i
ETH inf

Eidgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

Informatik
Computer Science

Advanced Operating Systems (263-3800-00L)
Caches and TLBs

Overview

Caching (review)

Timothy Roscoe & Andrew Baumann

Based on slides by K Elphinstone & G Heiser (UNSW)

Group | Department of Computer Science | ETH Ziirich

Memory caching (review)

Fast memory between registers & slow RAM

* 1-5vs. 10-100 cycles
Holds recently used data and/or instructions
Compensates for slow RAM if hit rate high (~90%)
Hardware: (mostly) transparent to software

" Review of caches

= Assume you know: direct mapping, associativity, ...

Cache addressing schemes
® Synonyms and Homonyms

= Cache management in Operating Systems

Translation Lookaside Buffers
= Coverage
ARM cache/MMU architecture

Advanced Operating Systems | Systems Group | Department of Computer Science

\

Cache organization

® Transfer units
* registers ~ L1 cache <=1 word (1-16 bytes)
* cache - RAM (or cache) 16-32 bytes, or more
= Cache line: also unit of storage allocation in cache

= Cache line associated information:

= Cache: something that remembers previous

results

* O can sometimes give the answer faster

* E.g. memory caches, TLBs, etc.

® Work by locality:

* Temporal locality: if | needed x recently, I'm likely to

need it again soon.

* Spatial locality: if | needed x recently, I'm likely to

need something close by.

A\

Cache access

Virtual Physical
Address Address
—>

= Size: few kB — several MB * Valid bit YJL‘S?!Z
* Typically hierarchy (2-5 levels) * Modified bit Cache
* on- & off- chip * Tag

Registers <:> Cache <:> m|\e/|:1i2ry <:>

Disk

3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

® Improves memory access by:
= Absorbs reads (increases b/w, reduces latency)
= Make writes asynchronous (hides latency)
* Clusters reads & writes (hides latency)

3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

= Virtually indexed:

* Lookup by virtual address

= Concurrent with address translation
" Physically indexed:

= Lookup by physical address

Advanced Operating Systems | Systems Group | Department of Computer Science

Physical
Address

March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache indexing

Address

Advanced Operating Systems | Systems Group | Department of Computer Science

\

Cache write policy

® Write back: store only updates cache

* Memory updated when dirty line replaced (flushed)
- Clusters writes
- Memory inconsistent with cache
- Hard for multiprocessors

= Write through: store updates cache & memory
- Memory always consistent with cache
- Increased memory/bus traffic

= Store to line not currently in cache:
* Write allocate: allocate new cache line & store
* No allocate: store to memory & bypass cache
= Typical combinations:
= Write-back & write-allocate
= Write-through & no-allocate

day 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache addressing Cache mapping

= Different memory locations map to same cache line

= Address hashed O index of line set 0 170 1 Mh170 1 Mh-170 1 -/ o 1 Mh-1

= Associative looking of within set using tag | | RAM

* n lines/set: n-way set-associative cache m
. Cache

* n=1: direct mapped
p[? . * Locations mapping to set i are said to be of colour |
* n=oo: fully associative * n-way assoc. caches hold n lines of the same colour
= Usually n=1-4, occasionally 32-64 = Cache miss types:
* Hashi b . | * Compulsory miss: data cannot be in cache
ashing must be simple U * Capacity miss: all cache entries in use by other data

= Use least-significant bits of address * Conflict miss: set mapped to address is full
- Can’t happen in fully-associative cache

= Coherence miss: forced by hardware coherence protocol

Advanced Operating Systems | Systems Group | Department of Computer Science

Advanced Operating Systems | Systems Group | Department of Computer Science

.\I

\

Cache addressing schemes

* So far, assumed cache only sees a virtual or " Also called:
hysical address Vinually-addressed 250 | ndong | oo
physical 4 . . = Also (misleadingly!) Tebn | inder, [brte
* But indexing and tagging can use different - Virtual cache _ |
addresses " Virtual address cache Vo
. VD [o] WO
- Virtually-indexed, virtually tagged (VV) | Sabai2ss * Only uses virtual

rare

* Virtually-indexed, physically-tagged (VP) addresses
* Physically-indexed, virtually tagged (PV) ’ O_pefates concurrently
with MMU

* Physically-indexed, physically-tagged (PP)

Often used on-core

Physical memory

day 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science day 3 March 2008

Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually indexed, physically tagged

Virtual addr O line
Physical addr O tag
Address translation
required to retrieve
data

Index concurrently with
MMU

Use MMU output for
check

Typically used on-core

index, byte,, ‘ ‘ Tag
VD ag wol wol wol WOr
VD ag wor wol wol wol
VD ag wol wol wol WOr
VD ag wor wol word wol

Physical memory

Advanced Operating Systems | Systems Group | Department of Computer Science

Physically indexed, physically tagged

Only uses physical
addresses
Translation must complete
before cache access can
start
Typically used off-core
Note: page offset invariant
under virtual address
translation
= Index bits O offset
Cache accessed without
translation
= Can be used on-core

Tag , ‘ index, ‘ byte,,

VD q WOl wor WO WO
VD ag wol wol wol wol
VD q WOl wor WO WO
VD lag Wol wol Wor wol

Only uses physical
addresses
Translation must complete
before cache access can
start
Typically used off-core
Note: page offset invariant
under virtual address
translation
* Index bits O offset
Cache accessed without
translation
= Can be used on-core

Physically indexed, physically tagged

Tag ‘ index, ‘ byte,,

VD q WOl WOl wor WOl
VD q wol wol wol wol
VD q WOl WOl WOr(WOl
VD g Wor Wol wol wol

Physical memory

Advanced Operating Systems | Systems Group | Department of Computer Science

Page offsets

See page translation later...

‘ page ‘ index ‘

offset

‘ Tag ‘ index,, ‘ byte,

Vi q WO Wo Wol wol
VI lag Wol Wol wol WOr
VI q wol wol wol wol
Vi lag WO WO WOl Wor

day 3 March 2008

Advanced Operating Systems | Systems Group | Department of Computer Science

Cache issues

Caches are hardware, transparent to software

.\I

So, why worry about them in the OS?

Well...

* Performance
* Synonyms

* Homonyms

And pretty much essential for multiprocessors
= Can't really scale without them

= A later lecture will cover MP/OS cache issues

\

Cache performance really matters.

Access Cycles Normalized| Per-hop Hardware:
to L1 cost
L1 cache 2 1 32-core AMD
L2 cache 15 7.5 “Barcelona”,
L3 cache 75 375 2.8GHz.
Other L1/2/3 | 130 65
Memory ~300 ~150
1-hop cache 190 95 60
2-hop cache 260 130 70

day 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually-indexed cache issues

® Homonyms: same names for different

data
" VA used for indexing is context [Tage | indexy | by
dependent = @ @
= Same VA refers to different PAs
© Tag does not uniquely identify data [V a0 word 0 | woi Wo wo
= Wrong data is accessed! YD {aa word 0 wol o o
Vi ag WOr(WpI Wol WO

* OS must prevent this!
® Homonym prevention:
* Flush cache on context switch
= Force non-overlapping address-space MMU
layout
* Tag VA with address-space ID (ASID)
= Use physical tags

Address mismatch problems:
Aliasing

Address space 1 write ‘ Address space 1
Page 0x00181000 Page 0x00181000

¥ I
U TACATAACATATACIL oone

Physical memory

= Page aliased in different address spaces
= AS1:VA,,=1,AS2:VA,,=0

® One alias gets modified
* In a write-back cache, other alias sees stale data
= Lost-update problem

day 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually-indexed cache issues

" Synonyms (aliases): multiple names for
same data
= Several VA map to the same PA
= Frames shared between processes
* Multiple mappings of frame within AS
" May access stale data:

‘ Tag , ‘ index,, ‘ byte,,

. i i VD q WOl WOr(WOl Wol

Same'data cached in several lines VD e T o o s
= On write, one synonym updated VD g | wo wor wol wo
* Read on other synonym returns old value¥ gL wo o e e

= Physical tags don’t help!
= ASIDs don't help!

= Are synonyms a problem? MMU
= Depends on page and cache size
* No problem for r/o data
* Ori-caches

Address mismatch problems:

Remapping

Address space 1 N .
Page 0x00181000 write l . write
(TTETTATERTTATITTER sene

Physical memory

Address space 1
Page 0x00181000

® Unmap page with dirty cache line
" Re-use (remap) frame to a different page (in same or different AS)
= Write to a new page

= Without mismatch, new write overwrites old (hits same cache line)

= With mismatch, order can be reversed: “cache bomb”

day 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

day 3 March 2008

Example: MIPS R4x00 synonyms

= ASID-tagged, on-chip L1 VP cache

16kB cache, 32B lines, 2-way set associative
4kB (base) page size
Set size = 16kB/2 = 8kB > page size
= Overlap of tag & index bits, but from different addresses!

39 13 5 0
\ s [b]

Cache

39 | 12 5 0
\ s [b]

Remember, location of data in cache determined by index

Tag only confirms whether it's a hit
= Synonym problem iff VA,, # VA',,
= Similar issues on other processors, e.g. ARM11 (set size 16kB, page size 4kB)

Advanced Operating Systems | Systems Group | Department of Computer Science

DMA consistency problem

E* | | I

]

4
(AT osene

DMA

DMA (normally) uses physical addresses and bypasses cache

= CPU access inconsistent with device access
* Need to flush cache before device write
= Need to invalidate cache before device read

day 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Avoiding synonym problems

® Hardware synonym detection
® Flush cache on context switch

= Doesn’t help for aliasing within address space

* Detect synonyms and ensure

= All read-only, OR
= Only one synonym mapped at a time

® Restrict VM mapping so synonyms map to same

cache set
= E.g. on R4x00, ensure that VA,,=PA,,

Advanced Operating Systems | Systems Group | Department of Computer Science

VP caches

Medium speed
* Lookup in parallel with address space translation
= Tag comparison after address translation

No homonym problem
Potential synonym problem

Bigger tags (can’t leave off set-number bits)
* Increases area, latency, power consumption

Used on most modern L1 data caches

008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary: VV caches

Fastest: don’t rely on TLB for retrieving data
= Still need TLB lookup for protection
= Or other mechanism to provide protection
Suffer from synonyms and homonyms
* Requires flush on context switch
- Makes context switches expensive
- May even be required on kernel O user switch
* ... or guarantee of no synonyms or homonyms
Require TLB lookup for write-back!
Used on i860, ARM7/ARM9/StrongARM/XScale
Used for i-cache on many architectures
* Alpha, Pentium-4, etc.

Advanced Operating Systems | Systems Group | Department of Computer Science

PP caches

Slowest
* Requires result of address translation before lookup starts
No synonym problem
No homonym problem
Easy to manage
If small or highly associative (all index bits come from page offset),
indexing can be in parallel with address translation
= Potentially useful for L1 cache, e.g. ltanium
Cache can use bus snooping to receive/supply DMA data
Usable as off-chip cache with any architecture

008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary: VV caches with keys

® Add address space identifier (ASID) part of tag
® On access compare with CPU’s ASID register
* Removes homonyms, creates synonyms

* Potentially better context switching performance
= ASID recycling still requires a cache flush

" Doesn’t solve synonym problem
= (but that’s less serious)

® Doesn’t solve write-back problem!

Advanced Operating Systems | Systems Group | Department of Computer Science

Write buffers

CPU

= Store operations take long to complete

= E.g. if cache line must be read or allocated l
= Can avoid stalling CPU by buffering writes
= Write buffer is FIFO queue of incomplete stores Sto.;é A
* also called store buffer or write-behind buffer
" Can also read intermediate values out of buffer Sto.;é B
* To service load of a value that is still in the write
buffer »
* Avoids unnecessary stalls of load operations ~— Store A
" Implies that memory contents are temporarily
stale l
* On a multiprocessor, CPUs see different order of
writes Cache
= “weak store order”, to be revisiting in SMP context!

008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary

® The OS has to manage caches if it is to provide:
= Correctness
* Performance

" Interactions between caches and memory
translation are complex and subtle
= OSes typically try to hide these from the user

Advanced Operating Systems | Systems Group | Department of Computer Science

Translations Lookaside Buffer (TLB)

" TLBisa (VV) cache
for page table entries a
* TLB canbe [ASID][VEN]
Hardware loaded, transparent to
OS, or
Software loaded, maintained by
0s PFN_ | flags
" TLB can be:
Split, instruction and data TLBs, or
Unified ASID VPN PFN flags
® Modern, high-performance
architectures use a hierarchy of
TLBs:
= Top-level TLB is hardware-loaded
from lower levels
Transparent to OS

Advanced Operating Systems | Systems Group | Department of Computer Science

TLB issues: Associativity

" First TLB (VAX-11/780) was 2-way associative
® Most modern architectures have fully associative TLBs

= Exceptions:
* i486, Pentium, P6, ... (4-way)
* IBM RS/6000 (2-way)
" Reasons:
* Modern architectures tend to support multiple page sizes
(superpages)
- Better utilizes TLB entries
* TLB lookup done without knowing page’s base address
= Set-associativity loses speed advantage
* Hence superpage TLBs are fully-associative

Advanced Operating Systems | Systems Group | Department of Computer Science

TLB Size (i-TLB + d-TLB)

Architecture TLB Size Page Size TLB Coverage
VAX 64-256 512B 32-128kB
ia32 / x86 (typical) 32-32+64 4kB+4MB 128-128+256kB
MIPS 96-128 4kB-16MB 384kB - ...
SPARC 64 8kB-4MB 512kB - ...
Alpha 32-128+128 8kB-4MB 256kB - ...
RS/6000 32+128 4kB 128+512kB
Power4/G5 128 4kB+16MB 512kB - ...
PA-8000 96+96 4kB-64MB
Itanium 64+96 4kB-4GB

Not grown much in 20 years!

TLB Coverage:

" Memory sizes are increasing
= # TLB entries more-or-less constant

" Pages sizes are growing very slowly
* Total RAM mapped by TLB is not changing much
* Fraction of RAM mapped by TLB is shrinking lots

® Modern architectures have very low TLB coverage
= Also, many modern architectures have software-loaded
TLBs
* General increase in TLB miss penalty (handling cost)
" The TLB is becoming a performance bottleneck

tarch 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address space usage vs. TLB coverage

Each TLB entry maps 1 virtual page
On TLB miss, reloaded from page table (PT), which is in memory
Some TLB entries needed to map page tables
Eg. 32-bit page table entries, 4kB pages.
One PT page maps 4MB
Traditional UNIX process has 2 regions of allocated virtual address
space
Low end: text, data, heap
High end: stack
2-3 PT pages are sufficient to map most address spaces
Superpages can be used to extend TLB coverage
But difficult to manage in the OS

tarch 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Concrete example: ARM

* Typical features of ARM MMU cores:
* Virtually-indexed L1 split caches
* No L2 cache
* No address-space tags (ASIDs) in TLB or caches
* Warning:
= Under some circumstances, L4 does not flush caches
on a context switch.
* Instead, uses domain bits

Advanced Operating Systems | Systems Group | Department of Computer Science

inf

\ LTy

ARM domains

= Every PTE is in a domain.
* There are 16 in total.
= Each domain has a 2-bit field in the DACR specifying
access

* Access rights to many pages can be changed at once
= Access faults O trap to kernel

= Exercise: (!)
* Work out how to use this to share page tables between
processes, and avoid most cache/TLB flushes on context switch

3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM cache architecture

7
VA L J PA
v

TLB Perm

CPU

* Virtually-indexed caches:
« flush caches on context switch
« direct cost: 1k-18k cycles
« indirect cost: up to 54k cycles

Advanced Operating Systems | Systems Group | Department of Computer Science

\

Summary

® OS Management of the TLB is critical for
= Correctness
= Performance
® Hardware is diverse
* Many processors/MMUs have unusual features
= Effective use of these requires thought and ingenuity
= And isn’t portable

" Next week: more on page table structures

3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM TLB format
2 bits 4 bits 8 bits 20 bits
" TLB haS no PID tag Cache Domain Physical Address
* Must flush TLB on attrs

context switches

= Direct cost: 1 cycle

= Indirect cost: 3k cycles

= TLB flush O cache flush
® Windows CE avoids flushing by

* No protection!

* Max 32 processes
= Better: use domains

* Impose additional access restrictions

* Simulate address space tags

* Flush TLB lazily on collisions

P,

perms

DACR

\4

March 2008

Advanced Operating Systems | Systems Group | Department of Computer Science

