrid system in this paper also

includes energy storage devices. The constraints of energy stor-
age systems are also a part that must be considered in the opti-
mization process of microgrid systems. The energy storage sys-
tem constraints are shown in Equations (26)–(32) [29, 33]:

SOCb,t =
(
1 − 𝜉b

)
SOCb,t−1−

Δt

ECb

(
1

𝜂dc
b

P
ESS ,dc

b,t + 𝜂ch
b

P
ESS ,ch

b,t

)
(26)

Φb,t P
dc

b
≤ P

ESS ,dc
b,t ≤ Φb,t P

dc

b (27)

−Λb,t P
ch

b
≥ P

ESS ,ch
b,t ≥ −Λb,t P

ch

b (28)

SOC
b
≤ SOCb,t ≤ SOC b (29)

SOC 𝜏
b
≤ SOCb,t (30)

Λb,t + Φb,t ≤ 1 (31)

Λb,t , Φb,t ∈ {0, 1} ∀b ∈ ΩESS (32)

where SOCb,t is the state of charge of the energy storage sys-
tem at a node b in a time period t . 𝜉b is the self-discharge
rate of the energy storage system at the node b. ECb is the
energy capacity of the energy storage system at the node b.
𝜂dc

b
is the discharge efficiency of the energy storage system at

the node b. 𝜂ch
b

is the charging efficiency of the energy storage
device at the node b. Φb,t is a binary variable related to the dis-
charge operation of the energy storage system at the node b in
the time period t . When discharged, Φb,t = 1. When charged,
Φb,t = 0. P

dc

b
is the minimum discharge power of an energy

storage system. P
dc

b is the maximum discharge power of the
energy storage device. Λb,t is the binary variable related to the
charging operation of the energy storage system. When charg-
ing, Λb,t = 1. When discharging, Λb,t = 0. P

ch

b
is the minimum

charging power of the energy storage system. P
ch

b is the max-
imum charging power of the energy storage system. SOC

b
is

the minimum state of charge of the energy storage system at a
node b. SOC b is the maximum state of charge of the energy stor-
age system at a node b. SOC 𝜏

b
is the minimum state of charge

of the energy storage system at node b in the optimization
period 𝜏.

5 SOLVING OPTIMIZATION MODEL
BASED ON THE IMPROVED BENDERS
ALGORITHM

The traditional Benders algorithm divides the optimization
problem into sub-problems and main problems. Solving the
sub-problems can get the upper bound of the original opti-
mization problem. Solving the main problem can get the
lower bound of the original optimization problem. The tra-
ditional Benders algorithm iteratively calculates the main and
sub-problems until the main and sub-problems are less than a
threshold.

This paper improves the traditional Benders algorithm. By
improving the constraints of the main problem, the main prob-
lem can get a better lower bound result, which can speed up
the algorithm convergence. The following details the improved
Benders algorithm.

For the improved Benders algorithm, the objective func-
tion (16) and constraints in Section 3 need to be transformed
into the form of a min-max-min standard model. The stan-
dard model of the improved Benders algorithm proposed
in this paper is similar to the traditional Benders algorithm,
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similar to that described in [33]. This paper will not go into
details.

The improved Benders algorithm proposed in this paper is to
deal with the two-stage robust optimization model of min-max-
min. Similar to the traditional Benders algorithm, the improved
Benders algorithm also needs to divide the optimization prob-
lem into sub-problems and the main problem. The sub-problem
is used to deal with the optimization model of the max-min part,
while the main problem is used to deal with the optimization
model of the Min part. The process of dealing with the sub-
problem needs to involve the dualization and linearization of
the problem. The function of dualization in the sub-problem is
to perform dual processing on the max-min part, so that the
sub-problem is transformed into a problem of solving the max-
imum value. And then the upper bound of the original opti-
mization problem is obtained. Since the nonlinear term of the
variable will be generated in the process of dualization of the
sub-problem, the nonlinear term also needs to be linearized.
The sub-problem of the improved Benders algorithm proposed
in this paper is the same as that of the traditional Benders algo-
rithm, similar to that described in [33]. This paper will not go
into details.

The improved Benders algorithm proposed in this paper
improves the handling of the main problem. The process of
dealing with the main problem will be elaborated below. The
main purpose of the main problem is to optimize the decision
variables z . The main problems with the Benders dual method
are shown in Equations (33)–(36):

min 𝜉 = cT z + 𝜂 (33)

Az ≥ d (34)

𝜂 ≥ (
h − Ez − Jw∗

l

)T
𝜋∗

l
+ 𝜍 ∀l ≤ k (35)

z ∈ Sz (36)

where w∗
l

is the result of the decision variable w obtained
by solving the sub-problem. 𝜋∗

l
is the result of the deci-

sion variable 𝜋 obtained by solving the sub-problem. w∗
l

and
𝜋∗

l
are fixed-value parameters of the main problem. 𝜍 is the

acceleration parameter. k is the number of iterations. Equa-
tion (33) is the objective function. Constraints include the con-
straints shown in Equation (34) of the decision variable z .
Equation (35) is equivalent to the cut set generated by the
subproblem.

Unlike the traditional Benders dual algorithm, the improved
Benders dual algorithm proposed in this paper employs the
acceleration parameter 𝜍 to the constraints of the main problem,
as shown in Equation (35). The addition of acceleration parame-
ter 𝜍 can makes the optimized result of the main problem larger.
It can be seen from the simulation that the improved Benders
algorithm proposed in this paper can accelerate the solution of
the algorithm.

FIGURE 2 The overall flow chart of the improved Benders algorithm

Remark. The algorithm acceleration strategy proposed in this
paper is to accelerate the Benders algorithm feedback link (Ben-
ders cut). By modifying the cuts generated by the sub-problem,
as shown in Equation (35), the search range of the main prob-
lem is effectively reduced. The reduction of the search range
of the main problem makes z obtained by the main problem
closer to the final optimization result. Bringing thisz∗ into the
sub-problem also makes w and 𝜋 obtained by the sub-problem
closer to the final optimization result. So we achieve the purpose
of accelerating the solution speed of Benders algorithm. The
larger the value of acceleration parameter 𝜍 is, the more obvious
the influence of acceleration on the algorithm is. In order to sat-
isfy the convergence of the algorithm, the value of 𝜍 has a range
in general. The value range is shown in Equation (37):

0 < 𝜍 < Q(z∗ )max − Q(z∗ )min (37)

where Q(z∗ )max is the maximum value of Q(z∗ ) during the algo-
rithm iteration process. Q(z∗ )min is the minimum value of Q(z∗ )
during the algorithm iteration process. The overall flow chart of
the improved Benders algorithm is shown in Figure 2.

6 SIMULATION ANALYSIS

6.1 Simulation system and data

This paper uses a modified IEEE39-bus system [33] for simula-
tion. The modified IEEE39 node system is shown in Figure 3.
This paper is modelled in the MATLAB R2018a environment
and calculated using the IBM CPLEX 12.8.0 solver.

Figure 4 shows the forecast data of uncertain factors such as
photovoltaic output, wind turbine output and load demand. Fig-
ure 5 shows the price of electricity purchased by the microgrid
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FIGURE 3 Modified IEEE39 node system
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FIGURE 4 Forecasting data of photovoltaic output, wind turbine output
and load demand

from the main grid and the unit price of traditional distributed
power output.

6.2 Grid-connected operation mode of
microgrid

This section takes the scenario of a microgrid grid-connected
operation mode as an example for simulation analysis. When
the microgrid is connected to the grid, there is an electrical
interaction between the microgrid and the main grid. When
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FIGURE 5 The unit price of electricity

TABLE 1 Microgrid operating costs in different small scenarios

Small scenarios Operating costs ($) Calculating time (s)

(a) 6.0828k 60.945558

(b) 7.3339k 58.422744

(c) 6.3871k 51.018100

the distributed power output in the microgrid is insufficient,
the microgrid can purchase electricity from the main grid to
meet the needs of the microgrid. When the output of renew-
able distributed power sources in the microgrid is too much,
the microgrid cannot absorb the excess wind power and pho-
tovoltaic power generation. The microgrid can sell the surplus
electricity to the main grid, thereby gaining profits and reducing
the overall operating cost of the microgrid.

In order to better illustrate the advantages of the micro-
grid adaptive robust optimization model with different robust
adjustment parameters proposed in this paper, this section com-
pares the optimization results of three small scenarios. Small
scenario (a) is a scenario based on the expectations of wind
power, photovoltaics and load. This scenario is a scenario where
robustness is not considered. Small scenario (b) is the worst sce-
nario for wind power, photovoltaic and load. This scenario is a
traditional robust optimization scenario. Small scenario (c) is the
optimized scheduling model scenario proposed in this paper.
In the simulation under the grid-connected operation mode of
the microgrid, the acceleration parameter of the improved Ben-
ders algorithm adopted is 𝜍 = 0.2. Table 1 shows the operating
costs of the microgrid in three different small scenarios when
the microgrid is connected to the grid.

It can be easily seen from Table 1 that the operating cost
of the microgrid in the small scenario (c) is between the small
scenario (a) and the small scenario (b). Small scenario (a) is a
scenario that does not consider robustness, and only needs to
perform optimal dispatch of the microgrid according to the pre-
dicted value of the uncertain factors. Because this small scenario
is an ideal scenario, the operating cost of the microgrid in the
small scenario (a) is less than the operating cost of the microgrid
in the small scenario (c). But compared to the small scenario (a),
when the output of the renewable distributed power generation
is lower than the predicted value and the load demand is higher
than the expectation, the optimized dispatch result of the small
scenario (c) can still ensure the safe and stable operation of the
microgrid. The small scenario (c) can ensure the robustness of
microgrid operation. The small scenario (b) is the optimized dis-
patch result of the microgrid obtained by the traditional robust
optimization, and is the optimized result under the worst sce-
nario of uncertain factors. Because the optimization result of
this small scenario is conservative, the operating cost of the
microgrid in the small scenario (b) is greater than the operat-
ing cost of the microgrid in the small scenario (c). Through the
microgrid adaptive robust optimization model proposed in this
paper, small scenario (c) optimizes the adaptive robust adjust-
ment parameters of microgrid operation to ensure the economy
and robustness of microgrid operation.
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FIGURE 6 The changes of robust adjustment parameters 𝜁PV , 𝜁WT and
𝜁D

FIGURE 7 Charging and discharging of the energy storage system under
three different small scenarios

Among them, for different uncertain factors, this paper
obtains different adjustment coefficients through optimization.
The adjustment coefficients are ΥPV = 0.3, ΥWT = 0.2 and
ΥD = 0.2. The corresponding robust adjustment parameter
value changes with the forecast data. Figure 6 shows the changes
in robust adjustment parameters 𝜁PV , 𝜁WT and 𝜁D . Robust
adjustment parameters can reflect the robustness of the micro-
grid. Robust adjustment parameters can also effectively bal-
ance the economy and robustness of microgrid operation. The
robust optimization model proposed in this paper can minimize
the operating cost of the microgrid on the premise that the
microgrid has certain robustness. The robustness adjustment
parameters optimized according to different uncertain factors
make the optimization results of the optimization model pro-
posed in this paper more in line with the actual situation.

The charging and discharging conditions of the energy stor-
age system in small scenarios (a), (b) and (c) are shown in
Figure 7.

It can be seen from Figure 7 that the charging and discharg-
ing times of the energy storage system in the worst scenario are
the same as the charging and discharging times of the energy
storage system in the robust optimization scheduling scenario
mentioned in this paper. The number of charge and discharge
conversions of the energy storage system is 17 times. In the
ideal scenario, without considering robustness, the energy stor-
age system has fewer charge and discharge times, and the charge
and discharge times are 15 times. The reason is that the energy

FIGURE 8 Energy interaction between microgrid and main grid

storage system of the microgrid requires more charging and dis-
charging times to ensure that the microgrid can still operate sta-
bly even when uncertain factors deviate from the ideal state.
Fewer charge-discharge conversion times are beneficial to the
maintenance of the energy storage system. Reducing the mainte-
nance cost of the energy storage system is also reduces the over-
all operating cost of the microgrid. When the output of renew-
able distributed energy sources such as photovoltaics and wind
power is less than the expectation or the load demand is greater
than the expectation, it may not be able to operate safely and sta-
bly, because the microgrid is not robust. In the 24 h scheduling
process, the charge and discharge capacity of the energy storage
system are the same, which indicates that the beginning and end
states of the energy storage system are the same, and meets the
requirements of the energy storage system charge and discharge
constraints.

Figure 8 shows that the microgrid purchases electricity from
the main grid or sells electricity to the main grid in three differ-
ent small scenarios. The negative electricity exchange between
the microgrid and the main grid means that the microgrid sells
electricity to the main grid. The electricity interaction between
the microgrid and the main grid is positive, which means that
the microgrid purchases electricity from the main grid.

When the microgrid purchases electricity from the main net-
work (such as 1 h, 5 h, 20 h, 21 h), the electricity purchased
from the main network in scenario (c) is between the electricity
purchased from the main network in scenario (a) and scenario
(b). For the small scenario (b), due to the conservativeness of
the traditional robust optimization on the estimation of uncer-
tain parameters, the microgrid needs to purchase more power
from the main grid. The microgrid purchases more electricity
to ensure the safe and stable operation of the microgrid in the
worst scenarios. In scenario (a), the corresponding microgrid
purchases the smallest amount of electricity from the main grid,
because it only considers the expectation of the uncertainty fac-
tors. But there is no robustness in actual operation in scenario
(a).

At other times, the microgrid sells the remaining power to
the main grid. It can be seen from Figure 8 that the electricity
sold to the main network in the small scene (c) is between the
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FIGURE 9 Traditional distributed power output of Grid-connected
microgrid

TABLE 2 Operating costs of microgrid under island and grid-connected
mode

Operating status of

microgrid Operating costs ($) Calculating time (s)

Island mode 6.9700k 69.898281

Grid-connected mode 6.3871k 51.018100

small scene (a) and the small scene (b). The reason is also similar
to the reason why the microgrid purchases electricity from the
main grid previously analyzed. Due to the sufficient output of
renewable distributed energy sources such as photovoltaics and
wind power, the microgrid can sell electricity to the main grid. In
the worst scenario, the output of renewable distributed energy
is lower than expected, so the microgrid sells the least amount
of electricity to the main grid.

After the optimization of the robust optimization schedul-
ing model proposed in this paper, the output of 10 traditional
distributed power sources (micro gas turbine units) is shown in
Figure 9.

6.3 Island operation mode of microgrid

The microgrid cannot interact with the main grid for energy
when it is operating in island mode. A microgrid needs to bal-
ance supply and demand within itself. In the simulation under
the microgrid island operation mode, the acceleration parameter
of the improved Benders algorithm adopted is 𝜍 = 0.2. Table 2
shows the comparison of operating costs in the island mode and
the grid-connected mode of the microgrid.

The adjustment coefficients obtained during islanding oper-
ation optimization are ΥPV = 0.3, ΥWT = 0.3 and ΥD = 0.2.
Through the comparison, it is obvious that the operating cost
in island mode is greater. Referring to Figure 8, in the process
of interaction between the microgrid and the main grid in grid-
connected mode, the microgrid sells electricity to the main net-
work during most periods. When the microgrid is operating in
island mode, the microgrid cannot sell excess electricity to the

FIGURE 10 Traditional distributed power output of island microgrid

FIGURE 11 Comparison of average output

main grid. The microgrid cannot obtain profit from the electric-
ity sold, and the corresponding operating costs are higher.

Figure 10 shows the output of 10 micro gas turbine units
when the microgrid is operating in island mode. In order to
clearly compare the output of traditional distributed power
sources in grid-connected mode and the island mode of the
microgrid, the average output of each traditional distributed
power source in 24 h is compared. Figure 11 shows the com-
parison of the average output of 10 micro gas turbine units in
grid-connected mode and the island mode of the microgrid.

When the microgrid is operating in grid-connected mode, the
average output of 10 micro gas turbine units is 0.55413 MW.
When the microgrid is operating in island mode, the average
output of 10 micro gas turbine units is 0.473614 MW. The out-
put of micro gas turbine units in grid-connected mode is greater
than that of the micro gas turbine units in island mode, as shown
in Figure 11. The reason is that when the power consumption of
the main grid is large, the electricity price of the microgrid sell-
ing electricity to the main grid is high. The microgrid can enable
micro gas turbine units to send more electricity to the main grid
when the electricity price is high, thereby reducing the overall
operating cost of the microgrid.

In island mode, the microgrid has no energy interaction pro-
cess with the main grid. It can be seen from Figure 9 that the
total amount of electricity transferred from the microgrid to the
main grid in the grid-connected mode is 1.14546 MW. In island
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FIGURE 12 The number of iterations corresponding to different 𝜍

mode, the traditional distributed power output of the microgrid
is only reduced by 0.80516 MW. It shows that in order to ensure
the robustness of the microgrid in island mode, there are situ-
ations such as abandoning wind and solar. It will cause energy
waste and affect the economics of microgrid operations.

6.4 Improved Benders duality algorithm

The improved Benders algorithm proposed in this paper
achieves the purpose of accelerating the algorithm’s solving
speed by setting appropriate acceleration parameters 𝜍. Fig-
ure 12 shows the number of algorithm iterations correspond-
ing to different acceleration parameters 𝜍 in the microgrid grid-
connected operation mode.
𝜍= 0 represents the traditional Benders dual algorithm. It can

be seen from Figure 12 that the larger the value of the acceler-
ation parameter 𝜍, the smaller the number of iterations of the
algorithm. The fewer the number of iterations, the less time is
required for calculation and the higher the efficiency of the solu-
tion. The number of iterations of the algorithm changes linearly
with the acceleration parameter 𝜍. As the acceleration parameter
𝜍 increases, the number of iterations of the algorithm decreases
significantly. When the acceleration parameter is 𝜍= 0, the num-
ber of iterations of the algorithm is 53. When the acceleration
parameter is 𝜍 = 0.28, the number of iterations of the algorithm
is only 7. When the acceleration parameter value is larger, it will
cause the solution to be impossible. The reason is that if the
value of the acceleration parameter is too large, the lower bound
of the original problem will be greater than the upper bound,
and loop iteration cannot be performed. In order to better
show the calculation efficiency of the improved Benders algo-
rithm, the calculation time of the traditional Benders algorithm
and the improved Benders algorithm when the acceleration fac-
tor 𝜍 = 0.2 is selected for comparison. The solution time of
the traditional Benders algorithm is 160.864102s. The solution
time of the improved Benders algorithm is 51.018100s. Com-
pared with the traditional Benders algorithm, the improved Ben-
ders algorithm has increased the computational efficiency by
68.28%. The improved Benders algorithm effectively improves
the solution efficiency of the traditional Benders algorithm.

The improved Benders dual algorithm proposed in this paper
increases the solution result of the main problem. By increasing
the lower bound of the loop, the upper and lower bounds of the
Benders algorithm can reach the same value faster, and the final
optimization result can be obtained faster.

7 CONCLUSION

This paper proposes a microgrid adaptive robust optimal dis-
patch model with different robust adjustment parameters. The
robust equivalent characterization method is used to convert
uncertain parameters such as photovoltaic output, wind power
output and load demand into corresponding definite parame-
ters. Through optimization, different robust adjustment param-
eters for different uncertain parameters are obtained adaptively,
which cannot only ensure the robustness of the microgrid, but
also better ensure the economy. The robust adjustment param-
eters of different uncertain parameters are more in line with the
actual conditions of microgrid operation. The establishment of
a robust optimization model for microgrids can be applied to
grid-connected and isolated operations of microgrids, and has
more general applicability. Using the improved Benders algo-
rithm to solve the established model can speed up the solu-
tion process and improve the efficiency of the solution. The
adaptive robust optimization model of microgrids with differ-
ent robust adjustment parameters proposed in this paper con-
siders the robustness and economy of microgrid operation, and
is more suitable for practical applications.

This paper studies the optimized operation of a single micro-
grid without considering the interconnection of multiple micro-
grids. In the future, research will be conducted on the optimal
operation of microgrids under the condition of interconnected
multiple microgrids.
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