Lecture 3:

Advanced Caching Technigues

Department of Electrical Engineering
Stanford University

http://eeclass.stanford.edu/ee282

EE282 — Fall 2008 Lecture 3-1 C. Kozyrakis

Announcements

« HW1 out on Wednesday

— Make sure you have a group of 3 & start early
— PA-1is coming is a week too

EE282 — Fall 2008 Lecture 3-2 C. Kozyrakis

Today’s Menu:
Advanced Caching Techniques

Understanding cache performance

— Average memory access time

— Types of misses (the 3 Cs)

— Review: basic cache design choices

How to reduce cache hit time
How to reduce cache miss rate
How to reduce cache miss penalty

EE282 — Fall 2008 Lecture 3-3 C. Kozyrakis

Review of Cache Basics

Why do we need caches and what'’s their goal?

What's the basic idea of a cache and why does it work?

How do we find something in a cache?

What happens on a cache miss?

What happens on a cache write?

EE282 — Fall 2008 Lecture 3-4 C. Kozyrakis

Improving Cache Performance

 Goal: reduce the Average Memory Access Time (AMAT)
— AMAT = Hit Time + Miss Rate * Miss Penalty

 Approaches
— Reduce Hit Time

— Reduce or Hide Miss Penalty
— Reduce Miss Rate

e Notes:

— There may be conflicting goals
— Keep track of clock cycle time, area, and power consumption

EE282 — Fall 2008 Lecture 3-5 C. Kozyrakis

Understanding Cache Misses: the 3 Cs

e Compulsory or cold misses
— First access to an address within a program
— Misses even with an infinite sized cache

o Capacity misses
— Misses because cache not large enough to fit working set
» Block replaced from cache and later accessed again
— Misses in fully associative cache of a certain size

o Conflict or interference misses
— Misses due to associativity
— E.g. two addresses map to same block in direct mapped cache

EE282 — Fall 2008 Lecture 3-6 C. Kozyrakis

Tuning Basic Cache Parameters:
Size, Associativity, Block width

Size:

— Must be large enough to fit working set (temporal locality)
— If too big, then hit time degrades

Associativity

— Need large to avoid conflicts, but 4-8 way is as good as FA
— If too big, then hit time degrades

Block
— Need large to exploit spatial locality & reduce tag overhead
— If too large, few blocks {¥] higher misses & miss penalty

S A B
EE282 — Fall 2008 Lecture 3-7 C. Kozyrakis

Hit Rate

Working Set
|

Basic Cache Policies (Write Miss)

Write back

Write through

Write allocate

No write allocate

Write allocate

fetch on no fetch on | write around write fetch on no fetch on
miss miss invalidate miss miss
Steps
1 pick pick pick re- pick re-
replacement | replacement placement | placement
2 invalidate | [write back] | [write back]
tag
3 fetch block fetch block
4 write cache | write partial write cache | write partial
cache cache
5 write write write write
memory memory memory memory

Which data access patterns benefit from each policy?

EE282 — Fall 2008

Lecture 3-8

C. Kozyrakis

Multilevel Caches

* Motivation:
— Optimize each cache for different constraints
— Exploit cost/capacity trade-offs at different levels

e L1 caches

Processor

i i — Optimized for fast access time (1-3 CPU cycles)
Y

L1-lnst ‘ ‘ L1-Data - 8KB'64KB, DM tO 4'Way SA
/

: * L2 caches
L2-Cache — Optimized for low miss rate (off-chip latency high)

Chip Boundary = —==———= === — 256KB-4MB, 4- to 16-way SA

L3 caches
— Optimized for low miss rate (DRAM latency high)
— Multi-MB, highly associative, embedded DRAM?

EE282 — Fall 2008 Lecture 3-9 C. Kozyrakis

2-level Cache Performance Equations

L1 AMAT = HitTimelL1 + MissRatelL1 * Miss PenaltyL1

— MissLatencyLl is low, so optimize HitTimelL1l
MissPenaltyL1l = HitTimeL2 + MissRatelL2 * MissPenaltyL2

— MissLatencyL?2 is high, so optimize MissRateL2
MissPenaltyL2 = DRAMaccessTime + (BlockSize/Bandwidth)
— If DRAM time high or bandwidth high, use larger block size

L2 miss rate:
— Global: L2 misses / total CPU references

— Local: L2 misses / CPU references that miss in L1
— The equation above assumes local miss rate

EE282 — Fall 2008 Lecture 3- 10 C. Kozyrakis

Multi-level Inclusion

 |nclusion: if data at L1 is always a subset of data at L2

« Advantages of maintaining multi-level inclusion
— Easier cache analysis
e Overall MissRate = MissRate ; x LocalMissRate, ,

— Easier coherence checks for I/O & multiprocessors
» Check the lowest level only to determine if data in cache

 Disadvantages

— L2 replacements are complicated if L2 and L1 block sizes differ

— Wasted space if L2 not much larger than L1
* The motivation for non-inclusion for some AMD chips

EE282 — Fall 2008 Lecture 3-11 C. Kozyrakis

EE282 — Fall 2008 Lecture 3-12 C. Kozyrakis

How to Maintain Inclusion

e On L1 misses
— Bring block in L2 as well

e On L2 evictions or invalidations
— First evict all block(s) from L1

— Can simplify by maintaining extra state in L2 indicates which
blocks are also in L1 and where (cache way)

e L1 instruction cache inclusion?
— For most systems, instruction inclusion is not needed (why?)

— Bad for applications that stress the L2 capacity with small code
« E.g. matrix multiply with huge matrices...

EE282 — Fall 2008 Lecture 3-13 C. Kozyrakis

Reducing Cache Hit Time

 Technigues we have seen so far (most interesting for L1)
— Smaller capacity
— Smaller associativity

» Additional techniques
— Wide cache interfaces
— Pseudo-associativity

« Techniques that increase cache bandwidth (# of concurrent
accesses)
— Pipelined caches
— Multi-ported caches
— Multi-banked caches

EE282 — Fall 2008 Lecture 3- 14 C. Kozyrakis

Wide Cache Interfaces

|ldea: return multiple words with single cache access
— 2 words to a full cache line

Benefit: reduces hit time if multiple words must be read anyway
— Reduce need for multi-cycle accesses

Cost: more wires/pins
— To transfer multiple words at once

Usage:

— Instruction caches: to satisfy wide processor fetch

— L1y

EE282 — Fall 2008

L2, L2

W

L3, ...: where whole cache lines are transferred

Lecture 3-15 C. Kozyrakis

Pseudo Associative Caches

|ldea: search the N ways sequentially
— First search in way 1, if hit pass the data to processor
— If miss, search way 2 in 2" cycle, ...

Advantage: Hit time of direct mapped, miss rate of N-way SA
— Each cycle only 1 way can provide data (fast multiplexing)

Disadvantage: multiple hit times to handle
— Depending on which way produces hit
— Optimization: start from MRU way or predict

Usage

— With L1 caches to reduce miss rate without affecting hit time
— With external caches (L3) to reduce board traces needed

EE282 — Fall 2008 Lecture 3- 16 C. Kozyrakis

EE282 — Fall 2008 Lecture 3-17 C. Kozyrakis

Multi-ported Caches

» |dea: allow for multiple accesses in parallel
— Processor with many LSUSs, I+D access in L2, ...

 Can be implemented in multiple ways
— True multi-porting
— Cache overclocking
— Multiple cache copies
— Line buffers
— Multiple banks

 What is difficult about multiporting
— Interaction between parallel accesses (especially for stores)

EE282 — Fall 2008 Lecture 3-18 C. Kozyrakis

True Multiporting & Overclocking

e True multiporting
— Use 2-ported tag/data storage
— Problem: large area increase

Port 1,R —> Port 1, Repl e .
e e | — Problem: hit time increase
Port 2, Request > — Port 2, Reply
» Overclocking

— Clock cache twice as fast as processor
] Port 1, Request | [Port1, Reply Possible because caches are regular
—_— > Cache — >
UPOM,Request U Port 2, Reply - One aCCess per half CyC|e

EE282 — Fall 2008 Lecture 3-19 C. Kozyrakis

Multiple Cache Copies & Line Buffers

* Multiple cache copies
— Two loads at the same time
— — Still only one store at a time

Read Request 1—‘—> ——» Read Data 1

A Cache .
Copy 1 — Twice the area, but same latency
Write Request
Cache .
ReadReuest 2V » S cinae2 ® LINE buffer or LO cache
— Store latest line accessed in buffer
— Can do in parallel
Buffer Request —] « An access to a new cache line
Dufter Miss Reqvesl | Gache { Multiple accesses that hit in buffer

EE282 — Fall 2008 Lecture 3 - 20 C. Kozyrakis

Multi-banked Caches

Cache
Request 1 X» Bank 1 X »Read Data 1
Request 2 > Cache L pRead Data 2

Bank 2

« Partition address space into multiple banks
— BankO caches addresses from partition O, bankl from partition 1...

— Can use least or most significant address bits for partitioning
 What are the advantages of each approach?

» Benefits: accesses can go in parallel if no conflicts
* Problems: conflicts, distribution network, bank utilization

 Usage:
— Multi-ported L1, low latency L2

EE282 — Fall 2008 Lecture 3-21 C. Kozyrakis

Reducing Miss Rate

 Techniques we have seen so far
— Larger caches
* Reduces capacity misses

— Higher associativity
 Reduces conflict misses

— Larger block sizes
 Reduces cold misses

« Additional techniques
— Skew associative caches
— Victim caches

EE282 — Fall 2008 Lecture 3 - 22 C. Kozyrakis

Skew Associative Caches

* |dea: reduce conflict misses by using different indices in each cache way
— N-way cache: conflicts when N+1 blocks have same index bits in address

« Different indices though hashing
Cache _ Cache — E.g. XOR index bits with some tag bits
Way ey — E.g. reorder some index bits

address [Tag [index [Offset |

* Benefit: indices are randomized
— Less likely two blocks have same index
Cache Hash - Hashz > Cache

Way 1 Way 2 — Conflict misses reduced and cache
better utilized

— May be able to reduce associativity

address| Tag [Index | Offset |

» Cost: latency of hash function

EE282 — Fall 2008 Lecture 3 - 23 C. Kozyrakis

Victim Cache

« Small FA cache for blocks recently evicted from L1
— Accessed on a miss in parallel or before the lower level
— Typical size: 4 to 16 blocks (fast)

 Benefits Cache
— Captures common conflicts due to low associativity or
ineffective replacement policy ;
— Avoids lower level access Victim
Cache
 Notes Lower Level

— Helps the most with small or low-associativity caches
— Helps more with large blocks

EE282 — Fall 2008 Lecture 3 - 24 C. Kozyrakis

Reducing Miss Penalty

Techniques we have seen so far
— Multi-level caches

Additional techniques

— Sub-blocks

— Ciritical word first

— Write buffers

— Non-blocking caches

EE282 — Fall 2008 Lecture 3 - 25 C. Kozyrakis

Sub-blocks

V Subblock0

Vv

Subblock1

Vv

Subblock?

Vv

Subblock3

Idea: break cache line into sub-blocks with separate valid bits

— But the still share a single tag

Low miss latency for loads:

— Fetch required subblock only

Low latency for stores:
— Do not fetch the cache line on the miss
— Write only the sub-block produced, the rest are invalid
— If there is temporal locality in writes, this can save many refills

EE282 — Fall 2008

Lecture 3 - 26

C. Kozyrakis

Critical Word First

» Idea: fetch requested word or subblock first
— And then the rest of the cache block
— Useful when blocks are large and bandwidth low
— Not that useful if program has spatial locality

* Why critical word first works: early CPU or L1 restart:

— Return data to CPU/L1 as soon as requested word/subblock
arrives

— Don’t walit for the whole block to arrive in L1 cache

EE282 — Fall 2008 Lecture 3 - 27 C. Kozyrakis

Write Buffers

CPU or |stores | M L1 or
L1 Cache *’lﬂﬂm_i’ L2 Cache

» Write buffers allow for a large number of optimizations

» Write through caches
— Stores don’t have to wait for lower level latency
— Stall store only when buffer is full

 Write back caches
— Fetch new block before writing back evicted block
« CPUs and caches in general

— Allow younger loads to bypass older stores
— Beware of dependencies...

EE282 — Fall 2008 Lecture 3 - 28 C. Kozyrakis

Write Buffer Design

o Size: 2-8 entries are typically sufficient for caches
— But an entry may store a whole cache line
— Make sure the write buffer can handle the typical store bursts...
* Analyze your common programs, consider bandwidth to lower level
» Coalescing write buffers
— Merge adjacent writes into single entry
— Especially useful for write-through caches

» Dependency checks
— Comparators that check load address against pending stores
 |f match there is a dependency so load must stall

— Optimization: load forwarding
* |f match and store has its data, forward data to load...

EE282 — Fall 2008 Lecture 3 - 29 C. Kozyrakis

Non-blocking or Lockup Free Caches

e l|dea:
— Allow for hits while serving a miss (hit-under-miss)
— Allow for more than one outstanding miss (miss-under-miss)

 When does it make sense (for L1, L2, ...)

— When the processor can handle >1 pending load/store
» This is the case with superscalar processors

— When the cache serves >1 processor or other cache
— When the lower level allows for multiple pending accesses
« Multi-banked, split transaction busses, pipelining, ...
 What is difficult about non-blocking caches:
— Handling multiple misses at the time
— Handling loads to pending misses
— Handling stores to pending misses

EE282 — Fall 2008 Lecture 3 - 30 C. Kozyrakis

Potential of Non-blocking Caches

1 —<Cceu 1 Stall CPU on miss
Miss Penalty |
5
Miss
'V'Jiss Hit
!
' CZIE. —e 1 Hit under miss
| Miss Penalty |

Stall only when
result needed

IVljssHit Missl
| i

| |
m - 0 -
I Vs Denally] Multiple out-standing misses
| Miss Penalty |
| Miss Penalty |

EE282 — Fall 2008 Lecture 3 - 31 C. Kozyrakis

Miss Status Handling Register

o Keeps track of
— OQOutstanding cache misses
— Pending load & stores that refer to that cache block
 Fields of an MSHR
— Valid bit
— Cache block address
» Must support associative search

— Issued bit (1 if already request issued to memory)
— For each pending load or store

« Valid bit

* Type (load/store) and format (byte/halfword/...)

* Block offset

» Destination register for load OR store buffer entry for stores

EE282 — Fall 2008 Lecture 3 - 32 C. Kozyrakis

MSHR

1 27 1 1 3 5 5
Valid [Block Address [Issued| [Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination
Valid | Type | Block Offset | Destination

C. Kozyrakis

EE282 — Fall 2008

Lecture 3 - 33

Load/store O
Load/store 1

Load/store 2

Load/store 3

Non-block Caches: Operation

e On a cache miss:

— Search MSHRs for pending access to same cache block
 If yes, just allocate new load/store entry

— (if no) Allocate free MSHR
» Update block address and first load/store entry

— If no MSHR or load/store entry free, stall

* When one word/sub-block for cache line become available

— Check which load/stores are waiting for it
 Forward data to LSU
 Mark loads/store as invalid

— Write word in the cache

 When last word for cache line is available
— Mark MSHR as invalid

EE282 — Fall 2008 Lecture 3 - 34 C. Kozyrakis

Summary

e How to reduce cache hit time

— Smaller cache, lower associativity, wide interfaces, pseudo
-associativity

— Multi-ported and multi-banked caches

e How to reduce cache miss rate

— Larger caches, higher associativity, skew associativity, victim
cache

 How to reduce cache miss penalty

— Multi-level caches, sub-blocks, critical word first, write buffers,
non-blocking caches

EE282 — Fall 2008 Lecture 3 - 35 C. Kozyrakis

