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History

I will first give some historical background, condensed from [1]. Several of the commonly
used algorithms for calculating 7 have their roots in classical arctangent-based formulas, such
as
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Substituting x = 1 gives the well-known Gregory—Leibniz formula
/4 = 1-1/3+1/5—-1/7+1/9—-1/11+---

This particular series is useless for computing m — it converges so slowly that hundreds of terms
would be required to compute even two correct digits. However, by employing the trigonometric
identity

/4 = tan"'(1/2) +tan"'(1/3)

you can obtain

/= L1 L
e R N S B TR T
FERE T L
373.38 5.3 7.37

which converges much more rapidly. An even faster formula, due to Machin, can be obtained
using identity

/4 = 4tan"'(1/5) —tan"'(1/239)

in a similar way. This formula was used in numerous computations of 7, culminating with
Shanks’ computation of 7 to 707 decimal digits accuracy in 1873 (although it was later found
that this result was in error after the 527-th decimal place).

With the development of computer technology in the 1950s, m was computed to thousands
and then millions of digits. These computations were facilitated by the discovery that high-
precision multiplication could be performed rapidly using fast Fourier transform (FFT)s. In
spite of these advances, until the 1970s all computer evaluations of 7 still employed classical
formulas, usually one of the Machin-type formulas. Some new infinite series formulas were
discovered by Ramanujan around 1910, but these were not well known until quite recently when
his writings were widely published. One of these is the formula
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Each term of this series produces an additional eight correct digits in the result. Gosper used
this formula to compute 17 million digits of 7 in 1985. At about the same time, David and
Gregory Chudnovsky found the following variation of Ramanujan’s formula:
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Each term of this series produces an additional 14 correct digits. The Chudnovskys implemented
this formula using a clever scheme that enabled them to utilize the results of an initial level of
precision to extend the calculation to even higher precision. They used this method in several
large calculations of 7, culminating with a computation to over four billion decimal digits in
1994.

While the Ramanujan and Chudnovsky series are considerably more efficient than the clas-
sical formulas, they share with them the property that the number of terms one must compute
increases linearly with the number of digits desired in the result. In other words, if you want to
compute 7w to twice as many digits, you have to evaluate twice as many terms of the series.

In 1976, Eugene Salamin and Richard Brent independently discovered an algorithm for 7
based on the arithmetic-geometric mean (AGM) and some ideas originally due to Gauss in
the 1800s (although for some reason Gauss never saw the connection to computing 7). The
Salamin-Brent algorithm may be stated as follows. Set ag = 1,bgp = 1/v/2 and so = 1/2.
Calculate
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Then pg converges quadratically to m: each iteration of this algorithm approximately doubles
the number of correct digits — successive iterations produce 1, 4, 9, 20, 42, 85, 173, 347 and 697
correct decimal digits of m. Twenty-five iterations are sufficient to compute 7 to over 45 million
decimal digit accuracy. However, each of these iterations must be performed using a level of
numeric precision that is at least as high as that desired for the final result.

Beginning in 1985, Canadian mathematicians Jonathan Borwein and Peter Borwein discov-
ered some additional algorithms of this type. One of these is as follows: Set ag = 6 — 4v/2 and
yo = V2 — 1. Tterate
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Then aj converges quartically to 1/m — each iteration approximately quadruples the number
of correct digits. This particular algorithm, together with the Salamin—Brent scheme, has been
employed by Yasumasa Kanada of the University of Tokyo in several computations of m over
the past 15 years or so (although evidently not in the most recent computation).

A summary of m computations is given in Table 1. You inquired about “gaps” in the table.
Indeed, there is a “gap” of sorts between 1967 and 1982. As far as I can tell, this “jump”
reflects mainly the introduction of FFT-based arithmetic, as well as the usage of the Salmin-
Brent 7 algorithm. I haven’t personally checked whether these computations track Moore’s Law
accurately, but the steady progress since 1982 at least seems in keeping with Moore’s Law during
this time.

Calculating Individual Digits

Before discussing Kanada’s work more, I might mention some work of my own, since it
connects with something I will mention later. In 1996, Peter Borwein, Simon Plouffe and I found
a way to calculate individual digits of 7. In particular, our scheme permits one to calculate a
segment of hexadecimal (base 16) or binary digits beginning at the n-th position, without having
to calculate any of the first n — 1 digits, using a very simple algorithm that requires only a very
small amount of computer memory, and does not require multi-precision arithmetic. Using this
algorithm, for example, the one millionth hexadecimal digit (or the four millionth binary digit)
of m can be computed in less than a minute on a 2001-era personal computer. This scheme is
based on the following formula for 7= (which was discovered by a computer program running
Ferguson’s PSLQ algorithm):
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Moving from this formula to the individual digit computation scheme only requires two
or three lines of math, but I won’t include it here. Several persons have actually done some
computations of this sort, as summarized in Table 2. The last listed computation was done by
Colin Percival, an undergraduate at Simon Fraser University, utilizing a worldwide network of
over 1700 computers.

Recently Richard Crandall and I showed that the existence of this particular formula, plus
numerous similar formulas that have been found by PSLQ computer searches since 1996, has
significant implications for the question of whether and why the digits of m are “random.” See
the recent article in Science for some details [2]. More precisely, we say that a constant is normal
if each digit appears, in the limit, one-tenth of the time, that each pair of digits appears, in
the limit, one one-hundredth of the time, and so on. On one hand it is easy to show that
“almost all” real numbers are normal, but on the other hand none of the fundamental constants
of mathematics has ever been proven normal, not to any number base. Trying to understanding
why 7 and other math constants appear to be normal is a centuries-old unsolved question in
mathematics.

What Crandall and I demonstrated in our 2001 paper is that the question of the normality
of ™ base 16 (or base 2), as well as the normality of numerous other mathematical constants,
can be reduced to a plausible but unproven conjecture in the arena of chaotic sequences. This
work is a direct outgrowth of the discovery of the new 7 formula above. More recently, Crandall
and I were actually able to prove normality (not conditional on any unproven conjecture) for a
certain infinite class of real numbers (sadly not including 7). In any event, there is some hope



Name Year Correct Digits
Archimedes 2507 BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 4807 7
Al-Kashi 1429 14
Romanus 1593 15
Van Ceulen 1615 35
Sharp 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
Shanks 1874 527
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys 1958 10,000
Shanks and Wrench 1961 100,265
Guilloud and Bouyer 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036
Kanada, Yoshino and Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada, Ushiro, Kuroda Dec. 2002 | 1,241,100,000,000

Table 1: Chronicle of © Calculations




Hex Digits Beginning
Position At This Position
109 26C65E52CB4593
107 17AF5863EFEDSD
108 ECB840E21926EC
10° 85895585A0428B
1010 921C73C6838FB2
10 9C381872D27596
1.25 x 102 07E45733CC790B
2.5 x 1014 E6216B069CB6C1

Table 2: Computed Hexadecimal Digits of m

now that this research will lead to the long-sought explanation of why the digits of 7 (at least
the binary or hexadecimal digits) appear “random.”

Kanada’s Latest Computation

Recently Kanada, with a team consisting of Y. Ushiro of Hitachi, H. Kuroda and M. Kudoh
of the University of Tokyo, and the assistance of nine others from Hitachi, computed 7 to over
1.24 trillion decimal digits. Kanada and his team first computed 7 in hexadecimal (base 16) to
1,030,700,000,000 places, using the following two arctangent relations for m:

1 1 1

m = 48arctan 0 + 128 arctan = 20 arctan 239 + 48 arctan 110443
1 1 1

m = 176arctan =7 + 28 arctan 239 48 arctan 632 + 96 arctan 12943

(1)

The first formula was found in 1982 by K. Takano, a high school teacher and song writer. The
second formula was found by F. C. W. Stérmer in 1896.

Kanada and his team evaluated these formulas using a scheme analogous to that employed by
Gosper and the Chudnovskys, in that they were able to avoid explicitly storing the multiprecision
numbers involved. This resulted in a scheme that is roughly competitive in efficiency compared
to the Salamin-Brent and Borwein quartic algorithms they had previously used, yet with a
significantly lower total memory requirement. In particular, they were able to perform their
latest computation on a system with 1 Thyte (10'? bytes) main memory, the same as with their
previous computation, yet obtain six times as many digits.

After Kanada and his team verified that the hexadecimal digit strings produced by these
two computations were in agreement, they performed an additional check by directly computing
20 hexadecimal digits beginning at position 1,000,000,000,001. This calculation employed the
algorithm that described above for computing individual hexadecimal digits of 7, and required
21 hours run time, much less than the time required for the first step. The result of this
calculation, B4466E8D21 5388C4E014, perfectly agreed with the corresponding digits produced by
the two arctan formulas. At this point they converted their hexadecimal value of 7 to decimal,
and converted back to hexadecimal as a check. These conversions employed a numerical approach
similar to that used in the main and verification calculations. The entire computation, including
hexadecimal and decimal evaluations and checks, required roughly 600 hours run time on their



64-node Hitachi parallel supercomputer. The main segment of the computation ran at nearly 1
Tflop/s (i.e., one trillion floating-point operations per second), although this performance rate
was slightly lower than the rate of their previous calculation of 206 billion digits. Full details
will appear in an upcoming paper..

According to Kanada, the ten decimal digits ending in position one trillion are 6680122702,
while the ten hexadecimal digits ending in position one trillion are 3F89341CD5. Some data on the
frequencies of digits in 7, based on Kanada’s computations, are available at Kanada’s website:

http://www.super-computing.org



Motivation

One final question is what is the motivation behind these modern comptuations of 7, given
that questions such as the irrationality and transcendence of m were settled more than 100 years
ago. One objective is to demonstrate that these recently-discovered algorithms really do work at
a massive scale (this is Kanada’s principal motivation), as well as the raw challenge of harnessing
the stupendous power now available in modern computer systems for this classical computational
problem. I should add that programming such calculations is definitely not trivial, especially
on large, distributed memory computer systems. Kanada mentions that his team has worked
for five years on the program they used, but I am sure he means here is five years of on-and-
off-again programing work by various people, while mainly doing other “official” assignments at
the computer center.

There have been some practical spin-off benefits from these efforts through the years. For
example, some new techniques for performing the fast Fourier transform (FFT), had their roots
in attempts to accelerate computations of 7.

Beyond purely practical considerations, there is of course continuing interest in the funda-
mental question of the normality of 7w, as I mentioned above. Kanada has performed detailed
statistical analyses of his computed results of 7 in the past, and is commencing to perform such
analyses on his newly computed digit streams, to see if there are any statistical abnormalities
that suggest 7 is not normal. One unique aspect of Kanada’s latest computation is that he
calculated hexadecimal digits as well as decimal digits. I for one am looking forward to seeing
the results of statistical analyses on these hexadecimal digits, in part because the new normality
and individual digit calculation properties apply to hexadecimal digits, not decimal digits.

Certainly the normality of 7 is not going to be formally settled by such a computation (except
perhaps in the exceedingly unlikely scenario that a significant statistical anomaly is found), nor
is it likely that this computation will provide major insights leading to a formal proof. In
other words, being able to perform statistical analyses on the digits is a nice by-product of this
computation, but it is hardly by itself a realistic justification for expending this much computer
time.

The computer feat is the main achievement...
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