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Abstract—Caches ideally should have low miss rates and short 
access times, and should be power efficient at the same time. Such 
design goals are often contradictory in practice. Recent findings 
on efficient attacks based on information leakage in caches have 
also brought the security issue up front. Design for security 
introduces even more restrictions and typically leads to 
significant performance degradation. This paper presents a novel 
cache architecture that can simultaneously achieve the above 
goals. Specifically, cache miss rates are reduced with dynamic 
remapping and longer cache indices, access-time overhead 
overcome with astute low-level circuit design, and information 
leakage thwarted by a security-aware cache replacement 
algorithm together with the performance enhancing mechanisms. 
We present both theoretical analysis and experimental results, 
using the SPEC2000 suite to evaluate the cache miss behavior, 
and CACTI and HSPICE to validate the circuit design. Our 
results show that the proposed cache architecture has low miss 
rates comparable to a highly associative cache and short access 
times and power efficiency close to that of a direct-mapped cache. 
At the same time it can thwart cache-based software side-channel 
attacks, providing both legacy and security-enhanced software a 
much higher degree of security. Additional benefits that the 
proposed cache architecture can bring, like fault tolerance and 
hot-spot mitigation,  are also discussed briefly. 
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I. INTRODUCTION  
Cache memory is an essential processor component for 

overcoming the processor-memory speed gap. Ideally, caches 
should have both short access times and low miss rates to 
minimize average memory access delay. Unfortunately, caches 
which achieve the best access times, like direct-mapped (DM) 
caches, suffer from high miss-rates. Fully associative (FA) or 
set-associative (SA) caches achieve the best miss-rates, but at 
the cost of increased access times and power consumption. 
Power efficiency is also a critical issue in cache design. Lower 
power dissipation means longer battery life for mobile devices. 
Higher power consumption causes heating and reliability 
problems, which have become a limiting issue for achieving 
performance. Increasing faults and hot-spots are also concerns 
– especially in the deep-submicron era. Due to the shrinking of 
technology feature sizes, process variations increase the 
number of faulty devices with excessive delay or leakage 

power. Also, current densities become higher, heating up the 
chip and causing hot spots more easily. Both impact chip yields 
and device lifetimes. 

Another new and important aspect for cache design is 
security. Recent software cache-based side-channel attacks 
show that caches are highly vulnerable to leakage of critical 
information such as cryptographic keys. They rely only on the 
timing difference between cache hits and misses, and therefore 
are effective on all caches, impacting a wide range of platforms 
and users. Since security solutions often lead to very restrictive 
design, they typically result in severe performance degradation. 
In this paper, we show that security, performance, as well as 
power efficiency, can all be achieved together. Our proposed 
cache architecture can also provide additional benefits such as 
fault tolerance and hot-spot mitigation. Our main contributions 
include: 

• A novel cache architecture that can enhance security, 
performance and power efficiency, simultaneously. 

• New insights on achieving low conflict misses without 
increasing set-associativity or cache capacity, based on 
the analysis of the miss behavior of our proposed 
architecture.  

• Detailed low-level circuit design showing that our 
proposed architecture can be implemented with short 
access times and power efficiency. 

• Identifying, for the first time, that conflict misses can 
be largely independent of the cache capacity – a 
property of our proposed architecture and the basis of 
its many benefits.  

Section II gives a brief overview of the information leakage 
problem in caches. It provides necessary background 
information on this new security problem and points out its 
impact on cache design. In section III, we present high-level 
organization and architectural features of our proposed cache 
architecture. We also discuss the implementation issues and 
propose a new low-level circuit design. In section IV, we 
analyze and evaluate our new cache architecture in terms of 
cache miss rates, access times, power efficiency and security. 
In section V, we discuss additional benefits including fault 
tolerance, hot-spot mitigation and further optimization for low 
power. We review related past work in section VI and conclude 
in section VII. 
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II. THE IMPACT OF SECURITY ON CACHE DESIGN 

A. Information Leakage in Caches 
Recent attacks [1-6] have shown that, in spite of software 

protections such as address space isolation or secure Virtual 
Machines, hardware caches in processors introduce 
interference between programs and users. For example, one 
process can evict cache lines of other processes, causing them 
to miss in cache accesses. Such interference happen all the time 
and seemed harmless to most people in the past. However, as 
demonstrated by the recent cache-based side channel attacks, 
critical information (e.g., cryptographic keys) can easily be 
leaked out due to such common cache behavior. In contrast to 
traditional cryptanalysis, these cache-based attacks allow the 
recovery of the full secret cryptographic key and require much 
less time and computation power. Furthermore, these attacks 
can succeed on almost all processors with caches, since they 
rely only on hits and misses that occur in all caches. Such 
attacks are also very easy to launch: a remote computer user 
can become an attacker without the need for special equipment. 

B. Impact on Cache Design 
Both software and hardware techniques were proposed to 

mitigate the information leakage problem in caches. Software 
techniques mostly involve rewriting the code to prevent known 
attacks from succeeding. One software solution is to avoid 
using memory accessing operations [3] (e.g., replacing AES 
table lookups with arithmetic and logical operations). The 
performance overhead however can be very high and the 
method is not generally applicable. Another software 
countermeasure preloads objects into the cache before any use 
of them so that all subsequent accesses hit in cache, thus 
leaking no information [1,3]. This approach however is not 
really secure since the preloaded objects could be evicted by 
other memory references at a later time, which indeed often 
occurs. Researchers also proposed to use alternative tables [3,7], 
table permutation [7] and algorithmic masking [3] to mitigate 
cache-based attacks. Such methods however normally lead to 
significant performance degradation, e.g., 2~4x slow down in 
the case of AES [7].  In general, we observe that software 
countermeasures normally incur significant performance 
degradation, and are often not secure enough due to the 
behavior of the underlying hardware cache. Software methods 
alone are not sufficient to provide secure yet high performance 
mitigation of cache-based information leakage. 

Hardware methods were also proposed. Cache partitioning 
(Partitioned cache[8]) and cache line locking (PLcache[9]) 
prevent undesirable cache evictions if the objects are put into a 
private partition or locked in cache, respectively, thus helping 
to achieve constant execution time. RPcache [9] used a 
randomization-based approach, allowing interference but 
randomizes it so that it carries no information. The drawback of 
cache partitioning and cache line locking is cache under-
utilization. Cache lines that are locked or belong to a private 
partition can not be used by other processes even when they are 
unused. The randomization-based approach can avoid cache 
underutilization.  

In summary, the information leakage problem in caches 
introduces a new challenge in cache design. In addition to 

performance, power efficiency, reliability, etc., cache designers 
have to also take security into account, which typically 
introduces even more restrictions in cache design and 
compromises other design goals.  

III. THE PROPOSED CACHE ARCHITECTURE 
In this paper, we show that a single cache architecture can 

provide performance, security, power efficiency as well as 
many other benefits simultaneously. The core idea of our new 
cache architecture is to adopt the direct-mapped architecture to 
inherit its fast cache access time and high power efficiency, and 
extend this with dynamic memory-to-cache remapping and a 
longer cache index, which enable it to achieve lower miss rates 
and also improved security. With a new security-aware cache 
replacement algorithm (SecRAND), our proposed cache 
architecture can achieve the same degree of security as 
RPcache[9]. The performance-enabling features also allow 
cache partitioning and locking mechanisms to be implemented 
efficiently without incurring the performance problems as in 
traditional caches.  

A. Dynamic Re-mapping and Logical Direct Mapping 
The proposed cache implements dynamic memory-to-cache 

remapping, meaning that a memory block can be mapped to 
any desired cache line at run time. Logically, this can be 
achieved by using a level of indirection. The index bits of the 
address are first used to lookup a ReMapping Table (RMT), 
which returns the index of the real cache line that the address is 
mapped to. By changing the contents of an RMT entry, an 
address can be remapped to an arbitrary cache line. The RMTs 
are updated seamlessly by the cache replacement algorithm – 
whenever a cache line replacement occurs, the corresponding 
RMT entry is updated. In practice, however, an extra level of 
indirection is undesirable. In section III.D, we show that the 
indirection can be avoided by clever circuit implementation.  

The proposed cache also adopts the direct-mapped 
architecture to inherit its fast access time and power efficiency. 
To avoid excessive conflict misses, a longer cache index is 
introduced. Unlike in traditional direct-mapped caches where 
using more index bits exponentially increases the cache size, 
the proposed cache exploits the dynamic memory-to-cache 
mapping to achieve low conflict misses without increasing its 
physical size. This is illustrated in Fig.1. Assuming that the 
cache contains 2n physical cache lines, it uses n+k index bits 
rather than n index bits as in a traditional direct-mapped cache. 
This is conceptually equivalent to mapping the memory space 
to a large logical direct-mapped cache with 2n+k lines, referred 
to as the LDM cache in the rest of this paper. Note that the 
LDM cache does not physically exist and is introduced only to 
facilitate the analysis and discussion of the proposed cache 
architecture. The dynamic remapping mechanism enables the 
proposed cache to adapt to store the most useful 2n lines at run 
time, rather than holding a fixed set of cache lines and missing 
on others. To remember which lines in the LDM cache are 
stored in the real cache, each physical cache line is associated 
with a Line Number register (LNreg), which stores the (n+k)-
bit line number of the corresponding logical cache line in the 
LDM cache. An LNreg physically implements an entry of the 
ReMapping Table (RMT), and changing the line numbers 



stored in an LNreg maps another logical cache line to the 
physical cache line. Although we assume 2n cache lines in the 
above discussion, the number of cache lines s in our proposed 
cache can be any number – not necessarily a power of two – as 
long as s < 2n+k.  

An RMT stores a memory-to-cache mapping. For security 
as well as performance reasons, it is desirable to have multiple 
mappings, each of which may be used by one or more 
processes. Note that although logically multiple RMTs are 
required, they are physically implemented with one set of 
LNregs. This is because at any time, for each physical cache 
line storing a logical cache line, only the entry of the RMT 
associated to the logical cache line needs to be stored in the 
LNreg. The corresponding entries in all other RMTs are invalid 
since these logical cache lines of the other RMTs are not 
mapped to the physical cache line. Fig.2 shows how a single set 
of LNregs implement multiple logical RMTs. To distinguish 
which RMT the entry in an LNreg belongs to, an RMT_ID field 
is included in each LNreg in addition to the line_num field. 

B. A Summary of the Proposed Cache Architecture 
Our proposed cache architecture (Fig.3) is very similar to 

the traditional direct-mapped cache architecture, with some 
significant differences summarized below: 

• The address decoder of the proposed cache is modified 
to implement dynamic memory-to-cache mapping. The 
LNregs are integrated into the address decoder. 

• More address bits, n+k, are used as index to access a 
cache of size s <2n+k. A memory address is mapped 
into a Logical Direct Mapped cache of size 2n+k, and 
dynamically re-mapped into the real cache of size s.  

• The number of cache lines is not necessarily a power 
of two; it can be any s < 2n+k.  

• Each process is attached to a context RMT ID which 
specifies the Re-Mapping Table (RMT) it will use. 
Different processes therefore can have different 

memory-to-cache mappings if they are attached to 
different context RMT IDs. 

• Each LNreg contains a RMT_ID field of d bits and a 
line_num field of n+k bits. 

• Each cache line also has a P flag bit, indicating 
protected cache lines. Each Page Table Entry (and/or 
segment descriptor, if implemented) also has a PP flag 
bit, indicating a Protected Page. This memory marking 
mechanism is similar to RPcache [9] 

• A replacement algorithm is needed on cache misses. 

Context RMT_ID: This identifies a hardware context, 
specifying which RMT is used by a process. A process that 
needs to be protected against information leak from other 
processes should use a different RMT. The OS is in charge of 
associating a process with a RMT_ID when the process is 
assigned a hardware context for execution.  

Address decoder and LNregs: In a traditional cache, the 
address decoder in essence tests a set of conditions (index == 
0?), (index == 1?), … (index == 2n-1?) that compare the index 
with a series of constants (0 through 2n-1) and selects one 
cache line based on the outcome of these comparisons. In the 
proposed cache, the address decoder tests a similar set of 
conditions, except that the condition is a variable, viz., the 
contents of the ith LNreg, [LNregi], for i = 0, 1, …, s-1. The 
address decoder activates a cache line if the RMT_ID field in 
LNregi matches the d-bit Context RMT_ID and if the line_num 
field in LNregi matches the n+k index bits. The LNregs are 
updated when cache line replacements occur. The new line’s 
context RMT_ID and index bits are written to the RMT_ID 
field and line_num field respectively.  

C. The Security-Aware Random Replacement Algorithm 
Unlike in traditional direct mapped caches, a cache 

replacement algorithm is necessary in the proposed cache due 
to the dynamic remapping. During a cache miss, the 
replacement algorithm determines which physical cache line 
should be selected for holding the new logical cache line. Since 

Figure 2.  Supporting multiple logical RMTs Figure 1.  Mapping memory space to the physical cache 



replacing the logical cache line that the physical cache line 
holds normally means mapping a new memory address to the 
physical cache line, the LNreg (i.e., the physical realization of 
the logical RMT entry, which stores the corresponding 
memory-to-cache mapping) of the selected physical cache line 
needs to be updated accordingly. There are two types of misses, 
index misses and tag misses, in the proposed cache. An index 
miss occurs if none of the LNregs matches the given RMT_ID 
and index. None of the cache lines is selected in an index miss. 
A tag miss occurs if the index hits in one LNreg, but the tag of 
the selected cache line does not match the address tag. A tag 
miss essentially is the same as an ordinary miss in a traditional 
direct-mapped cache, whereas the index miss is a unique type 
of miss in our proposed cache. Since an index hit means the 
match of the RMT ID, tag misses only occur within the same 
process or among processes using the same RMT. Index misses 
occur early in the hardware pipeline during address decoding, 
before the tag is read out and compared, and this early miss 
signal could be used by the pipeline control logic to improve 
performance. 

The replacement policies for the two types of misses are 
different as we show in Fig.4. The tag misses are conflict 
misses in the LDM cache since the addresses of the incoming 
line and the line in cache have the same index (as well as the 
same RMT ID) but different tags. Because in a direct-mapped 
cache at most one cache line can be selected at any time, no 
two LNregs can contain the same index (and the same 
RMT_ID). Therefore either the original line in cache is 
replaced with the incoming line or the incoming line is not 
cached. For index misses, the new memory block can replace 
any cache line. While various replacement policies can be used 
to choose the desired victim line to be replaced, we propose a 
new modified random replacement policy, which we call 
SecRAND, for the proposed cache, which provides improved 
security as well as excellent performance. Fig.4 shows the 
SecRAND replacement algorithm. The cache lines involved 
and the procedures used in the replacement algorithm are 
described in Table I.  

TABLE I.     DEFINITIONS AND NOTATIONS 

Notation Description 

C The cache line selected by the address decoder 
(during a cache hit or a tag miss). 

D The memory block that is being accessed. 

R The cache line selected for replacement (victim). 

Px 
The protection bit of X. If X is in a cache line, it is 
the P bit of the cache line. Otherwise it is determined 
by the PP bit of the page/segment that X belongs to. 

cache_access(C)  Access C as in a traditional Direct Mapped cache. 

victim(C) Select C as the victim line to be replaced.  

victim(rand) Randomly select any one out of all possible cache 
lines with equal probability. 

replace(R,D) Replace R with D, update LNreg. 

evict(R) Write back R if it is dirty; invalidate R. 

mem_access(D) Access to D without caching it. 
 

Cache hits (1st column in the flow chart) are handled as in a 
traditional cache. When a cache miss occurs, if the LNreg of a 
cache line C matches the Context RMT_ID and index of the 
memory block D, then this is a tag miss. As a tag miss always 
indicates a matching RMT_ID, lines C and D must use the 
same RMT, which usually means that they belong to the same 
process. We call this interference internal to a process or 
processes in the same security group. If neither the incoming 
line (D) nor the selected line (C) is protected (2nd column), 
meaning that the interference is harmless, the miss is handled 
normally like in a traditional cache. If either C or D are 
protected (3rd column), meaning that the interference may leak 
out critical information, the replacement algorithm randomizes 
the cache interference due to the conflict between C and D. To 
avoid information-leaking interference, D does not replace C, 
and since in a tag miss D can not replace cache lines other than 
C, D is sent directly to the CPU core without being put in the 
cache. On the other hand, since a miss should normally cause 

Figure 3.  Our proposed cache architecture 



an eviction, a random line is evicted which “substitutes” for the 
eviction of C as well as randomizes the interference. Otherwise 
the old cache lines tend to stay in cache and new cache lines 
will not get cached. If the miss is not a tag miss, it is an index 
miss (4th column) – none of the LNregs match the RMT_ID 
and index of D. In this case, C and D may or may not belong to 
the same process. Since for an index miss the new memory 
block D can replace any cache line, a cache line is randomly 
selected (with equal probability as in the normal RAND) and 
evicted. The interference caused by an index miss therefore is 
always randomized. Detailed security analysis of the 
SecRAND algorithm will be given in section IV.D. 

D. Implementation Issues 
The proposed cache is very similar to a traditional direct-

mapped cache in implementation, except for the new address 
decoder and the new SecRAND replacement algorithm. We 
now discuss their implementation issues. 

1) The new address decoder design: 
According to section III.B, the address decoder of the new 

cache essentially performs an associative search of the LNregs, 
looking for a match of the index bits of the address and the 
RMT_ID (n+k+d bits in total). A traditional way to implement 
associative search is through Content-Addressable Memory 
(CAM) [15][16], i.e., the LNregs are implemented as a CAM 
array. CAM search however is slow and consumes more 
power. As shown in [16], the word length of each CAM entry 
is limited to 6 bits to achieve a delay comparable to that of a 
traditional decoder. Furthermore, having a separate CAM array 
requires routing its output to the main cache array. This could 
impact cache access time even more since routing delay has 
become a dominant factor of the overall cache access latency.   

We now discuss two alternative implementations: our 
previous RPcache address decoder design [9] and our new 
proposed design. Both designs integrate the comparison logic 
into the traditional address decoder and avoid the drawbacks of 
the CAM-based design. The core idea is to make use of the 
existing logic and routing of the traditional address decoder and 
maintain similar timing characteristics. To implement the 
dynamic memory-to-cache mapping, the logic in the traditional 
address decoders that generate word line selection signals are 

made flexible by using switches. The switches can be 
controlled to connect different address bits or predecoded bits 
to the inputs of the logic gates, thus making the logic flexible. 
Fig.5 shows a comparison of the traditional address decoder, 
the RPcache decoder and our proposed decoder designed for an 
example cache configuration. In a real implementation, the 
exact circuitry may vary depending on the cache organization, 
the circuit style (e.g., static logic or domino logic) and the 
fabrication technology, but the same principles still apply. 

In the RPcache, the static connections in the traditional 
address decoder between the outputs of the 3-to-8 pre-decoders 
and the inputs of the final NOR gates in the address decoder are 
replaced with dynamic connections via switches controlled by 
its permutation registers (PR). For each switch, a NAND3 is 
used to generate its control signal. For every 3 address bits, 8 
switches and 8 NAND3 gates are needed. The more heavily 
loaded predecoded lines, due to the drain capacitance of the 
switches, may be segmented with duplicated drivers. 

In our new design, rather than controlling the connections 
between the predecoded lines and the inputs of the final NOR 
gates, we control the connections between the address lines and 
the inputs of the decoder. The 3-8 predecoders are removed and 
their logic corresponding to each row – a NAND3 gate, is 
moved to sit beside each word line driver. The switches control 
how address bits are connected to the NAND3 gate, and thus 
control which cache line is activated given an index. This 
implements the dynamic memory-to-cache mapping. As shown 
in Fig.5, the hardware required in our proposed design, i.e., the 
switches and logic gates, is less than in the previous RPcache 
design. In actual circuit implementations, the load on the long 
wires as well as the input lines of the logic gates that the long 
wires drive is also lower in our proposed design because of 
fewer switches and smaller switch sizes. Since our cache has 
longer index bits, the output of the NAND3 gate corresponding 
to the extra address bits needs to be ANDed with the output of 
the NOR gate. This is done by replacing the first inverter in the 
word line buffer string with a NAND2 gate. By properly 
adjusting the transistor sizes of the NAND2 gate, no extra 
delay is introduced. Compared with the RPcache address 
decoder design, our new approach requires less hardware for 
implementing switches, has lower loading of the long wires 

Figure 4.  New security-aware random cache replacement algorithm  



and routes address lines instead of predecoded lines along the 
edge of the memory cell array, reducing the number of long 
wires and improving power efficiency. 

Since our new proposed decoder design is largely based on 
the traditional decoder design, the extra implementation 
overhead is minimized. The extra overhead for combinational 
logic is very low. In the example shown in Fig.5, for each 
cache line that probably contains several hundreds of memory 
cells and port switches, the extra circuits required only include 
3 NAND3 gates, 10 inverters and 18 switches, and all these 
devices are about the minimal size since they are all minimally 
loaded. The overhead for storage, i.e., the LNregs, is also low. 
We assume that the LNregs are laid out beside the memory cell 
array and implemented with the same memory cells. Since each 
cache line is associated with one LNreg, the overhead of 
LNregs relative to the overall cache storage is (n+k+d)/M, 
where n,k,d are defined as in Fig.3, M is the total number of 
memory cells in each cache line including data, tag, flags and 
ECC bits. For example, in a 64KB cache with 64-bit address 
and 64-byte cache line size, n=10. The value of M varies since 
the numbers of tag, flags and ECC bits are implementation 
dependent. As a rough estimation, we assume there are ~50 bits 
in total for tag/flag/ECC bits and therefore M≈64x8+50=562. If 
we allow 4 RMTs and wish to achieve good performance, we 
can choose d=2 and k=4. The relative overhead of storage will 
be 16/562 ≈ 2.9%. In some cache implementations the tag array 

and the data array may be separated, requiring two sets of 
address decoders. The overhead will be 5.8% in this case. 

2) Implementation issues of SecRAND: 
Compared with other commonly used replacement 

algorithms such as LRU, pseudo LRU and FIFO, the random 
replacement algorithm requires the least hardware cost to 
implement, due to its stateless nature [25]. Similarly, our 
SecRAND is stateless and enjoys the same advantage. 
Although SecRAND requires condition checks, these checks 
are simple and stateless, thus can be trivially implemented with 
simple combination logic. The security of SecRAND relies on 
the quality of the random source. This requires a true or pseudo 
random number generator (RNG or PRNG) on chip. The 
design of these is out-of-scope for this paper. Furthermore, we 
assume that for any system interested in security, a good RNG 
or a PRNG (e.g., [26]) is already implemented. 

IV. ANALYSIS AND EVALUATION 

A. Performance: Cache Access Time 
The performance of a cache architecture depends on short 

access times and low miss rates. We use CACTI 5.0 [10] to 
explore the design space and find the optimal access times and 
power consumption. The code corresponding to the address 
decoder is modified to model the logic shown in Fig.5. More 

Figure 5.  Comparing address decoder circuits 



accurate transistor level simulation is also performed using 
HSPICE. The transistor netlists corresponding to the circuit 
used in CACTI are constructed with the 65nm Predictive 
Technology Model (PTM) [17]. To accurately model the long 
wires in the decoder circuitry, we manually extract the 
parameters of long wires based on the geometrical information 
generated by CACTI. We focus on fast L1 caches since these 
are more impacted than L2 and L3 caches. Fig.6 shows the 
results on overall cache access time generated by CACTI. The 
extra delay introduced by our proposed cache, referred to as 
“Newcache” in the discussion below, is always within 1% 
range of the access time of a traditional direct-mapped (DM) 
cache. We also compared the access times of commonly used 
set-associative (SA) caches that are 2-way, 4-way or 8-way set-
associative. The “fast” caches are optimized for speed whereas 
the “normal” caches are optimized for both speed and power 
efficiency. The data are generated by configuring CACTI with 
fast mode and normal mode, respectively. Although a fast SA 
cache could have an access time close to that of our cache, the 
power consumption is significantly higher – up to 4 times 
higher than our Newcache, as shown in Fig.7. Table II shows 
the HSPICE results for a traditional direct-mapped cache 
versus our proposed Newcache. In all cases, the extra delays 
are no greater than 5ps, which is less than 1% of the overall 
access times.  

B. Performance: Cache Miss-rate Analysis 
1) Theoretical analysis 

Cache misses have been classified as compulsory misses, 
capacity misses or conflict misses.  Compulsory misses (e.g., 
on a cold start) are common to all caches. Capacity misses (e.g., 
when the program’s working size exceeds the size of the cache) 
only depend on cache size. Conflict misses have been shown to 
depend on the cache organization (e.g., set-associativity) and 
capacity. To reduce conflict miss rate, a traditional way is to 
increase associativity. However, this impacts cache access time 
and power efficiency. Increasing capacity can reduce capacity 

misses as well as conflict misses. However, this is often not 
feasible in practice due to the limited silicon real estate budget.  

In contrast, we show, for the first time, that conflict misses 
can be largely independent of cache capacity. Our analysis 
shows that, regardless of its real capacity, our proposed 
Newcache with an (n+k)-bit index has less conflict misses than 
a traditional direct-mapped cache with 2n+k cache lines. The 
total number of misses in our Newcache has the following 
bounds: 

|Miss(Newcache,2n)| ≤ |CompulsoryMiss| + |CapactiyMiss(2n)| 
   + |ConflictMiss(DM,2n+k)|           (1) 

|Miss(Newcache,2n)| ≥ max{|Miss(DM,2n+k)|,|Miss(FA,2n)|} (2) 

where Miss(Arch, Size) denotes the set of misses in a cache of 
type “Arch” with a capacity of “Size” and |A| is the number of 
elements in set A. Detailed analysis can be found in Appendix 
A. In equation (1), the left side of the equation can be 
decomposed to the same first 2 terms as the right side plus a 
third term: ConflictMiss(Newcache,2n). Hence, (1) shows that 
the conflict misses of our new cache is less than or equal to that 
of a direct-mapped cache with 2n+k cache lines. Indeed, as 
verified in the next section, this bound is asymptotically tight 
and is a good approximation of the true miss rate in real 
configurations. This means that the conflict misses of our 
proposed Newcache are largely independent of its actual cache 
capacity. The conflict misses are indeed dependent on the size 
of the larger LDM cache, 2n+k, rather than on the actual cache 
size, 2n. This property of our proposed cache gives cache 
designers the ability to control the conflict miss rate at the 
desirable level by choosing the proper number of index bits, 
while choosing the capacity independently based on cost or 
other needs. This avoids the speed and power penalty due to 
higher associativity and allows finer-grained control on 
allocating capacity to the cache and making the best use of the 
resource. This property also enables other benefits that 
traditional caches can not provide, as we will show in section V.  

2) Simulation results 
For experimental confirmation of miss rates, we simulated 

our proposed Newcache and traditional direct mapped (DM), 
set-associative (SA) and fully-associative (FA) caches on a 
cache simulator derived from sim-cache and sim-cheetah of the 

TABLE II.     HSPICE RESULTS ON ADDRESS DECODER DELAY  

 8KB 16KB 32KB 64KB 
Traditional DM 0.149ns 0.149ns 0.226ns 0.192ns 
Newcache 0.151ns  0.151ns 0.230ns 0.197ns 

 

Figure 7.  Dynamic read energy Figure 6.  Cache access time comparison 



simplescalar toolset [24]. We run all 26 SPEC2000 benchmarks 
for 1 billion instructions with appropriate fast forward counts 
ranging from 2 million instructions to 3 billion instructions. 
Fig.8 illustrates the accuracy of the bounds we derived in 
equations (1) and (2). The bounds are normalized to the real 
miss rate to show the relative accuracy. The simulation is done 
for our proposed caches with 64-byte lines for n = 6 to 10 (i.e., 
4K bytes to 64K bytes capacity), with cache indices that are 
k=3 to 4 bits longer. Except for one point, the bounds are 
always within the 10% range of the real miss rate, and when 
n+k or k gets larger, the accuracy increases. Indeed, the derived 
bounds are asymptotically tight, meaning that the equality in 
(1) holds when k and n+k are large. 

 
Table III compares the miss rates of our Newcache with the 

DM cache and the 2-way and 4-way SA caches with LRU 
replacement. FA caches and 8-way SA caches with RAND 
replacement are also included to show the effectiveness of our 
SecRAND replacement algorithm. The lowest miss rate in each 
column is highlighted in bold (and normalized to 1 in 
parenthesis). The miss rates of our new caches are in the last 2 
rows – our Newcache almost always achieves the lowest miss 
rates achieved in each column by traditional caches. 

C. Power Efficiency Analysis 
We analyze the power efficiency of the proposed cache 

with regard to two aspects: the per access energy of the cache 
and the overall power consumption. The cache miss rates are 
obtained from simulation of all SPEC2000 benchmarks. The 
power penalty of misses, i.e., the per access energy of L2 cache 
is obtained using CACTI 5.0. Modern caches are usually 
organized as a set of subarrays to achieve fast timing and low 
power dissipation. The main sources of dynamic power include 
the power for routing address bits in and data bits out via H-
trees, and the power on word lines and bit lines since they are 

heavily loaded. As our Newcache is direct-mapped, only a 
minimum number of subarrays need to be activated in each 
access, which minimizes the power consumed on word lines 
and bit lines, giving the low per access energy. 

Fig.7 shows the dynamic read energy data generated by 
CACTI. The impact of the changes on the overall power 
consumption compared to DM caches is very low – less than 
2%. This is because the percent of energy consumed by the 
modified structures in our proposed Newcache architecture is 
low. The new address decoder (excluding word lines since they 
are not changed) consumes just a few percent more than a 
traditional DM cache, and the whole decoder power 
consumption is normally less than 5% of the overall dynamic 
power. The LNregs consume little power because they are a 
small amount of memory compared with the size of the cache 
and have low switching activities – the contents of LNregs 
need to be changed only during an index miss. Furthermore, 
unlike accesses to other memory cells, most accesses to LNregs 
do not involve power-consuming bit-line charging and 
discharging. Only writes to LNregs require bit-line operations, 
which occur only when index misses happen. The increase in 
leakage power in our Newcache is mainly due to the memory 
cells in LNregs, which is small relative to the overall cache. 
Hence, the leakage power increase is also very low.  

Fig.9 shows the results comparing the overall power 
consumption normalized to our Newcache. We compare 
traditional SA caches as well as advanced low power SA 
caches – the way-predicting (wp) SA cache. For example, “SA 
4w LRU wp0.7” means a 4-way set-associative way-predicting 
cache with prediction accuracy of 0.7, and LRU replacement 
algorithm. All caches are 32KB with 64Byte cache lines. The 
miss rates of the cache impact the overall system power 
consumption. A higher miss rate means more accesses to the 
larger caches or the main memory which consume more power. 
Our Newcache is more power efficient than the others due to 
its low miss rate and low per access energy. On average, the 4-
way SA cache consumes 61% more power than our Newcache, 
the 2-way SA cache 20% more, the DM cache 8% more, the 4-
way way-predicting cache 16% and 6% more with 0.7 [22] and 
0.85 accuracy[23], respectively.  

D. Security Analysis 
The proposed cache adopts the randomization approach 

used in RPcache on cache misses to mitigate information 
leakage. The SecRAND replacement algorithm essentially 
achieves the equivalent randomization effect on cache misses. 
We therefore show a similar analysis to prove the security of 

Figure 8.  Accuracy of miss rate bounds 

TABLE III.     CACHE MISS RATES WITH DIFFERENT ARCHITECTURES AND REPLACEMENT ALGORITHMS (NORMALIZED RESULTS IN PARENTHESIS) 

 4KB 8KB 16KB 32KB 64KB 

DM  0.133 0.093 0.068 0.055 0.048 

SA-2way, LRU 0.101 0.075 0.057 0.045 0.041 

SA-4way, LRU 0.096 0.068 0.053 (1) 0.042 (1) 0.040 (1) 
SA-8way, RAND 0.095 0.071 0.054 0.044 0.041 

FA, RAND 0.090 (1) 0.067 (1) 0.053 (1) 0.044 0.040 (1) 
Newcache  k=4, SecRAND 0.093 (1.033) 0.068 (1.015) 0.054 (1.019) 0.044 (1.048) 0.041 (1.024) 

Newcache  k=6, SecRAND 0.090 (1) 0.067 (1) 0.053 (1) 0.044 (1.048) 0.040 (1) 
 



our Newcache architecture. Similar to the analysis of RPcache, 
we model the information leakage channel as a classic discrete 
time synchronous channel. The input symbol of the channel is 
the line number of the cache line accessed by the victim that 
would cause an eviction and the output symbol is the line 
number of cache line for which the attacker observes an 
eviction. Note that the same physical cache line may have 
different line numbers from the victim and attacker’s points of 
view (e.g., in the proposed cache, they may use different 
RMTs). To make the capacity of this channel zero, the 
randomization should meet the following requirement for all 
protected cache lines: 

  P(j|i) = P(j’|i), ∀ i,j,j’             (3) 

where P(j|i)=Pr(output=j|input=i). In other words, given an 
access at line i by the victim that would cause an eviction, the 
attacker can observe an eviction at any line number with equal 
probability. From the attacker’s point of view, although the 
attacker can observe a cache eviction, he has no idea which 
cache line was accessed by the victim. Below we show that the 
proposed cache meets this condition. Given a cache miss that 
causes eviction, the following cases need to be considered. 

a) The miss is an index miss. According to Fig.4 (4th 
column), a random cache line R is selected for eviction with 
equal probability. In other words, for any victim’s access that 
would cause an eviction, all cache lines have the same 
probability to be evicted, i.e., P(j|i) = P(j’|i), ∀ i,j,j’.  

b) The miss is a tag miss that involves protected cache 
lines. As shown in Fig.4 (3rd column), the line to be evicted is 
also randomly selected with equal probability, i.e.,               
P(j|i) = P(j’|i), ∀ i,j,j’.  

Clearly, the proposed SecRAND randomization mechanism 
satisfies (3), and thus achieves zero channel capacity.  

V. ADDITIONAL BENEFITS 
Fault tolerance: Memory-to-cache remapping is a common 

technique used in fault-tolerant cache design. In traditional 
caches, a memory block mapped to a faulty line/set is statically 
remapped to another good line/set [12-14]. Such schemes 
increase the number of conflict misses since the remapped 

cache line/set is now shared by more memory addresses. They 
also increase the number of capacity misses since the faulty 
lines reduce cache capacity. The proposed cache architecture 
can provide fault tolerance in a similar manner using 
remapping, but with better performance. As shown in section 
IV.B, due to the dynamic memory-to-cache mapping of our 
Newcache architecture, a cache of size s with p faulty cache 
lines is equivalent to a cache of size s-p, which has the same 
conflict miss rate as shown by (1). In other words, faulty cache 
lines in our proposed cache only increase capacity misses, but 
not conflict misses. 

Hot-spot mitigation: Due to spatial and temporal locality, 
the references to a small number of cache lines account for a 
majority of the total cache references. The more frequently 
accessed cache lines generate more heat, causing hot spots. 
Such unevenly distributed cache line accesses however are 
mostly avoided in our proposed Newcache. The SecRAND 
replacement algorithm maps memory blocks to randomly 
selected physical cache lines, which avoids clustering of 
frequently accessed cache lines. 

Optimization for power efficiency: With the ability of 
mapping memory blocks to arbitrary physical cache lines, our 
Newcache architecture can also facilitate low power design. 
For example, by adaptively turning off cache lines based on a 
program’s working set, the power efficiency of the cache can 
be further improved with minimal impact on performance. An 
analysis similar to that in the discussion of fault tolerance can 
show that turning off cache lines in the proposed cache will 
cause fewer additional cache misses than in traditional caches. 

Benefits for cache partitioning and locking: In traditional 
caches such as set-associative caches, cache partitioning is not 
trivial and has many restrictions [27]. A set-associative cache 
can be partitioned in two ways: horizontal partitioning and 
vertical partitioning. Horizontal partitioning divides cache sets 
into subgroups, each of which forms a partition. One issue with 
this scheme is that the number of cache sets in each partition 
has to be a power of 2. This severely limits the flexibility of 
choosing a partition size. In addition, the address decoder has 
to be redesigned so that it can be reconfigured to index 
different numbers of cache sets. Vertical partitioning partitions 
cache “ways” (degrees of associativity) into subgroups. As 

Figure 9: Comparison of the overall power consumption 



most caches have limited associativity, the number of partitions 
can be very limited. In addition, the partitions have lower 
associativity than the original cache, thus incurring higher 
conflict miss rates. Cache line locking is a more flexible way to 
“partition” a cache, as in PLcache [9]. It however also suffers 
from higher conflict miss rates. In a set-associative cache, the 
locked line(s) in a cache set reduce the effective associativity of 
the set, thus incurring more conflict misses. In contrast, as 
shown in section III, our Newcache does not have restrictions 
on the number of physical cache lines in a cache. Therefore 
cache partitioning and locking mechanisms built upon our 
proposed cache has the highest flexibility in allocating cache 
lines to a partition. Moreover, as shown in the discussion of 
fault tolerance, partitioning a cache incurs fewer additional 
cache misses in our Newcache than in traditional caches, thus 
providing better performance. 

VI. PAST WORK 
The past work on mitigating cache based side channel 

attacks have been reviewed in section II. With respect to 
performance and power efficiency, past research efforts 
focused mainly on the following aspects. To reduce conflict 
misses, the victim cache [18] allows conflicting lines to be 
stored in a small FA cache. The hash-rehash cache [19] and the 
column-associative cache [20] use a different indexing function 
when a conflict miss occurs such that the missing line can be 
put into an alternative location. These approaches can maintain 
fast cache access time, but the performance improvement is 
limited. The adaptive group-associative cache [21] can 
dynamically allocate cache holes for conflicting addresses to 
reduce conflict misses. Cache holes are lines with indices that 
have little usage. However, it incurs penalty for accessing 
reallocated cache lines even for hits, unlike our solution. The 
B-cache [16] employs a programmable address decoder with 
long cache index, but its address decoder can only be partially 
programmable, up to 6 bits, limited by its CAM-based 
implementation. In contrast, our address decoder allows full 
dynamic mapping, for security and performance. To reduce 
power consumption, way-predicting techniques [22][23] avoid 
accessing all ways of set-associative caches in every access – 
but with less effectiveness than our proposed architecture. 

Unlike most of the previous work, a major advantage of our 
proposed cache is that, with a single cache architecture, many 
challenging and even conflicting design goals such as security 
and high performance can be achieved at the same time. Our 
proposed Newcache architecture has low miss rates comparable 
to highly associative caches, and is as fast and power efficient 
as direct-mapped caches. The Newcache architecture is also 
secure, yet requires lower hardware cost. Our novel multiple 
logical RMTs remapped into a single set of physical LNregs is 
much more efficient than the multiple physical permutation 
tables in RPcache, and our address decoder design needs less 
hardware and is more power efficient. Moreover, our cache 
architecture allows cache partitioning and cache line locking to 
be efficiently implemented yet avoids cache underutilization, 
providing better security and performance than existing 
partitioned cache and PLcache [9] architectures. Our proposed 
architecture also provides the nice property of capacity 

independent conflict misses, and can bring additional benefits 
including fault tolerance and hot-spot mitigation. 

VII. CONCLUSIONS 
In addition to high performance and low power dissipation, 

security has become a critical issue for cache design due to its 
susceptibility to software side-channel attacks. While design 
for security and design for performance are usually at odds, this 
paper shows that it is possible to have a cache architecture that 
simultaneously improves both security and performance – and 
also improves on power consumption, fault-tolerance and hot-
spot mitigation. We hope this motivates a rethinking of cache 
and computer design, based on improving security without 
sacrificing other design goals like performance and power 
consumption. 

We presented a novel cache architecture which combines 
dynamic remapping of multiple larger Logical Direct Mapped 
caches to a single smaller physical cache using extra index bits, 
hardware context awareness, a security-aware random 
replacement algorithm and a physical design that does not 
increase cache access latency. Our results show that our 
proposed Newcache architecture is as fast as a direct-mapped 
cache, has a miss rate as low as that of a highly-associative 
cache, and is as power efficient as a direct-mapped cache. At 
the same time it can thwart cache-based software side-channel 
attacks, providing both legacy and security-enhanced software 
a much higher degree of security. It can also bring additional 
benefits such as fault tolerance and hot-spot mitigation. 
Further, we show that the conflict miss rate of our new cache is 
independent of its physical capacity, enabling efficient, fine-
grained cache resource utilization. 
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APPENDIX  A 
In this analysis, we consider three cache types, our proposed Newcache, DM 
and FA, as explained in Table A. We assume LRU replacement policy for FA 
caches and Newcache for the ease of analytical analysis. RAND and 
SecRAND algorithm should lead to similar properties in a statisitcal sense 
since they statisically approximate LRU: even though each cache line can be 
evicted with equal probability in each individual cache miss, statistically the 
more frequently accessed lines have higher probability of residing in the cache, 
and a cache line residing in the cache without being accessed for  a long time 
has a higher probability of being evicted. 
 

Proof of the upper bound (1): The proof of the upper bound is based on 
three facts. We first define the terms that will be used. The reuse distance d is 
the number of distinct block addresses between two consecutive appearances 

of the same block address. Compulsory misses are those due to the first access 
of the data and have a resue distance d = ∞. Capacity misses are those due to 
insufficient cache capacity. In a cache with m blocks, a miss is a capacity miss 
if the block address has a reuse distance d > m. Conflict misses are those that 
are neither compulsory misses nor capacity misses, i.e., d ≤ m. 

Fact 1: An index miss in the proposed Newcache is either a compulsory miss 
or a capacity miss but the opposite is not necessarily true.  
Proof: In an index miss, the index of the address is not found in the LNregs, 
which means that this index either never appeared before, or there were more 
than 2n distinct indices since the last appearance of the current index. In other 
words, the reuse distance of the address is greater than 2n, and hence an index 
miss is always a capacity miss or a compulsory miss. On the other hand, a 
capacity miss or a compulsory miss is not necessarily an index miss. For 
example, at the first time an address is accessed, the same index may already 
exist in one LNreg due to a previous access to another address with the same 
index, and hence leads to a tag miss. This proves Fact 1. 

Fact 2: A conflict miss is always a tag miss in Newcache but a tag miss is not 
necessarily a conflict miss.This is indeed the contraposition of Fact 1. 

Fact 3: Considering the misses that occur in the cache architectures we 
examined, the following relationship holds: 

Miss(Newcache,2n) ⊆ Miss(DM,2n+k) U Miss(FA,2n)                 (i)      

    CompulsoryMiss U CapacityMiss(2n+k) ⊆ Miss(DM,2n+k) ∩ Miss(FA,2n)     (ii) 

where Miss(Arch, Size) denotes the set of misses in a cache of type “Arch” 
with a capacity of “Size”. 
Proof: In the proposed cache, the index misses are always misses in the FA 
cache, by Fact 1. The tag misses are always misses in the LDM cache since 
whenever an index conflict occurs in the physical cache it must occur in the 
LDM cache. This proves (i). To prove (ii), consider the compulsory misses 
and capacity misses in the LDM cache. They are first a subset of 
Miss(DM,2n+k) that includes all misses of the LDM cache. Also, since they 
have reuse distances d > 2n+k, they must also be misses in a FA cache of size 
2n. In other words, they belong to Miss(DM,2n+k) ∩ Miss(FA,2n).  

With (i) and (ii), we have 
 
|Miss(Newcache,2n)|  

       ≤ |Miss(DM,2n+k)| + |Miss(FA,2n)| - |Miss(DM,2n+k) ∩ Miss(FA,2n)|  

       ≤ |Miss(FA,2n)|+|Miss(DM,2n+k)| - |CompulsoryMissUCapacityMiss(2n+k)| 

       = |Miss(FA,2n)| + |ConflictMiss(DM,2n+k)| 

       = |CompulsoryMiss| + |CapacityMiss(2n)| + |ConflictMiss(DM,2n+k)|     □ 

 
Proof of the lower bound (2): As mentioned earlier in section III, at any time 
the real physical cache stores a subset of the cache lines in the conceptual 
LDM cache. Therefore, given an arbitrary memory address, if it hits in the 
physical cache, it must also hit in the LDM cache. On the other hand, if it hits 
in the LDM cache, it may not necessarily hit in the physical cache – it will 
miss if the line being accessed in the LDM cache is not yet mapped into the 
physical cache. We therefore have |Miss(Newcache,2n)| ≥ |Miss(DM,2n+k)|. On 
the other hand, The proposed cache should have higher miss rate than the fully 
associative cache of the same size since it has conflict misses that the fully 
associative cache does not have, i.e.,  |Miss(Newcache,2n)| ≥ |Miss(FA,2n)|.    □

 

TABLE A.     CACHE ARCHITECTURES CONSIDIERED  

Caches 
considered Description 

Newcache of 
size s 

our Newcache, with more index bits referring to a larger 
Logical Direct Mapped cache than the size of the 
physical cache (for simplicity we assume s=2n) 

DM cache of 
size 2n+k 

Direct Mapped cache (which is the LDM cache in Fig. 
1.) The physical cache of the proposed architecture holds 
a subset of the lines in the LDM cache 

FA cache of 
sizes 2n 

Fully Associative cache (for calculation of capacity 
misses and compulsory misses) 

 


