
Tuesday 3 March 2009

Advanced Operating Systems (263-3800-00L)

Caches and TLBs

Timothy Roscoe & Andrew Baumann

Based on slides by K Elphinstone & G Heiser (UNSW)

© Systems Group | Department of Computer Science | ETH Zürich Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Overview

 Review of caches
 Assume you know: direct mapping, associativity, …

 Cache addressing schemes
 Synonyms and Homonyms
 Cache management in Operating Systems
 Translation Lookaside Buffers

 Coverage

 ARM cache/MMU architecture

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Caching (review)

 Cache: something that remembers previous
results
 ⇒ can sometimes give the answer faster
 E.g. memory caches, TLBs, etc.

 Work by locality:
 Temporal locality: if I needed x recently, I’m likely to

need it again soon.
 Spatial locality: if I needed x recently, I’m likely to

need something close by.

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Memory caching (review)

 Fast memory between registers & slow RAM
 1-5 vs. 10-100 cycles

 Holds recently used data and/or instructions
 Compensates for slow RAM if hit rate high (~90%)
 Hardware: (mostly) transparent to software
 Size: few kB – several MB
 Typically hierarchy (2-5 levels)

 on- & off- chip

Registers Cache Main
memory

Disk

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache organization

 Transfer units
 registers ↔ L1 cache <= 1 word (1-16 bytes)
 cache ↔ RAM (or cache) 16-32 bytes, or more
 Cache line: also unit of storage allocation in cache

 Cache line associated information:
 Valid bit
 Modified bit
 Tag

 Improves memory access by:
 Absorbs reads (increases b/w, reduces latency)
 Make writes asynchronous (hides latency)
 Clusters reads & writes (hides latency)

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache access

 Virtually indexed:
 Lookup by virtual address
 Concurrent with address translation

 Physically indexed:
 Lookup by physical address

CPU

MMU

Virtually
Indexed
Cache

Physically
Indexed
Cache

Main
Memory

Data DataData

Virtual
Address

Physical
Address

Physical
Address

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache indexing

tag set # byte
Address

line

t0

t1

t2

set

tag data

byte #

set #

tag

Tag: distinguishes lines of a set
…address bits not used for
indexing

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache addressing

 Address hashed ⇒ index of line set
 Associative looking of within set using tag
 n lines/set: n-way set-associative cache

 n=1: direct mapped
 n=∞: fully associative
 Usually n=1-4, occasionally 32-64

 Hashing must be simple ⇒
 Use least-significant bits of address

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache mapping

 Different memory locations map to same cache line

 Locations mapping to set i are said to be of colour I
 n-way assoc. caches hold n lines of the same colour

 Cache miss types:
 Compulsory miss: data cannot be in cache
 Capacity miss: all cache entries in use by other data
 Conflict miss: set mapped to address is full

- Can’t happen in fully-associative cache
 Coherence miss: forced by hardware coherence protocol

0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1 0 1 … n-1…

0 1 … n-1

RAM

Cache

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache write policy

 Write back: store only updates cache
 Memory updated when dirty line replaced (flushed)

- Clusters writes
- Memory inconsistent with cache
- Hard for multiprocessors

 Write through: store updates cache & memory
- Memory always consistent with cache
- Increased memory/bus traffic

 Store to line not currently in cache:
 Write allocate: allocate new cache line & store
 No allocate: store to memory & bypass cache

 Typical combinations:
 Write-back & write-allocate
 Write-through & no-allocate

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache addressing schemes

 So far, assumed cache only sees a virtual or
physical address

 But indexing and tagging can use different
addresses
 Virtually-indexed, virtually tagged (VV)
 Virtually-indexed, physically-tagged (VP)
 Physically-indexed, virtually tagged (PV)
 Physically-indexed, physically-tagged (PP)

Complex &
rare

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually indexed, virtually tagged

 Also called:
 virtually-addressed

 Also (misleadingly!)
 Virtual cache
 Virtual address cache

 Only uses virtual
addresses
 Operates concurrently

with MMU

 Often used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually indexed, physically tagged

 Virtual addr ⇒ line
 Physical addr ⇒ tag
 Address translation

required to retrieve
data

 Index concurrently with
MMU

 Use MMU output for
check

 Typically used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26)byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Physically indexed, physically tagged

 Only uses physical
addresses

 Translation must complete
before cache access can
start

 Typically used off-core
 Note: page offset invariant

under virtual address
translation
 Index bits ⊆ offset
 Cache accessed without

translation
 Can be used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Physically indexed, physically tagged

 Only uses physical
addresses

 Translation must complete
before cache access can
start

 Typically used off-core
 Note: page offset invariant

under virtual address
translation
 Index bits ⊆ offset
 Cache accessed without

translation
 Can be used on-core

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Page offsets

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Tag(26) byte(4)index(2)h

CPU

page index

offset

See page translation later…

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache issues

 Caches are hardware, transparent to software
 So, why worry about them in the OS?
 Well…

 Performance
 Synonyms
 Homonyms

 And pretty much essential for multiprocessors
 Can't really scale without them
 A later lecture will cover MP/OS cache issues

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Cache performance really matters.

Access Cycles

L1 cache 2 1

L2 cache 15 7.5

L3 cache 75 37.5

Other L1/2/3 130 65

Memory ~300 ~150

1-hop cache 190 95 60

2-hop cache 260 130 70

Normalized
to L1

Per-hop
cost

Hardware:

32-core AMD
“Barcelona”,
2.8GHz.

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually-indexed cache issues

 Homonyms: same names for different
data

 VA used for indexing is context
dependent
 Same VA refers to different PAs
 Tag does not uniquely identify data
 Wrong data is accessed!
 OS must prevent this!

 Homonym prevention:
 Flush cache on context switch
 Force non-overlapping address-space

layout
 Tag VA with address-space ID (ASID)
 Use physical tags

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Virtually-indexed cache issues

 Synonyms (aliases): multiple names for
same data

 Several VA map to the same PA
 Frames shared between processes
 Multiple mappings of frame within AS

 May access stale data:
 Same data cached in several lines
 On write, one synonym updated
 Read on other synonym returns old value
 Physical tags don’t help!
 ASIDs don’t help!

 Are synonyms a problem?
 Depends on page and cache size
 No problem for r/o data
 Or i-caches

tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD
tag word 0 word 1 word 2 word 3VD

MMU

Physical memory

Tag(26) byte(4)index(2)

CPU

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

 ASID-tagged, on-chip L1 VP cache
 16kB cache, 32B lines, 2-way set associative
 4kB (base) page size
 Set size = 16kB/2 = 8kB > page size
 Overlap of tag & index bits, but from different addresses!

 Remember, location of data in cache determined by index
 Tag only confirms whether it’s a hit
 Synonym problem iff VA12 ≠ VA’12

 Similar issues on other processors, e.g. ARM11 (set size 16kB, page size 4kB)

Example: MIPS R4x00 synonyms

bs
051339

bs
051239

Cache

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address mismatch problems:
Aliasing

 Page aliased in different address spaces
 AS1: VA12 = 1, AS2: VA12 = 0

 One alias gets modified
 In a write-back cache, other alias sees stale data
 Lost-update problem

Address space 1
Page 0x00181000

Address space 1
Page 0x00181000

Physical memory

write

Cache

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address mismatch problems:
Remapping

 Unmap page with dirty cache line
 Re-use (remap) frame to a different page (in same or different AS)
 Write to a new page

 Without mismatch, new write overwrites old (hits same cache line)
 With mismatch, order can be reversed: “cache bomb”

Address space 1
Page 0x00181000

Address space 1
Page 0x00181000

Physical memory

write

Cache

write

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

DMA consistency problem

 DMA (normally) uses physical addresses and bypasses cache
 CPU access inconsistent with device access
 Need to flush cache before device write
 Need to invalidate cache before device read

Physical memory

Cache

DMA

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Avoiding synonym problems

 Hardware synonym detection
 Flush cache on context switch

 Doesn’t help for aliasing within address space
 Detect synonyms and ensure

 All read-only, OR
 Only one synonym mapped at a time

 Restrict VM mapping so synonyms map to same
cache set
 E.g. on R4x00, ensure that VA12=PA12

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary: VV caches

 Fastest: don’t rely on TLB for retrieving data
 Still need TLB lookup for protection
 Or other mechanism to provide protection

 Suffer from synonyms and homonyms
 Requires flush on context switch

- Makes context switches expensive
- May even be required on kernel ⇒ user switch

 … or guarantee of no synonyms or homonyms
 Require TLB lookup for write-back!
 Used on i860, ARM7/ARM9/StrongARM/XScale
 Used for i-cache on many architectures

 Alpha, Pentium-4, etc.

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary: VV caches with keys

 Add address space identifier (ASID) part of tag
 On access compare with CPU’s ASID register
 Removes homonyms, creates synonyms

 Potentially better context switching performance
 ASID recycling still requires a cache flush

 Doesn’t solve synonym problem
 (but that’s less serious)

 Doesn’t solve write-back problem!

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

VP caches

 Medium speed
 Lookup in parallel with address space translation
 Tag comparison after address translation

 No homonym problem
 Potential synonym problem
 Bigger tags (can’t leave off set-number bits)

 Increases area, latency, power consumption

 Used on most modern L1 data caches

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

PP caches

 Slowest
 Requires result of address translation before lookup starts

 No synonym problem
 No homonym problem
 Easy to manage
 If small or highly associative (all index bits come from page offset),

indexing can be in parallel with address translation
 Potentially useful for L1 cache, e.g. Itanium

 Cache can use bus snooping to receive/supply DMA data
 Usable as off-chip cache with any architecture

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Write buffers

 Store operations take long to complete
 E.g. if cache line must be read or allocated

 Can avoid stalling CPU by buffering writes
 Write buffer is FIFO queue of incomplete stores

 also called store buffer or write-behind buffer
 Can also read intermediate values out of buffer

 To service load of a value that is still in the write
buffer

 Avoids unnecessary stalls of load operations
 Implies that memory contents are temporarily

stale
 On a multiprocessor, CPUs see different order of

writes
 “weak store order”, to be revisiting in SMP context!

CPU

Cache

…
Store A

…
Store B

..
Store A

…

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary

 The OS has to manage caches if it is to provide:
 Correctness
 Performance

 Interactions between caches and memory
translation are complex and subtle

 OSes typically try to hide these from the user

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Translations Lookaside Buffer (TLB)

 TLB is a (VV) cache
for page table entries

 TLB can be
 Hardware loaded, transparent to

OS, or
 Software loaded, maintained by

OS
 TLB can be:

 Split, instruction and data TLBs, or
 Unified

 Modern, high-performance
architectures use a hierarchy of
TLBs:
 Top-level TLB is hardware-loaded

from lower levels
 Transparent to OS

PFN flags

ASID VPN PFN flags

ASID VPN

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

TLB issues: Associativity

 First TLB (VAX-11/780) was 2-way associative
 Most modern architectures have fully associative TLBs
 Exceptions:

 i486, Pentium, P6, … (4-way)
 IBM RS/6000 (2-way)

 Reasons:
 Modern architectures tend to support multiple page sizes

(superpages)
- Better utilizes TLB entries

 TLB lookup done without knowing page’s base address
 Set-associativity loses speed advantage
 Hence superpage TLBs are fully-associative

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

TLB Size (i-TLB + d-TLB)

4kB-4GB64+96Itanium

4kB-64MB96+96PA-8000

512kB - …4kB+16MB128Power4/G5

128+512kB4kB32+128RS/6000

256kB - …8kB-4MB32-128+128Alpha

512kB - …8kB-4MB64SPARC

384kB - …4kB-16MB96-128MIPS

128-128+256kB4kB+4MB32-32+64ia32 / x86 (typical)

32-128kB512B64-256VAX

TLB CoveragePage SizeTLB SizeArchitecture

Not grown much in 20 years!

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

TLB Coverage:

 Memory sizes are increasing
 # TLB entries more-or-less constant
 Pages sizes are growing very slowly

 Total RAM mapped by TLB is not changing much
 Fraction of RAM mapped by TLB is shrinking lots

 Modern architectures have very low TLB coverage
 Also, many modern architectures have software-loaded

TLBs
 General increase in TLB miss penalty (handling cost)

 The TLB is becoming a performance bottleneck

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Address space usage vs. TLB coverage

 Each TLB entry maps 1 virtual page
 On TLB miss, reloaded from page table (PT), which is in memory

 Some TLB entries needed to map page tables
 Eg. 32-bit page table entries, 4kB pages.
 One PT page maps 4MB

 Traditional UNIX process has 2 regions of allocated virtual address
space
 Low end: text, data, heap
 High end: stack
 2-3 PT pages are sufficient to map most address spaces

 Superpages can be used to extend TLB coverage
 But difficult to manage in the OS

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Concrete example: ARM

 Typical features of ARM MMU cores:
 Virtually-indexed L1 split caches
 No L2 cache
 No address-space tags (ASIDs) in TLB or caches

 Warning:
 Under some circumstances, L4 does not flush caches

on a context switch.
 Instead, uses domain bits

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM cache architecture

CPU

Memory

TLB

I-Cache

D-Cache

VA PA

Data

Perm

• Virtually-indexed caches:
• flush caches on context switch
• direct cost: 1k-18k cycles
• indirect cost: up to 54k cycles

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM TLB format

 TLB has no PID tag
 Must flush TLB on

context switches
 Direct cost: 1 cycle
 Indirect cost: 3k cycles
 TLB flush ⇒ cache flush

 Windows CE avoids flushing by
 No protection!
 Max 32 processes

 Better: use domains
 Impose additional access restrictions
 Simulate address space tags
 Flush TLB lazily on collisions

Physical AddressPermsDomainCache

attrs

20 bits8 bits4 bits2 bits

DACR

PA
perms

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

ARM domains

 Every PTE is in a domain.
 There are 16 in total.

 Each domain has a 2-bit field in the DACR specifying
access
 Access rights to many pages can be changed at once
 Access faults ⇒ trap to kernel

 Exercise: (!)
 Work out how to use this to share page tables between

processes, and avoid most cache/TLB flushes on context switch

Monday 3 March 2008 Advanced Operating Systems | Systems Group | Department of Computer Science

Summary

 OS Management of the TLB is critical for
 Correctness
 Performance

 Hardware is diverse
 Many processors/MMUs have unusual features
 Effective use of these requires thought and ingenuity
 And isn’t portable

 Next week: more on page table structures

