
Cellular noise in GLSL

Implementation notes

Stefan Gustavson1 2011-04-19

1Media and Information Technology, Linköping University, Sweden

(stefan.gustavson@liu.se)

General notes

Cellular noise, often called Worley noise after Stephen Worley who presented his
”cellular texture basis function” in 1996, is a useful tool for creating procedural
textures. The patterns produced are of a different class than those that can be
created with Perlin noise, and they have become popular with shader artists.
Worleys original implementation is very much focused on execution on a regular
CPU and does not map well to the massively parallel shader environment in a
current GPU. These application notes describe my GLSL implementation of
cellular noise, where several simplifications trade some generality and quality
for significant increases in speed.

Simplifications

Exactly one point in each grid cell

Worleys original algorithm involves placing a pseudo-random number of pseudo-
randomly located feature points in each cube of a regular 3D grid. For each input
point ~p, the algorithm determines the n closest feature points and returns their
distances {F1, F2, . . . , Fn}. The varying number of points in each cube is an
obstacle to a parallel implementation. A simplification that has been popular
in software shading because it can be efficiently expressed in RenderMan SL is
to use exactly one feature point in each cube. This is similar to pseudo-random
sample jittering, and maps better to a SIMD parallel execution because the
same computations are performed at all points. Even though this simplified
algorithm creates a different statistical distribution of points with some flaws,
the generated patterns are visually very similar in nature.

2D instead of 3D

Another simplification is to define the feature points over a 2D grid of squares
instead of a 3D grid of cubes, which significantly reduces the complexity of the
search for the closest neighbors. The resulting 2D distance field is different from

1



a 2D slice of the 3D distance field, but it is still useful. With the addition of a
z displacement for each feature point, the pattern can be made to look similar
to a planar 2D slice of a 3D field, without the expense of a full 3D algorithm.

Smaller search region

The search for the closest feature points have traditionally been performed in a
3 × 3 × 3 neighborhood of each cube. Such a large search region is important
when n is large, but most real world uses of Worley noise compute only the
closest and second closest neighbors, F1 and F2. Many patterns can in fact be
designed by knowing only the closest distance, F1. If F2 is of less importance,
the search for the closest feature points can be restricted to a 2×2 neighborhood
in 3D, and a 2× 2× 2 neighborhood in 2D. Both of these simplifications reduce
the number of points that need to be searched, which speeds up the algorithm
significantly. However, a 2×2 neighborhood in 2D makes F2 almost useless as it
is very often wrong and contains sharp discontinuities. A 2×2×2 neighborhood
in 3D will not be quite as bad for F2, because there are more neighbors to search
and a lower likelihood of the second closest neighbor being outside of the search
region. By reducing the maximum displacement of each feature point within
its corresponding cube (reducing the jitter), the errors in F2 can be reduced to
levels that could be tolerable, depending on the application. F1 is mostly correct
for a 2× 2 search in 2D, and almost always correct for a 2× 2× 2 search in 3D.
In any case, the errors for F1 are small and localized. If only F1 is required, the
smaller search regions are definitely worth considering.

Implementation details

Permutation polynomials

My implementation uses permutation polynomials for all pseudo-random num-
bers, using an idea by Ian McEwan and implemented like in the Perlin noise
functions for GLSL published by him and me:
http://github.com/ashima/webgl-noise

On current generation GPUs, using a texture lookup into a pre-computed table
for pseudo random index generation is generally faster, but less convenient.

Perturbations and distance computations

The implementation of perturbations and distance computations is very straight-
forward: First, associate a pseudo-random number with each integer spaced grid
cell, and perturb one feature point from its original x position at the centre of
the grid cell with a pseudo-random distance −0.5 < dx ≤ 0.5, and similarly for
the other coordinates. Then, compute the distances from the input point to
each perturbed feature point of the nearby grid cells.

2



Incomplete sorting

Worleys original implementation sorts the distances incrementally as they are
found, and uses an early exit strategy to avoid unnecessary computations. This
does not map well to a parallel execution. Instead, we first compute the distances
to all feature points and then sort them. Determining just the smallest distance
is a simple task that merely involves repeated use of the min function in GLSL,
which parallelizes nicely by using vector arguments. If only F1 is of interest,
this simpler sorting is quick and efficient.

Sorting out both the smallest and the second smallest value is a bit more dif-
ficult to do in GLSL. Standard sorting algorithms use a compare and swap strat-
egy, and while comparisons can be made easily and in parallel by the lessThan

function and its siblings, there is no swap function for general arguments in
GLSL. Combined use of the ? operator and swizzles can be used to swap com-
ponents within a vector. The lessThan and mix functions could be combined
for a per-component swap between vectors, but it seems a waste of resources to
perform the inherent multiplications of the mix function with constant factors 0
and 1 just to pick one value or the other. Instead, I have used combinations of
min and max functions to perform swaps. While that ends up making the same
comparison twice, it seems to be generally faster than one comparison and one
mix on current GPU platforms.

The sorting is deliberately incomplete. A full sort would be terribly waste-
ful, particularly for the larger search regions, becasuse only the two smallest
values are of interest. By careful consideration, there are points in the sort-
ing where certain values can be determined to be neither the smallest nor the
second smallest of the set. From that point on, these values can be discarded
from further comparisons. By similar reasoning, swapping can be replaced with
simple copying when the overwritten values do not need further consideration.

Source code and performance

Source code for the functions, along with the most recent version of this docu-
ment, is provided on the following address:
http://www.itn.liu.se/~stegu/GLSL-cellular/

The source code is distributed under the terms of the very permissive MIT li-
cense. Performance of these functions are good. The 3D version with the large
search region of cells involves a lot of computations and is considerably slower
than the others, but the rest of the functions can be considered for routine use
even on older and less powerful GPUs. Benchmarking on a current mid-range
Nvidia GTX260 GPU gave the following results:

cellular2D 855 M samples per second
cellular2x2 1700 M samples per second
cellular3D 315 M samples per second
cellular2x2x2 920 M samples per second

3



Figure 1: Cellular noise patterns. Top left: 2-D 2 × 2 version using F1 only.
Top right: 2-D 3 × 3 version using F1 and F2. Bottom left: 3-D 2 × 2 × 2
version using F1 only. Bottom right: 3-D 3× 3× 3 version using F1 and F2.

4


