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ABSTRACT Recently, the deep-learning-based image super-resolution methods have achieved astounding
advancement. Whereas most of these methods utilize features from the low-resolution image space exclu-
sively, and ignore the dependency between contextual features simultaneously, resulting in their limited abil-
ity to restore details. To this end, a multi-stage enhancement image network for super-resolution (MESR) is
proposed. The network consists of two stages, where the first stage is used to generate a coarse reconstructed
image, and the second one is to refine the coarse image, which enhances the super-resolution performance.
Specifically, in the first stage, to acquire more abundant features, an effective funnel-like multi-scale feature
extractor is proposed, incorporating a channel attention mechanism to boost the feature representation
capability. Moreover, an adaptive weighted residual feature fusion block is designed to effectively explore
and exploit the dependency between contextual features for generatingmore beneficial features. In the second
stage, a refinement block is proposed to additionally strengthen the details of the reconstructed image by
exploring the feature information from the high-resolution image space. Experimental results demonstrate
that the proposed method achieves superior performance against the state-of-the-art SR methods in terms of
both subjective visual quality and objective quantitative metrics.

INDEX TERMS Image super-resolution, multi-stage network, multi-scale feature, feature fusion, image
refinement.

I. INTRODUCTION
In recent years, image super-resolution (SR), one of the piv-
otal techniques in computer vision, is designed to reconstruct
a high-resolution (HR) image with affluent details from one
or more existing low-resolution (LR) images [1], [2], and it
has a wide range of applications in diverse fields, such as
medical imaging [3], video surveillance [4], remote sensing
images [5], etc. However, image SR is essentially an ill-posed
inverse problem due to the fact that multiple HR solutions
may correspond to the same LR input [6].

Although deep learning has accomplished excellent out-
comes in SR tasks, there still exist several issues as fol-
lows. (1) Most deep-learning-based SR methods utilize
a single-scale convolution kernel to construct wider or
deeper feature extraction module, and ignores the potential
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correlation between multi-scale features, as in [7]–[11],
resulting in the obtained features are still relatively homo-
geneous at the scale level, and not well adapted to SR tasks
of various scales [12]. (2) As the network depth continues to
increase, some featuresmay gradually disappear during trans-
mission [13]–[15], as well as the training difficulty increases.
Although ResNet effectively alleviates the training difficulty
and mitigates the issue of feature disappearance [16], it also
ignores the validity of features from different levels and the
correlation between contextual features [17]–[19], which lim-
its the super-resolution performance to some extent [20]. For
most deep-learning-based SR methods, there remains a chal-
lenge in reconstructing high-frequency details. On the one
hand, the pre-upsampling SR methods can directly extract
features from the HR image space, while it may lead to
unstable training and its reconstructed images contain artifi-
cial artifacts due to the introduction of redundant noise [21].
On the other hand, the post-upsampling SR methods alleviate
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the problem of artificial artifacts in the reconstructed images
caused by the pre-upsampling methods [22]. Nevertheless,
a majority of these methods only retrieve the feature informa-
tion from the LR image space and fail to further exploit the
high-frequency features of the reconstructed images obtained
by the upsampling module, resulting in the significant image
details being ignored [23], [24].

Numerous studies [21], [25]–[28] on image SR have
revealed that the potential HR image features cannot be
absolutely described by using feature information from the
LR image space during super-resolution solely, whereas the
feature information of a coarse reconstructed image can
facilitate an LR image to reconstruct a better reconstructed
image. These methods [21], [25]–[28] employed a coarse-
to-fine mechanism to enhance the high-frequency details of
the final reconstructed image incrementally through exploit-
ing features of the coarse reconstructed image. Addition-
ally, multi-stage structure networks for image restoration
have received increasing attention since they are able to
generate enriched and refined high-frequency details, such
as [8], [10], [21], [24], [29]–[31]. Such methods simplify the
information flows among different stages as well as enhance
the communication and connection between the features of
different stages by learning and exchanging information in
different stages, leading to a significant improvement in the
resilience of high-frequency details. Inspired by the litera-
ture mentioned above, a Multi-Stage Enhancement Image
Network for Super-Resolution (MESR) is proposed, which
adopts a multi-stage structure network to fuse the information
from the LR and HR image spaces to accomplish coarse-
to-fine super-resolution on the input LR image. Moreover,
we design a Refinement Block (RB) to rationally exploit the
high-frequency features of the coarse reconstructed image.
Specifically, we capture the complementary SR features by
exploring the available cue information in the HR image
space to minimize the inconsistency between the generated
reconstructed image and the original HR image, which com-
pensates for the abridgment of feature information in the LR
image space.

Since for different viewing angles, and aspect ratios, the
same or similar objects exhibit different features in an image
at different scales [32]–[35], exploring multi-scale feature
is an attractive option to boost the super-resolution perfor-
mance [32]. Meanwhile, related studies in [7], [36]–[39]
have revealed that the attention mechanism that explores
the interdependence between features is an effectual access
to advance the feature representation ability. Furthermore,
for the deeper networks, as a way to boost its perfor-
mance, increasing the network width is more powerful than
increasing the network depth [29], [40], [41]. Consequently,
a multi-scale feature extraction block (MSFEB) is proposed
to agglutinate multi-level information at different perceptual
fields by expanding the network width and incorporating
the channel attention mechanism, which enables sharing and
exchanging of features at divers scales between different
levels, and strengthens the inherent complementarity and

connection of features in local regions effectively, so as to
better generate deep features with high-frequency details.

As SR task is a low-level vision task, the feature
information among input and output images and the inter-
mediate layers of the network ought to be profoundly cor-
related, which implies that it is an essential way to utilize
the feature information from different layers. As far as local
features, which are separated from various levels of the net-
work provide differential representative of high-frequency
details. Nonetheless, most deep-learning-based SR methods
just process the features of the previous module and rarely
focus on the features of adjacent or previous modules, result-
ing in unfortunate dependency between contextual features.
As for the global features, the shallow features contain more
edge and texture information, and the deep features con-
tain more contextual feature information [42]. Considering
that the powerful combination of local and global features
provides dramatic improvement in super-resolution perfor-
mance, we apply the residual learning mechanism [16] for
local and global features fusion and proposed an adaptive
weighted Residual Feature Fusion Block (RFFB), which not
only successfully alleviates the problem of feature disappear-
ance during transfer [11], [17]–[19], but also facilitates the
fluent transfer of contextual residual features.

In general, the proposed MESR consists of two stages.
Specifically, in the first stage, features learning is performed
on the LR image to obtain the feature mapping of the cor-
responding HR image, and then features of different scales
are merged to strengthen the dependency between contextual
features, and subsequently, the coarse reconstructed image is
generated by the upsampling module. In the second stage, the
feature information learned from the HR image space is used
to refine the rough reconstructed image, so as to further pro-
duce a refined reconstructed image with more high-frequency
details.

The primary contributions of this paper are as follows.
• A multi-stage enhancement network for super-
resolution (MESR) is proposed to reconstruct as many
high-frequency details as possible by two stages from
coarse to fine. Extensive experimental results indicate
that the proposedMESR outperforms the state-of-the-art
methods in terms of both visual effects and quantitative
metrics.

• A multi-scale feature extraction block (MSFEB) with
channel attention is designed to acquire the feature infor-
mation by varying perceptual fields effectively.

• An adaptive weighted residual feature fusion block
(RFFB) is designed to fuse all the hierarchical features
from the LR image space effectively, and the shallow
and deep features are fused to attain more beneficial
global feature information with a global residual learn-
ing mechanism.

• A refinement block (RB) is proposed to minimize
the inconsistency between the generated reconstructed
image and the original HR image by exploring
the high-frequency features from the HR image
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space, so as to greatly promote the detail restoration
ability.

The organization of this paper is as follows. In Section II,
we summarize the related work. And then, the details of the
proposed MESR are presented in Section III. In Section IV,
experimental results are analyzed and compared with the
recently state-of-the-art SRmethods. Finally, we conclude the
paper in Section V.

II. RELATED WORKS
The SR methods are broadly classified into early traditional
SR methods [43]–[46], the sparse-learning-based SR meth-
ods [47]–[52], and the deep-learning-based SR methods.
In this section, we will principally present the CNN-based
SRmethods related to this paper, which can bemainly divided
into the pre-upsampling SRmethods, the post-upsampling SR
methods, and the coarse-to-fine SR methods.

A. PRE-UPSAMPLING SR METHODS
In the earlier days, deep-learning-based SR methods mostly
employed pre-upsampling operation, such as SRCNN [25],
VDSR [13], DRCN [53], DRRN [18], MemNet [54], etc.
These methods first perform the upsampling operation to
enlarge the LR image to an intermediate image with the
desired resolution by the bicubic interpolation [44], and
then feed the obtained intermediate image into the network.
Since the network only needs to refine the coarse intermedi-
ate image directly by the pre-defined conventional method,
which fundamentally lessens the learning difficulty. How-
ever, the pre-upsamplingmethod not only provokes some side
effects (e.g., amplifies noise, introduces artificial feature),
but also appoint incremental costs in time and space due to
learning high-dimensional features [22], [55].

B. POST-UPSAMPLING SR METHODS
To reduce the computational complexity while improving
super-resolution performance, related methods, such as FSR-
CNN [22], IDN [56], EDSR [15], CARN [17], RCAN [37],
SAN [38], PAN [7], etc., replace the pre-upsampling oper-
ation with end-to-end learnable post-upsampling module.
For the post-upsampling SR methods, the time and space
costs are greatly reduced because the non-linear feature map-
ping occurs only in the low-dimensional features space and
the upsampling module is located at the very end of the
network. Therefore, the post-upsampling SR method has
become one of the most dominant frameworks in the super-
resolution field. Notwithstanding, since these methods center
around separating features in the LR image space, deeper or
more extensive complex networks are frequently expected to
acquire adequate information for supervising fineHR images.
In addition, it is difficult to train large scaling factor with a
separate upsampling module at the end of the network.

C. COARSE-TO-FINE SR METHODS
Considering that the feature information from the LR image
space is limited, and exploring the features of the coarsely

reconstructed image can facilitate an LR image to recon-
struct a better reconstructed image, the coarse-to-fine SR
method has received more and more attention. To achieve
more noteworthy refinement of the reconstructed images,
Lai et al. [35] proposed a deep laplacian pyramid network for
super-resolution (LapSRN). For each pyramid level, LapSRN
incorporates the feature maps of the coarse reconstructed
images for progressive prediction the high-frequency details
of the final reconstructed images. To ease the training dif-
ficulty of the large scaling factor, Wang et al. [57] exploited
a fully progressive approach for super-resolution (ProSR),
which utilizes a progressive upsampling method to refine the
coarse reconstructed images by layer-by-layer and scale-by-
scale feature extraction.

In view of the limited feature information in the LR image
space and abundant complementary feature information con-
tained in the HR image space, Haris et al. [26] proposed a
deep back-projection network (DBPN), which not only uti-
lizes the upsampling module to generate the coarse recon-
structed images, but also uses the downsampling module
to map them to the LR image space, enabling the network
to continuously refine the details of the final reconstructed
images with the HR feature maps. And then, Wen et al. [28]
proposed a unique learning mechanism by CNN to learn
larger filter kernels firstly to generate the coarse reconstructed
images, and then learn smaller filter kernels to generate the
finer reconstructed images. To further exploit the potential
of the coarse reconstructed image, Li et al. [27] proposed
a super-resolution based on feedback network (SRFBN),
which takes the coarse reconstructed image generated by
the feedback module together with the original LR image
as its new input and re-inputs it into the feedback module,
thus leveraging the high-frequency features of the coarse
reconstructed image to compensate for the insufficient spatial
feature information of the LR image. With several feedback
rounds, SRFBN efficiently strengthens the high-frequency
details of the reconstructed images. After that, Tian et al. [21]
proposed a coarse-to-fine convolutional neural network for
super-resolution (CFSRCNN), which uses a coarse-to-fine
mechanism by cascading LR and HR features to address the
performance degradation caused by unstable training.

Motivated by the mentioned methods, we firstly employ
well-designed multi-scale feature extraction block and adopt
the residual learning mechanism to capture long-distance
dependent andmore beneficial features in the LR image space
in an effective way. And subsequently, the refinement block is
utilized to extract detailed features from the coarse HR image,
so that feature information from the LR and HR image spaces
can be effectively integrated to further produce enriched high-
frequency details.

III. PROPOSED NETWORK
There exist some problems for most CNN-based SR meth-
ods, such as extractor of features at a unitary scale, lack
of the dependency between contextual features, and only
use of feature information from the LR image space while
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FIGURE 1. Network architecture of the proposed MESR. The proposed network is composed of two stages, gradually reconstructing LR
images from coarse to fine.

abortive use of feature information from the HR image space.
To solve the above issues, we propose a multi-stage enhance-
ment network for super-resolution (MESR) from coarse to
fine to reconstruct HR images with as abounding details as
possible.

In this section, the network architecture of the proposed
MESR will be presented first, followed by a detailed descrip-
tion of the multi-scale feature extraction block with chan-
nel attention, the residual features fusion block and the
refinement block, and finally, the loss function used will be
introduced.

A. NETWORK FRAMEWORK
The network architecture of MESR is depicted in Fig.1.
A coarse reconstructed image is first generated for the input
LR image in the first stage, and then the coarse image
is further refined in the second stage to generate a final
reconstructed image with abundant details. In particular,
in the first stage, we adopt Multi-Scale Feature Extraction
Block (MSFEB) to acquire features from different scales,
and then utilize adaptive weighted Residual Feature Fusion
Block (RFFB) to obtain a more beneficial feature represen-
tation, and subsequently go through the upsampling module
to produce a coarse reconstructed image. In the second stage,
the Refinement Block (RB) is investigated to optimize the
obtained coarse reconstructed image. Specifically, feature
extraction is first performed on the generated HR image
space, and then the obtained features are further rearranged to
highlight the important features, and eventually, the features
extracted in this stage are superimposed with the features
of the coarse reconstructed image generated in the previous
stage to refine the final reconstructed image.

In the first stage, a 3 × 3 convolution kernel is used
toperform feature extraction on the input LR image ILR, and
the shallow features representation F0 is obtained as follows:

F0 = σ (Hext (ILR)) . (1)

where, Hext (·) denotes the shallow features extraction func-
tion and σ denotes the ReLU activation function. Then, the
shallow features F0 are then transferred toMSFEB for further
obtaining the deep features.

Assuming that the MSFEB module corresponds to a func-
tion HMSFEB (·), the depth feature extraction module can be
formed by stacking N MSFEBs,

FN = HN
MSFEB

(
HN−1
MSFEB

(
. . .H1

MSFEB (F0)
))

(2)

For purpose of acquiring a more attractive feature repre-
sentation, the proposed Global Feature Fusion Block (GFFB)
is acclimated to fuse the features extracted from eachMSFEB
module at various levels. The fused features can be expressed
as:

FFB = HGFFB (F1, · · · ,FN ) (3)

where, Fi indicates the features extracted by the i-th MSFEB
module, i = 1, 2, · · · ,N ; FFB indicates the feature map
obtained by fusing the features from different layers Fi using
the composite function HGFFB (·).
Furthermore, the Global Residual Learning (GRL) module

is acclimatized to integrate shallow and deep features as well
as use a sub-pixel convolution structure [55] is used to upsam-
ple the fused feature maps to obtain a coarse reconstructed
image ISR1,

ISR1 = U (FFB ⊕ F0) (4)

54602 VOLUME 10, 2022



D. Huang, J. Chen: MESR: Multistage Enhancement Network for Image Super-Resolution

where,U (·) denotes an upsampling operation, and⊕ denotes
a sum-by-element operation.

Finally, the RB module is designed to explore the detail
features of the HR image space corresponding to ISR1 for
refining the final reconstructed image ISR2,

ISR2 = R (ISR1) (5)

where, R (·) denotes the operation corresponding to the RB
module.

B. MULTI-SCALE FEATURE EXTRACTION BLOCK
Given that most depth models only process the features
acquired from the previous module and pay less attention to
the correlation between the features obtained from adjacent
modules, resulting in the lack of the dependency between
contextual features within the image region. Inspired by
ResNet [16], we designed a multi-scale feature extraction
block (MSFEB) with adaptive weighted contextual resid-
ual features association structure is designed, as shown in
the bottom-left of Fig.1. Specifically, each MSFEB contains
five Basic Feature Exaction (BFE) modules and a Chan-
nel Attention (CA) module, where each BFE module and
the corresponding skip connection (with weight value λ)
together form a sub-residual block, thus effectively enhancing
the dependency between contextual features. At the same
time, to alleviate the absence of feature richness caused by
single-scale convolution kernel, a funnel-like multi-scale fea-
ture extraction unit is proposed to effectively acquire feature
information from different receptive field scales, which will
be introduced in detail in Section III-B2.

Assuming that Fd−1 is the input of the d-th MSFEB, the
output Fd,1 of the first sub-residual block of the d-th MSFEB,
the output Fd,B of the B-th sub-residual block of the
d-th MSFEB, and the output Fd of the d-th MSFEB can be
expressed by the following expressions, respectively:

Fd,1 = λd,1Fd−1 ⊕ HBFE (Fd−1) (6)

Fd,B = λd,BFd,B−1 ⊕ HBFE
(
Fd,B−1

)
(7)

Fd = HCA
(
λd,5Fd,5 ⊕ λd,0Fd−1

)
(8)

where, HBFE (·) and HCA (·) denote the operations corre-
sponding to the BFE and CA modules, respectively.

1) CHANNEL ATTENTION-BASED FEATURE EXTRACTOR
To fully advance the usage of extracted features, the chan-
nel attention mechanism is incorporated into the proposed
MSFEB module. Channel attention [58] assigns different
concerns to different channel features, so as to highlight the
channel information related to the important features and
suppress the invalid channel information [37]. In contrast to
the mainstream channel attention mechanisms that employ
dimensional reduction to abstract the correlation between
channel features, an adaptive channel attention module [59]
is adopted, which effectively avoids the adverse effect of
dimensional reduction operation to disrupt the direct corre-
lation between channels and its weights. The literature [59]

FIGURE 2. Channel attention module.

points out that the trends of frequency signals are the same for
different images in the same convolution layer, and exhibit
strong local periodicity, therefore, the CA module used in
this paper only computes the correlations for the k nearest
neighboring channels.

As shown in Fig.2, the CAmodule is composed of a global
average pooling (GAP) layer, the nearest neighbor fully con-
nected module, and a channel feature representation layer.
Where, the nearest neighbor fully connected module only
connects the k nearest channels to exploit the relationship
between channels. Thus, the weight of the i-th channel y of
the features yi can be acquired as follows:

wi = δ

 k∑
j=1

α
j
iy
j
i

 , yji ∈ �
k
i (9)

where, δ represents the Sigmoid activation function, αji repre-
sents the parameter of the convolution kernel corresponding
to yi, and �k

i represents the set of k adjacent channels of yi.
Since the adaptive channel attention is intended to capture

cross-channel information fittingly, it is incredibly necessary
to determine the range of channel interaction k . From the
previous analysis, it can see that k should be a certain map-
ping relationship to C . While the linear mapping relationship
has certain limitations, and the number of channels in the
SR model is normally a multiple of 2 to further raise the
flexibility of the SR model, the mapping relationship can be
represented as an exponential function with a base 2:

C = 2(k) = 2(ρ∗k−b) (10)

where, ρ is the coefficient value and b is the offset value.
Consequently, according to the given C , k can be

calculated,

k = θ (C) =

∣∣∣∣ log2 (C)ρ
+
b
ρ

∣∣∣∣
odd

(11)

where, |t|odd denotes the nearest odd number of t .

2) MULTI-SCALE CONVOLUTION UNIT
To further promote the feature representation ability, a com-
mon method is to construct a very deep network with tremen-
dous convolution layers to explore more abundant features.
Although such a method is able to boost the network per-
formance to an assertive extent, it additionally brings added
problems. On the one hand, the extending of the network
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FIGURE 3. Funnel-like multi-scale feature extraction unit.

depth is accompanied by a continuous expansion in the num-
ber of parameters, which may prompt over-fitting in the case
of inadequate training data. On the other hand, a network with
an incredible number of layers implies higher computational
complexity and is prone to introduce gradient exploding or
vanishing, which makes the network difficult to optimize.
Fortunately, the GoogLeNet [32] solves these problems well,
as the critical thought of the Inception is to build a dense
block structure. It utilizes multi-scale convolution kernels to
acquire the feature map and then combines the output of
several branches to the subsequent layer. The structure accel-
erates both the qualities and the resilience to scale without
increasing the network depth of the network, thus improving
the capability of feature extraction capability.

Although multi-scale features are widely used in low-level
vision tasks such as image restoration and image super-
resolution [60]–[68], most existingmulti-scale feature extrac-
tion methods mainly suffer from the following issues.
(1) Some methods perform a single scale convolution ker-
nel on feature maps at different scales to achieve feature
extraction, such as [60], [61]. However, the spatial and texture
features in LR images are usually irregular and complex,
and yet most of these methods rely on the feature informa-
tion at specific image scales (e.g., feature maps at specific
scales such as ×2, ×3, etc.) in the spatial dimension, and
cannot fully capture high-frequency detail information on
images at the same scale. (2) Although some methods apply
multiple-scale convolution kernels for feature extraction on
the same scale feature map, such methods tend to adopt larger
convolution kernels, such as 5 × 5, 7 × 7, and even 9 × 9
[62]–[64]. These methods effectively cover the features at
different scales, while they entail a larger number of param-
eters and computational costs. (3) Some methods [65]–[68]
implement feature extraction that uses smaller convolution
kernels, but ignores the correlation between feature infor-
mation internally, which limits the features representation
capability.

Inspired by the Inception module, a funnel-like multi-
scale feature extraction unit is designed for the SR task,
which can be used to adaptively extract abounding features
at different scales by introducing convolution kernels with
different receptive field scales. Moreover, skip connections
are used between different scales to effectively enhance the

inherent complementarity and connection of features in local
regions. Specifically, convolution kernels of different sizes
are integrated into the network firstly, such as 1×1, 3×3, and
5×5. Nevertheless, considering that larger-scale convolution
kernels will cause larger computational costs and increase
the time complexity, smaller-scale convolution kernels are
adapted instead of large-scale ones to minimize the number
of parameters [33], [69]. In the network design, only convo-
lution kernels of 1× 1 and 3× 3are used, while convolution
kernels of 5×5 are replaced by two cascaded 3×3 convolution
kernels[50]. As seen in Fig.3, a multi-scale feature extraction
structure with several levels is designed, which contains three
levels and several branches in each level. In the first level,
there are three branches with convolution kernel scales of
1 × 1, 1 × 1 and 3 × 3, 1 × 1 and a set of cascaded
3 × 3, which correspond to different receptive fields. In the
subsequent levels, the multi-scale features are fused from
the previous level, so that the parameter information from
different convolution kernels can be shared to obtain more
representative feature information. Given Mn−1 be the input
of the module, and the output features Mn of the module can
be expressed as follows.

f1,1 = σ
(
w1,1
1×1 ⊗Mn−1 + b1

)
(12)

f1,2 = σ
(
w1,2
3×3 ⊗ σ

(
w1,1
1×1 ⊗Mn−1

)
+ b1

)
(13)

f1,3 = σ
(
w1,3
3×3 ⊗ σ

(
w1,2
3×3 ⊗ σ

(
w1
1×1 ⊗Mn−1

))
+ b1

)
(14)

f2,1 = σ
(
w2,1
3×3 ⊗

[
f1,1, f1,2, f1,3

]
+ b2

)
(15)

f2,2 = σ
(
w2,2
3×3 ⊗ σ

(
w2,1
3×3 ⊗

[
f1,1, f1,2, f1,3

])
+ b2

)
(16)

f3 = w3,1
1×1 ⊗

[
f2,1, f2,2

]
+ b3 (17)

Mn = βMn−1 ⊕ f3 (18)

where, σ denotes the ReLU activation function,⊗ denotes the
element multiplication operation, and ⊕ denotes the element
addition operation.W and b denote the weight and bias values
of the corresponding convolution layers, respectively, where
the number in the superscript of W denotes the j-th con-
volution module in the i-th layer, and the subscript of W
denotes the size of the corresponding convolution kernel, and
the number in the superscript of b denotes the number of
layers in which it is located.

[
f1,1, f1,2, f1,3

]
and

[
f2,1, f2,2

]
in (15),(16),(17) denote the cascade operation, which means
that the corresponding features are cascaded according to
the channel dimension to derive a more abundant feature
description.

It is worth noting that in a way to make the extracted
features representative, the residual structure is introduced,
as shown in (18), by assigning weights β to the input fea-
tures and then fusing them with the features extracted by
the multi-scale structure to acquire the output features of the
module.
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C. RESIDUAL FEATURE FUSION BLOCK
With the acquisition of features at different scales, an adaptive
weighted Residual Feature Fusion Block (RFFB) is further
proposed to exploit the dependency between contextual fea-
tures to generate more beneficial features. RFFB is composed
of a Global Feature Fusion Block (GFFB) and a Global
Residual Learning (GRL) module.

1) GLOBAL FEATURE FUSION BLOCK
The conventional residual module, which usually consists
of a series of feature extraction modules, fuses the original
features with the final extracted residual features through
long-skip connections and transmits the fused features to
the subsequent modules. Such a design only collects com-
plex features, but does not fully utilize the original features
obtained from each feature extraction module, and it is, more
importantly, the dependency between contextual features can-
not be exploited, limiting the feature representation perfor-
mance of the network.

The GFFB module is designed to fuse as well as possible
the features from all MSFEB modules. However, if all the
features are simply superimposed together, there will be too
numerous redundant features and the number of parameters
in the network will increase drastically, making the network
even more difficult to train. To address the above problem,
the features obtained from each MSFEB module are adap-
tively fused in the proposed network. As shown in Fig.1, the
features obtained from each MSFEB are transferred to the
GFFB structure through the long-skip connection structure,
making full use of the correlation of each contextual feature
[F1,F2, · · · ,FN ], which not only improves the features uti-
lization, but also makes the contextual feature transfer more
convenient. Meanwhile, to ease the training difficulty of the
network, inspired by MemNet[39], a 1× 1 convolution layer
is introduced after the features fusion module for controlling
the number of output features to reduce the dimensional of
the features.

2) GLOBAL RESIDUAL LEARNING
Since shallow features contain a large number of edge texture
information, and deep features contain rich semantic informa-
tion, both of them play a key role in improving the quality
of reconstructed images for SR tasks. Therefore, to effec-
tively integrate the shallow features with the deep features,
an effective global residual learning mechanism is employed
to maximize the utilization of the features.

In order to further improve the performance of residual
features, Jung et al. [70] proposed a weighted Residual Unit
(wRU), which allowed the generation of different weights of
the residual unit for different features of the input through
a weight Squeeze-and-Excitation (wSE) structure. Although
this approach improves the performance of the residual units,
it brings additional parameters and the costs of calculating
weights to the wSE structure. Therefore, inspired by wRU,
an adaptive weighted residual unit is used that adaptively

learns the weights of residual features. Specifically, the
Weight Normalization (WN) operation is used for adaptive
updating of weights. Since WN is a parameterization oper-
ation to reparameterize the weight vector, the weights are
scaled by separating the direction and length of the weight
vector. Not only does the WN avoid the effect of the mini-
batch, but also effectively reduces the effect of noisy data
generated by the mini-batch during the gradient propagation
process. More importantly, the WN does not cause additional
space and parameters for saving the variance and mean of the
data required for the normalization operation, which makes
it particularly suitable for the task of updating the weights in
the proposed residual modules. As shown in Fig.1, all λ are
learnable parameters, whose initial values are set to 1, and the
weights are updated adaptively through continuous iterative
learning in the proposed MESR.

D. REFINEMENT BLOCK
Currently, most of the SRmethods usually add an upsampling
module at the end of the network to enlarge the size of the fea-
ture map to obtain the reconstructed image directly. These SR
methods merely extract and map the features in the LR image
space, without exploring the HR image space information
corresponding to the coarse reconstructed images generated
by upsampling. However, with the limited information in
the LR image space, it is incomplete to learn the coarse
reconstructed image features by extracting features directly
from the LR image space to portray the potential HR image
features [21]. Simultaneously, the existing upsampling mod-
ule will possibly cause training instability and performance
degradation in the process of scaling [21]. Consequently,
we need to assemble a learning mechanism that effectively
explores the features of HR image space, extracts the fea-
ture information of it in a valid way, and further refines the
high-frequency details of the reconstructed images to mini-
mize the inconsistency between the generated reconstructed
images and the original HR image.

The literature of [21], [25]–[28] have revealed that the
rational use of feature information of the coarse reconstructed
images helps to refine the details of the final reconstructed
image. Therefore, a Refinement Block (RB) for image detail
optimization is applied, which optimizes the coarse recon-
structed image into a more detailed reconstructed image by
extracting the high-frequency features of the coarse image
to compensate for the lost local detail information of the LR
image. It is able in capturing the commutual SR features and
abbreviation the information loss caused by the upsampling
structure.

The RB module proposed can be represented as:

ISR2 = ISR1 ⊗ δ (H1×1 (σ (H3×3 (ISR1))))+ ISR1 (19)

where, ⊗ represents the element multiplication operation,
H1×1 and H3×3 represent the 1 × 1 and 3 × 3 convolution
operations, respectively, δ represents the Sigmoid activation
function, σ represents the ReLU activation function, and
ISR1 and ISR2 represent the coarse and refined reconstructed
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images, respectively. Although the proposed RB module is
relatively simple, it is essential for reconstructing images
containing more detailed information. The necessity of this
structure will be analyzed in Section IV-C2.

E. LOSS FUNCTION
For the proposed MESR model, a new loss function is
designed to further strengthen the super-resolution effect by
carrying out loss calculations on the reconstructed images
generated in two stages.

Most of the current SR methods use Mean Square
Error (MSE) as the loss function, while it produces
smooth reconstructed images and has insufficient supervi-
sion on high-frequency information such as contours of the
image [15]. Compared with MSE, the L1 loss can supervise
the high-frequency information to a certain extent, but it may
have unpredictable effects in the super-resolution process as
it is not derivable at the zero point. Considering that Char-
bonnier Loss [35] can not only effectively tackle the problem
of non-derivability at the zero point, but also accelerate the
convergence speed of the model, the Charbonnier Loss is
applied to construct the loss function in the proposed work,
and its expression is as follows.

L = ω1LC (ISR1, IGT )+ ω2LC (ISR2, IGT ) (20)

where, ω1 and ω2 are two constants, LC denote Charbonnier
Loss, and the Charbonnier loss as follows:

LC =
√
‖ISRi − IGT ‖

2
+ ζ 2 (21)

where, ISRi denotes the reconstructed image of the i-th
stage involved in the reconstruction, IGT denotes the original
high-resolution image, and ζ is a small constant, usually
set to 10−3.

IV. EXPERIMENTAL AND ANALYSIS
A. DATASETS AND METRICS
To ensure the objectivity of the experiments, the standard
dataset DIV2K [71] is selected as the training dataset, which
contains 800 2K training images and 200 validation images.
Meanwhile, four common benchmark datasets, including
Set5 [72], Set14 [73], BSD100 [74], and Urban100 [52],
are employed as test sets and tested on three scaling factors
(i.e., ×2, ×3, ×4). For evaluation, the reconstructed images
obtained were first transformed from RGB space to YCbCr
space, and then the metrics were evaluated on the Y chan-
nel, including Peak Signal to Noise Ratio (PSNR) [75] and
Structural Similarity (SSIM) [76],

PSNR = 10 · log10
(255)2 · QP

‖x − x̃‖2
(22)

SSIM =
(2µx̃µx + C1) (2σx̃x + C2)

(µ2
x̃ + µ

2
x + C1) (σ 2

x̃ + σ
2
x + C2)

(23)

where, x̃ denotes the reconstructed image, x denotes the
original high-resolution image, Q and P denotes the number
of rows and columns of x, respectively.µx̃ ,µx and σ 2

x̃ , σ
2
x are

TABLE 1. The effectiveness of different modules. The results evaluate for
a scaling factor of 4 on Set14.

the corresponding mean and variance of x̃ and x, respectively,
σx̃x denotes the covariance, and C1 and C2 are two constants.

B. PARAMETER SETTINGS
During training, Bicubic downsampling is performed
on 800 HR images in the DIV2K to obtain the corresponding
LR images. In the experiments, random horizontal flipping
and rotation are incorporated to enhance the generality of the
training images. The batch size is set to 16 and randomly
cropped the LR image into 32 × 32 patches as input. The
training is optimized by the Adam [77] optimizer with β1 =
0.9, β2 = 0.999, ε = 10−8. Moreover, the learning rate is
initialized as lr = 10−4, which is reduced every 200 epochs.
In practice, N = 24 and k = 5. The proposed MESR has
been executed on the PyTorch [78] framework and trained to
utilize an NVIDIA TITAN RTX 24GB GPU.

C. ABLATION EXPERIMENT
The proposed MESR model involves three major modules,
including Multi-Scale Feature Extraction Block (MSFEB),
Residual Feature Fusion Block (RFFB), and Refinement
Block (RB). In order to verify the effectiveness of these three
modules, extensive experiments are conducted on different
models.

1) EFFECTIVENESS EVALUATION OF MSFEB, RFFB AND RB
MODULES
To verify the impact of the proposed MSFEB, RFFB, and
RB modules on the super-resolution performance, the cor-
responding evaluation experiments are designed. First, the
model only uses a single-scale convolution kernel of 3× 3 as
the feature extractionmodule, and the network structure with-
out the RFFB and RB modules as the baseline for reference.
After that, adding the MSFEB, RFFB, and RB modules to
the baseline model gradually, and the results are shown in
Table 1. In these experiments, the test benchmark is selected
as Set14.

Table 1 lists the PSNR metric of the reconstructed images
obtained by different models on Set14 with a scaling factor
of 4. From Table 1, it can be seen that the PSNR is 28.18 dB
when a single-scale convolution kernel is used for feature
extraction, whereas the PSNR is improved by 0.19 dB when
a multi-scale feature extraction module is used to replace the
single-scale convolution kernel. In contrast, the performance
improvement of the MSFEB module is limited, while the
super-resolution performance is significantly improved when
the RFFBmodule is added to themodel. This is due to the fact
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that the RFFBmodule is able to effectively exploit the depen-
dency between contextual features, which improves the fea-
ture representation ability and facilitates the information flow,
thus reconstructing more edge and texture details. Then, the
RBmodule is further added to the model to compose the final
MESR model, and the PSNR of the reconstructed image is
advanced again. On the one hand, the RB module is able to
explore effective high-frequency feature information from the
HR image space and optimize the coarse reconstructed image
into a refined reconstructed image. On the other hand, the
MESR model is able to simultaneously utilize feature infor-
mation from both LR and HR image spaces, which greatly
enhances the overall super-resolution performance. Conse-
quently, the joint MSFEB, RFFB, and RB modules play an
active effect in promoting the super-resolution performance.

2) NECESSITY EVALUATION OF RB MODULE
To further evaluate the necessity of the proposed RB module,
this section will analyze the reconstructed images in terms of
both quantitativemetrics and visual quality. Table 2 illustrates
the comparison of quantitative metrics of different models in
different benchmarks. Furthermore, Fig.4 depicts the related
subjective visual images to show the superiority of the RB
module more intuitively. To confirm the effectiveness of the
RB module further, a variant of RB† with RB module is
designed, which setting ω1 of the loss function to 0 and
the setting ω2 to 1. It can be noted that the super-resolution
performance is negatively affected when ω1 set to 0. Due to
the lack of feature information from the LR image space, the
training process becomes difficult and the super-resolution
performance is inhibited. This also indicates that the proposed
multi-scale feature extraction module with channel attention
mechanism and multiple residual learning mechanism can
not only extract enriched contextual features, but also enable
the communication between contextual features to be more
fluent; in addition, the proposed RB module is able to fur-
ther refine the coarse reconstructed images into the final
reconstructed images with abundant details by exploiting the
feature information from both LR and HR image spaces.

From the subjective visual quality, comparing the coarse
reconstructed image (Fig.4a) obtained in the first stage and
the refined reconstructed image (Fig.4b) generated in the
second stage, it can be noticed that the reconstructed image
optimized by the RB module is more prominent in terms of
the high-frequency details. Specifically, the edges within the
upper-right region in Fig.4(b) are sharper and clearer, and
compared with the ground truth (GT) image (Fig.4c), both
the structure and details are well preserved. This is owing
to the fact that the RB module complements the missing
information in the LR image and effectively captures the
complementary SR features, thus effectively upgrading the
subjective visual quality.

D. COMPARISONS WITH STATE-OF-THE-ART METHODS
To further validate the effectiveness of the proposed MESR
model, a comparison is performed with thirteen CNN-based

TABLE 2. The necessity of RB. The results evaluate for a scaling factor
of 4.

FIGURE 4. Visual comparisons of the necessity of RB on ‘Img_012’ from
Urban100 with a scaling factor of 4.

SR methods, including SRCNN [25], VDSR [13], Lap-
SRN [35], DRCN [53], IDN [56], DASR [79], DPSR [80],
PAN [7], LAPAR-A [81], DeFiAN [9],MSRN [19], DRSAN-
48m [82] and A2F-L [83]. The best average PSNR and SSIM
of the reconstructed images obtained by the above SR meth-
ods using diverse scaling factors (i.e.,×2,×3,×4) on the four
standard benchmarks of Set5, Set14, BSD100, and Urban100
are listed in Table 3, where the optimal and sub-optimal
values are marked in bold and underlined, respectively.

It can be assured from Table 3 that the mean PSNR and
SSIM of the reconstructed images obtained from the pro-
posed MESR performs optimally in most of the datasets and
sub-optimally in some datasets only. This indicates that our
method achieves a competitive performance in terms of over-
all super-resolution performance. Owing to the multi-stage
learning mechanism adopted in this paper, MESR success-
fully integrates the feature information from LR and HR
image spaces, and combines the multi-scale feature extrac-
tion module and the multiple residual learning mechanism
to make the communication between the obtained contextual
features more fluent.

1) VISUAL QUALITY
To visually compare the reconstructed images obtained by
different SR methods from the perspective of subjective
visual effect, Fig.5 to Fig.8 illustrate the reconstructed images
of different methods in the same region with a scaling factor
of 4, and the corresponding original HR image is given as
a reference. From Fig.5 to Fig.8, it can be seen that most
of comparison methods failed to accurately reconstruct edge
and texture details, and even generated severe artifacts, while
MESR has the ability to produce reconstructed images with
abundant edge and texture details.

Fig.5 presents the visual comparison of various methods
on the ‘‘Barbara’’ image in Set5. As can be seen in Fig.5, the
reconstructed images obtained by SRCNN, VDSR, LapSRN,
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TABLE 3. Qualitative results of different SR models on standard benchmarks.

andDRCN are relatively blurred. Although IDN, PAN, DPSR
and DeFiAN restore more high-frequency information, their
reconstructed images contain severe artifacts. As compared
with the previous methods, MSRN, A2F-L, LAPAR-A and
DASR achieve superior super-resolution results due to restor-
ing more abundant high-frequency information. Neverthe-
less, compared with the methods mentioned above, our
MESR has better performance in both contour preservation
and detail restoration, which is reflected by the sharper over-
all contour of the reconstructed image and more delicate edge
and texture details.

Fig.6 depicts the visual comparison of various meth-
ods on the ‘‘Zebra’’ image in Set14. It can be seen from
Fig.6 that the reconstructed image obtained by the proposed
MESR preserves the texture details on the zebra well, while
the reconstructed images generated by SRCNN, VDSR,

LapSRN, DRCN, DPSR, PAN and DeFiAN are blurred
because they are unable to restore the texture details effec-
tively. Even though IDN, DASR, LAPAR-A and MSRN
can roughly restore the texture details, they also generate a
small amount of artifacts. Compared with A2F-L, the pro-
posed MESR is more prominent in detail fidelity, which is
mainly related to the fact that the proposed MESR effectively
fuses the extracted features from each layer and exploit the
correlation of channel features with the channel attention
mechanism.

Fig.7 illustrates the visual comparison of various meth-
ods on the ‘‘210088’’ image in BSD100. As can be seen
from Fig.7, though the reconstructed image of LAPAR-A
outperforms that of SRCNN, VDSR, LapSRN, DRCN, IDN,
DASR and DPSR in terms of edge detail restoration, it suffers
from a large number of artifacts. In contrast to PAN and
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TABLE 4. Comparison of the number of parameters, Multi-Adds and PSNR obtained by different methods on Set14 with a scaling factor of 2.

FIGURE 5. Visual comparison of super-resolution results of ‘Barbara’ (Set5) obtained by different SR algorithms with scaling factor ×4.

FIGURE 6. Visual comparison of super-resolution results of ‘Zebra’ (Set14) obtained by different SR algorithms with scaling factor ×4.

DeFiAN, the reconstructed images generated by MSRN and
A2F-L contain fewer artifacts. Even though both MSRN
and A2F-L effectively suppresses the artifacts, they are still
slightly weaker than the proposed MESR in terms of edge
detail restoration.

Fig.8 presents the visual comparison of various methods
on the ‘‘Img_012’’ image in Urban100. From Fig.8, it can
be seen that the reconstructed images obtained by SRCNN,
VDSR, LapSRN, DRCN, IDN and DPSR suffers from severe
blurring. While PAN, DASR, LAPAR-A, and DeFiAN are
able to restore the main image contour, they fail to retrieve
further details of the image. Compared with A2F-L and
MSRN, the proposed MESR can not only restore more high-
frequency details, but also reconstruct sharper reconstructed

images. It is mainly due to the fact that the proposed MESR
further refines the details of the reconstructed image by using
the RB module.

E. MODEL ANALYSIS
To comprehensively measure the performance of different
methods, Table 4 illustrates the comparison of the number
of parameters, Multi-Adds, and PSNR metric of different
methods on the Set14 with a scaling factor of 2. As can be
apparent in Table 4, our MESR achieves a better trade-off in
the super-resolution performance with the number of parame-
ters and Multi-Adds compared to other comparison methods.
Specifically, compared with MSRN and DASR, the proposed
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FIGURE 7. Visual comparison of super-resolution results of ‘210088’ (BSD100) obtained by different SR algorithms with scaling factor ×4.

FIGURE 8. Visual comparison of super-resolution results of ‘Img_012’ (Urban100) obtained by different SR algorithms with scaling factor ×4.

MESR obtains a higher PSNR with nearly 1/6 less number of
parameters.

V. CONCLUSION
To reconstruct as many high-frequency details as possi-
ble, a multi-stage enhancement network for image super-
resolution (MESR) is proposed in this paper. The network
consists of two stages, from coarse to fine, to further upgrade
the quality of the reconstructed images by fully exploring
and utilizing the feature information of LR and HR images.
Firstly, the proposed multi-scale feature extraction module,
combined with the channel attention mechanism, effectively
extracts abounding features at different scales, enabling the
network to better adapt to the scale variation in the super-
resolution process. Then, the adaptive weighted residual
feature fusion block is designed to explore the dependency
between contextual features. Finally, a refinement block is
constructed to exploit the features in the HR image space to
strengthen the details of the reconstructed images. The exper-
imental results validate that both visual quality and evaluation
metrics of our MESR have achieved superior performance
in comparison with state-of-the-art methods. However, the
proposedMESRmodel still has a large number of parameters.
Therefore, in our future work, it is necessary to focus on
the compression of the MESR model to further reduce the

computational complexity while ensuring the super-
resolution performance.
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