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Abstract Soil microbial communities respond to spatial and temporal variations in environmental
conditions (e.g., saturation and ambient temperatures) as reflected in the dynamics of microbially
produced greenhouse gas (GHG) fluxes (primarily CO2, N2O, and CH4) emitted from soil surfaces. Despite
considerable progress in resolving key soil microbial processes, their quantification remains largely empirical
with limited predictability. We report a mechanistic and analytical modeling framework for integrating
local environmental effects on GHG-producing microbial processes primarily in soil aggregates (or other hot
spots) and the upscaling of these to regional GHG fluxes. The mechanistic model enables systematic
evaluation of how soil structural features (e.g., aggregation and layers), spatial variability, and dynamic
ambient conditions (e.g., temperature and hydration) affect soil microbial functioning. The upscaling of
microbial processes from aggregates of different sizes to soil profiles and landscapes implements
mechanistically derived microbial response functions with spatial information on soil type, land cover, and
resource distribution. The modeling framework was evaluated using reported field data for seasonal N2O
emissions from subarctic regions resulting in reasonable agreement. The proposed analytical framework
offers a practical compromise balancing a simplified representation of dynamic microbial processes that
respond to local conditions with an upscalable representation of soil GHG fluxes over landscapes under
changing environmental conditions.

1. Introduction

The composition and structure of microbial communities is considered important for various facets of soil
ecological and biogeochemical functioning (Azam, 1998; Bardgett et al., 2008; Ebrahimi, 2017; Morales
et al., 2010; Schimel & Schaeffer, 2012). In the context of climate change, the emission of greenhouse gases
(GHG) from organic soils such as peatlands and thawing permafrost are of particular importance due to the
large amounts of stored soil organic carbon and nitrogen (Bousquet et al., 2006; IPCC, 2014; Jansson & Taş,
2014; Natali et al., 2011). Special attention has been given to soil biogeochemical gases produced by anaero-
bic soil microbial processes (e.g., N2O and CH4); these are considered as potent GHG sources due to their
strong photochemical atmospheric interactions (Hansen et al., 2000; Meinshausen et al., 2009).
Observations of spatially variable and highly dynamic rates of soil GHG emissions affect the uncertainty in cli-
mate change projection especially with the intricacies of hydroclimatic feedbacks (e.g., permafrost thaw,
droughts, or frequent floods).

The relative importance of environmental factors such as soil heterogeneity (e.g., texture and aggregation),
resource spatial distribution (carbon and nitrate), and dynamic hydration conditions on microbial processes
and biogeochemical reactions is relatively well understood, at least in a qualitative sense (Ebrahimi & Or,
2014, 2015; Nunan et al., 2003, 2007; Tiedje et al., 1984; Young & Crawford, 2004). To date, many of the qua-
litative and conceptual insights regarding microbial interactions in natural soils have not been transformed
into mechanistic and quantitative frameworks that could offer predictive capabilities at practical scales of
interest. Biogeochemical modules in Earth system models often consider soil microbial activity by assuming
a linear relationship between soil C and N stocks and the emitted GHG fluxes (Schimel, 2001; Wieder et al.,
2015). Some process-based models have described soil gas fluxes by calibration based on field-scale flux
observations using parameters derived from long-term incubation experiments to assign various pools of
carbon and nitrogen stocks (McGuire et al., 2001; Molina-Herrera et al., 2016; Murguia-Flores et al., 2017;
Pumpanen et al., 2003). Other models link the conceptual pools of microbial biomass with GHG production
and emissions using empirical first-order linear decay rates (some include environmental factors; Manzoni
et al., 2014; Sierra et al., 2012; Wu et al., 2015). While parameterizations by conceptual pools enhanced our
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understanding on the dynamics of carbon and nitrogen stocks, their limited links with mechanistic and mea-
surable quantities makes it difficult to consider soil structural features and resource spatial distributions that
are known to play important roles in regulating net GHG emissions from soil (Sierra et al., 2011; Smith et al.,
2002; Wieder et al., 2015).

Evidence suggests that several abiotic factors play a dominant role in controlling soil microbial processes and
associated GHG emission rates and patterns (Ebrahimi & Or, 2016; Manzoni et al., 2014; Tecon & Or, 2017).
Motivated by these observations and evidences, we have developed mechanistic models that consider
microbial community dynamics and variations in resource utilization in response to changes in soil and other
environmental factors to better link biogeochemical interactions with large-scale hydrologic-climatic pro-
cesses (Ebrahimi & Or, 2015; Kim & Or, 2017; Vogel et al., 2015). The parameterization of such mechanistic
models remains a challenge, and observational capabilities lag behind. Moreover, the computational burden
becomes prohibitive for detailed model application at large scales of practical interest. We thus seek a mod-
eling framework that retains salient responses of microbial activity with changes in micro-environmental con-
ditions (without the burden of explicitly representing such micro-environments). We seek a simple model
that retains dynamic response and capable of linking microbial processes from aggregates and soil profile
to regional-scale fluxes at moderate computational and parameterization needs.

Motivated by this goal, the specific objectives were to (1) develop an analytical model based on idealized
spherical aggregates that integrates interactions between soil aggregates and oxygen content in formation
of anoxic microsites for anaerobic microbial activity, (2) integrate microbial response functions from a
detailed biophysical model for an aggregate and upscale the aggregate model to soil profiles for estimation
of profile-scale GHG emissions, (3) expand the model to regional scales using land cover maps and regional-
scale heterogeneities of soil texture and resource distributions, and (4) evaluate the model response to sea-
sonal and spatial variations on N2O gas emissions and compare with field observations.

2. Theoretical Considerations

We expand a previously developed analytical model that considers conditions within spherical soil
aggregates and the onset of anaerobic microbial hot spots in a soil matrix under certain conditions
(Ebrahimi & Or, 2015; Smith, 1980). Aggregates are drawn from a statistical population of different
sizes (similar to reported in natural soils). Aggregate assemblies of different sizes populate different
depths/layers of a soil profile and are subjected to different macroscopic hydration and aeration boundary
conditions (Ebrahimi & Or, 2016). The model then considers microbial processes across a range of spatial
and temporal environmental conditions, from individual aggregates (“hot spot”) to soil profiles and regions
composed of many soil profiles with different characteristics (Ebrahimi & Or, 2016; Gupta & Germida, 2015;
Kuzyakov & Blagodatskaya, 2015; Nunan et al., 2007; Or et al., 2007).

For simplicity, we consider an idealized soil aggregate as the basic modeling building blocks, where details of
microbial self-organization and community functioning are simplified and parameterized based on results com-
piled from detailed pore-scale model (Ebrahimi & Or, 2015, 2016;). In essence, we have consolidated information
from a numerical model that explicitly represents microbial life in soil pore networks considering individual cell
activity (e.g., dispersion, nutrient uptake, growth, division, and death) across a range of conditions that we varied
systematically (Borer et al., 2018; Ebrahimi & Or, 2015; Kim & Or, 2016; Wang & Or, 2014). The results were used to
derive aggregate microbial functions that are used as inputs into an analytical aggregate model. The fluxes from
idealized soil aggregates (different sizes and depths) were integrated to provide estimates of GHG fluxes from soil
profiles (see Figure 1 for schematic representation of the modeling and upscaling strategies). Different profile-
scale fluxes are estimated from different units in the landscape and weighted to estimate regional GHG surface
fluxes using spatial maps of soil and land cover attributes and relevant hydroclimatic information.

2.1. Biogeochemical Processes at Individual (Hot Spot) Aggregate Level

Microbial hot spots may form in soil aggregates under certain conditions; such concentrated regions of
microbial activity may become anoxic and affect a wide range of biogeochemical processes (Ananyeva
et al., 2013; Philippot, 1996; Six et al., 1998; Tiedje et al., 1983). For generality, we consider an idealized model
of a spherical “aggregate” as a representative generic hot spot where anaerobic conditions emerge due to
microbial activity and inhibited oxygen diffusive fluxes into such microenvironments (see Borer et al., 2018;
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Ebrahimi & Or, 2015; Sexstone et al., 1985; Tiedje et al., 1984). Evidence suggests that such
microenvironments (often of millimetric scales) may host dense microbial communities with own local
trophic interactions (Briar et al., 2011; Cosentino et al., 2006; Nie et al., 2014).

Considering a prototypic spherical soil aggregate, a simple analytical model for steady-state radial oxygen
diffusion reaction (microbial) is expressed as follows:

Deff:
d2 O2½ �
dr2

þ 2=rð Þd O2½ �
dr

� �
¼ Qm

O2½ � (1)

where r (m) is the aggregate radius. Qm
O2½ � (g hr�1 m�3) is the mean volumetric oxygen consumption rate per

aggregate due to microbial activity. The function Qm
O2½ � encapsulates the response of microbial community

structure and functioning that may be influenced by factors such as aggregate size and pore network char-
acteristics, hydration conditions, temperature, and organic carbon content (Arah & Smith, 1989). A central
goal of this study is to propose a systematic parameterization scheme for quantifying these volumetric micro-
bial consumption rate functions (Qm) based on detailed individual-based models of microbial life in pore net-
work model for a range of conditions. As described in section 2.2 (Figures 2 and 3), Qm is a function of
dissolved organic matter content, oxygen concentration at aggregate surface, and aggregate size.

The solution of equation (1) for a prescribed microbial consumption rate Qm
O2½ � requires two boundary condi-

tions; these could be represented either by (1) a constant oxygen concentration ([O2]
b [mg/L]) at the

Figure 1. Schematic of analytical modeling procedure parameterized through numerical pore-scale modeling. (a) Numerical modeling of microbial aerobic (blue
dots) and anaerobic (green dots) activities from single aggregates of different size classes to soil profile with variations of local macroscopic boundary conditions
for oxygen, and carbon concentrations and water saturation as functions of soil depth. (b) Analytical modeling procedure of GHG fluxes from idealized spherical
aggregates to soil profile and regional scales where soil physical and chemical properties spatially vary. Soil global map obtained from (Hengl et al., 2017).
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aggregate surface that is obtained from macroscopic boundary conditions over the soil depth or by (2) zero
oxygen flux at the aggregate radius equal to the size of the anoxic zone (ran [m]) where oxygen consumption
becomes zero. The analytical solution of equation (1) provides the oxygen concentration profile O2 (mg/L or
g/m3) along the aggregate radius, expressed as follows:

O2 rð Þ ¼ O2½ �b þ
Qm

O2½ �
6Deff:

R2 � r2
� �� 2r3an

1
r
� 1
R

� �� �
(2)

The size of the anoxic zone within individual aggregates (ran) could be then obtained as a function of aggre-

gate size (R [m]) by finding where the oxygen flux (derivative of equation (2)) vanishes (
∂O2 rð Þ
∂r

���� ¼ 0

r ¼ ran

). The

explicit expression is given as follows:

Figure 2. (a) Normalized mean uptake rate of oxygen required for the analytical model as a function of carbon and oxygen
contents. Inset figure shows the effects of oxygen content on its mean uptake rate. (b) Effects of aggregate size on nor-
malized oxygen uptake rate as deduced from numerical results of microbial communities grown in the pore network
model. Solid black line represents the fitted model on numerical data. The fitting parameters for the power law relationship
of the mean oxygen uptake rate as a function of aggregate size are shown in the inset figure (b).
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p

R

6Deff: O2½ �b
Qm

O2½ �

 !1=2

(3)

We use the oxygen profile (equation (2)) and the size of the anoxic zone within an individual aggregate
(equation (3)) to estimate the potential for microbially produced GHG fluxes, as described in the following
and represented schematically in Figure S1.

The net respiration flux of CO2 per aggregate of a certain size is calculated based on a stoichiometric coeffi-
cient, asto. (depending on carbon source), aggregate size (R), and the mean volumetric oxygen uptake rate,
Qm

O2½ � as follows:

VCO2 ¼
4
3
πR3

� �
astoQ

m
O2½ � (4)

VCO2 accounts for CO2 flux for the conditions where carbon resides within soil aggregates and consumed by

aerobic and anaerobic microbial communities. It should be noted that in addition to these specific “hot
spots,” gas fluxes from background carbon pools of the soil matrix are included, as discussed in
section 2.3.

For other anaerobically produced GHG, the information on oxygen distribution and content is required to
estimate production rates. For example, N2O production occurs only when the oxygen content in the anoxic
zone of an aggregate is above a critical threshold ([O2] > [O2]c), where [O2]c (mg/L) is the threshold oxygen
content (about 2% of atmospheric level) below which N2O is consumed and converted to N2 (Bouwman,
1998; Morley et al., 2008; Morley & Baggs, 2010). Therefore, N2O gas fluxes from denitrification process are
quantified using the following conditional equation:

VN2O ¼ 4
3
πR3

� �
aNistoQ

m
Ni½ �; O2½ � > O2½ �c VN2O ¼ 0; O2½ � < O2½ �c

�
(5)

whereQ[Ni]m is themean volumetric nitrate uptake rate per aggregate that similar toQm
O2½ � is obtained through

parameterization from pore network model, as explained in the following.

Figure 3. Mean nitrate volumetric uptake rate (Q[Ni]m) normalized by nitrate concentration [Ni], required for the analytical
model as a function of oxygen content, shown for three aggregate sizes. Effects of aggregate size on normalized nitrate
uptake rate is deduced from numerical results of microbial anaerobic communities simulated in pore network model
(Ebrahimi & Or, 2016). Dashed lines represent the fitted power law model on numerical data of normalized nitrate uptake
rate. The fitting parameters of power law relationship are represented in the inset figure.
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2.2. Parameterization of Nitrate/Oxygen Uptake Rate Functions

A key ingredient for the analytical aggregate model requires input of the mean volumetric uptake rates of
oxygen, Qm

O2½ � (respiration), and nitrate, Qm
Ni½ � (denitrification). These uptake rate functions are derived from a

mechanistic numerical model developed by Ebrahimi and Or (2015) with results parameterized by systema-
tically calculating the resultingmicrobial consumption rates for a range of aggregate sizes and environmental
conditions.

The pore network model describes the emergent life strategies of numerically inoculated individual aerobic
and anaerobic microbial cells (e.g., denitrifiers or methanogens in some cases) under quasi-stationary condi-
tions for a set of environmental conditions (e.g., oxygen, carbon, and nitrate contents) and aggregate sizes (in
the range of 2 to 10 mm). The resulting rates of oxygen and nitrate uptake were integrated over an aggregate
to yield mean volumetric uptake rates that contributed to the parameters used in the analytical model (equa-
tions (4) and (5)). It is important to note that themean uptake rate functions include resource variations, effec-
tive transport rates, and microbial cell-level interactions that jointly determine microbial community size and
self-organization unique for these specific conditions under consideration (see details in Ebrahimi & Or, 2015,
2016). In the absence of reliable empirical parameters for a wide range of conditions, we rely on mechanistic
model parameterization to bridge the gap and provide simple volumetric uptake rate functions as inputs into
the analytical aggregate model (for similar conditions as in the detailed model). Fluxes estimated by the ana-
lytical aggregate model are then integrated over soil profiles and across landscapes. The model parameters
used in the pore network simulations are described in Table S2.

• Mean Oxygen Uptake Rate Function (Qm
O2½ �)

The numerical results depicted in Figure 2a (see inset) suggest nonlinear relationship betweenQm
O2½ � and oxy-

gen content for different aggregate sizesQm
O2½ �∝

ffiffiffiffiffiffiffiffi
O2½ �p

. This motivated the normalization of volumetric oxygen

uptake rate Qm
O2½ � by (square root of) oxygen concentration, facilitating the plotting of families of normalized

Qm
O2½ � as a function of the aggregate size and internal carbon content (Figure 2b). We then fitted a conditional

exponential function for the normalized oxygen uptake rate, Qm
O2½ � with carbon content ([C]) and aggregate

size (R), as given:

Qm
O2½ � ¼ α exp βRð Þ; R > 4mm

Qm
O2½ � ¼ Qm

O2½ � ;R¼4
; R < 4mm and C½ � < 3 g=L

Qm
O2½ � ¼ c1Rþ c2; R < 4 mm and C½ � > 3g=L

8<
:

8>>><
>>>:

(6)

where the fitting parameters (α, β, c1, and c2) are obtained from the numerical simulation results, as shown
in the inset of Figure 2b for α and β. Recall that we seek to collapse these detailed numerical results of
Qm

O2½ � for many conditions into simple analytical expressions to be used for the idealized analytical aggregate
model.

• Mean Nitrate Uptake Rate Function (Qm
Ni½ �)

The mean value of microbial nitrate uptake rate was quantified for a range of environmental conditions as
shown in Figure 3. The numerical results suggest linear relationship between Qm

Ni½ � and nitrate concentration

(Qm
Ni½ �∝ Ni½ �ð Þ). The normalization of Qm

Ni½ � demonstrates that the results collapsed to similar ranges of uptake

rates for different nitrate concentrations ([Ni]), for given oxygen content and aggregate sizes. We note that
the linear relationship is linked to the assumed uniform distribution of nitrate within the aggregate volume
and other scenarios of nitrate distribution (similar to the nonlinear relationship between oxygen consump-
tion rate and its concentration along the aggregate) could be used where needed.

For simplicity, and to facilitate simple analytical representation, we fitted power law relationships between
nitrate volumetric uptake rates (Qm

Ni½ � ) and aggregate size (guided by the shape of the numerical results).

The resulting parameterization of the numerical results is given by a simple analytical expression:

Qm
Ni½ �
.

Ni½ �

� �
¼ η O2½ ��λ
	 


(7)
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where

η ¼ d1 R�d2
� �

and

λ ¼ k1 þ k2R; R < 4

λ ¼ e1 R�e2ð Þ; R≥4

�
(8)

where fitting parameters (k1,2 and e1,2) are obtained through numerical modeling as shown in the inset in
Figure 3.
2.2.1. Effects of Hydration Conditions on GHG Emissions From Individual Aggregates (Hot Spots)
The analytical model proposed by Currie (1962) and Smith (1980) considers a saturated soil aggregate. We
extended the model to consider effects of wetting and drying cycles and partially saturated aggregate on
the resulting anoxic conditions. For simplicity, aggregate drying was simplified to the transport of vapor
diffusing radially from the aggregate into the surrounding unsaturated soil (Haghighi et al., 2013;
Shahraeeni & Or, 2012; see supporting information S1 for the details). We divide the aggregate volume into
saturated and unsaturated (dry) zones (see inset of Figure S3a). The liquid phase in the saturated region limits
gas diffusion whereas the unsaturated shell supports rapid gas diffusion where gas concentration (e.g., oxy-
gen) at the dry shell is in equilibrium with soil air (defined by macroscopic boundary conditions at the
aggregate outer surface). Such segregation of the saturated and unsaturated domains enables simple repre-
sentation of microbial processes in the idealized spherical aggregate, where anoxic conditions occur in the
saturated core of the aggregate.

2.3. Biogeochemical Gas Fluxes From a Soil Profile
2.3.1. Soil Biogeochemical Gas Fluxes Form Assemblies of Aggregates
The first step in the upscaling is to integrate biogeochemical gas fluxes over assemblies of aggregates of dif-
ferent sizes located at different depths in a soil profile (hence experiencing different macroscopic boundary
conditions). For simplicity, we assume no feedback between members of the aggregate assembly (i.e., the
external boundary conditions remain the same for all aggregate sizes) or among aggregate assemblies at dif-
ferent depths in the profile. Many studies have shown that soil aggregate sizes follow a log-normal distribu-
tion (Ebrahimi & Or, 2016; Elliott, 1986; Gardner, 1956; Pinheiro et al., 2004). Ebrahimi and Or (2016) have
compiled many results showing that for a wide range of measured aggregate sizes (expressed in mm), the
log-normal mean parameter (μ) ranges from �2 to 0.2 with a constant log-normal standard deviation of
σ = 1. At a given soil depth with similar macroscopic conditions of water, carbon, and oxygen, the total
CO2 and N2O fluxes are integrated over the log-normally distributed assembly of aggregates according to
the process of interest.

For CO2 flux rates:

V tot:;CO2 ¼ ∫∫R3VCO2 Rð Þf Rð ÞdR=∫R3f Rð ÞdR (9a)

For denitrification-produced nitrous oxide rates:

V tot:;N2O ¼ ∫∫R3VN2O Rð Þf Rð ÞdR=∫R3f Rð ÞdR (9b)

where f(R) is the log-normal distributions of aggregates of different size classes, parameterized through field
observations (Ebrahimi & Or, 2016). It should be noted that Vtot. only accounts for gas fluxes from assembly of
hot spots, and the contribution of soil matrix is added when upscaling to soil profile (see section 2.3), while
their contribution becomes negligible at dry conditions.

The contribution of bulk soil (the nonaggregated soil volume at each layer) to GHG emissions is added to the
fluxes from aggregates. We assume that each soil layer in the profile contains a similar fraction of aggregates
(amount here to 0.3 of the soil volume). The bulk fraction of a soil layer is uniform with respect to water, oxy-
gen, and carbon contents. Hence, GHG production rate within bulk soil is calculated from mean nitrate and
oxygen uptake rates (Qm) with respect to the respective substrate contents at a given depth. We note that the
distribution of hot spots represented by hypothetical aggregate size distribution derived from agricultural
soils is probably the weakest ingredient in this model approach. Hot spots in carbon-rich arctic soils would
probably form many different mechanisms and may be distributed differently; nevertheless, the exact distri-
bution does not affect the upscaling scheme proposed in this study. A critical lack of methods and direct

10.1029/2017JG004347Journal of Geophysical Research: Biogeosciences

EBRAHIMI AND OR 1532



observations of hot spots hampers advances inmechanistic modeling as proposed in this study. Insights from
manipulative experiments as reported in Ebrahimi and Or (2018) advance our understanding concerning the
role of carbon distribution in soil aggregates on GHG emissions; yet, methods for field characterization of hot
spot distribution are essential for linking detailed mechanistic with large-scale models (as required for ESM).
2.3.2. Profile-Scale Representation of GHG Fluxes and Boundary Conditions
The natural distributions of ambient conditions (e.g., temperature and moisture) and resources (e.g., carbon
and oxygen) over a soil profile (as schematically depicted in Figure 1) vary across the landscape and affects
microbial community dynamics and function (Fierer et al., 2003, 2009; Tecon & Or, 2017). We coupled the
assumed vertical distributions of resources (carbon and oxygen) and conditions (water content, temperature)
with the aggregate biophysical model to address spatial variations in microbial processes that give rise to
activity in hot spots from which much of the soil GHGs emanate (Davidson et al., 1998; Groffman et al.,
2009; Kuzyakov & Blagodatskaya, 2015).

To upscale the biogeochemical gas production rates from an assembly of soil aggregates, and their emission
from a soil surface, we employed a scheme from Ebrahimi and Or (2016). The soil profile is discretized to
layers of thickness (Δz), each layer containing aggregates of different sizes, and the prevailing conditions
at that layer serve as similar macroscopic boundary conditions for all aggregates. To reduce the computa-
tional burden for large-scale applications, we consider three soil layers only (see Figure S2). The macroscopic
variations in abiotic factors and resources are provided as input parameters for the analytical aggregate
model solved for each soil layer. The spatial and temporal variations in macroscopic boundary conditions
are discussed in detail by Ebrahimi and Or (2016), and here, a brief description on water and oxygen profiles
over the soil depth is provided in the supporting information.

The primary transport mechanism for GHG in the soil is diffusion through the liquid phase in the saturated
zone of the soil profile (or the saturated core of an aggregate) and through the gas phase in soil pores in
the unsaturated (aerated) zone. For the aerated zone of the soil profile, we assume that the gas concentra-
tions in soil water and soil air are in the equilibrium according to Henry’s law. With such an assumption
and given the relatively high gas diffusion compared to liquid phase, gas productions from the aerated frac-
tion of the soil profile is assumed to be directly emitted at the soil surface without accumulation in the profile.
In contrast, microbial gas production in inundated soil layers in the profile may accumulate due to the slow
diffusion rates through the liquid phase.

To estimate the net GHG diffusive flux within saturated zone of the soil profile, a diffusion-reaction equation
over the soil depth is solved (Ebrahimi & Or, 2017):

Jdþ1
tot;liq:

	 

þ Qacc: ¼ Jd�1

tot;liq:

	 

þ Sd;diff: (10)

where Qacc: ¼ Δz Aliq:ΔCliq:

Δt

	 

is the flux accumulation term within the layer d. Cliq. is the gas concentration in

liquid phase within the corresponding soil layer. Sd, diff. is the total gas production rate from aggregate assem-
blies and the bulk fraction of the soil layer, calculated with respect to soil profile aggregate fraction, fagg..

Sd;diff: ¼ f agg: Vass:ð Þ þ 1� f agg:
� �

Vbulk (11)

Vass. is the volumetric CO2 or N2O production rates from the assembly of aggregates obtained from equa-
tions (9a) or (9b), respectively. Vbulk is the volumetric GHG production rate from bulk soil. Additionally, the
gas flux from the aerated portion of the soil profile is directly obtained through superpositioning of GHG pro-
duction rates in equations (9a) and (9b).

3. Large-Scale Temporal and Spatial Variations in Soil GHG Emissions

Many of the soil GHG quantification techniques either rely on closed chamber measurements with a small
footprint (less than 1 m2) that underrepresents soil spatial variations or employ eddy covariance flux mea-
surements with extensive mixing of spatially variable sources within the measurement footprint. Keeping
these two scenarios in mind, we seek to derive regional GHG fluxes by systematically upscaling fluxes
from representative soil profiles for the landscape of interest. For illustration purposes, we evaluate the pro-
posed upscaling strategy over spatiotemporal scales where model predictions for N2O emission rates are
compared with measured emissions from ecosystems experiencing seasonal variations in water content
and temperature. We focus on N2O fluxes; however, other soil GHGs could be considered within the same
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upscaling framework, as illustrated in a recent study of seasonal methane emissions from a thawing perma-
frost soil (Ebrahimi & Or, 2017).

We applied an analytical model to seasonal variations in soil N2O emissions for two case studies of minero-
trophic fens. Case study I is located at central Finland (part of Lakkasuo mire complex; Martikainen et al.,
1993) where the region was partially drained for forestry (case study I), and case study II is located in north-
eastern Bavaria, Germany, where rainfall intercepted on the surface was manipulated using rainfall shelters
(Goldberg et al., 2010). In these two case studies, water table fluctuations and rainfall patterns altered satura-
tion conditions and thus affected GHG emission dynamics. GHG emissions from the northern peatlands (case
study I) were deemed particularly important because these peatlands store 20% to 30% of the Earth’s organic
nitrogen (Gorham, 1991; Martikainen et al., 1993). Additionally, the model is applied to quantify spatially het-
erogeneous N2O emissions at regional scale for a subarctic field located in Northeast European Russia, Seida
(Voigt et al., 2016; case study III). Recently, the region is experiencing permafrost warming and thawing that
provides important case studies for impacts of climate change on similar systems (Oberman & Mazhitova,
2001; Romanovsky et al., 2010; Voigt et al., 2016). For case study III, the mean annual temperature and preci-
pitation in the region are �5.8 °C and 505 mm, respectively (Repo et al., 2009). The region is composed of
various land cover classes such as tundra, peatland, forest, and willow groves (Hugelius et al., 2011a).

• Seasonal Variations: Thermal and Hydrologic Dynamics

The dynamics of soil water content profiles are affected by hydrological processes that remove (e.g., root
water uptake, evapotranspiration, and drainage) or add (e.g., precipitation and permafrost thaw) water to
the soil. For simplicity, we do not solve explicitly the hydrologic dynamics of well-established hydrological
models (Clark et al., 2015; Simunek et al., 2012) and provide the water content profiles as inputs (extracted
from observations or assumed). For the case studies I and II, information on water table variations is available
at daily time intervals, and hydrostatic conditions for the water content profile above the water table are
assumed (Ebrahimi & Or, 2016). For case study III, where water table depths are not provided (Voigt et al.,
2016), we carry out a simple water balance using field data on daily evaporation and precipitation rates
(details of model formations are provided in supporting information S2).

To represent the temperature dependency of nitrate and oxygen uptake rates at seasonal scales, we applied
the widely used Q10 index that considers proportional changes in production rate given a 10 °C change of
temperature. The uptake rate (Qm) could be then related to temperature as given:

Qm ¼ Qm
25 exp β

0
T � 25ð Þ

	 

(12)

whereQm
25 is the oxygen or nitrate uptake rate at 25 °C. β

0
is related to Q10 value (Q10 = exp (10β

0
)). Q10 values

used in this study are provided in Table S2. Note that we used constant Q10 values, but more studies are
required to quantify its variation ranges and sensitivity to temperature and ecosystem characteristics
(Davidson et al., 2006; Schipper et al., 2014; Wang et al., 2014).

In addition to temporal changes, spatial heterogeneities in the site characteristics (e.g., soil texture, landscape
slopes, and permafrost presence/absence), land cover, and chemical properties (e.g., OM content, pH, and
C:N ratio) of an ecosystem may significantly affect the resulting spatial patterns of GHG emissions (Repo
et al., 2009; Scott-Denton et al., 2003; Tang & Baldocchi, 2005; Townsend et al., 2008; Zona et al., 2016). To
incorporate spatial heterogeneities, we use satellite land-cover imagery to characterize soil classes and
biomes. We then base the upscaling strategy on a detailedmap of a landscape from a fragmented permafrost
zone in Northeast European Russia, Seida (67°030N, 62°550E; Voigt et al., 2016; Figure 4). A map of selected
chemical and physical properties (bulk density, C:N ratio, and respiration) of each of the biomes in the land-
scape was constructed over a grid (each grid point was treated as a soil profile, no lateral interactions among
profiles). We used ranked correlated surfaces to visualize the synthetic maps for visualization purposes
(Schrenk et al., 2012). The chemical and physical properties including organic matter content, respiration rate,
C:N ratios, and bulk density were extracted from literature data on field measurements (Gil et al., 2017; Repo
et al., 2009; Voigt et al., 2016) and mapped as shown in Table S1 (and Figure S5 for respiration rates from dif-
ferent ecosystems). The upscaled biophysical model is linked to hydrologic and thermal modules to estimate
soil water content and temperature profiles (see supporting information Figure S2 and Ebrahimi & Or, 2017).
The hydraulic model parameters for large-scale applications could be obtained either from field observations
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or from hydraulic pedo-transfer functions (Tóth et al., 2015). Additionally, readily available soil global maps at
high resolution (e.g., soilgrids; Hengl et al., 2017) could be used to extract soil physical and chemical
properties for the region of the interest.

The biogeochemical gas fluxes, produced over each grid cell (jp.) or soil profile, were integrated by the super-
positioning of fluxes over the landscape yielding regional estimates of GHG emission rates from the
soil surface:

Jtot: ¼
X
m

X
n

jp: C½ �; C : N½ �; BD; ER; θsurf ; T surfð Þ (13)

The analytical model at regional scale requires information on carbon content [C], C:N ratios, bulk density
(BD), respiration (ER, modifying w O2½ �;0 in equation (A9) in the supporting information for oxygen profile),

and temporal variations in soil surface water content (θsurf) and temperature (Tsurf) to provide reliable predic-
tions of GHG fluxes.

4. Results and Discussions
4.1. Effects of Aggregate Size and Hydration Conditions on Sizes of Anoxic Microsites

We first illustrate some of the important features of the analytical model for estimating biogeochemical fluxes
from individual aggregates. The size and activity within anoxic zones formed in individual aggregates and the

Figure 4. Representation of the upscaling strategy of biophysical analytical model from soil profile to regional scale. (a) Map of the geographical location of case
study III used for modeling spatial variations in GHG emissions with generalized land-cover extracted from Landsat satellite imagery. (b) Land cover
classifications based on Quickbird satellite images (2.4 m pixel size). The images are modified after Hugelius et al. (2011a). For detailed description of the
land-cover classification techniques, see Repo et al. (2009) and Hugelius et al. (2011b). (c) Synthetic map representing chemical and physical properties of study site
in mesh grid, each grid representing a soil profile (d).
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production rates of GHG (N2O and CH4) are determined primarily by the aggregate size (diffusion length),
saturation level (diffusion rate), and oxygen consumption rate (Ebrahimi & Or, 2015; Tiedje et al., 1984).
Simulation results, in Figure 5, summarize the effects of water saturation and oxygen content (i.e.,
determined by location in the soil profile) on the sizes of anoxic zones within aggregates of different sizes
for two values of volumetric oxygen uptake rates per aggregate (microbial activity levels). The results in
Figure 5a show that with increasing water saturation or reducing the oxygen content at the aggregate
surface, the size of the anoxic zone expands. Considering, for example, aggregates of 1 mm in radius, no
anoxic zone would form until saturation reaches 0.6 or oxygen content in the bulk soil air (or at the
aggregate surface) drops to values smaller than 2 mg O2/L. These results are consistent with detailed
modeling and observations that also support the importance of aggregate size in determining the
resulting anoxic zone size (Ebrahimi & Or, 2016; Horn et al., 1994).

4.2. Seasonal Variations of GHG Emission Rates and Patterns: Model Upscaling

For model evaluation, we simulated the seasonal variations in soil N2O emissions for case studies I and II
where variations in soil temperature and water table levels were provided as inputs as seen in Figures 6b
and 6c, respectively (peat soil properties are represented in Table S1). The biophysical analytical model esti-
mated seasonal patterns of N2O emissions in reasonable agreement with field observations (Figure 6a). In a
recent laboratory experimental study (Ebrahimi & Or, 2018), we observed that changes in water table position
within a soil column exerted strong and rapid influences on N2O emission rates within a day. We conjecture
that such short-term effects may have been averaged out in the coarse field observations (measured one to
four times amonth), yet such short-term dynamics were preserved in themodel simulations. Themechanistic
model captures features of the late season N2O fluxes observed in the field data. The model results indicate
that N2O emissions during the summer (with high temperature/aerated conditions) were governed by N2O
production from the largely aerated zones in the soil profile (that contain saturated aggregates/hot spots).
In contrast, cold-season N2O emissions seem to be dominated by diffusion from the inundated (saturated)
portions of the profile where N2O production slowly becomes limited by low temperatures (see Figure S4)
until it ceases upon freezing.

In addition to water table fluctuations, the rainfall patterns during the summer contribute to enhancement of
N2O emissions from waterlogged peat soils (especially during dry periods). Such surfaces have been pre-
viously overlooked as marginal sources of N2O emissions (Augustin et al., 1998; Goldberg et al., 2010;
Martikainen et al., 1993; Regina et al., 1996). To evaluate the effects of rainfall patterns, in the second case
study, we applied the modeling approach to estimation of N2O emissions from fen soil during summer time
with low rainfall and soil evaporation (Goldberg et al., 2010). The experimental field in the second case study
experiences mean annual temperature of +5.3 °C and the mean annual precipitation of 1,160 mm that
imparted relatively wet conditions throughout the year (Goldberg et al., 2010).

Figure 5. Analytical aggregate model predictions for the size of the anoxic regions (scaled by aggregate size R) with
changes in (a) water saturation (constant oxygen content at boundary, 0.5 mg/L) and (b) oxygen concentration at the
aggregate surface (with constant water saturation, 0.7). Simulations were conducted for three aggregate sizes and two
mean volumetric oxygen uptake rates. The anoxic zone is defined as the radius of the aggregate where the oxygen
consumption rate becomes zero.
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Model simulations for seasonally varying water table levels and air temperatures for case study II (shown in
Figure 7) were compared with N2O emissions from plots that were sheltered from rainfall (Goldberg et al.,
2010). The key parameters used in the simulations for the fen soil are presented in Table S3. Simulation results
were generally consistent with field observations, showing low N2O emissions from water-logged soils,
whereas the sheltering of soil surface from rainfall during periods of high evaporation resulted in consider-
able N2O surface fluxes (Figure 7).

These model results confirm previous experimental observations that attribute soil N2O production to micro-
bial denitrification in anaerobic anoxic hot spots (Davidson, 1991; Goldberg et al., 2010). The modeling results
here, guided by experimental and numerical analyses (Ebrahimi & Or, 2018), highlight the importance of
anoxic hot spots and their size distributions within the soil unsaturated zone as potentially important

Figure 6. Case study I: (a) Normalized daily N2O emissions from field observations compared with simulations for soil
profiles. The field data are shown with symbols, and simulation results are indicated with solid and dashed lines for drained
and virgin soils, respectively. Black dashed lines separate time zones with diffusive dominant flux from time period
with highest production and emission from aerated fraction of soil profile. (b) Seasonal variations of temperature and
(c) evolution of water table depth as a function of time for two field case studies (drained versus virgin). Lines in (b) and
(c) indicate the linear interpolations of field data (symbols) used as input for simulations. The N2O emission rates are
normalized with averaged emission rates for sake of comparison. The averaged emission rates of drained site for field data
was 38.6 μg (N2O) m

2/hr and for the simulations were 1.02 μg (N2O) m
2/hr. The mean aggregate size of 2 mm is

considered for simulations.
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sources of N2O emissions (denitrification is promoted exclusively in the
hot spots where oxygen levels are low). Note that under unsaturated
conditions, the dominance of gas diffusion removes N2O emitted from
the aggregated via the soil gas phase, thereby preventing the complete
denitrification pathway from N2O to N2 that would have occurred in
saturated soil (inundated portion of a soil profile).

Considering the importance of water table level fluctuations as also
predicted for climate change scenarios (Goldberg et al., 2010; House
et al., 2016; Taylor et al., 2013), the incorporation of such fluctuations
and drier conditions (reduced rainfall events) are important aspects
for more reliable predictions of future GHG emissions and budgets
(Ebrahimi & Or, 2018; Liengaard et al., 2012; Markfoged et al., 2011;
McClain et al., 2003). Consistent with previous experimental study
(Ebrahimi & Or, 2018), our modeling results in Figure 6 indicate that
the duration and intensity of anoxic conditions play an important role
in the dynamics and intensity of N2O production. The observed N2O
flux may be enhanced under moderate wetting events (drained sce-
nario in Figure 6 where aggregates are wet but gas diffusion rates
allowed through the unsaturated interaggregate porosity remains
high). In contrast, no N2O emissions were observed under intense wet-
ting events (virgin scenario in Figure 6: flooded soil) due to suppressed
diffusion and escape from the aggregate. Remarkably, such flooding
events promote the direct conversion of N2O to N2 before emission
of N2O from soil can take place (more details are found in Ebrahimi &
Or, 2018, regarding “hot moments” for N2O emissions). Such depen-
dency of microbial production of N2O to duration and intensity of
anoxic conditions are taken into account in current simple quasi-
stationary hydrology model by explicit coupling of gas diffusion and
storage within the soil profile. A comprehensive hydrology model
would be necessary to accountably account for water table dynamics
at large scales that may include rapid changes in the landscape that
is beyond the scope of this study (Liljedahl et al., 2016; Pomeroy
et al., 2007).

4.3. Regional-Scale Spatial Variations in GHG Emissions

Building on the promising results of the upscaled biophysical-analytical
model presented in the previous sections, we seek to study effects of
landscape-scale spatial heterogeneity such as soil texture, resource dis-

tribution, and water table dynamics on regional soil GHG emissions. Although the existence of spatial varia-
tions in GHG emissions due to patterns of abiotic factors are well known and acknowledged, their
incorporation in process-based models remains limited to calibration of field observations (He et al., 2014;
Manzoni et al., 2016; Wieder et al., 2015).

The analytical biophysical model was applied for the detailed distribution maps of chemical and physical
properties for the case study III located in Northeast European Russia, Seida (Voigt et al., 2016). For simplicity,
we focus on modeling N2O emissions from a complex landscape that is part of the permafrost plateau, a sur-
face composed of upland tundra, bog, fen, and bare peat (Gil et al., 2017). A detailed classification of the land
cover based on Landsat (30-m pixel sized multispectral image) and Quickbird (2.4-m pixel sized multispectral
image) imagery are described by Hugelius et al. (2011b) and shown in Figure 4.

The working hypothesis is that the large spatial heterogeneities within a few kilometers would give rise to
local hot spots for N2O production at scales larger than aggregates (m2 to km2) due to local hydrology, as
has been observed in field studies (Gil et al., 2017; Repo et al., 2009; Voigt et al., 2016). For example, bare peat
(also called “peat circles”), representing only 5–10% of the peat plateau landscape, has been shown to emit

Figure 7. Case study II: Effects of summer no-rain period on N2O emission rate.
(a) Daily N2O emissions from field observations compared to simulations.
(b) Seasonal variations of water table level and (c) evolution of air mean daily
temperature as a function of time extracted from field data (Goldberg et al., 2010).
The field data are shown with symbols, and simulation results are indicated with
solid lines. The N2O emission rates are normalized with averaged emission rates
for sake of comparison where the averaged emission rates for field data was
282.9 μg (N2O) m

2/hr and for the simulations were 37.4 μg (N2O) m
2/hr. No-rain

events are experimentally made in the field study by a roof and by extracting
groundwater from drainage tiles (Goldberg et al., 2010).
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N2O at rates are as high as emissions from agricultural or tropical soil (Elberling et al., 2010; Gil et al., 2017;
Marushchak et al., 2011; Repo et al., 2009). We simulated seasonal variations in N2O fluxes for three
consecutive years using regional temperature and precipitation data from the closest station Abez as input
(Figure 8). The modeling study uses field data for precipitation and air temperature measurements from
2013 to 2015 growing seasons and subsequent freeze-in periods (Huffman et al., 2016), as shown in
Figures 8b and 8c.

The model results of seasonal N2O fluxes form individual land covers (represented as typical soil profiles for
each cover) are shown in Figure 8a. The modeling results are consistent with the small number of field obser-
vations that depict high N2O emissions from bare peat relative to other ecosystem types (i.e., fen, bog, and
tundra). The model captures effects of seasonal temperature variations, consistent with the field

Figure 8. Case study III: Effects of spatial heterogeneity on N2O fluxes. (a) Seasonal variations for N2O emissions for three
consecutive years in comparison with field observations where available. (b) Seasonal variations of air temperature. (c) Daily
precipitation rates, obtained from station data of closed city to field observations, Abez (database: World Meteorological
Organization and www.worldweatheronline.com). The field data are shown with symbols, and simulation results are indi-
cated with solid lines. The N2O emission rates are normalized with averaged emission rates from bare peat. The N2O
emission rates are normalized with averaged emission rates of emissions from bare peat for sake of comparison where the
averaged emission rate for field data was 35.65 μg (N2O) m

2/hr and for the simulations was 4.71 μg (N2O) m
2/hr.
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observations of (Gil et al., 2017; Marushchak et al., 2011; Repo et al., 2009; Voigt et al., 2016). Unlike the case
study II, depicted in Figure 7, the subarctic region studied here exhibited relatively stable water table level
throughout the summer season due to high number of rainfall events and low evaporation; hence, we
observe fewer saturation-induced variations in N2O emissions during the season. Themodel considers poten-
tial climate change scenarios and resulted variations in regional hydrology (flooding and droughts) that, in
turn, could affect N2O emissions and budgets, as studied in Figure 8 and predicted by current hydrological
models (Goldberg et al., 2010; House et al., 2016; Taylor et al., 2013).

The importance of detailed spatial heterogeneities on regional-scale fluxes could be assessed from regional-
scale N2O fluxes for case study III depicted in Figure 8. We have studied how N2O emissions vary during wet
and dry (saturated aggregates in an aerated bulk soil) scenarios under quasi-stationary conditions as
depicted in Figure 9. The local variations in respiration (considering plant and microbial processes) and C:N
ratios are spatially distributed over a synthetic map of land cover as shown in Figure 9b. The field data for
the range of C:N ratios are obtained from Repo et al. (2009), and the distribution of mean respiration rates
are shown in Figure S5 extracted from field observations (Voigt et al., 2016).

The results highlight the importance of spatial heterogeneities in physical and chemical properties of an eco-
system and interactions with hydrology that may give rise to formation of hot spots for GHG production. For
example, the bare peat covers only about 10% of the Seida region, yet emissions from that ecosystem
accounts for more than 50% of the regional N2O flux, a result consistent with field observations (see
Figure 9 and the mean seasonal N2O emission at regional scale in Figure 8). Additionally, model results sug-
gest that changes in soil water content affect N2O fluxes differently in different ecosystems. For example, N2O
emissions were highest from peatland (especially bare peat) under wet conditions but significantly drop
under aerated and dry conditions. In contrast, N2O emissions from Tundra were maximized under dry condi-
tions and suppressed under the wet scenario. These differences are attributed to the spatial variations in net
respiration rates (shown in Figure 9a) that affect the oxygen content profiles in the soil as described by equa-
tion (A9) in the supporting information. For these synthetic case studies, higher respiration rates over Tundra
regions induce highly anoxic conditions under wet scenarios that favor complete denitrification (from N2O to
N2), whereas low respiration of bare peat provides conditions that promote anaerobic activity while preser-
ving sufficient oxygen to prevent complete denitrification.

The present modeling approach highlights the important effect of respiration on denitrification where
respiration rate may modify the soil oxygen profile with soil depth. More studies are needed to quantify
and incorporate such feedback (in process based models) and to elaborate seasonal effects of respiration
and chemical properties of the soil profile on N2O production. Additionally, the model was capable of captur-
ing effects of hydrothermal seasonal dynamics at the regional scale (soil temperature variations) as seasonal
hydrothermal patterns may improve predictions of N2O emission dynamics. For example, global warming is
projected to increase rainfall intensity (Kunkel et al., 2013; Trenberth, 2011), and such events have been tra-
ditionally assumed to enhance N2O emission rates (Butterbach-Bahl et al., 2013; Griffis et al., 2017), but expli-
cit consideration of intensity and duration of wetting/evaporation processes shown in this study challenge
this notion.

Unlike the mechanistic modeling approach presented here, empirical first-order models often represent
microbial activity by assuming biological homogeneity and functional equivalence and consider microbial
response for environmental changes to be invariant across ecosystem and through temporal scales
(Bradford & Fierer, 2012; Wieder et al., 2015). Without considerable level of local tuning, the predictive cap-
abilities of suchmodels would be questionable especially for estimation of fluxes for different spatiotemporal
and climatic conditions (Baldocchi, 2014; Hawkes & Keitt, 2015; Manzoni & Porporato, 2009; Wieder
et al., 2015).

4.4. Uncertainties and Future Directions

In the current model, a daily quasi-stationary condition is considered that neglect the time delay between
production within the aggregates and emission of GHG from aggregate surface. More studies are required
to address the temporal accumulation of biomass and products within the aggregates that will affect emis-
sion dynamics as has been observed in previous soil column scale experiments (Ebrahimi & Or, 2018; Rabot
et al., 2015). Additionally, input data from field observations (e.g., temperature and respiration) for seasonal
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dynamics of GHG emissions have been used as daily averaged data and thus neglect important diurnal
effects that has been shown to impact GHG emissions (Nishimura et al., 2015; Shurpali et al., 2016).

The current study takes preliminary steps toward linking field observations and attempts to parameterize
large-scale biogeochemical gas flux models with measurable quantities. The model accounts for soil GHG
emissions for certain scenarios of carbon pools within soil aggregates (“hot spots”) that may be consumed
by aerobic and anaerobic microbial communities. The background gas fluxes due to microbial activity
in the soil matrix and its variation with hydration, temperature, and carbon content is added to

Figure 9. N2O flux from synthetic scenarios of land cover (tundra and peatland) from study site, Seida, Russia. (a) Spatial
heterogeneities in C:N ratio and respiration, as extracted from field observations (Repo et al., 2009; Voigt et al., 2016).
(b) Spatial variations in local N2O fluxes of study regions for wet and dry (aerated) conditions under quasi-stationery
conditions. The fluxes are normalized based on maximum N2O fluxes from each ecosystem (peatland: 65.92 and tundra:
9.46 μg (N2O) m

2/hr).
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biogeochemical fluxes from soil aggregates. The full representation of ecosystem level carbon balances and
dynamics (Foley et al., 1996; Sitch et al., 2008), as done in Earth system models, requires more complete
account of various carbon inputs (e.g., litter decomposition and root exudates) and outputs (reparation
and discharge) and well beyond the scope of this mechanistic study. The current model advances capabilities
to systematically evaluate the roles of various distributions and concentrations of carbon sources in soil that
combined with novel experimental techniques allow testing soil structural effects and nutrient landscapes on
microbial processes especially in the context of soil carbon hot spots (i.e., aggregates). The inclusion of
mechanistic aspects of microscale processes within a regional-scale soil GHG emissions (with certain upscal-
ing assumptions) could in a “coarser” form contribute to the strengthening of Earth system models by
improved process description. More observations are required to provide insights on microbial community
dynamics (e.g., methanogens, denitrifiers, and ammonia oxidizers) as abiotic factors change (e.g., tempera-
ture, water content, oxygen level, C:N ratio, pH, NH4

+, and nitrate) to refine the current model (Graham
et al., 2012; Jansson & Taş, 2014). Additionally, more studies are required to investigate the significance of
aerobic nitrification and its role on increasing nitrate concentration, as necessary substrate for denitrification
pathway (Regina et al., 1996; Robertson & tiedje, 1987).

Advanced experimental techniques (e.g., X-ray imaging) should be applied to characterize structural hetero-
geneities of subarctic organic soil texture (e.g., bulk density, aggregate fraction, and pore space properties)
and their hydrological properties that will significantly reduce uncertainties associated with the model pre-
dictions (Schweizer et al., 2018; Totsche et al., 2018), as also analyzed by Ebrahimi and Or (2018). For instance,
pore-scale modeling has revealed that methane emission rate from bulk soil significantly differs from aggre-
gates that highlights the importance of considering such structural hot spots (Ebrahimi & Or, 2017).
Additionally, the mean pore size and aggregate size distributions substantially influence substrate and oxy-
gen diffusion rates and thus regulating the dynamics of aerobic and anaerobic microbial communities that
changes GHG fluxes (Ebrahimi & Or, 2015, 2016; Horn et al., 1994).

The parameterization of GHG productions from the current pore-scale model has been performed by assum-
ing that the growth kinetic properties are driven from isolated cultures of batch experiments where only
a single dissolved substrate (e.g., glucose) is considered (Table S2). Experimental studies are needed to
quantify growth kinetics in response to the environmental conditions (e.g., variations in pH and chemical
components) that microbial communities experience in the corresponding ecosystem. Most importantly,
the growth kinetics from dissolved substrate neglects the enzymatic activity necessary to break down parti-
culate organic matter that could lead to overestimation of the actual kinetic rates (Drake et al., 2013; Manzoni
et al., 2012).

5. Summary and Conclusions

The proposed analytical framework addresses a longstanding challenge of mechanistic representation of
microbial functioning and response to variations in soil and ambient conditions on biogeochemical fluxes
across scales ranging from aggregates to landscapes. The mechanistic modeling approach departs from tra-
ditional approaches that rely on heuristically linking pools of organic matter with microbial biomass (Manzoni
et al., 2014) or adapting Michaelis-Menten parameters to capture microbial dynamics and spatial variations
(Wieder et al., 2014). The biophysical model proposed in this study explicitly accounts for soil structural ele-
ments (aggregates as hot spots for microbial life) and could provide guidance for future biogeochemical
process-based model and data gathering from field observations.

The analytical model represents soil aggregates as idealized spheres in which substrate diffusion and con-
sumption processes vary radially. A key step in the model development was the parameterization of micro-
bial activity functions based on systematic evaluation of detailed individual microbial life in a pore network
mimicking an aggregate (Ebrahimi & Or, 2015). This parameterization bridges a major gap due to the lack
of experimental information and a prohibitively costly pore-scale model of microbial life for landscape-scale
modeling. We have systematically varied ambient conditions, aggregate sizes, and derived from the results of
the detailed model functions for quantifying mean uptake rates of oxygen and nitrate per aggregates. These
functions are the closest representation we have to consideration of microbial community self-organization
and composition in response to changes in the environmental conditions (e.g., carbon, oxygen, and
nitrate contents).
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The analytical model was upscaled to provide estimates of spatial and temporal variations in N2O emission
rates for two case studies from peatland and fen fields. The model evaluates N2O emission dynamics in
response to water table fluctuations and seasonal changes in the temperature, in comparison with field
observations. Additionally, the model captures the effects of temporally reduced rainfall events to enhance
N2O emissions, consistent with field observations.

Current modeling strategy systematically captures the dominant role of spatial heterogeneities from small
(e.g., aggregates) to landscape (e.g., bare peat in present study) scales that gives rise to creation of temporal
hot spots for GHG productions in agreement with limited observations.

Clearly, the strategy of using results from a detailed pore-scale model with local microbial interactions to
parameterize an analytical and upscalable model is merely a compromise to overcome information (lack of
experimental parameters) and scale gaps. The implementation of such cascade of models at different levels
of process representation requires a more rigorous validation, and thus, the results remain tentative. The
results suggest that more studies are required to systematically evaluate emergence of large-scale hot spots
in certain environments (e.g., intense fluctuations and droughts) that would dominate regional-scale fluxes.
The study provides a means for using high-resolution satellite imagery to integrate land-cover attributes with
physical and chemical properties of rapidly changing environments such as Polar Regions.

The major challenge to incorporate such mechanistic approach for large-scale applications is still character-
izing the hot spot size distributions with measurable quantities (Abramoff et al., 2018). Representation of
aggregates as structural element for soil biological hot spots is first reasonable approximations, but further
characterizations are necessary to identify variability of these hot spots. In the absence of measurement tech-
niques, the current model could potentially be combined with field observations on net GHG emissions and
their dynamics to optimize hot spot size distributions through inverse modeling techniques.

The major challenge for the incorporation of the mechanistic approach proposed here for large-scale appli-
cations remains the characterization of the nature of hot spots and their size distributions based on simple-
to-measure methods (Abramoff et al., 2018). The approach we have taken of using aggregates as ubiquitous
structural elements that result from soil biological hot spots represents an approximation of a broader range
of hot spots in different soil systems (natural and managed). In the absence of direct measurements of hot
spots, we envision the use of the current model combined with field observations of GHG emissions and their
dynamics as a means for identification of probable hot spot size distributions through inverse modeling
(Davidson et al., 2014).
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