## WALKINGAMES ARITHMEITC.

# - オCHIDDH BDDEE 

AVD OTHEA FOAKA PUDLISETB DT

# WEBB, MILLINGTON AND CO., 

LEEDS AND OTLEY.
ZOAIDOIT DIMPOT: WINR UFFIOS COURT, PLEIST ST.
BDINBUROE:JOEN MENZING, PRINCENG ST.
DTBLIK: JOHN ROBERTSON, QRAPTOK STREET.

Beitler's Walkingame's Arithmetic; or Tutor's As sistant. New Edition, modernised and greatly improved. By Isalc Butsab, Head Master of the High School, Selby. Is. 6d,
To which is added a complete course of Mental Arithmetic, and the most concise method of oxtraoting the Cube Root. Also, an entirely new Table for calculsting Intorest and Disoounting Bills of Exebinge, acourately morked to such length that the Interest of any sum of money, at any rate per cent, may bo readily ascertained for any number of deys.

Eav 'This Edtuon of Walkingume's Arithmetle has been rery careffilly compthed from Crobly'm original edstion pubished at York, and ling attalned a most ixtoionlinary sale. Erory exampla fiaring boen thoroughly tented and proved,
 Hie. Ask for Butle's olithin of Walkingame.

Bllis's NTarray's Gramamar: being an abridgmont of Murray's English Grammar, in Question and Anawer, with explaustory notes, and an Appendix containing Exercises in Parsing and Syntax. Desigued ohiefly for his own pupils. By tho Rev. J. Esyire, Viear of Ebbertson. Price 1s.
"I have folt oonvinced, from sorenal Years' experience in fultion, that the customary method for the acquisition of learaing doea not make po Htrong an impression on the mind, as putting the subject in the wisy of Question and Ar-swar-in doine which, I have captiously giren the Angworn in the Etrlitor't omm langrange -Introduction.

Murray a Gratimar is too well known and too Justly, apprecinted to need any notlee from us; wa caunot, however, refraln from mentioning with entire atprobatian an Abridguent of it, as newly srranged by the Rev. J. Filis, Viens if Shbertanti, which poasenites the great advantage of prasenting if in the form of Guention sid Ansiror, tho latter boing the suthor's own worla, and which matorislly lonsoos the labour of the toncher, and improgees the subject more poverfally on the memory of the pupll. Wa understand that a very large fin prestion has been nold in a nhort space of time--Loeds Arercury.
4. JEST PUDGTSFED, iAmo, OLOTE, PAYOZ th

Basls of English Grammarar. ByF, W. Bedford, LLD. T.C.D. Governor of George Heriot's Hospital, Edinburgh.

This Text-Book, contafulng the pure easenitnis of Gramminr, Includns the Inading prinelples and lawa of tpelfing. intexion, and construction. Is is intanded as a chesp bacie for more dekailed Informatton to be orally communicated by the tamcher. 8 pecial attention has been deroted to the conjugation of the Forbs, which appear both in the simple sud the developed forms. A coptous eollection of ginostions is appended at the close of the book.

> Alho, by the amme auther:

Basis of Latin Grammar. Price 8d.
Basis of French Grammar. Price 8d.
Basis of Greek Grammar. Prico ls.
Felton's Table Rook. New Aridimetien and Commervial Tables, for the use of Sehools: to which is sdded Seriptore Tables, the new Decimal Tables of France, with Cheir respentive equivslents in English; and a fuofd oxposition of tho Dosimat Symem of Moneyr, Weighte, and Moavaras. By Joazx Yantor. Price Id.
The ealo of this Tatto Book is extoniling mpidly, and the inorsaing dornand requirce larger oditions each time upwarde of 30 chowsond kawing been aold wilkin the lact six mondse.
Arithmetienl Table Crard, on an pian, having the Multiplication, Pence, and Shilling Tables in squares, comprived in One Table; , together with the unnal Tables of Weights and Menaures, Price Id.
The Poynal Primer; or, Child's Second Book. Illustrated edition. 18 mon sewed. Price 2 d .
Series of Alphabets, Words, and Objects. Forming 13 shecta. For Families and Infant Schools. Id. each.
In Rasy Ladder to Learning, Boantifully coloured. Decidedly the cheapest Alphabet of the kind. 18 mo . Prico Id.

## PRIOE THREEPENOE, GECOND EDITION,

Alplanbetical Outlines or Scriptureand English IIfstory. Arranged in chronological order. Designed for tearhing on the Glasgow ayntem. By Rosant Monzut, proprietor of the Holdgate Seminary, York.

> Aliso, by the tame Author,

Companion to Sacred Geography. 18mo., elo. til. The Progressive Drawing Book; consisting of select extmples of Landscapes, Shipping, Cottages, Animals, \&ee., beatifully engraved on wood. In 9 numbers. Price 8 d . each.
'T'wopenny Drawing Books, 18 numbes.
The above bound in one vol., eloth. Price 2s, 6d.
Penny Drawing Books. 24 numbers.
The abore done up in two parts, eloth. Price 1s, each.
These works aro conaldenst by Drawing Mastern the best heipi to learpers publificd, which optntion in fully borne out by their unprecedentad iale.
The British Promressive Brawing Book. By Bizag. To enable students to attain the art of Drawing without 8 Mnster 13 numbers. Price 6d. esch.
Smith'g Uravamental Copy Sifps; being in introduction to . Tain ku. Ornamental Writing; eonsisting of seven alphabets, for the use a. sehools, \&ec. By Mryar D. Serrat, London. Price 1s, 'i te eden, hent set published.
Dunn's Coy Sllys, four handa in ono book, complate. 1s.


## MEASURES JF CAPACITY.

Imperial Measure of Capscity for all liqnide, and for all dry goods, except such as are comprised in the second Table.
4 Gills* make 1 pint, equal 343 cub. In., nearly. 2 Pints .. 1 quart .. 69
 3 Gallons 1 bushel $2218 \frac{1}{4}$ cub feat uearly.
5 Bushels .. 1 quarter .. $10 \frac{1}{4}$ cub The four last denominations are used for dry goods only.
In London, 4 gills make a pint in wine measure. In the country, the fourth part of a pint is tcrmed a noggin, and half a pint is called a gill of wine, spirits, or ale.

Imperial Mensure of capacity for potatoes, fruit, and other goods.
2 Gall. mnke 1 peck, equal 704 cub. in. nearly. o Gall. .. 1 bushel .. $2815 \frac{1}{4}$
3 Bash. ".. 1 sack.. .. $4 \frac{2}{8}$ cub. ft. nearly.
12 Sacks . 1 chald. .. .. 5 尔年
The Imperia) Gallon contains exactly lolbs. Avoirdupois of pure water; consequently the pint will hold $1 \frac{1}{4} \mathrm{lb}$., and the bushel 801 bs .

## Angular Measure; or, Divisions of the crrcle. <br> 

Formerly, the subdivisions were carried on by sixties; thus, the second division was divided into 60 thirds, the third into 60 fourths, sc. At present, the second is more generally livided decimally into 10ths, l00ths, \&e. The degree is frequently so divided.

| MEASURE | OF TIME. |
| :---: | :---: |
| 60 Seconds make . . | . 1 minute. |
| $60 \mathrm{Minutes...}$. | 1 hour. |
| 24 Hours. . | 1 day. |
| 7 Days | 1 week. |
| 28 Days .. | 1 lunar month. |
| 28, 29, 30, or 31 Days | 1 calendar mouth. |
| 305 Days .. | 1 common year. |
| 366 1)ays | 1 leap year. |

In 400 years, 97 are leap years, and 303 common.
The same remark, as in the case of angular measure, applies to the mode of subdividing the second of time.

LENGTH OF A $\mathrm{M}^{\circ} \mathrm{LE}$ ! In diferent Countries.
Mile of Russia contains $\begin{gathered}\text { yards } \\ 1100\end{gathered}$


A TABLE OF D1SCOUNT PER CENT.
$2 \frac{1}{2}$ percent is 08.6 d .in a pound


CUSTOMARY WEIGH' GF
GOODS.
A firkin of butter is $\ldots . .56$
A firkin of sosp
A barrel of potasbes ${ }^{64}$
A barrel of anchovies $\quad 30$
A barrel of soap.. .... 256
A barrel of butter . . . . 224
A fother of lead, 19c. 2q. or 2184
A barrel of candles ..... 120
A stone of iron or shot 14
A gallon of train oil ..... $7 \frac{1}{1}$
A fagot of steel $\quad . . . \quad 120$
A stone of glass .. ..... 5
A seam of Glass, 24st. or 120
A barrel of figs from nearly 96 to ..

| BREAD. | Ib.oz |
| :---: | :---: |
| A peck loaf weighs .... 17 6 |  |
| A half ditto | A 11 |
| A peek of flour weighs.. 14 |  |
| A bushel .... .... sti |  |
| A sack, or 5 bushels | 100 |

SAVINGS' BANK INTEREST TABLE.
Table of Interest of Money, at £3. 8s. 5d. per cent. from $£ 1$. to $£ 100$. for 1 year.

| Trn- | Interest. | Prin cipal. | Interest. | 1rn- ${ }_{\text {Pr }}$ | Interest. | Prio- cipal. |  | erest. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underline{2}$ | 1 s. 1. | - | $\begin{array}{lll}5 & 8 . & \text { d. }\end{array}$ | L | 4 s .11 | ¢ | \$ | 8. 6. |
| 1 | $\begin{array}{llll}0 & 0 & 8\end{array}$ | 7 | $\begin{array}{lll}0 & 4 & 9\end{array}$ | 29 | (1) 1:1 8 | 70 | 2 | 710 |
| 5 | $\begin{array}{llll}0 & 3 & 5\end{array}$ | 16 | $0 \quad 610$ | 50 | $\begin{array}{llll}1 & 14 & 9\end{array}$ | 100 | 3 | 85 |

## multipligation, penge, and shilling table.



## THE

# TUTOR'S C0MPANION; or COMPLETE <br> <br> 程ractical Anriflymetit. 

 <br> <br> 程ractical Anriflymetit.}

## BY FRANCIS WALKINGAME.

to which is added

## :c Complet Cours of tental Aritymutit,

 ANDthe most concise method of extracting the cube root.

ATSO,
an entirely new table
for calculating interest and discounting BILLS OF EXCHANGE,

Accurately worked to such a length, that the Interest of any sum of Money, at any rate per cent. may be readily ascertained for any number of days.

BY ISAAC BUTLER,<br>master of the high school, selay.

## LONDON :

WEBB, MILLINGTON, AND CO., wine office court, fleet street; also, lekds asd otley.
1860.

## ADVERTISEMENT.

The extensive sale of Walkingame's Futor's Assistant, and the approbation it has received from Teachers in general, have caused several nes editions to issue from the press;-all of which have their respective merits: too many attempts therefore cannot be made to render a work of this kind, not only suitable for a Text-book, but also practical as regards the matter it contains.

It is a complaint generally made against youths, when first entering a counting-house, that they were ignorant of the shorter and more practical methods of calculating, attempting to reduce every thing to their own standard, or rule in some arithmetic ; hence their operations are lengthy and tedious, and frequently produce uncertain results. To obviate this evil is the object of the present work. The writer has added a complete system of Mental Arithmetic, calculated to draw forth the thinking powers of the pupil, and to fit him for that promiscuous mode of calculation necessarily connected with the counting-house, and other business transactions.

Various practical methods for calculating Interest are also appended, with remarks on the nature of Proportion illustrated by numerous examples, additional rules, tables, \&c.

The editor of this edition of Walkingame wishes to combine theory with practice, having found by experience that it is a thorough knowledge of the fundamental parts, or first principles of figures, and a perfect acquaintance with slate arithmetic, united with that of Mental Culculations, which form the complete arithmetician.

The whole has been revised, and collected into one volume; and as it contains the same as the best edition of Walkingame it is presumed that so much additional matter, partly original, and partly selected, will render it a desirable text-book, and also ranommend it to public notice.

January, 1841.

## PREFACE.

Faving, some time ago, drawn up a set of rules and proper questions with their answers annexed, for the use of my own school, and divided them into several books, as well for more ease to myself, as the readier improvement of my scholars, I found them by experience of infinite nse: for when a master takes upon him that laborious (though necessary) method of writing out the rules and questions in the children's bocks, he must either be toiling and slaving himself after the toil of the school is over, to get ready the books for the next day, or else he must lose that time which would be much better spent in instructing and opening the minds of the pupils.-There was, however, still an inconvenience which hindered them from giving me the satisfaction I at first expected; i.e. where there are several boys in a class, some one or other must wait till the boy who first has the book, finishes the writing out those rules and questions he wants, which detains the others from making that progress they otherwise might, had they a proper book of rules and examples for each; to remedy which I was prompted to compile one, in order to have it printed, that it might not only be of use to my own school, but to such others as would bave their scholars make a quick progress. It will also be of great use to such gentlemen as hare acquired some knowledge of Lumbers at school, to make them more perfect; likewise to such as have completed themselves therein, it will prove, after an impartial perusal, on account of its great variety and brevity, a most agreeable and entertaining exercise book. I shall not presume to say any thing more in favour of this work, but beg leave to refer the unprejudiced reader to the remarks of a certain author* concerning compositions of this nature His words are as follow:
"And now, after all, it is not impossible that some who like best to "tread the old beaten path, and to sweat at their business, when they may *do it with pleasure, may start an objection against the use of this well-
-intended Assistant, because the course of Arithmbtic is always the "same; and therefore say, that some boys, lazily inclined, when they see "another at work upon the same question, wi.l be apt to make his operation "pass for their own. But these little forgeries are soon detented by the "diligence of the tutor: therefore as different questions to different boys "do not in the least promote their improvement, so neither do the "questions hinder it. Neither is it in the power of any master, (in the "course of his business,) how full of spirit soever he may be, to frame "new questions at pleasure, in any rule; but the same question will fre"quently occur in the same rule, notwithstanding his greatest care and "skill to the contrary."
"It may also be further objected, That to teach by a printed book, is "an argument of ignorance and incupucity: which is no less tritling than "the former. He, indeed (if any such there be) who is atraid his scloo"lars will improve too fast, will undoubtedly decry this methot: bit that " master's ignorance can never be brought in question who can begin and "end it readily; and most certainly that scholar's non-improvement can "be as little questioned who makes a mnch greater progress by this, than "by the common method."

To enter into a long detail of every rule wonld tire the realer, and swell the preface to an musual length; I shall, therefore, only give a general idea of the method of proceeding, and leave the rest to speak for itself; which, I hope, the kind reader will find to answer the title, and the recommendation given it. As to the rules, they follow in the same manner as the table of contents specifies, and much in the same order as they are generally taught in schools. I have gone through the four fundamental rules of Integers first, before those of the several denominations, in order that they being well understood, the latter will be performed with muoh more ease and dispatch according to the rules shewn, than by the customary method of dotting. In Multiplication, I have shewn both the beauty and use of that excellent rule, in resolving most questions that oceur in merchandising, and have prefixed before reduction, several Bills of Parcels, which are applicable to real business. In working Interest by Decimals, I have added tables to the rules, for the readier calculation of annuitues, \&c., and have not only shewn the use, but the method ot making them. I have also added to this edition a New Rure for ex tracting the Cube Root, being a much shorter way than any ulready pub lished: as likewise an Interest Tuble, calculated for the easier findiag
the interest of any sum of money, at any rate per cent, by multiplication and addition only: it is also useful in calculating rents, incomes, and servants' wages, for any number of months, weeks, or days: and I may venture to say, I have gone through the whole with so much plainness and perspicuity, that there is none better extant.

I have nothing further to add, but a return of my sincere thanks to vll these Gentlemen, Schoolmasters, and others, whose kind approbation and encouragement have now established the use of this book in almost every school of eminence throughout the kingdom; and I think my gratitude more especially due to those who have favoured me with then remarks; though I must still beg of every candid and judicions reader, if he should, by chance, find a transposition of a letter, or a false figure, to excuse it; for, notwithstanding there has been great eare taken in correcting, yet errors of the press will inevitably creep in; and some may also have escaped my observation; in either of which cases, the admonition of a good-natured reader will be very acceptable to his

Much obliged,
and most obedient
humble Servant, F. WALKINGAME.

## EXPLANATION

## OF THE

## CHARACTERS MADE USE OF IN THIS WORK.

| $=$ Equal. | The sign of Equality; as, 4 qrs. $=1$ cwt. signifies, that 4 qrs. are equal to 1 cwt . |
| :---: | :---: |
|  | The sign of Subtraction; as, $8-2=6$; that is 8 lessoned by 2 is equal to 6 . |
|  | The sign of Addition; as, $4+4=8$; that is, 4 added to 4 more is equal to 8 . |
|  | The sign of Multiplication; as, $4 \times 6=24$; that is, 4 multiplied by 6 is equal to 24 . |
| $\div$ Divided by. | The sign of Division ; as, $8 \div 2=4$; that is, 8 divided by 2 is equal to 4 . |
| 2537 | Numbers placed like a fraction, likewise denote division; the upper number being the dividend, and the lower the divisor. |
| : is : : So is | The sign of proportion; as, 2:4::8:16; that is, as 2 is to 4 so is 8 to 16 . |
| $7-2+5=10$ | Shews that the difference between 2 and 7 added to 5 , is equal to 10 . The line drawn over 7 and 2 is called a vinculum. |
| 9-8 | Signifies that the sum of 2 and 5 taken from 9 is equal to 2 . |
| $\div$ | The sign of Geometrical Proportion. |
| $\checkmark$ | Prefixed to any number, signifies the Square ${ }^{\text {P }}$ Root of that number is required. |
| $\sqrt[3]{ }$ | Signifies the Cube, or third power. |
| 4 | Denotes the Biquadrate, or the fourth power, \&c. |
| i.e. | id est, that is, |

## CONTENTS.

Part 1. LBITHMETIC IN WHOLE NUMEERS.
Numeration.............. $\quad . \quad \begin{array}{r}\text { Page. } \\ 9\end{array}$
Intugers, Aidition of .... .... $\quad . . . \quad 11$

| Muitraction of | $\cdots$ | 12 |  |
| :--- | :---: | :---: | :---: |
| Multiplication of | $\cdots$ | 12 |  |
| Division of | $\ldots$ | $\cdots$ | 15 |

Tiblies .... .... .... .... 16
Compornd Arddition .... .... 24
...- Subtraction .. .... 30
$\begin{array}{llll} & \text { Mudiplication } & \ldots . & 33 \\ \ldots & \text { Division } \ldots . . & \ldots & 37\end{array}$
Bills of Parcels .... .... .... 40
Ifriaction .... .... .... 43
Single Rule of Three Direet.... 50
Itule of Three Inverse.... ....
$\begin{array}{lllll}\text { Double Rule of Threo } . . . & \ldots . & 57 \\ \text { Practice } . . . & \cdots & \ldots . & \ldots . & b 0\end{array}$
Mental Arithmetic $\quad . .$.
Tar* and Tret .... .... .... 75
Simple Interest.... .... .... 78
Commission .... .... .... 79
Purelasing of Stock .... .... No
Broktuge .... .... .... .... 81
${ }^{1}$ ructival Interest .... .... R6
Comphamif Interest .... .... 92
K-bute or Disconnt .... .... 43
1.4Hntion of Payments .. .... 95

Bhirter .... .... .... .... 96
!rofit a:d ross .... .... .... 98
Foliowstijl without time .... 100
Alituntion Medial .... .... 101
Antgrition Medial.. .... .... 103
Alternate .... .... 104
Prertial.. .... .... 106
Total .... .... ... 107
Position; or Rule of False....
Exchange ... .... .... ..... 111
Comparison of Weights and Mea- 115
Conjoined Proportion .... .... 116
1rogression, Arithmetical .... 117

| Permatation | $\ldots .$. | ... | $\ldots .$. | 123 |
| :--- | :---: | :--- | :--- | :--- |

PartiI.
velgar fractions.

| Reduction | .. | $\ldots$. | $\ldots .$. | $\ldots$. | 125 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Addition | $\ldots$. | $\ldots$. | $\ldots$. | $\ldots$. | 1.11 |
| Bubtraction | $\ldots$ | $\ldots$ | $\ldots$. | $\ldots$. | 1.31 |


|  | Puge. |
| :---: | :---: |
| Multiplication .... .... | 12 |
| Division | 1:56 |
| Single Rule of Three Direct | 1:531 |
| İule of Three Inverse | 1:1: |
| Doublo Rule of Three . | 1:3 |
| Part III. |  |
| DECIMALI. |  |
| Numeration | 1313 |
| Addition | $1: 37$ |
| Subtraction | 137 |
| Multiplication | $1: 37$ |
| Coutracted Multiplication | $1: 3$ |
| Division | 11. |
| Contracted Division | 140 |
| Reduction | 141 |
| Decimal Tables of Coin, W and Meranre . . . . . | ght, 1.4 |
| The Rale of Three | $14^{\circ}$ |
| Extraction of the Square İoot | 142 |
| - Cube Ruot | 12. |
| - Biquadrate Root | 1.2\% |
| A General Rule for extracting the |  |
| Hoots of all ''owers | 156 |
| Simple Interest | 1\%7 |
| Intereat for days | 154 |
| Annuities, kc., in Arrears | 151 |
| Present worth of Annuitios | 16.4 |
| Annuities, \&c, in Reversion | 107 |
| Tahle for calculating Interest and Discounting Bills of Exchange 16s |  |
| Part IV. |  |
| DUODECIBALS. |  |
| Multiplication | 172 |
| Messuring by the Foot square | e . 173 |
| - Yard square | e. 174 |
| squaro of 10 | 00 feet 175 |
| Measuring by the Rad .... | 178 |
| Part V. |  |
| A Collection of Miscellaneonq Qnoa. |  |
| A Table for Calculating Interest, Rents, Incomes, and Sorvants' |  |
|  |  |
|  |  |
| Wages .... .... .... | 1 NO |

## A R I'I'HMETIC.

## PART I. <br> ARITHMETIC IN WHOLE NUMBERS.

## INTRODUCTION.

Arithmetic is the art or science of computing by numbers, and consists both in theory and practice.

The theory considers the nature and quality of numbers, and demonstrates the reason of practical operations.

The practice is that which shews the method of workin. by numbers, so as to be the most useful and expeditious for business, and has five principal or fundamental rules for the operations, viz., notation or numeration, addition, subtraction, multiplication, and division.

## NUMERATION

Teacheth the different value of figures by their different places, and to read or write any sum or number.

$$
\begin{gathered}
1,9,8,7,6,5,4,3,2,1,9,8,7, ~ 6, ~ 5,4,3,2,1 . \\
: ~
\end{gathered}
$$

Numeration is of great importance in Arithmetic, as it enables us to understand rightly the value of figures, and their increase and ratio according to the order in which they are placed.

Beginning with units, the first six figures are called the unit period, the next six the million period, the next the billion, \&c., and may be extended ad infinitum.

## THE APPLICATION.

Write down in proper figures the following numbers:
(1) *Twenty-three.
(2) Two hundred and filty-four.
(3) Three thousand, two hundred and four.
(4) Twenty-five thousand, eight hundred and fifty-six.
(5) One hundred and thirty-two thousand, two hundred and forty-five.
(6) Four miliions, mine hundred and forty-one thousand, four hundred.
(7) Twenty-seven millions, one hundred and fifty-seven thousand, eight hundred, and thirty-two.
(8) Seven hundred and twenty-two millions, two hundred and thirty-one thousand, five hundred and four.
(9) Six hundred and two millions, two hundred and ten thousand, five hundred.

Write down in words at length, the following numbers.

| (10) 35 | (14) 5201 | (18) 5900030 | (22) 65700047 |
| ---: | ---: | ---: | ---: |
| (11) 59 | (15) 20760 | (19) 5204054 | (23) 90006157 |
| (12) 172 | $(16) 519007$ | (20) 2071909 | (24) 201900790 |
| $(18) 2016$ | $(17) 750058$ | $(21) 70054008$ |  |

Notation by Roman Letters.

| I. | One. | XV. | Fifteen. | c. | One hundred. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| II | Two. | XVI. | Sixteen. | cC. | Two huudred. |
| III. | Three. | XVII. | Seventeen. | CCC. | Three hundred |
| IV. | Four. | XVIII. | Eighteen. | CCCC. | Four hundred. |
| V. | Five. | XIX. | Nineteen. |  | Five hundred. |
| VI. | Six. | XX. | Twenty. | DC. | Six hundred. |
| VI. | Seven. | XXX . | Thirty. | DCC. | Seveu hundred. |
| VIII. | Eight. | XL. | Forty. | DCCC. | Eignt hundred. |
| IX. | Nine. | L. | Fifty. | DCCCC. | Nine hundred. |
| X. | Ten. | L.X. | Sixty. |  | One thousand. |
| X1. | Eleven. | LXX. | Seventy. | M,DCCO,LI. | One thousand eight |
| XII. | Twelve. | LXXX. | Eighty. | hundred and | fifty-one. |
| XIII. | Thirteen. | XC | Ninety. |  |  |

[^0]
## ADDITION OF INTEGERS

Teacheth to add two or more sums together, to make one whole or total sum.

Rule.-There must be due regard had in placing the figures one under the other, i. e., units under units, tens under tens, \&c.; then beginning with the first row of units, add them up to the top; when done set down the tuits, and carry the tens to the next, and so on; continuing to the last row, at which set down the total amount.

Proof.-Begin at the top of the sum, and reckon the figures downwards, the same as you add them up, and if the same as the first, the sum is supposed to be right.

## ADDITION AND SUBTRACTION TABLE.

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| 3 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| 4 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
| 5 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
| 6 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 7 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 9 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |


| £ | Cwt. | Qrs. | Months. | £ | Years. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1)2 | (2)27 | (3)276 | (4)1234 | (5)7524 | (6)27104 |
| 5 | 35 | 1.10 | 7098 | 3750 | - 2547 |
| 7 | 47 | 473 | 3314 | 9147 | 0758 |
| 9 | 35 | 354 | 6732 | 3215 | 2590 |
| 2 | 41 | 271 | 2546 | 4725 | 5408 |
| 5 | 36 | 852 | 3709 | 2147 | 7973 |
| 4 | 39 | 471 | 4152 | 3254 | 5421 |
| 3 | 57 | 310 | 3705 | 2716 | 12706 |
| 7 | 14 | 437 | 1076 | 1047 | 10471 |
| 44 | 331 |  |  |  |  |

## SUBTRACTION OF INTEGERS

Teacheth to take a less number from a greater, and shews the remainder or difference.

Rule.-This being the reverse of Addition, you must borrow here (if it requires) what you stopped at there, always remembering to pay it to the next.

Proor.-Add the remainder and less line together, and if the same as the greater, it is right.

|  | £ | Hund. | Hours. | Heeks. | IIhds. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| From | (1) 271 | (2)4754 | (3)42087 | (4)432705 | (5) 271508 |
| Take | 154 | 2725 | 34096 | 327616 | 152741 |
| Rem. | 117 |  |  |  |  |
| Proof | 271 |  |  |  |  |

## MULTIPLICATION OF INTEGERS

Teacheth how to increase the greater of two numbers given, as often as there are units in the less; and compendiously performs the office of many additions.

To this rule belong three principal members viz.,

1. The multiplicand, or number to be multiplied.
2. The multiplier, or number by which you multiply.
3. The product, or number produced by multiplying.

Rule.-Begin with that figure which stands in the unit's place of the multiplier, and with it multiply the first figure in the unit's place of the multiplicand. Set down the units, and carry the tens in mind, till you have multiplied the next figure in the multiplicand by the same figure in the multiplier; to the product of which add the tens you kept in mind, setting down the units, and proceed as before, till the whole line is multiplied.

Proof.-The usual way of proving multiplication is, by casting out the nines from the multiplicand and multiplier; the remainders put on each side of a cross; multiply the figures on each side together, cast out the nines from the product and put the overplus at the top; then cast out the nines from the product of the multiplication, and its remainder place at the bottom; if it agree with the top, the work is supposed to be right: but the surest way is to divide the product by the multiplicand, and the quotient will be the same as the multiplier.

MULTIPLICATION AND DIVISION TABLE.

| $\mathbf{1}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 4 | 6 | 8 | 10 | $\frac{12}{2}$ | 14 | 16 | 18 | 20 | 22 | 21 |
| 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 | 33 | 36 |
| 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 44 | 48 |
| 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 | 66 | 72 |
| 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 | 77 | 84 |
| 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 88 | 96 |
| 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 | 99 | $10 \times$ |
| 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 |
| 11 | 22 | 33 | 44 | 55 | 66 | 77 | 88 | 99 | 110 | 121 | 132 |
| 12 | 24 | 36 | 48 | 60 | 72 | 84 | 96 | 108 | 120 | 132 | 144 |


| (1) Multiplican | 25104786 | (2)552471021 | (3)7925437521 |
| :---: | :---: | :---: | :---: |
| Multiplier | 2 | 3 | 4 |
| Product | 50209472 |  |  |
| 4)27104107 | (5)281037 | (6)7062526 | (7)3723104 |
| 5 | 6 | 7 | 8 |


(11)35210472

When the multiplier is more than 12 , and less than 20 , multiply by the unit figure in the multiplier, adding to the product the back figure to that you multiplied.


When the multiplier consists of several figures, there must be as many products as there are figures in the multiplier, observing to put the first figure of every product under that figure you multiply by. Add the several products together, and their sum will be the total product.


When ciphers are placed between the significant figures in the multiplier, they may be onitted; but great care must be taken that the next figure be put one place more to the Jeft hend, i. e., under the figure you multiply by.


When there are ciphers at the end of the multiplicand or multiplier they may be omitted, by only multiplying by the rest of the figures, and setting down on the righthand of the total product, as many ciphers as were omitted.


When the multiplier is a composite number, i. e., if any two figures being multiplied together will make that number, then multiply by one of those figures, and that product by the other will give the answer.

| $\frac{(31) 771039}{26986865}$ |
| :--- |
| by 35 |
| $\underline{29490016}$ |

## DIVISION OF INTEGERS

Teacheth to find how often one number is contained in another, or to divide any number into what parts you please.

In this rule there are three numbers real and the fourth accidental, viz.,

1. The dividend, or number to be divided.
2. The divisor, or number by which you divide.
3. The quotient, or number that shews how often the divisor is contained in the dividend.
4. Or accidental number, is what remains when the work is finished, and is of the same name with the dividend.

Rule.-When the divisor is less than 12, find how often it is contained in the first figure of the dividend, set it down under the figure you divided, and carry the overplus if any) to the next in the dividend, as so many tens: then find how often the divisor is contained therein, set it down, and continue the same till you have gone through the line, but when the divisor is more than 12 , multiply it by the quotient figure; subtract the product from the dividend, and to the remainder bring down the next figure in the dividend, and proceed as before, till the figures are all brought down.

Proof.-Multiply the divisor and quotient together, adding the remainder (if any) and the product will be the same as the dividend.

| Divid. Rem. |  |  |  |
| :---: | :---: | :---: | :---: |
| (1) DivisorQuotient | 2) | (2) 3)721472( | (3) 4)7210416( |
|  | 362553 |  |  |
|  | 2 |  | = |
| Proof | 725107 | (4) 5) 7203287 | (5) 6)52310371 |
| (6) $7 \underline{233701}$ |  | 8)2547325 | (8) $9 \times 25048306$ |
|  |  | 二 | - |
| (9) $10 \lcm{275001}$ | $12(10)$ | 11)2710513 | (11) 12)27100732 |
| - |  | $\underline{\square}$ | = |

Divis. Divia. Qnot.
(12)29)4172377(143875
$\begin{array}{lrl}-29 & \frac{29}{127} & 1294875\end{array} \quad$ (13) 37$) 7210473(194877$
$116 \quad 287750$
(14) 473$) 2104721(4449$

| 112 | 2 Rem. | (15) 275 ) $3720147(13527$ |
| :---: | :---: | :---: |
| 87 | 4172377 Proof. | (16) 3701)72109521(19483 |
|  |  | (17) 3576$) 72104725(20163$ |
| 253 232 |  | (18) 2510$) 63210476(25183$ |
| 232 |  | (19) 25204)321047217(1273 |
| 217 | - | (20) 31709$) 52104732116432$ |
| 203 |  | 1) 270123472104725322669 |
| 147 | 7 (22) 2 | 472)352107193214(1672940 |
| 145 |  | $3721071) 210719214735662$ |
| . 2 |  |  |

When there are ciphers at the end of the divisor, they may be cut off, and as many places from off the dividend, but must be annexed to the remainder at last.
(24) 271.00 ) $25473221(939$ (25) $5721: 00) 725342916(1267$
(26) $3730000752173719(2017$ (27) 215 000) 623251049997 ( 29419

When the divisor is a composite number (i.e. if any two figures being multiplied together will make that number) then by dividing the dividend by one of those figures, and that quotient by the other, it will give the quotient required. But as it sometimes happens that there is a remainder to each of the quotients, anid neither of them the true one, it may be found by this

Rule.-Multiply the first divisor into the last remainder; to that product add the first remainder, which will give the true one.

| (28) | (29) | (30) | (31) |  |
| :---: | :---: | :---: | :---: | :---: |
| Div. 3210473 by 27 | 7210473 by 35 | 6251043 by 4 | 5761034 by 54 |  |
| 11890611 R. | 20601318 R . | $1488: 3415 \mathrm{R}$. | 106685 |  |
| Marked. | MONE | Y. | Mar | ed. |
| $\pm$ Farthing | 4 Fart | ngs make | 1 Penny | d. |
| $\frac{1}{2}$ Halfpenny | 12 Penc | - | 1 Shilling |  |
| ${ }^{3}$ Three Farthing. | 20 Shilli | gs | 1 Pound | £. |

$$
\begin{aligned}
4 & =1 \text { Penny. } \\
48 & =12=1 \text { Slilling. } \\
960 & =240=20=1 \text { Pound. }
\end{aligned}
$$

SHILLINGS.

| $s$. |  | \& $s$. | d. | $s$. | $d$. | $d$. |  | s. $d$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 |  | 1: 0 | 20 | 1 | 8 | 90 |  | 76 |
| 311 |  | 1: 10 | 24 | 2 | 0 | 96 |  | 80 |
| (1) |  | $2: 0$ | 30 | 2 | 6 | 100 |  | 84 |
| 50 |  | $2: 10$ | 36 | 3 | 0 | 108 |  | 90 |
| (i) |  | $3: 0$ | 40 | 3 | 4 | 110 |  | ${ }^{3} 2$ |
| i1 |  | $3: 10$ | 48 | 4 | 0 | 120 |  | 10 0 |
| -11 | - | 4: 0 | 50 | 4 | * | 130 |  | 1010 |
| 90 |  | $4: 10$ | 60 | 5 | 0 | 132 |  | 11 |
| 100 |  | $5: 0$ | 70 | 5 | 10 | 140 |  | 11 |
| 110 |  | $5: 10$ | 72 | 6 | 0 | 144 |  | 12 |
| 120 |  | $6: 0$ | 80 | 6 | 8 | 150 |  | 12 |
| 130 |  | $6: 10$ | 84 | 7 | 0 | 160 |  | 13 |

TROY WEIGHT.
Marked

| 24 Grains | make | 1 Pennyweight. | $\left\{\begin{array}{l}g r . \\ d w t .\end{array}\right.$ |
| :---: | :---: | :---: | :---: |
| 20 Pennyweights | - | 1 Ounce |  |
| 12. Ounces | - | 1 Pound |  |
| Grains. |  |  |  |
| $24=$ | 1 Pen | yweight. |  |
| $480=$ | $20=$ | 1 Ounce. |  |
| $5760=$ | $240=$ | $12=1$ Pound. |  |

By this weight are weighed gold, silver, jewels, electuaries, and all liquors.

发 The standard for gold coin is 22 carats of fine gold, and $\imath$ carats of copper, melted together; for silver, 11 oz . $: d w t s$. of fine silver, and 18 dwts . of copper.

25 lbs . is a quarter of a cwt. $100 \mathrm{lbs}=1 \mathrm{cwt}$. 20 cwt. $=1$ ton of gold or silver.

AVOIRDUPOIS WEIGHT. Marked.
16 Drams
16 Ounces
2) Pounds
make 1 Ounce $\ldots \ldots \ldots \ldots\left\{\begin{array}{l}d r . \\ a z .\end{array}\right.$

- 1 Pound . ............ $l b$.

4 Quarters, or 112 lbs. - 1 Hundred-weight .... cwt.
20 Hundred-weight - 1 Ton .............. ton.
Drams.
$16=1$ Ounce.
$256=16=1$ Pound.
$7168=148=1$ Quarter.
$28672=1792=112=4=1$ Cwt.
$573440=35840=2240=80=20=1$ Ton.

There are several other denominations in this weight that are used in some particular goods, viz.,

| lus. | lbs |
| :---: | :---: |
| A firkin of butter .... 56 | A stone of iron shot, or |
| soap ...... 64 | horseman's weight.... 14 |
| A barrel of anchovies .. 30 | A stone of butcher's meat 8 |
| - soap . . . . . 256 | A gallon of train oil .... $7 \frac{1}{2}$ |
| -raisins .... 112 | A truss of straw . . . . . . 36 |
| A puncheon of prunes 1120 | - new hay .... 60 |
| A fother of lead . . . 19 cwt . | old hay . . . . . 56 |
| 2 qrs. | 36 trusses a load. |

N. B. As 7000 grains Troy, are equal to 1 lb . Avoirdupois, and as the pound Troy contains 5760 grains, the proportion between Avoirdupois and Troy weight will be as follows:

$$
\begin{array}{ll}
\text { Troy. } & \text { Avoirdupois. } \\
175 \mathrm{lbs} . & =144 \mathrm{lbs} . \\
1 \mathrm{lb} . & =13 \mathrm{oz} .2 \frac{1}{2} \mathrm{drs} . \\
1 \mathrm{lb} .2 \mathrm{oz} ., 11 \mathrm{~d} ., 16 \mathrm{grs}, & =11 \mathrm{lb},
\end{array}
$$

N. B. The pound Avoirdupois is heavier than the lb. Troy, in the proportion of 175 to 144 ; but the oz. Avoirdupois is lighter than the oz. Troy by $42 \frac{1}{2}$ grs., or in the proportion of $437 \frac{1}{2}$ to 480 .

## CHEESE AND BUTTER.

A clove, or half a stone, 8 lbs.

| A wey in Suffolk, | lbs. | A wey in Essex, | lbs. |
| ---: | ---: | ---: | ---: |
| 32 cloves, or $\ldots \ldots$. | .256 | 42 cloves, or........ 336 |  |

WOOL.

| A clove | lbs. 7 | A wey is six tods and $\quad l b s$. <br> 1 stone, or ......... 182 |
| :---: | :---: | :---: |
| A stone | 14 | A sack is 2 weys, or . 364 |
| A tod | 28 | A last is 12 sacks, or . . 4368 |
| This weight is used for any thing of a coarse or drossy nature, such as groceries or chandlery wares, and bread; likewise all metals but silver and gold. |  |  |
|  |  |  |
|  |  |  |

## APOTHECARIES' WEIGHT. Narked.

| 20 Grains | make | 1 Scruple. |
| :---: | :---: | :---: |
| 3 Scruples |  | 1 Dran................... |
| 8 Drams | - | 1 Ounce |
| 12 Ounces | - | 1 Pound | Grains. $20=1$ Scruple. $60=3=1$ Dram. $480=24=8=1$ Ounce. ${ }^{57} 60=288=96=12=1$ pound.

Note.-The Apothecaries mix their medicines by this rule, but buy and sell their commodities by Avoirdupois weight.
The Apothecaries' pound and ounce, and the pound and ounce Troy, are the same, only differently divided and subdivided.

|  | CLOTH MEASURE. | Marked. |  |
| :--- | ---: | :--- | :--- |
| 4 Nails | make | 1 Quarter of a yard $\ldots\left\{\begin{array}{l}n . \\ q r .\end{array}\right.$ |  |
| 3 Quarters | - | 1 Flemish ell ............. | F.E.. |

## Inches.

| 24 | $=1$ Nail. |
| ---: | :--- |
| 9 | $=4=1$ Quarter. |
| 36 | $=16=4=1$ Yard. |
| 27 | $=12=3=1$ Flemish ell. |
| 45 | $=20=5=1$ English ell. |
| 54 | $=24=6=1$ French ell. |

LONG MEASURE. Marked
3 Barleycorns
12 Inches
3 Fcet
(i) Feet
$5 \frac{1}{2}$ Yards
40 Poles
8 Furlongs
3 Miles
60 Miles


Barleycorns.

| 3 | $=1$ Inch. |
| ---: | :--- |
| 36 | $=12=1$ Foot. |
| 108 | $=36=1$ Yard. |
| 594 | $=198=16 \frac{1}{2}=5 \frac{1}{2}=1$ Pole. |
| 23760 | $=7920=660=220=40=1$ Furlong. |
| 190080 | $=63360=5280=1760=320=8=1$ Mile. |

蚂 Besides these denominations, we have the palm of 3 nches, the hand of 4 inches used in taking the height of hirses, and the span of 9 inches.

A degree is 69 miles, 4 furlongs nearly, though commonly reckoned but 60 miles.

This measure is used for distances of places, or any thing else that has length only.

## LIQUID MEASUBE. Marked.

2 Pints
4 Quarts
make 1 Quart................. $\left\{\begin{array}{l}p t s . \\ q t s .\end{array}\right.$
10 Gallons
14. Gallons
$81 \frac{1}{2}$ Gallons
42 Gallons
63 Gallons
84 Gallons
2 Hogsheads - 1 Pipe or Butt ......p. or butt
2 Pipes, or 4 Hogsheads - 1 Tun ................... tun. Cubic Inches.


[^1]All brandies, spirits, perry, cider, mead, vinegar, honey, and oil, are measured by this measure.

The imperial gallon is the standard of capacity for liquids as well as dry goods, not measured by heaped measure; from which all other measures of capacity are computed; it contains $277.274+$ cubic inches.

## ALE AND BEER MEASURE.

2 Pints
4 Quarts
9 Gallons
2 Firkins, or 18 Gallons
4 Firkins, or 2 Kilderkins
$1 \frac{1}{2}$ Barrel, or 54 Gallons
2 Barrels
3 Barrels, or 2 Hogsheads

Marked.
make 1 Quart...... $\left\{\begin{array}{l}p t s . \\ q t s .\end{array}\right.$

- 1 Gallon .... gal.
- 1 Firkin .... fir.
- 1 Kilderkin .. kil.
- 1 Barrel .... bar.
- 1 Hogshead .. hhd.
-- 1 Puncheon .. pun.
- 1 Butt ...... butt,

Cubic inches.

| $34 \frac{2}{3}$ | $=1$ Pint. |
| ---: | :--- |
| $69 \frac{10}{3}$ | $=2=1$ Quart. |
| $277 \frac{1}{2}$ | $=8=4=1$ Gallon. |
| $2495 \frac{1}{2}$ | $=72=36=9=1$ Firkin. |
| 4991 | $=144=72=18=2=1$ Kilderkin. |
| $9982=288=144=36=4=2=1$ Barrel. |  |
| 14973 | $=432=216=54=6=3=1 \frac{1}{2}=1$ Hogshead. |
| 19964 | $=576=288=72=8=4=2=1$ Puncheon. |
| 29946 | $=864=432=108=12=6=3=2=1$ Butt. |

In London, and all parts of the country, they now compute 9 gallons to the firkin, both of beer and ale, and 36 gallons to the barrel.
A barrel of Salmon, or eels, is 42 gallons.
A barrel of Herrings...... 32 gallons.
A keg of Sturgeon $\ldots \ldots$
A firkin of Soap $\ldots \ldots \ldots$$\quad 4$ or 5 gallons.

DRY MEASURE.


Cubic inches.
$277 \frac{1}{4}=1$ Gallon. $554 \frac{1}{2}=2=1$ Peck.
$1109=4=2=1$ Strike.
$2218_{\mathrm{T}_{125}^{19}}=8=4=2=1$ Bushel.
$88727 \frac{70}{700}=32=16=8=4=1$ Coomb.
$1774 \frac{1}{2}=64=32=16=8=2=1$ Quarter.
$70982=256=128=64=32=8=4=1$ Chaldron.
$88727 \frac{1}{2}=320=160=80=40=10=5=1$ Wey.
$177455=640=320=160=80=20=10=2=1$ Last.
Dry measure is used or all dry goods, such as grain, seed, coal, lime, potatoes, fruit, \&c. The imperial standard measure for dry goods, sold by heaped measure, is the bushel; for others, the gallon, as used for liquids. The said bushel contains 2218.192 cubic inches, is 7.427 inches deep, and $19 \frac{1}{2}$ inches in diameter, and is made round, with an even bottom : in using it for heaped measure, the goods must be duly heaped in the form of a cone, not less than six inches in height, and the outside of the bushel must be the extremity of the base of such cone.

The bushel in water measure is 5 Pecks.

A score of coals*
A sack of coals
A chaldron of coals
A load of corn
A cart load of corn
is 21 chaldrons.

- 3 bushels.
- 12 sacks, or 36 bushels.
- 5 bushels.
- 40 bushels. This measure is applied to all dry goods.
- Coals are now sold by the ton in Inndor.


## TIME.

60 Seconds
60 Minutes
24 Hours
7 Days
4 Weeks
13 Months, 1 day, 6 hours

Marked.
make 1 Minute. ..... $\left\{\begin{array}{l}\prime \prime \\ m\end{array}\right.$

- 1 Hour ...... hour.
- 1 Day........ day.
- 1 Week ...... week.
- 1 Month ...... mo.
- 1 Julian Year.. gr .

Seconds.

$$
\begin{aligned}
60 & =1 \text { Minute. } \\
3600 & =60=1 \text { Hour. } \\
86404 & =1440=24=1 \text { Day. } \\
604800 & =10080=168=7=1 \text { Week. } \\
2419200 & =10320=672=28=4=1 \text { Month. }
\end{aligned}
$$

$$
\begin{aligned}
& 81557600=525960=8766=365: 6=52: 1: 6=1 \text { Julian year. } \\
& \text { d. . . . . } \\
& 3155693 \%=525948=8765=365: 5: 48: 57=\text { d. Solar year. }
\end{aligned}
$$

To know the days in each month observe, Thirty days have September, April, June, and November; February hath twenty-eight alone, And all the rest have thirty-one; Except in leap year, then's the time February's days are twenty and nine.

SQUARE MEASURE.
144 Inches
9 Feet
100 Feet
$272+$ Feet
40 Rods
4 Roods, or 160 Rods, or
4840 yards
make I Fuot
-1 Yard.

- 1 Square of Flooring.
- 1 Rod.
- 1 Rood.
- 1 Acre of Land.
- 1 Square Mile.

$$
\begin{aligned}
& \text { Inches. } \\
& 144=1 \text { Foot. } \\
& 1296=99=1 \text { Yard. } \\
& 39204=1 \text { Pole. } \\
& 1568160=10890=1210=40=1 \text { Rood. } \\
& 6272640=43560=4840=160=4=1 \text { Acre. }
\end{aligned}
$$

By this measure all things that have length and breadth are measured; such as land, painting, plastering, flooring, thatching, plumbing, glazing, \&c.

SOLID MEASURE.
1728 Inches
make 1 Solid Foot.
27 Feet - 1 Yard, or load of earth.
40 Feet of round timber, or
50 Feet of hewn timber
108 solid feet, i. e. 12 feet in length, 3 in breadth, and 3 deep; or, commonly, 14 feet long, 3 feet 1 inch broad, and 3 feet 1 inch deep, is a stack of wood.

128 solid feet, i. e., 8 feet long, 4 feet broad, and 4 feet deep, is a cord of wood.
By this measure all things that have length, breadth, and deptb, are measured.

## ADDITION

## OF MONEY, WEIGHTS, AND MEASURES

Rule.-Add the first row or denomination together, as in integers; then divide the sum by as many of the same denomination as make one of the next greater, setting down the remainder under the row added, and carry the quotient io the next superior denomination, continuing the same to the last, which add as in Simple Addition.

## MONEY.

| £ | $s$. | d. | £ | $s$. | d. | £ | $s$. | d. | £ |  | 2. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)2 | 13 | $5 \frac{1}{3}$ | (2) 27 | 7 | 2 | (3) 35 | 17 | 3 | (4)75 | 3 | 7 |
| 7 | 9 | 4 4 | '34 | 14 | 74 | 59 | 14 | $7 \frac{1}{2}$ | 54 | 17 | $1 \frac{1}{2}$ |
| 5 | 15 | $4 \frac{1}{3}$ | 57 | 19 | $2 \frac{1}{4}$ | 97 | 13 | 5 ${ }^{1}$ | 91 | 15 | 41 |
| 9 | 17 | $6 \frac{1}{4}$ | 91 | 16 | 1 | 37 | 16 | 84 | 35 | 16 | 5 |
| 7 | 16 | 3 | 75 | 18 | $7{ }^{\text {3 }}$ | 97 | 15 | 7 | 29 | 19 | 72 |
| 5 | 14 | $7 \frac{3}{4}$ | 87 | 13 | 5 | 59 | 16 | $5 \frac{1}{2}$ | 91 | 17 | $3 \frac{1}{4}$ |
| 39 | 6 | 74 |  |  |  |  |  |  |  |  |  |

MONEY.


TROY WEIGHT.

| oz.dwt.gr. | oz.dwt.gr. | lb. oz. dwt. |  |  | lb. oz. $d t$. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)7 1521 | (2)5 51114 | (3)7 | 1 | 2 | (4) 5 | 2 | 15 |
| $\begin{array}{llll}3 & 17 & 6\end{array}$ | 71921 | 3 | 2 | 7 | 13 | 11 |  |
| 2515 | $\begin{array}{llll}3 & 15 & 14\end{array}$ | 5 | 1 | 5 | 13 | 7 | 15 |
| 31619 | 719 22 | 2 | 7 | 3 | 18 | 9 | 7 |
| 91823 | 91815 | 7 | 10 | 1 | 19 | 1 | 12 |
| 71514 | 81312 | 3 | 11 | 7 | 15 | 2 | 15 |

AVOIRDUPOIS WEIGHT.
$l b$. oz. dr. cwt. qr. lb.
(2) $17 \quad 12 \quad 3$
(3)25 117
t. cwt.qr
(1)151 1515 $\begin{array}{lll}272 & 14 & 10\end{array}$
3531511 $255 \quad 10 \quad 4$ $\begin{array}{lll}173 & 6 & 2\end{array}$ $635 \quad 1313$

> | 23 | 15 | 6 |
| ---: | ---: | ---: |
| 31 | 11 | 14 |
| 97 | 0 | 9 |
| 48 | 7 | 15 |
| 79 | 10 | 6 |

$\begin{array}{ll}72 & 36\end{array}$
(4)7 $17 \quad 2$
$\begin{array}{ll}54 & 116\end{array}$
$\begin{array}{lll}5 & 5 & 3\end{array}$
$\begin{array}{ll}24 & 1\end{array} 16$
$318 \quad 2$
$\begin{array}{lll}17 & 0 & 19 \\ & 55 & 2\end{array}$

| 7 | 9 | 3 |
| ---: | ---: | ---: |
| 8 | 5 | 1 |

APOTHECARIES' WEIGHT.

| 3 | $Э$ | $g r$. | 3 | 3 | $Э$ | $g r$ | $1 b$ | 3 | 3 | $Э$ | $t b$ | 3 | 3 | $Э$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $(1) 7$ | 0 | 17 | $(2) 9$ | 2 | 0 | 17 | $(3) 7$ | 10 | 7 | 1 | $(4) 7$ | 2 | 1 | 0 |
| 3 | 1 | 18 | 3 | 5 | 2 | 19 | 9 | 5 | 2 | 2 | 3 | 1 | 7 | 1 |
| 6 | 2 | 16 | 9 | 2 | 1 | 14 | 7 | 11 | 1 | 2 | 9 | 10 | 2 | 0 |
| 5 | 1 | 15 | 3 | 5 | 0 | 18 | 9 | 5 | 6 | 1 | 7 | 5 | 7 | 1 |
| 7 | 0 | 18 | 7 | 7 | 2 | 15 | 7 | 10 | 5 | 2 | 3 | 9 | 5 | 2 |
| 3 | 1 | 9 | 3 | 3 | 0 | 0 | 9 | 0 | 7 | 0 |  | 7 | 1 | 4 |

CLOTH MEASURE.
F.E.qrs. n. (1)27 21 $\begin{array}{lll}15 & 1 & 3\end{array}$
$87 \quad 0 \quad 2$
521 צ $\begin{array}{lll}76 & 2 & 1\end{array}$
$\begin{array}{lll}97 & 1 & 3\end{array}$


feet. in. bar. 1) $27 \quad 1 \quad 2$ $35 \quad 10 \quad 1$ $\begin{array}{lll}17 & 2 & 0\end{array}$ $35 \quad 11 \quad 1$ $97 \quad 2 \quad 2$ | 54 | 8 | 1 |
| :--- | :--- | :--- |


ds. ft. in. (2)

| 25 | 1 | 9 |
| ---: | ---: | ---: |
| 71 | 0 | 3 |
| 52 | 2 | 3 |
| 97 | 0 | 10 |
| 54 | 2 | 7 |
| 37 | 1 | 4 |

LAND MEASURE.

$$
\begin{array}{rrr}
a . & r & p . \\
\text { (1)75 } & 3 & 27 \\
36 & 2 & 15 \\
97 & 1 & 16 \\
35 & 2 & 15 \\
27 & 1 & 14 \\
\hline & & \\
\hline
\end{array}
$$

a. r. $p$.
a. r. $p$.
(2) $27 \quad 135$
$\begin{array}{ll}29 & 219\end{array}$

| 3 | 1 | 15 |
| ---: | ---: | ---: |
| 95 | 2 | 27 |
| 62 | 0 | 13 |


| 76 | 2 | 0 |
| :--- | :--- | :--- |
| 59 | 1 | 3 |

LONG MEASURE.

lea. m. fur (4)72 $\quad 2 \quad 1$ $\begin{array}{lll}27 & 1 & 7\end{array}$ $53 \quad 2 \quad 5$ $\begin{array}{lll}79 & 0 & 6\end{array}$ $\begin{array}{lll}51 & 1 & 6\end{array}$ | 72 | 0 | 5 |
| :--- | :--- | :--- |



E.E.qrs.n. (4)71 21 $\begin{array}{lll}52 & 1 & 2\end{array}$ $\begin{array}{lll}79 & 0 & 1\end{array}$ $\begin{array}{lll}56 & 2 & 0\end{array}$ $\begin{array}{lll}79 & 3 & 1\end{array}$ | $54 \quad 2 \quad 1$ |
| :--- | :--- | :--- |




LIQUID MEASURE.

| run. gal. | qts. | tier. gal. |  | hhd. gal. |  | $t$. | hhd gal. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)27 17 | 2 | (2) 2536 | 2 | (3)31 57 | 1 | (4) 14 | 327 |
| 3515 | 3 | 7541 | 2 | 9718 | 2 | 19 | 256 |
| 5614 | 1 | 6215 | 1 | 7613 | 1 | 17 | 039 |
| 9710 | 3 | 9413 | 2 | 5546 | 2 | 75 | 216 |
| 1215 | 0 | 1524 | 3 | 8738 | 3 | 54 | 118 |
| $79 \quad 3$ | 1 | 1916 | 1 | 5517 | I | 97 | 354 |

ALE AND BEER MEASURE.
b. fir. gal. (1)25 27 $\begin{array}{lll}17 & 3 & 5\end{array}$ $96 \quad 2 \quad 6$ $\begin{array}{lll}75 & 1 & 4\end{array}$ $\begin{array}{lll}96 & 3 & 7\end{array}$ $75 \quad 0 \quad 5$

h. m. "
(1)52 5735 $\begin{array}{ll}97 & 16 \\ 27\end{array}$ 165154 961831 $75 \quad 3421$
b. fir. gal.
(2) $37 \quad 2 \quad 8$
$\begin{array}{lll}54 & 1 & 7\end{array}$
$\begin{array}{lll}97 & 3 & 8\end{array}$
$78 \quad 2 \quad 5$
$47 \quad 0 \quad 7$

| $35 \quad 2 \quad 5$ |
| :--- | :--- | :--- |

## =

DRY MEASURE.

ch. bu. $p$.
(3)75 $27 \quad 2$ $\begin{array}{lll}57 & 3 & 1\end{array}$ $9525 \quad 3$ $7635 \quad 2$ $\begin{array}{lll}97 & 25 & 2\end{array}$
$\begin{array}{lll}75 & 16 & 3\end{array}$


| $c h$ |  |  | $b u$. |
| ---: | ---: | ---: | ---: |
| (4) | r3 | 2 | 1 |
| 41 | 24 | 1 |  |
| 92 | 16 | 1 |  |
| 70 | 13 | 2 |  |
| 54 | 17 | 3 |  |
| 79 | 25 | 1 |  |
|  |  |  |  |

TIME.

| d. h. $m$. | $w$. | d. $h$. | $\boldsymbol{w}$. | d. $h$. |
| :---: | :---: | :---: | :---: | :---: |
| (2)72 2326 | (3)71 | 311 | (4) 57 | 215 |
| 541435 | 51 | 29 | 95 | 321 |
| 971231 | 76 | 021 | 76 | 0 15 |
| 582145 | 95 | 321 | 53 | 221 |
| 962048 | 79 | 115 | 98 | 218 |

(4)57 $\quad 2 \quad 15$
$95 \quad 3 \quad 21$
$\begin{array}{lll}76 & 0 & 15\end{array}$
$53 \quad 21$
$98 \quad 2 \quad 18$

## THE APPLICATICN,

(1) A man born in the year 1785 -when will ne de $b 4$ years of age?

Ans. 1839.
2) A, B, C, and D, went partners in the purchase of a quantity of goods; A laid out £7, half a guinea, and a crown; B 49s.; C 54s. 6d.; and D 87d.-what was laid out in all?

Ans. £13: 6: 3 .
(3) Bought a parcel of goods for which I paid £54. 17 s . packing 13s. 8d.; carriage £1. 5s. 4d.; and spent about the bargain 14s. 3 d .-what do these goods stand me in ${ }^{\text {P }}$

$$
\text { Ans. } £ 57: 10: 3 .
$$

(4) A man lent his friend at different times these several sums, viz., £63.; £25. 15 s ; ; £32. 7s.; $£ 15.14 \mathrm{~s} .10 \mathrm{~d} . ;$ and four score and nineteen pounds, half a guinea, and a shillinghow much did he lend in all?

Ans. £236:8:4.
5) In taking an account of debts owing to me, I find that Mr. A. owes me £104. 5s. 2d.; Mr. B. £37. 8s. 6d.; Mr. C. £48. 13s.; Mr. D. £19. 7s. 4. ; and Mr. E. £5. 0s. 6 $\frac{1}{2} \mathrm{~d}$.what is the whole amount? Ans. £214:14:61 .
(6) If I pay for the rent of my house $£ 75$. per annum; poor's rates $£ 12.17 \mathrm{~s} .6 \mathrm{~d}$.; window and house tax ten guineas; lighting and watching $£ 2.17 \mathrm{~s} .3 \mathrm{~d}$. ; and other, rates $£ 1.7 \mathrm{~s}$. 11 d . -how much do I pay in the whole?

Ans. £102-12: 8.
(7) Paid for the repairs of my house as follows: joiner's bill $£ 26.5 \mathrm{~s} .11 \mathrm{~d} . ;$ bricklayer's and plasterer s $£ 15.3 \mathrm{~s} .7 \mathrm{~d} . ;$ mason's £9. 14s. 3d.: slater's £7. 12s. $4 \frac{1}{2} \mathrm{~d} . ;$ painter's and glazier's £9. 5s. 7d.-what did the whole repairs cost me?

$$
\text { Ans. } £ 68: 1: 8 \frac{1}{2} \text {. }
$$

(8) A merchant owes to $\mathrm{A} £ 346.18 \mathrm{~s} .4 \mathrm{~d}$.; to $\mathrm{B} £ 712.18 \mathrm{~s}$. $9 \mathrm{~d} . ;$ to $\mathrm{C} £ 29.6 \mathrm{~s} .3 \mathrm{~d}$. ; to D £417. 16s. 8d. : to E $£ 200$. $13 \mathrm{~s} .7 \mathrm{~d} . ;$ to $\mathrm{F} £ 817.0 \mathrm{~s} .3 \mathrm{~d}$. ; and to G $£ 512.13 \mathrm{~s} .6 \mathrm{~d}$ how much does the whole of his debts amount to?

$$
\text { Ans. } £ 3217: 7: 4
$$

(9) A banker's clerk having been out with his bills, brings home an account that A paid him £7. 5s. 2d.; B £15. 18s. $6 \frac{1}{2} \mathrm{~d} . ; \mathrm{C} £ 150.13 \mathrm{~s} .2 \frac{1}{4} \mathrm{~d} . ; \mathrm{D} £ 17.6 \mathrm{~s} .8 \mathrm{~d} . ; \mathrm{E} 5$ guineas, 2 crowns, 4 half-crowns, and 4 s. 2d.; F paid him only 20 groats; $\mathbf{G} £ 76.15 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d} . ;$ and $\mathrm{H} £ 121.12 \mathrm{~s} .4 \mathrm{~d} .-\mathrm{I}$ desire to know how much the whole amounted to that he received ?

Ans. £396:7:6ł.
(10) Having just received the following parce)s of cloth, viz., 446 yds .3 qrs .2 n . of blue ; 376 yds .3 qrs. 3 n . of black; 638 yds. 2 qrs. 2 n . of brown; 129 yds. 3 qrs. 1 n of scarlet; 7.48 yds. mixture; and 817 yds .3 qrs . of other colours: I wish to know how many yards I have received in all?

Ans. 3158 yds
(11) The cargo of a ship consisted of 36 tons of hemp; $j$ tons, 14 ewt. 3 qrs. 17 lbs . of flax; 31 tons, 18 cwt. 1 qr. 24 lbs , of iron; 6 hogsheads weighing 4 tons, 13 cwt .1 lb .; 6 barrels weighing 3 tons, 4 cwt. 2 qrs. 12 lbs.; 4 boxes weighing 10 cwt. 3 qrs. 3 lbs.; and 16 bales weighing 8 tons. 15 cwt .19 lbs .-what was the weight of the cargo ?

Ans. 90 tons, 16 cut. 3 qrs. 20 lbs.
(12) A person who engaged to perform 5 pieces of work, finished the first in 29 days 10 hours 28 minutes; the second in 24 days 5 hours 17 minutes; the third in 19 days 11 hours 22 minutes; the fourth in 23 days 4 hours; and the fifth in 17 days 3 hours 25 minutes-what time was he in performing the whole?

Ans. 113 days $10 h .32 m$.
(13) A gentleman purchased an estate, the measurement of which is as follows, viz., the site of the house and garden, 1 acre, 3 roods, 15 perches; the fold, barn, stables, \&c. 1 a. 2 r .17 p. ; the orchard 8 a .1 r .12 p ., the great close 13 a .2 r . 7 p. ; the little close 5 a .0 r .12 p. ; the arable land 32 a .1 r . 37 p ; the meadow and pasture land 47 a lr . ; and the woodlands 17 a .3 r .16 p .-what number of acres does the estate contain?

Ans. 127 acres, 3 roods, 36 perches.
(i4) A nobleman had a service of plate which consisted of dishes and covers weighing 16 lbs .11 oz .8 dwts.; plates 34 lbs .9 dwts. ; spoc as and ladles $9 \mathrm{lbs}, 4 \mathrm{oz} .8$ dwts.; salts and castors 5 lbs. 11 oz .7 dwts.; knives and forks $6 \mathrm{lbs}, 1 \mathrm{oz}$. 5 dwts.; a tea-kettle and lamp, $10 \mathrm{lbs} .11 \mathrm{oz} .7 \mathrm{dwts} . ;$ and sundry smaller articles, weighing 15 !bs. 5 oz .5 dwts.-I desire to know the weight of the whole?

Ans. 98 lbs. 90 z .9 dwts

## SUBTRACTION

## of money, weights, and measures.

Rule.-Subtract as in integers; but when any of the lower denominations are greater than the upper, borrow as many of that as make one of the next superior, adding it to the upper, from which take the less : set down the difference and carry one to the next higher denomination for what you borrowed.

Proof.-As in integers.
MONEY.

$$
\text { £. s. } \quad d \text {. }
$$

£. s. \%. Borrowed 715 2 $7 \frac{1}{8}$
(2) Lent $\begin{array}{llll}316 & 3 & 5 \frac{1}{2}\end{array}$

Paid $\quad \begin{array}{llll}476 & 3 & 8 \frac{1}{2}\end{array}$ Remains to pay $23818 \quad 104$

Proof $715 \quad 2 \quad 75$

(2) Lent | 1016 | 3 | 1 |
| :--- | :--- | :--- |
| Received 218 | 2 | 11 |


$\qquad$
$\bar{\square}$

## £. s. d. <br> £. s. $d$.


\&. s. $\quad d$.

£. s. $d$. | (3) 87 | 2 | 10 | $(4) 3$ | 15 | $1 \frac{1}{2}$ | $(5) 25$ | 2 | 54 | $(6) 37$ | 3 |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 79 | 3 | $7+$ | 1 | 14 | 7 | 17 | 9 | $8 \frac{1}{2}$ | 27 | 5 |



Remains to pay
TROY WEIGHT.
(12) Lent $\frac{25156}{271} \frac{1}{15}-\frac{6}{7 \frac{1}{2}}$

Received $359 \quad 15 \quad 3$
$\begin{array}{lllll}\text { at } & 475 & 13 & 93\end{array}$
several $\begin{array}{llll}527 & 15 & 37\end{array}$
payments. $\begin{array}{llll}272 & 16 & 5\end{array}$
$150 \quad 0 \quad 0$

| (11) Borrowed | 25107 | 15 | 7 |
| :---: | :---: | :---: | :---: |
|  | 375 | 5 | 54 |
| Paid | 259 | 2 | $7 \frac{1}{2}$ |
| at | 359 | 13 | $4 \frac{4}{4}$ |
| different | 523 | 17 | 3 |
| times. | 274 | 15 | $7 \frac{1}{6}$ |
|  | 425 | 13 | 5 |
| Paid in all | - |  |  |


(1)

Bought 27152 Sold 21147
Unsold

## AVOIRDUPOIS WEIGHT.

| ib. oz. $d r$. | $l$ l . oz. |  | cwt. | q,s.lbs. | $t$. |  | qrs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)25 1115 | (2)35 10 | 5 | (3)35 | 121 | (4) 21 | 1 | 2 | 7 |
| $\begin{array}{ll}17 & 913\end{array}$ | 2912 | 7 | 25 | 110 | 9 | 1 | 3 | 5 |

APOTHECARIES' WEIGHT.


CLOTH MEASURE.


LONG MEASURE.

| $f$. |  | bar. | yds. |  |  |  | far. $p$. | 2. |  | f. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)25 | 1 | 0 | 2)37 | 2 | 1 | (2) 52 | 127 | (4)71 | 1 | 7 | 0 |
| 17 | 2 | 2 | 15 | 2 | 7 | 25 | 734 | 50 | 0 | 3 | 27 |

LAND MEASURE.

| a. | $r$. | $p$. | $a$. | $r$. | $p$. | a. | $r$. | $p$. | a. | $r$. | $p$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (1)75 | 1 | 27 | (2)37 | 1 | 27 | (3) 25 | 0 | 1 | (4) 325 | 2 | 1 |
| 59 | 0 | 27 | 35 | 2 | 15 | 17 | 1 | 0 | 279 | 3 | 5 |

LIQUID MEASURE.
run. gal. qts. tier. gal. qts. hhd. gal. qts. - tun. hhd. gal. $\begin{array}{llllllllllll}(1) 72 & 1 & 1 & (2) 27 & 27 & 1 & (3) 75 & 57 & 1 & (4) 79 & 2 & 14\end{array}$ $\begin{array}{llllllllllll}35 & 1 & 2 & 19 & 35 & 2 & 57 & 59 & 1 & 35 & 3 & 27\end{array}$

ALE AND BEER MEASURE.
b. fir. gal.
b. fir. gal.
hhd. gal. qts.
hhd. gal. qts $\begin{array}{lll}(1) 25 & 1 & 2\end{array}$ 2115 $\begin{array}{rrr}\text { (2) } 37 & 2 & 1 \\ 25 & 1 & 7\end{array}$
$\begin{array}{rrr}(3) 27 & 27 & 1 \\ 12 & 50 & 2\end{array}$

(4)709 2 | 2 | 2 |
| :--- | :--- |
| 157 | 2 |

DRY MEASURE.
$\begin{array}{ccc}\text { (1) } & q u . & 1 \\ 72 & 1 & 3 \\ 35 & 2 & 3 \\ & & \end{array}$
$\begin{array}{rcc}q u . & \text { ru. } & p \text {. } \\ \text { (2)65 } & 2 & 1 \\ 57 & 2 & 3\end{array}$

| $c h$. | $b u$. | $p_{0}$ |
| ---: | ---: | ---: |
| $(3) 79$ | 3 | 0 |
| 54 | 7 | 1 |


| ch. | bu. | p. |
| ---: | :---: | :---: |
| (4) 35 | $\mathbf{3}$ | $\mathbf{3}$ |
| 23 | $\mathbf{5}$ | $\mathbf{1}$ |

time.


## THE APPLICATION.

(1) A man born in the year 1792-what was his age in the year 1851?

Ans. 59.
(2) A merchant had five debtors, A, B, C, D, and E, who together owed him £1156; B, C, D, and E, owed him £737 what was A's debt?

Ans. £419.
(3) A person went to the bank to receive $£ 517$; in returning he lost 3 fifty pound notes, and 4 ten pound notes-how much had he left?

Ans. $£ 327$.
(4) A horse and his harness are worth $£ 37.5 \mathrm{~s}$. ; but the harness is worth 14 guineas-what is the value of the horse? Ans. £22. 11 s.
(5) I lent 100 guineas, and received back $£ 42.17 \mathrm{~s} .3 \mathrm{~d} .-$ how much is due to me?

Ans. £62: $2: 9$.
(6) An apprentice bound for the term of 7 years, has served 3 years, 9 months, 2 weeks, 5 days-how much longer has he to serve, reckoning 13 months of 4 weeks to the year ${ }^{\circ}$ Ans. $3 y .3 m .1$ w. $2 d$.
(7) I borrowed of a friend $£ 1000$, but have since paid him, at one time £234. 5s. 6d. ; at another £157. 16s. 8d.; at a third $£ 316.5 \mathrm{~s} .9 \mathrm{~d} . ;$ and at a fourth $£ 95.7 \mathrm{~s} .8 \mathrm{~d}$. -what is still owing ?

Ans. £196:4:5.
(8) A borrowed from B £746. 9s. 3d.; and afterwards $£ 519.14 \mathrm{~s}$. 10d.; but he has since paid him in goods and cash £946. 13 s .8 d. -how much does he still owe him?

$$
\text { Ans. } £ 319: 10: 5 .
$$

(9) A merchant at his outsetting in trade owed $£ 750$; he had in cash, commodities, the stocks, and good debts. $£ 12510$ 7 s. ; he cleared the first year by commerce $£ 45 \mathrm{t} .3 \mathrm{~s} .6 \mathrm{~d}$.what was the net balance at the twelve month's end?

$$
\text { Ans. } £ 12212: 10: 6
$$

(10) From the city of York to the town of Doncaster there are two roads, the one measures 37 miles, 3 furlongs, 27 poles; and the other 33 miles, 5 furlongs, 14 poles-how much nearer is one than the other?

Ans. 3 m. 6 fur. 13 p.
(11) A gentleman's income is 2742. 16s. 4d. per annum, his household expenses amount to £174. 15. 8d.; his rent $£ 57.15 \mathrm{~s}$. ; taxes $£ 12.14 \mathrm{~s} .8 \mathrm{~d}$. ; servant's wages $£ 54.14 \mathrm{~s}$. ed.; tradesmen's accounts $£ 39.16 \mathrm{~s} .8 \mathrm{~d}$. ; and incidental 0 xpenses $£ 17.18 \mathrm{~s}$. 3d. -how much does he lay by annually? Ans. £385: $2: 1$.
(12) A merchant purchased 1 ton 7 cwt .3 qrs. 13lbs. of sugar, of which he sold at one time 3 cwt. 2 qrs. 6 lbs .; at another $7 \mathrm{cwt} .1 \mathrm{qr}$.13 lbs ; at a third 4 cwt .0 qr .5 lbs. ; 'at a fourth 6 cwt . 1 qr .26 lbs ; and at a fifth 2 cwt .3 qrs. 17 lbs.-I demand to know how much he had left?

Ans. 3 cwt. 2 qrs. 2 lbs.
(13) Bought a piece of silk which measured 38 yds. 2 qrs., and sold of it at different times as follows, viz., 7 yds. 3 qrs. $2 \mathrm{n} . ; 5$ yds. 2 qrs. $1 \mathrm{n} . ; 7$ yds. 3 qrs. $3 \mathrm{n} . ; 4$ yds. 2 qrs.; and 9 yds .2 qrs. 3 n .-how much had I remaining?

Ans. 2 yds. 3 qrs. 3 n.

## MULTJPLICATION

## OF SEVERAL DENOMINATIONS.

Rule.-Multiply the first denomination by the quantity given, dividing the product by as many of that as make one of the next, setting down the remainder, and add the quotient to the next superior, after it is multiplied

If the given quantity is above 12 , multiply by any two numbers which, multiplied together, will make the same number; but if no two numbers multiplied together will make the exact number, then multiply the top line by as many as are wanting, adding it to the last product.

Proof.-By Division.


(1) 18 yds . of cloth at 9 s .6 d .

| per yard. |  |  |  |
| :---: | :---: | :---: | :---: |
| $9 \times 2=18$ | 4 | 5 |  |
|  |  |  |  |
| Ans. | ¢8 | 11 |  |

(2) 26 lbs . of tea at $£ 1 \quad 2 \quad 6$ per lb.


Top line $\times 2=250$
Ans. £29 50
(3) 21 ells of holland, at $7 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$. per ell.

Ans. £8:1:10t.
(4) 34 firkins of butter, at 15 s . $3 \frac{1}{2} \mathrm{~d}$. per firkin.

Ans. £25: $19: 11$.
(5) 75 lbs . of nutmegs, $7 \mathrm{~s} .2 \frac{3}{4} \mathrm{~d}$. per lb .

Ans. £27 2: 21.
(6) 37 yards of tabby, at 9 s .7 d . per yard.

Ans. £17:14:7.
(7) 97 cwt . of cheese, at £1. 5 s .3 d . per cwt.

Ans. £122: $9: 3$.
(8) 43 dozen of candles, at 6 s . 4 d . per dozen.

Ans, $£ 13: 12: 4$.
(9) 127 lbs . of bohea, at 12 s .3 d . per lb .

Ans. £77: $15: 9$.
(10) 135 gallons of rum, at 7 s .5 d . per gallon.

Ans. £50:1:3.
(11) 74 ells of diaper, at $1 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. per ell.

Ans. £5: 1: 9.
(12) 6 doz. pair of gloves, at 1 s .10 d . per pair.

Ans. £6:12: 0.
When the given quantity consists of $\frac{1}{2}, \frac{1}{4}$, divide the price by $\frac{1}{2}, \frac{1}{4}$; when $\frac{3}{4}$, divide the price by half, and that quotient by $\frac{1}{2}$, which add to the product of the quantity given-
(13) $25 \frac{1}{2}$ ells of holland, at $3 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. per ell.
$5 \times 5=25$

| , | 5 |  |
| :---: | :---: | :---: |
|  | 16 | $10 \frac{1}{2}$ |
|  |  | 5 |
| 4 | 4 | $4 \frac{1}{2}=25$ |
| 6 | 1 | $8 \frac{1}{4}=\frac{1}{2}$ |
| Ans. $£ 4$ | 6 | $0 \frac{3}{4}=25 \frac{1}{2}$ |

(14) $75 \frac{1}{2}$ ells of diaper, at 1s. 3d. per ell.

Ans. £4: 14: 41
(15) $19 \frac{1}{2}$ ells of damask, at 4 s .3 d . per ell. Ans. £4:2:10 ${ }^{\frac{1}{2}}$.
(16) $35 \frac{1}{4}$ ells of dowlass, at 1 s .4 d . per ell. Ans. £2: 7s.
(17) $7 \frac{1}{4}$ cwt. of Malaga raisins, at £1. 1s. 6d. per cwt.

Ans. $£ 7: 15: 10 \frac{1}{2}$.
(18) $6 \frac{1}{2}$ barrels of herrings, at $£ 3.15 \mathrm{~s} .7 \mathrm{~d}$. per barrel. Ans. £24: 11 : $3 \frac{1}{2}$.
(19) $35 \frac{1}{2}$ cwt. of double-refined sugar, at $£ 4.15 \mathrm{~s} .6 \mathrm{~d}$. per cwt. Ans. £169:10:3.
(20) $154 \frac{2}{2}$ cwt. of tobacco, at $£ 4.17 \mathrm{~s} .10 \mathrm{~d}$. per cwt.

Ans. £755: $15: 3$.
(21) $117 \frac{1}{4}$ gallons of arrack, at 12 s .6 d . per gallon.

Ans. £73:5 $5 \frac{71}{2}$.
(22) $85 \frac{3}{4}$ cwt. of cheese, at $£ 1.7 \mathrm{~s} .8 \mathrm{~d}$. per cwt.

Ans. £118:12:5.
(23) 291 lbs . of fine hyson tea, at $£ 1.3 \mathrm{~s}, 6 \mathrm{~d}$. per lb .

Ans. £34:7:41 .
(24) $17 \frac{3}{4}$ yards of superfine scarlet drab, at $£ 1$. 3s. per yard. Ans. £20: $8: 3$.
(25) $37 \frac{1}{2}$ yards of rich brocade silk, at 12s. 4 d . per yard. Ans. £23:2:6. (26) $56 \frac{3}{4} \mathrm{cwt}$. of sugar, at $£ 2.18 \mathrm{~s} .7 \mathrm{~d}$. per cwt. Ans. £166: 4: 7ํㅜ
(27) $96 \frac{1}{2}$ cwt. of currants, at $£ 2.15 \mathrm{~s} .6 \mathrm{~d}$. per cwt.

$$
\text { Ans. £267: } 15: 9
$$

(28) $45 \frac{3}{4}$ lbs. of Balladine silk, at 18 s .6 d . per lb .

$$
\text { Ans. } £ 42: 6: 4 \frac{1}{2} \text {. }
$$

(29) $87 \frac{3}{4}$ bushels of wheat, at 4 s .3 d . per bushel.

$$
\text { Ans. } £ 18: 12: 11 \text {. }
$$

(80) $120 \frac{3}{3}$ cwt. of hops, at $£ 4.7 \mathrm{~s} .6 \mathrm{~d}$. per ewt.

$$
\text { B } 2
$$

Ans. £528:5:73.

## THE APPLICATION.

(1) Bought 9 tons of hay, at £3. 7s. 4d. per ton-how much did they come to ?

Ans. £80:6:0.
(2) A farmer sold 12 oxen for $£ 10.11 \mathrm{~s} .6 \mathrm{~d}$. each-what did he get for the whole? Ans. £126:18:0.
(3) If 1 yard of cloth cost 5 s .4 d .-what will 63 yards cost? Ans. £16:16:0.
(4) Bought a ream of paper for 12s. 8d.-what must I give for 72 reams? Ans. $£ 45: 12: 0$.
(5) What sum of money must be divided among 18 men, so that each may receive £14. 6s. $8 \frac{1}{2}$ d. ?

Ans. £258: 0:9.
(6) What quantity of wheat will grow on 64 acres of land, if one acre grows 7 qrs. 5 bush. 3 pecks? Ans. 494 qrs.
(7) A grocer bought 16 cwt . of sugar, for which he paid £9. $7 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$. per cwt.-what did he give for the whole ?

$$
\text { Ans. } £ 150: 3: 4 .
$$

(8) I took a farm on lease for 35 years, at the rent of £318. 7 s. 6 d . per annum-how much shall I have paid at the expiration of the lease? Ans. £11143:2:6,
(9) What distance will a coach run in 24 hours, at the rate of 7 miles, 6 furlongs, 17 poles per hour?

Ans. 187 m .2 fur. 8 p.
(10) Bought a hogshead of wine at the rate of 14 s .3 d . per gallon-what did it stand me in? Ans. £44:17:9.
(11) What will be the weight of 15 bars of silver, each weighing 2 lbs. 8 oz .7 dwts. 5 grs,?

Ans. 40 lbs .5 oz .8 dwts. 3 grs.
(12) If I pay my servant 8 s .9 d . per week-what do his wages amount to in a year?

Ans. £22 : $15: 0$.
(13) If I lay by 7s. 6 d . per day-how much shall I have at the end of the year?

Ans. £136:17:6.
(14) I received 87 packages of goods, each weighing 3 cwt . ${ }_{2}$ qrs. 17 lbs .-what was the weight of the whole?

Ans. 15 tons, 17 cwt .2 qrs. 23 lbs.
(15) A privateer of 250 men took a prize which amounted to $£ 125.15 \mathrm{~s} .6 \mathrm{~d}$. to each man-what was the value of the prize?

Ans. £31443: 15 : 0.
(16) If a man's wages are one guinea, and his expences are $15 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. per week-how much does he save in the year?

Ans. £14: $12 \cdot B$.
(17) How many letters are contained in a work of 9 volumes, each 396 pages, each page 42 lines, and each line 38 letters ? Ans. 5,688,144.
(18) A gentleman lays up every year $£ 294.12 \mathrm{~s} .6 \mathrm{~d}$. and spends daily £1. 12s. 6d.-I desire to know what is his annual income?

Ans. $£ 887$ : $15: 0$.
(19) A merchant had £19118. to begin trade with; for 5 years together he cleared $£ 1086$. a year; the next 4 years he made good £2715. 10s. 6d. a year; but the last 3 years he was in trade, had the misfortune to lose, one year with another, $£ 475.4 \mathrm{~s} .6 \mathrm{~d}$. a year-what was his real fortune at 12 year's end?

Ans. £33984: $8: 6$.
(20) A robbery being committed on the highway, an assessment was made in the neighbouring hundred for the sum of $£ 386.15 \mathrm{~s}$. 6 d . of which four parishes paid each $£ 37.14 \mathrm{~s}$. 2d.; four hamlets £31. 4s. 2d. each; and four townships £18. 12s. 6d. each-how much was the deficiency?

Ans. £36:12:2.

## DIVISION

## OF SEVERAL DENOMINATIONS.

Rule.-Divide the first denomination on the left-hand, and if any remain, multiply them by as many of the next less as make one of that, which add to the next, and divide as before.

Proor.-By Multiplication.


$\begin{array}{ccccc}l b . & o z . & \text { dwt. } & \text { gr. } \\ 75 & 3 & 7 & 5\end{array}$


$\begin{array}{cccc} & y d s . & q r . & n . \\ \text { (8) } & 9) 35 & 1 & 3\end{array}$

(9) 10 | $m$. | $f$ | $f$ |
| ---: | ---: | ---: |

(10) 11$)^{y d s .} 7 . \quad \begin{array}{ll}\text { f. } & \text { in. } \\ 2 & 9\end{array}$
b. fir. gal.
b. fir. gal.
ch. $\quad b u, p k$ (11) 12) $35 \quad 2 \quad 5$
13)55 $\quad 3 \quad 7$
(13) $1 4 \longdiv { 3 5 7 } \quad 2 \quad 1$

## THE APPLICATION.

(1) If a man spend £257. 2s. 5d. in 12 months' timewhat is that per month?

Ans. £21: 8:64.
(2) The clothing of 35 charity boys came to $£ 57.3 \mathrm{~s}, 7 \mathrm{~d}$. -what is the expence of each?

Ans. £1: 12: 8.
(3) If I gave $£ 37.6 \mathrm{~s}$. 3 d . for 9 pieces of cloth, what did I give per piece?

Ans. £4: 2 : 11.
(4) If 20 cwt . of tobacco come to $£ 27.5 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$.-at what rate is that per cwt. ? Ans. £l : 7: 3 .
(5) What is the value of one hogshead of beer, when 120 are sold for £154. 17 s .10 d .? Ans. £1:5:93.
(6) Bought 72 yards of cloth for $£ 85.6 \mathrm{~s}$.-I desire to know at what rate per per yard? Ans. £1:3:84.
(7) Gave £275. 3s. 4d. for 36 bales of cloth-what is that for 2 bales?

Ans. $£ 15: 5: 8 \mathbf{3}$.
(8) A prize of $£ 7257.3 \mathrm{~s} .6 \mathrm{~d}$. is to be equally divided among 500 sailors-what is each man's share?

$$
\text { Ans. } £ 14: 10: 3 \frac{1}{4} .
$$

(9) There are 2545 bullocks to be divided among 509 men -I desire to know how many each man had, and the value of each man's share, supposing every bullock worth $£ 9.14 \mathrm{~s}$. 6d.? Ans. 5 bullocks each man. £48: 12:6. each share.
(10) A gentleman had a garden walled in, containing 9625 yards, the breadth was 35 yards-what was the length?

$$
\text { Ans. } 275 .
$$

(11) A club in London, consisting of 25 gentlemen joined for a lottery ticket of £10. value, which came up a prize of $£ 4000$.-I desire to know what each man contributed, and what each man's share came to ?

Ans. Each man contributed 8 s.; each share $£ 160$. (12) A trader cleared £1156. equally in 17 years-how much did he lay by in a year? Ans, £68.
(13) Another cleared £2805. in $7 \frac{1}{2}$ years-what was his yearly increase of fortune?

Ans. £374.
(14) What number added to the 43rd part of 4429 will raise it to 240 ? Ans. 187.
(15) Divide 20s. amongst A, B, and C, in such sort that A may have 2s. less than B, and C 2s. more than B.

Ans. A. $4 \mathrm{~s} .8 d . ;$ B. $6 \mathrm{~s} .8 d . ;$ C. $8 \mathrm{~s} 8 d$.
(16) What number is that which multiplied by 7847, will make the product 3013248 ? Ans. 384.
(17) Suppose a person travels 5840 miles in a year-how many miles is that per day?

Ans. 16.
(18) Bought 96 reams of paper for $£ 58$. 12s.-what did it cost me per ream?

Ans. $12 s$. $2 \frac{1}{2} d$.
(19) I purchased 3 dozens of silver spoons which weighed 29 oz .14 dwts.-1 demand the weight of each spoon?

Ans. 16 dwts. 12 grs.
(20) Divide £120. 10s. 11 d . among 5 men and 4 women, and give each man twice as much as a woman.

Ans. £17:4:5. each man; £8:12:21 $\frac{1}{2}$, each woman.
(21) Paid for a hogshead of rum £43. 6s. 3d,-what will it stand me in per gallon?

Ans. 13s. 9d.
(22) How much must I lay by daily to save 20 guines per anrum ?

Ans. $1 \mathrm{~s} .1 \frac{3}{4} \mathrm{~d}$. 85 rem .
(23) 1 received 75 packages of goods weighing in the whole 13 tons, 10 cwt. 2 qrs. 4 lbs.-I desire to know the weight of one of those packages?

Ans. 3 cwt. 2 qrs. 12 lbs.
(24) If a gentleman's income be £800. per year-how much is it per day, how much per week, and how much per month? Ans. £2: 3:10 per day. £15:6:10 per week. £61:7:4 per month. 10 rem .
(25) How many parcels of tea each containing 18 lbs . can be made out of 18 cwt. 2 qrs. 16 lbs .? Ans. 116.
(26) A gentleman distributed £6. 6s. 8d. among some poor people, giving to each 3s. 4d.-how many persons partook of his charity? Ans. 38.
(27) Bought a hogshead of sugar at the rate of $£ 2.13 \mathrm{~s} .8 \mathrm{~d}$. per cwt.-what did it stand me in per lb. ? Ans. $5 \frac{3}{4} d$.
(28) A butcher purchased 95 sheep for $£ 218$-what would be the price of one of them? Ans. $£ 2: 5: 10 \frac{1}{2}$. 90 rem .
(29) Paid for painting my house £16. 2s.; the measurement was 736 square yards:-at what rate did I pay for it per yard ? Ans. $5 \frac{1}{4} d$.
(30) If I divide 500 guineas among 17 persons-how much will each have to receive?

Ans. £30:17:7乌. 1 rem.

# BILLS OF PARCELS. 

## HOSIER'S.

> (1) Mr. John Thomas,
> Bought of Samuel Green, July 3rd, 1839.

8 Pair of worsted stockings...at s. d. £

5 Pair of thread ditto ..........at
46 per pr.
3 Pair of black silk ditto ...at 14 0.. ..
6 Pair of milled hose ..........at 42 .. ..
4 Pair of cotton ditto ..........at , 76 ... ...
2 Yards of flannel ............at 18 peryd.
£7:12:2
MERCER'S.
(2) Mr. Isaac Grant,

Bought of John Simms, July 4, 1839.

| 15 Yards of satin .............at | $\stackrel{s}{9}$ | ${ }^{\text {d. }}$ ¢ ${ }^{\text {f }}$ |  |
| :---: | :---: | :---: | :---: |
| 18 Yards of flowered silk ......at | 17 | 4. |  |
| 12 Yards of rich brocade ......at | 19 | 8 .. |  |
| 16 Yards of sarcenet .........at | 3 | 2 |  |
| 13 Yards of Genoe velvet ...at | 27 | 6 |  |
| 23 Yards of lustring ............at | 6 | 3 .. |  |
|  |  |  | £62:2:5 |

## LINEN-DRAPER'S.

(3) Mr. Simon Surety,

Bought of Josiah Short, July 5th, 1839.

|  | $s$. |  |
| :---: | :---: | :---: |
| 4 Yards of camb | 12 | 6 per yd. |
| 12 Yards of muslin ............at | 8 |  |
| 15 Yards of printed linen......at | 5 |  |
| 2 Dozen of napkins .........at | 2 |  |
| 14 Ells of diaper | 1 | 7 |
| 35 Ells of dowlas |  |  |

## MILLINER'S.

(4) Mrs. Bright,

> | Bought of Lucy Brown, July 6, $1830^{\circ}$. |
| :---: |
| s. |
| d. |
|  |


£23:14:4

## WOOLLEN-DRAPER'S.

(5) Mr. Thomas Sage,

Bought of Elias Smith. July 8, 1339.

17 Yards of fine surge .........at
18 Yards of drugget .........at
15 Yards of superfine scarlet at
16 Yards of black cloth ......at
25 Yards of shalloon .........at
18 0....
17 Yards of drab cloth.........at
176 .. ..
\&
39 per yd.
9 0....
22 0.. ..
19 .. ..
..
£59:5:0

LEATHER SELLER'S.
(6) Mr. Giles Harris.

Bought of Abel Smith, July 9, 1839
s. d. $\quad \boldsymbol{\varepsilon}$

27 Calf skins
at
75 Sheep ditto ...................at
36 Coloured ditto...............at
15 Buck ditto ..................at
17 Russia hides ...............at
120 Lamb skins ...............at
7 each.
120 tamb skins ….............at 1 21 $\frac{1}{2}$ per skin £38:17:5

## GROCER'S.

(7) Mr. Richard Groves,

Bought of Francis Elliot, July 10, 1839. s. $d$. $£$

| 25 th. of lump sugar .........at | 0 612 per tb. |  |  |
| :---: | :---: | :---: | :---: |
| 2 Loaves of double-refined, weight $15 \mathrm{Ib} . . . . . . . . .$. at | 0 | 111 ${ }^{\frac{1}{2}}$. |  |
| 14 tb . of rice ................at | 0 | 3. |  |
| 28 th. of Malaga raisins ......at | 0 | 5 |  |
| 15 tb . of currants ..........at | 0 | $5 \frac{1}{2}$. |  |
| 7 fb . of black pepper .........at | 1 | 10 |  |
|  |  |  | £3: 2:912 |

## CHEESE-MONGER'S.

(8) Mr. Charles Cross,

Bought of Samuel Grant, July 11. 1889
8 lb. of Cambridge butter ...at
s. $d$.

17 lb . of new cheese .........at
$\frac{1}{2}$ Firkin of butter, wt. 28 tb . at
5 Cheshire cheeses, wt. 127 fb . at
2 Warwickshire do. wt. 15 tb. at
06 per tb.

22 tb . of cream cheese.........at

CORN-CHANDLER'S.
(9) Mr. Abraham Doyley,

Bought of Isaac Jones, July 12, 1839.

Tares, 19 bushels................at
Peas, 18 bushels .................at
Beans, 12 bushels .............at
Oates, 6 quarters .................at
Malt, 7 quarters ................at
Hops, 15 tb.
s. d. £

110 per bushel
3 91
4 8 .. ...
2 4....
250 per quarter.
15 per tb.

## REDUCTION

Is the bringing or reducing numbers of one denomination into other numbers of another denomination, retaining the same value, and is performed by Multiplication and Division.

First-All great names are brought into small, by multiplying with so many of the less as make one of the greater.

Secondly-All small names are brought into great, by dividing with so many of the less as make one of the greater.

A Table of such Coins as are current in England.


There are several pieces which speak their own value; such as six-pence, four-pence, three-pence, two-pence, penny, half-penny, farthing, half-farthing.

## REDUCTION DESCENDING.

(1) In £8. how many shillings and pence ?
$\frac{20}{160}$ shillings.
$\frac{12}{1020}$ pence.
(2) In £12. how many shillings, pence, and farthings ?

Ans. 240 s . ; 2880d. ; 11520 farthings.
(3) How many shillings, pence, and farthings, are there in

Ans. 360s.; 4320d.; 17280 farthings,
(4) Reduce $£ 7$. and 1 crown, into shillings and pence. Ans. 145s.; 1740 d .
(5) How many farthings are there in 21 guineas? Ans. 21168 farthings.
(6) In £17. $5 \mathrm{~s} .3 \frac{1}{4} \mathrm{~d}$.-how many farthings?

Ans 16573.
(7) In £25. 14s.-how many shillings and pence? Ans. 514s.; 6168d.
(8) In 15 crowns.-how many shillings and sixpences?

Ans. 75s.; 150 sixpences.
(9) How many crowns and shillings in $£ 25$ ?

Ans. 100 crowns; 500s.
(10) In 57 half-crowns-how many pence and farthings ? Ans. 1710d.; 6840 farthings.
(11) In 52 crowns, as many half-crowns, shillings and pence-how many farthings ? Ans. 21424.
(12) How many half-crowns, sixpences, and threepences are there in $£ 75$ ?

Ans. 600 half-crowns; $\mathbf{3 0 0 0}$ sixpences; 6000 threepences.

## REDUCTION ASCENDING.

(13) In 1920 pence, how many shillings and pounds ?

$$
\begin{aligned}
& \text { 12) } \frac{1920}{8} \\
& 2 \lcm{0} \overline{16[0} \\
& \text { shillings. }
\end{aligned}
$$

(14) In 11520 farthings-how many pence, shillings, and pounds? Ans. 2880d. ; 240s.; £12.
(15) How many pence, shillings, and pounds, are there in 17280 farthings? Ans. 4320d.; 360 s . ; £18. (16) Reduce 1740 pence into shillings and pounds?

$$
\text { Ans. } 145 s . ; £ 7: 5 s .
$$

(17) How many guineas in 21168 farthings ?

Ans. 21 guineas.
(18) In 16573 farthings-how many pounds?

Ans. £17:5:34.
(19) In 6168 pence-how many shillings and pounds ?

Ans. 514 s. ; £25. 14 s
(20) In 900 pence-how many shillings and crowns? Ans. 75s.; 15 crowns. (21) How many crowns and pounds in 500 shillings? Ans. 100 crowns; $£ 25$.
(22) In 6840 farthings-how many pence and half-crowns? Ans. 1710d. 57 half-crowns.
(23) In 21424 farthings-how many crowns, half-crowns, shillings and pence, and of each an equal number?

Ans. 52.
(24) How many sixpences, half-crowns, and pounds in 6000 threepences?

Ans. 3000 sixpences; 600 half-crowns; $875 .{ }^{\top}$

## ASCENDING and DESCENDING.

(25) In 1560 pence-how many crowns and shillings?

$$
\begin{aligned}
& \frac{-156 i 0}{26 \text { crowns. }} \\
& \frac{5}{130 \text { shillings. }}
\end{aligned}
$$

(26) Reduce 130 shillings into crowns and pence ?

Ans. 26 crowns. ; 1560 d.
(27) How many shillings, crowns, and pounds, in 60 guineas? Ans. 1260 s.; 252 crowns ; $£ 63$.
(28) In $£ 63$. how many crowns, shillings, and guineas?

Ans. 252 crowns; 1260 s. ; 60 guineas.
(29) In 76 half-sovereigns-how many shillings, and crowns? Ans. 760 s . ; 152 crouns.
(30) Reduce 152 crowns into half-sovereigns, and shillings ?

Ans. 76 half-sovereigns; 760 s.
(31) How many shillings, half-crowns, and crowns, are there in £556. and of each an equal number?

Ans. 1308 each, and 2s. over.
(32) In 1308 half-crowns, as many crowns, and shiilings -how many pounds?

Ans. $£ 555: 18 \mathrm{~s}$.
(33) Seven men brought £15. 10s. each into the mint, to be changed into guineas-how many must they have in all ?

Ans. 103 guineas; 7 s. over;
(34) If 103 guineas and 7 shillings are to be divided among seven men-how many pounds sterling is that to each ?

Ans. $£ 15: 10$ s.
(35) A certain person had 25 purses, and in each purse 12 guineas, a crown, and a half-sovereign-now many pounds sterling had he in all ? Ans. $£ 333: 15$ s.
(36) A gentleman in his will leaves \&50 to the poor, and ordered that $\frac{1}{\frac{1}{3}}$ should be given to ancient men, each to have 5 s. ; $\ddagger$ to poor women, each, to have 2s. 6 d . $; \frac{1}{5}$ to poor buys, each to have 1s. ; $\frac{x}{6}$ to poor girls, each to have 9d.; and the remainder to the person that distributed it ;-I demand how many of each sort there were, and what the person that distributed the money had for his pains?

Ans. 66 men, 100 women, 200 boys, 222 girls; £2: 13: 6. to the person

## TROY WEIGHT.

(37) In 27 .ounces of gold-how many grains?

Ans. 12960.
(38) In 12960 grains of gold-how many ounces?

Ans. 27.
(39) In $3 \mathrm{lbs} .10 \mathrm{oz}, 7$ dwts. 5 grs.-how many grains ?

Ans. 22253.
(40) In 8 ingots of silver, each weighing 7 lb .4 oz .17 dwts. 15 grs.-how many ounces, pennyweights, and grains ? Ans. 711 oz . ; 14221 dwts.; 341304 grs.
(41) How many ingots of 7 lbs .4 oz .17 dwts .15 grs . each, are there in 341304 grains? Ans. 8.
(42 Bought 7 ingots of silver, each containing lbs. 5 oz, 7 dwts.-how many grains?

Ans. 945336.
(43) A gentleman sent a tankard to his goldsmith that weighed 50 oz .8 d dwts. and ordered him to make it into spoons, each to weigh 2 oz . 16 dwts .-how many had he ?

$$
\text { Ans. } 18 .
$$

(44) A gentleman delivered to a a goldsmith 137 oz .6 dwts. 4 grs. of silver, and ordered him to make it into tankards of 17 oz .15 dwts .6 grs . each; spoons of 21 oz .11 dwts .13 grs. per dozen; salts at 3 oz .10 dwts. each; and forks at 21 oz . 11 dwts. 13 grs. per dozen; and for every tankard to have one salt, a dozen of spoons, and a dozen of fooks-what is the number of each he must have ?

Ans. 2 of each sort; 8 oz. 9 duts. 17 grs. 0 er

## AVOIRDUPOIS WEIGHT.

Note.-There are several sorts of silk which are weighed ty a great pound of 24 oz . others by the common pound of 16 oz . ; therefore to bring great pounds into common, multiply by 3 , and divide by 2 , or add one-half.-To bring small pounds into great, multiply by 2 , and divide by 3 , or subtract one-third.

The things bought and sold by the tale.

## Dozen.

12 Pieces or things make 1 dozen. 12 Dozen 12 Gross, or 144 dozen $\}_{\substack{1 \\ 1 \\ \text { greas } \\ \text { gross }}}^{\substack{\text { gres. }}}$

Paper and Parchment. 24 sheets make ......... 1 quire 20 quires .............. 1 ream. 2 reams . . . . . . . . . . . . . 1 bumite. 1 dozen of parchment 12 skins. 60 skins ................ 1 roll
(45) In 14769 ounces-how many cwt.? Ans. 8 cwt .27 lb .1 oz.
(46) Reduce 8 cwt .27 lbs . 1 oz . into quarters, pounds, and ounces? Ans. 32 qrs. 923 lbs. 14769 nz .
(47) Bought 32 bags of hops, each 2 cwt. 1 qrs. 14 lbs . and another of 150 lbs .-how many cwt. in the whole?

Ans. 77 cwt .1 qr .10 lbs .
(48) In 34 tons, 17 cwt. 1 qr. 19 lbs.-how many pounds?

Ans. 78111.
(49) In 350 great pounds-how many common?

Ans. $5 \geqslant 5$.
(50) In 27 ewt. of raisins-how many parcels of 18 lbs . each ? Ans. 16 s .
(51) In 9 cwt. 2 qrs. 14 lbs. of indigo-how many pounds? Ans. 1073.
(52) In 547 great pounds-how many common pounds Ans. 820 lbs .8 oz
(53) Bought 26 bags of hops, each 2 cwt. 1 qr .15 lbs and 1 bag 137 lbs.-how many hundreds in the whole ?

$$
\text { Ans. } 65 \mathrm{cwt} .2 \text { qrs. } 10 \mathrm{llss}
$$

(54) How many pounds in 27 hogsheads of tobacco, eacl weighing neat $8 \frac{3}{4} \mathrm{cwt}$ ?

Ans. 2646
(55) In 552 common pounds of silk-how many gru pounds ? Ans. : $;$.
(56) How many parcels of sugar of 16 lbs .2 oz . are the in 16 cwt. 1 qr. 15 lbs.?

## APOTHECARIES' WEIGHT.

(57) In 27 lbs. 7 oz .2 dr .1 scr. 2 gr .-how many grains ?

Ans. 159022.
(58) How many lb. 3. 3, Э. grs. are there in 159022 grains?

Ans. 27 lb .73 .23 .1 . 2 grs.

## CLOTH MEASURE.

(59) In 27 yards-how many nails ?

Ans. 432.
(60) In 75 English ells-how many yards ?

Ans. 93 yds. 3 qrs.
(61) in $93 \frac{3}{4}$ yds.-how many English ells? Ans. 75.
(62) In 24 pieces, each containing 32 Flemish ells, how many ell English ?

Ans. 460 ells. 4 qrs.
(63) In 17 pieces of cloth, each 27 Flemish ells-how many yards?

Ans. 344 yds . $1 q r$.
(64) Bought 27 pieces of English stuffs, each 27 ellshow many yards?

Ans. $911 \mathrm{yds}$.1 qr .
(65) In $911 \frac{1}{4}$ yards-how many Engiish ells?

Ans. 729.
(66) In 12 baies of cloth, each 25 pieces, each piece 15 English ells-how many yards?

Ans. 5625.

## LONG MEASURE.

(67) In 57 miles-how many furlongs and poles ?

Ans. 456 furlongs. 18240 poles.
(68) In 7 miles-how many feet, inches, and barleycorns? Ans. 36960 feet, 443520 inches, 1330560 barleycorns. (69) In 18240 poles-how many furlongs and miles ?

Ans. 456 furlongs, 57 miles. (70) In 72 leagues-how many yards? Ans. 380160.
(71) In 380160 yards-how many miles and leagues? Ans. 216 miles, 72 leagues.
(72) If from London to York be accounted 50 leagues; I demand how man miles, yards, feet, inches, and barleycorns ? Ans. 150 miles, 264000 yards, 792000 feet, 9504000 inches, 28512000 barleycorns,
(i3) How many barleycorns will reach round the world, which is 360 degrees, each degree $69 \frac{1}{3}$ miles ?

Ans. 4755801600 .

## LAND MEASURE.

(74) In 27 acres-how many roods and perches?

A ns. 108 roods, 4320 perches.
(75) In 4320 perches--how many acres? Ans. 27.
(76) A person having a piece of ground containing 37 acres 1 pole, has a mind to dispose of 15 acres to A.-I desire to know how many perches he will have left ?

Ans. 3521.
(77) There are four fields to be divided into shares of 75 perches each; the first field containing 5 acres; the second 4 acres, 2 poles; the third 7 acres, 3 roods; and the fourth 2 acres, 1 rood-I desire to know how many shares are contained therein?

Ans. 40 shares, 42 perches.

## LIQUID MEASURE.

(78) Bought 5 tons of Port wine-how many gallons and pints ? Ans. 1380 gallons, 11040 pints.
(79) In 11040 pints of Port wine-how many tuns? Ans. 5.
(80) In 8190 gallons of sherry-how many pipes and hogsheads, and of each a like number?

Ans. 42 of each. 84 rem.
(81) A gentleman ordered his butler to bottle off $\frac{2}{3}$ of a pipe of Claret wine into quarts, and the rest into pints-I desire to know how many dozen of each he had ?

Ans. 28 dozen of each.

## ALE AND BEER MEASURE.

(82) In 46 barrels of beer-how many pints?

Ans. 13248.
(83) In 10 barrels of ale-how many gallons and quarts? Ans. 360 gallons, 1440 quarts.
(84) In 72 hogsheads of beer-how many barrels?

Ans. 108.
(85) In 108 barrels of beer-how many hogsheads?

Ans. 72

## DRY MFASURE.

(86) In 120 quarters of wheat-how many bushels, pecks, gallons, and quarts ?

Ans. 960 bush., 3840 pecks, 7680 gal., $307 \approx 0$ quarts.
(87) In 30720 quarts of corn--how many quarters?

Ans, 120
(88) In 20 chaldrons of coals-how many pecks? Ans. 2880.
(89) In 273 lasts of corns--how many pecks ?

Ans. 87360

## TIME.

(90) In 72015 hours-how many weeks ?

Ans. 428 weeks, 4 days, 15 hours.
(91) How many days is it since the birth of our Saviour to Christmas 1848 ? Ans. 674982.
(92) Stowe writes that London was built 1108 years before our Saviour's birth-how many hours is it since to Christmas, 1794? Ans. 25438932 hours.
(93) From November 17, 1738, to September 12, 1739how many days?

Ans. 299 days
(94) From July 18, 1723, to April 18, 1750-how many years and days? Ans. 26 years, 9 months, 3 weeks, 1 day, 6 hours; $9770 \frac{3}{3}$ days, reckoning 365 days, 6 hours to a year.

## THE

## SINGLE RULE OF THREE DIRECT

Teacheth, by three numbers, given to find out a fourth in such proportion to the third as the second is to the first.

Ruie.-First state the question ; that is, place the numbers in such order, that the first and the third be of one kind, and the second the same as the number required; then bring the first and third numbers into one name; and the second into the lowest term mentioned. Multiply the second and third numbers together, and divide the product by the first, the quotient wili be the answer to the question in the same denomination you left the second number in.

## EXAMPLE.

(1) If 1 lb . of sugar cost $4 \frac{1}{2} \mathrm{~d}$. -what do 54 lbs . cost 9


It may be proper to observe here, that another Rule (for stating or rightly placing down the three given numbers) is adopted by some Teachers, which is evidently more consistent with the principles of proportion.

As proportion consists in the equality of ratios, and by ratio is meant the relation which one quantity bears to another with respect to magnitude, it is plain therefore that this relation can only exist between quantities of a similar kind-thus yards must be compared with yards, and money with money, \&c.; and it appears inconsistent to make a certain number of feet in proportion to a certain number of pounds. Hence the following method is given.

Rule.-Put that term which is of the same kind as the answer in the third place; examine the question, and you will readily perceive whether the answer is likely to be more or less than the term written down; if more, place, the greater of the other terms. in the second place, and towards the left hand, but if less, let the less of the other terms supply the second place in the stating; the remaining term inust be put in the first place.

The first two terms will be of the same kind, and must be seduced to the same denomination, and the third term to the lowest name mentioned in it.

Multiply the second and third terms together, and divide the product by the first, the quotient will be the answer to the question, in the same denomination you left the third number in.

## EXAMPLE.

(2) If one yard of cloth cost 15 s .8 d .-what will 32 yards cost at the same rate?


Ans. 1 yd. : 82 yds. :: 15s. 6d. : £24. 16 s
(3) If a gallon of ale cost 3 d .-what is that per barrel ?

$$
\text { Ans. } 9 s .
$$

(4) If 1 pair of shoes cost 4 s .6 d .-what will 12 dozen come to ${ }^{?}$ Ans. £32: 8s.
(5) If 12 dozen pair of stockings cost £32. 8 s .-what is that per pair ? Ans. 4s. $6 d$.
(6) If 1 yard of cloth cost 15 s . 6d.-what will 32 yards cost at the same rate ? Ares $£ 2 t: 16 s$.
(7) If 32 yards of cloth cost £24. 16 s .-what is the value of one yard ? 15s. 6 d .
(8) If 1 lb . of sugar cost $10 \frac{1}{2} \mathrm{~d}$. -what is the price of one cwt ? £4: $18 s$.
(9) If I give £4. 18 s . for 1 cwt . of sugar-at what rate did I buy it per lb . ?

Ans. $10 \frac{1}{2} \mathrm{~d}$.
(10) If I buy 20 pieces of cloth, each 20 ells, for 12 s .6 d . per ell-what is the value of the whole? Ans. £250.
(11) Bought 20 pieces of Holland, each 20 ells, for $£ 250$. -what is that per ell?

Ans. 12s. 6d.
(12) What will 25 cwt .3 . qrs. 14 lbs . of tobacco come to, at $15 \frac{1}{2} \mathrm{~d}$. per lb ? Ans. £187: 3:3.
(13) I gave £187. 3s. 3d. for 25 cwt .3 qrs. 14 lbs . of tobacco-at what rate did I buy it per lb. ? Ans. $1 \mathrm{~s} .8 \frac{1}{\frac{1}{\prime}}$.
(14) Bought $27 \frac{1}{4}$ yards of muslin, at $6 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$. per yardwhat does it amount to ${ }^{2} \quad$ Ans. $£ 9: 5: 0 \frac{3}{4}$. 2 rem .
(15) Bought 17 cwt. 1 qr .14 lbs . of iron, at $3 \frac{1}{4} \mathrm{~d}$. per lbwhat does it come to ?

Ans £26:7:01.
(16) If coffee be sold for $5 \frac{1}{2} \mathrm{~d}$. per ounce-what must be given for 2 cwt . ?

Ans. £82: 2: 8.
(17) How many yards of cloth may be bought for $£ 21$ 11 s . $1 \frac{1}{2} \mathrm{~d}$. when $3 \frac{1}{2}$ yards cost $£ 2.14 \mathrm{~s}$. 3 d .?

Ans. 27 yards, 3 qrs. 1 nail. 84 rem.
(18) If $3 \frac{1}{2} \mathrm{lbs}$. of Cheshire cheese cost 1 s . 1 d .-what is the cost of 1 cwt .?

Ans. £1: $14: 8$.
(19) If 1 cwt . of Cheshire cheese cost £1. 14s. 8d.-what must I give for $3 \frac{1}{2}$ lbs. ? Ans. $1 s .1 d$.
(20) Bought 1 cwt .24 lbs .8 oz . of old lead, at 9 s . per cwt. -what does it come to ? Ans. $10 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d}$. 896 rem .
(21) If 1 cwt .24 lbs .8 oz . of lead be worth $10 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d}$. $\frac{896}{1752}$-what is that per cwt.? Ans. $9 s$.
(22) If a gentleman's income be $£ 500$ a year, and he spends 19 s . 4d. per day-how much does he lay by at the year's end ?

Ans. £147: 3:4.
(23) If I buy 14 yards of cloth for 10 guineas-how many Flemish ells can I buy for $£ 283.17 \mathrm{~s}$. 6 d . at the same rate?

Ans. 504 Flemish ells, 2 qrs.
(24) If $£ 283.17 \mathrm{~s} .6 \mathrm{~d}$. will buy 504 Flemish ells, 2 quar-ters-what quantity of yards can I have for $£ 10.10 \mathrm{~s}$. ?

Ans. 14 yards
(25) If 504 Flemish ells, 2 qrs. cost $£ 283$. 17 s . 6 d . at what rate must I purchase 14 yards ? Ans. $£ 10: 10$.
(26) If 1 give £1. 1s. 8 d . for 3 lbs . of coffee-what must be given for 29 lbs .4 oz . ?

Ans. $£ 10: 11: 3$.
(27) Bought 29 lbs .4 oz . of coffee for $£ 10.11 \mathrm{~s} .3 \mathrm{~d}$. -what is the value of 3 lbs . ?

Ans. £1:1:8.
(28) If $1 \frac{1}{2} \mathrm{oz}$. of coffee cost $6 \frac{1}{4} \mathrm{~d}$-what will $3 \frac{1}{4} \mathrm{oz}$, cost at the same rate ? Ans. $1 \mathrm{~s} .1 \frac{1}{2} \mathrm{~d}$. 1 rem.
(29) If 1 English ell, 2 qrs. cost 4s. 7 d .-what will $39 \frac{1}{2}$ yards cost at the same rate?

Ans. £5: 3: 51. 5 rem.
(30) If 1 oz . of gold be worth $£ 5.4 \mathrm{~s}$. 2 d .-what is the worth of 1 grain ? Ans. $2 \frac{1}{2} \mathrm{~d} . \quad 200 \mathrm{rem}$.
(31) If 14 yards of broad cloth cost $£ 9.12$ s.-what is the purchase of 75 yards? Ans. £51:8:63. 6 rem.
32) If 27 yards of Holland cost 25.12 s . 6d.-how many ells English can I buy for £100. ? Ans. 384.
(33) If 1 cwt. cost $£ 12.12 \mathrm{~s}$. 6d.-what must I give for 14 cwt .1 qr. 19 lbs. Ans. $£ 182: 0: 11 \frac{1}{2}$. 8 rem.
(34) Bought 7 yards of cloth for I7s. 8d.- what must be given for 5 pieces, each containing $27 \frac{1}{2}$ yards?

Ans. £17:7:01. 1 rem.
(35) If 7 oz . 11 dwts . of guld be worth $£ 85$. -what is the value of 14 lbs .9 oz .12 dwts .16 grs . at the same rate?

$$
\text { Ans. } £ 823: 9: 3 \frac{3}{4} . \quad 552 \text { rem }
$$

(36) A draper bought 420 yards of broad cloth at the rate of $14 \mathrm{~s} .10 \frac{3}{4} \mathrm{~d}$. per ell English-how much did he pay for the whole?
ins. $£ 250: 5 s$.
(37) A gentleman bought a wedge of gold, which weighed 14 lbs .3 oz .8 dwts. for the sum of $£ 514.4 \mathrm{~s}$. -at what rate did he pay for it per ounce?

Ans. £3.
(38) A grocer bought 4 hogsheads of sugar, each weighing neat 6 cwt .2 qrs. 14 lbs . which cost him $£ 2.8 \mathrm{~s} .6 \mathrm{~d}$. per cwt. -what is the value of the four hogsheads?

Ans. £64:5:3.
(39) A draper bought 8 packs of cloth, each containing 4 parcels, each parcel 10 pieces, and each piece 26 yards, and gave after the rate of £4. 16 s . for 6 yards-I desire to know what the 8 packs stood him in ? Ans. £6656.
(40) If 24 lbs . of raisins cost 6 s .6 d .-what will 18 frails cost, eacl weighing neat 3 qrs. 18 lbs .? Ans. £24:17:3.
(41) If 1 oz . of silver be worth 5 s .-what is the price of 14 ingote, each weighing 7 lbs .5 oz .10 dwts. ?

Ans £313:5s.
(42) What is the price of a pack of wool weighing 2 cwt. 1 qr. 19 lbs. at 8 s .6 d . per stone ?

Ans. £8:4:64. 10 rem.
(43) Bought 59 cwt .2 qrs. 24 lbs . of tobacco, at $£ 2.17 \mathrm{~s}$. 4d. per cwt.-what does it come to ?

$$
\text { Ans. } £ 171: 3: 7 \frac{1}{4} .80 \text { rem. }
$$

(44) What is the half-year's rent of 547 acres of land, at 15 s .6 d . per acre per annum ? Ans. £211: 19:3.
(45) Bought 171 tons of lead, at £14. per ton; paid carriage and other incidental charges, £4. 10s.-I reguire the value of the lead, and what it stands me in per lb 9

Ans. £2398: 10s. value. $1 \frac{1}{2} d$. per lb. 4320 rem.
(46) If a pair of stockings cost 10 groats-how many dozen may I buy for £43. 5s. ? Ans. 21 dozen, $7 \frac{1}{2}$ pair.
(47) Bought 27 dozen, 5 lbs . of candles, after the rate of 1 s .5 d , per 3 lbs . -what did they cost me ?

Ans. £7: 15 : 4. 1 rem.
(48) If 1 oz . of fine gold be sold for $£ 3$. 10s.-what do 7 ingots come to, each weighing 3 lb .7 oz .14 dwts. 21 grs. at the same price?

Ans. $£ 1071$ : 14: $5 \frac{1}{6}$.
(49) If my horse stands me in $9 \frac{1}{2} \mathrm{~d}$. per day keeping, what will be the charge of 11 horses for the year ?

$$
\text { Ans. £158: } 18: 6 \frac{1}{2}
$$

(50) A factor bought 86 pieces of stuff, which cost him $£ 517.19 \mathrm{~s} .4 \mathrm{~d}$. at 4 s . 10d. per yard-I demand how many yards there were, and how many ells English in a piece ?

Ans. $2143 \ddagger$ yards. 14 rem.
and 19 ells, 4 quarters, 2 nails in a piece. 64 rem.
(51) A gentleman had an annuity of $£ 896.17 \mathrm{~s}$. per an-num-I desire to know how much he may spend daily, that at the year's end he may lay up 200 guineas and give to the poor quarterly 10 half-sovereigns ?

$$
\text { Ans. £1: } 16: 6 \frac{1}{4} \text {. } 331 \text { rem. }
$$

## RULE OF THREE INVERSE.

Inverse Proportion is when more requires less, and less requires more. More requires less, is when the third term is greater than the first, and requires the fourth term to be less than the second. And less requires more, when the third term is less than the first, and requires the fourth term to be greater than the second.

Rule.-Multiply the first and second terms together and divide the product by the third ; the quoitent will bear such proportion to the second as the first does to the third.

## EXAMPLE.

(1) If 8 men can do a piece of work in 12 days-in how many days san 16 men perform the same?

$$
\begin{aligned}
& \begin{array}{ccccc}
\text { men. days. } & \text { men. days } \\
8 & 12 & 16: 16: 6
\end{array} \\
& 8 \\
& \text { 16) } \overline{96} 6 \text { days. } \\
& 96
\end{aligned}
$$

(2) If 54 men can build a house in 90 days-how many men can do the same in 50 days?
(3) If when a peck of wheat is sold for 2 s . the penny
loaf woighs 8 oz . -how much must it weigh when the peck is worth but 1 s .6 d .?

Ans. $10 \mathrm{oz} .10 \frac{2}{2} d r$.
(4) How many pieces of money of 20 s . value, are equal to 240 pieces of 12 s . each ?

Ans. 144.
(5) How many yards of 3 quarters wide, are equal in measure to 30 yards of 5 quarters wide? Ans. 50.
(6) If I lend my friend $£ 200$, for 12 months-how long ought he to lend me $£ 150$. to requite my kindness ?

Ans. 16 months.
(7) If for 24 s . I have 1200 lbs . carried 36 miles-how many pounds can I have carried 24 miles for the same money?

Ans. 1800 lbs.
(8) If 100 workmen finish a piece of work in 12 dayshow many are sufficient to finish it in 3 days? Ans. 400.
(9) An army besieging a town, in which where 1000 soldiers, with provisions for 3 months-how many soldiers departed, when the provisions lasted them 6 months ?

$$
\text { Ans. } 500 .
$$

(10) If £20. worth of wine be sufficient to serve an ordinary of 100 men, when the tun is sold for $£ 30$.-how many will $£ 20$. worth suffice when the tun is sold but for $£ 24$. ?

Ans. 125 men.
(11) A courier makes a journey in 24 days when the day is but 12 hours long-how many days wlll he be in going the same journey when the days are 16 hours long?

Ans. 18 days.
(12) How much plush is sufficient for a cloak, which has in it 4 yards, of 7 quarters wide, of stuff for the lining; the plush being but 3 quarters wide ?

Ans. $9 \frac{1}{3}$ yards.
(13) If 14 pioneers make a trench in 18 days-how many days will 34 men take to do the same?

Ans. 7 days, 9 hours, 52 min .32 rem
(14) Borrowed of my friend £64. for 8 months, and he had occasion another time to borrow of me for 12 monthshow much must I lend him to requite his former kindness to me ?

Ans. £42: $13: 4$.
(15) A regiment of soldiers, consisting of 1000 men, are to have new coats, each coat to contain $2 \frac{1}{2}$ yards of clotin, 5 quarters wide, and to be lined with shallon of 3 quarters wide-I demand how many yards of shalloon will line them? Ans. 4166 yards, 2 quarters, 2 nails. 2 rem.

## THE DOUBLE RULE OF THREE

Is so called, because it is composed of five numbers given to find a sixth; which, if the proportion is Direct, must bear such proportion to the fourth and fifth, as the third bears to the first and second. But if Inverse, the sixth number must bear such proportion to the fourth and fifth, as the first bears to the second and third. The first three terms are a supposition : the last two a demand.

Rule 1.-Let the principal cause of loss or gain, interest or decrease, action or passion. be put in the first place.
2.-Let that which betokens time, distance of place, and the like, be in the second place, and the remaining one in the third.
3.-Place the other terms under their like in the supposition.
4.-If the blank falls under the third term, multiply the, first and second terms for a divisor, and the other three for a dividend. But,
5.-If the blank falls under the first or second term, multiply the third and fourth terms for a divisor, and the other three for a dividend, and the quotient will be the answer,

Proor.-By two Single Rules of Three.

## EXAMPLES.

(1) If 14 horses eat 56 . bushels of oats in 16 days-how many bushels will be sufficient for 20 horses 24 days?
By two Single Rules. )or in one stating worked thus: hor. bu. da. bu. hor.da.bu.

1. As $14: 56:: 20: 80\} 14 .: 16: 56$ $d a . b u$. da. bu. 20:24
2. As $16: 80:: 24: 120$

$$
56 \times 20 \times 24=120 .
$$

(2) If 8 men in 14 days can mow 112 acres of grass, how many must there be to mow 2000 acres in 10 days?
ac. d. ac. d. m.da. ac.

1. As $112: 14:: 2000: 250$ 8:14:112

$$
\left.\begin{array}{ccc}
\text { 1. As } 112: 14:: & 2000: 250 \\
d a & m . & d a \\
\text { 2. As } 250: 8:: & 10: 200
\end{array}\right)-10: 2000^{8 \times 14 \times 2000}=200
$$

In the Double Rule of Three, there are generally five numbers given to find a sixth; but sometimes examples are met with in this Rule, containing $7,9,11$, or $13, \&$ c. terms, to find another in proportion to them : such questions may be solved by the following method.
Rule.-Put that number in the third place, which is of the same kind as the answer or term required; take the first term of supposition, and its corresponding term of demand, and write them in the first and second place, as in the second Rule for Simple Proportion: in like manner proceed with all the other similar terms of supposition and demand.

Reduce like numbers to the same denomination, and the third term to the lowest name mentioned; multiply all the first terms together for, a general first term, and all the second terms for a general second term.

The question being reduced to three numbers, it may be worked out as in Single Rule of Three.

The terms of supposition are those first mentioned in the example, and include that which is of the same kind as the answer. The terms of demand are those which succeed, they are connected with the answer, and evidently demand or ask what it will be.

## example.

(3) If 12 men build a wall 60 feet long, 4 thick, and 20 in height, in 24 days, working 12 hours per day, what length of wall, 3 feet thick, and 12 high, will 18 men build in 18 days, working 8 hours per day ?

(4) If $£ 100$ in 12 months gain $£ 6$ interest-how much will $£ 75$ in 9 months? Ans. £3: 7: 6.
(5) If a carrier receive $£ 2.2 \mathrm{~s}$. for the carriage of 3 cwt . 150 miles-how much ought he to receive for the carriage of 7 cwt .3 qrs. 14lbs. for 50 miles ?

Ans. £1: $16: 9$.
(6) If a regiment of soldiers, consisting of 136 men, consume 351 quarters of wheat in 108 days-how many quarters of wheat will 11232 soldiers consume in 56 days? Ans. 15031. 864 rem.
(7) If 40 acres of grass be mowed by 8 men in 7 dayshow many acres can be mowed by 24 men in 28 days?

Ans. 480.
(8) If 40s. will pay 8 men for 5 days' work-how much will pay 32 men for 24 days' work? Ans. £38:8.
(9) If $£ 100$ in 12 months gain $£ 6$ interest-what principal will gain £3. 7s. 8d. in 9 months ?
(10) If a regiment consisting of 939 soldiers, Ans. $\mathbf{\text { consume }}$. 351 quarters of wheat in 168 days-how many soldiers will consume 1404 quarters in 56 days?

Ans. 11268.
(11) If in a family consisting of 7 persons, there are drunk out 2 kilderkins of beer in 12 days-how many kilderkins will there be drunk out by another family of 14 persons in 8 days?

Ans. 2 kil .12 gal.
(12) If the carriage of 60 cwt .20 miles, cost $£ 14.10 \mathrm{~s} .-$ what weight can I have carried 30 miles, for $£ 5.8 \mathrm{~s}$. 9 d . at the same rate of carriage ?

Ans. 15 cwt .
(13) If 2 horses eat 8 bushels of oats in 16 days-how many horses will eat 3000 quarters in 24 days?

Ans. 4000.
(14) If $£ 100$ in 12 months gain $£ 7$ interest-what is the interest of $£ 571$. for 6 years?

Ans. £239: 16: 44. 20 rem ,
(15) If I pay 10 s. for the carriage of 2 tons 6 miles-what must I pay for the carriage of 12 tons, 17 cwt . for 17 miles? Ans. $£ 9: 2: 0 \frac{1}{2}$.
(16) If 756 bricks, 14 inches long and 10 broad, will pave a floor-how many brieks would it take 15 inches long and 0 inches abroad? Ans. 784 bricks.

## PRACTICE

Is so called, from the general use thereof by all persons concerned in trade and business.

All questions in this rule are performed by taking aliquot or even parts, by which means many tedious reductions are avoided; the Table of which is as follows :
Of a Pound. Of a Shilling. Of a Ton. |Of a Hundred.


Rule 1.-When the price is less than a penny, divide by the aliquot parts that are in a penny ; then by 12 and 20 , and it will be the answer.
(1) $\frac{1}{4}$ is $\frac{1}{4} 5704 \mathrm{lbs}$. at $\frac{1}{4}$

$$
\begin{array}{ll}
\begin{array}{l}
1 2 \longdiv { 1 4 2 6 } \\
2 \mid 0 \lcm{11 \mid 8} \\
\hline £ \quad 10 \\
\hline 5 \quad 18 \quad 10
\end{array}
\end{array}
$$


(4) 6547 at $\frac{3}{4}$

Ans. £20 $92 \ddagger$
(5) 4573 at $\frac{3}{4}$

Ans. £14 $59{ }^{3}$

Rule 2.-When the price is less than a shilling, take the aliquot part or parts that are in a shilling, add them together, and divide by 20 , as before.

| ${ }^{12}$ | - | A25 4 |
| :---: | :---: | :---: |
| $2 \mid 0) 62] 8 \quad 11$ | Ans. £339 $10 \quad 7 \frac{1}{2}$ | Ans. $£ 3749$. |
| $£ \overline{31811}$ | $\begin{array}{\|lll} \text { (4) } 6254 \text { at } 13 \\ \text { Ans. } £ 45 & 12 & 0 \frac{1}{2} \end{array}$ | (y) 2715 at 3 d . <br> Ans. £38 18 |
| (2) 1 is $\frac{1}{12} 3751$ at $1 \frac{1}{4}$ | $\begin{aligned} & \text { (5) } 2351 \text { at 2d. } \\ & \text { Ans. £19 11 } 10 \end{aligned}$ | (10) 7062 at $3 \frac{1}{4} \mathrm{~d}$. <br> Ans. £95 12 71 |
| $\begin{aligned} & 2 \left\lvert\, 0 \lcm{3990} 8 \frac{83}{4}\right. \\ & £ 19 \quad 108 \end{aligned}$ | $\left\|\begin{array}{c} \text { (6) } 7210 \text { at } 2 \frac{1}{4} \mathrm{~d} . \\ \text { Ans. } \& 67 \quad 11 \\ 10 \frac{1}{2} \end{array}\right\|$ | (11) 2147 at $3 \frac{1}{2} \mathrm{~d}$. <br> Ans. $£ 316$ |
|  | (7) 2710 at $2 \frac{1}{2} \mathrm{~d}$. <br> Ans. £28 47 | (I2) 7000 at 33 d . <br> Ans. £109 76 |


| 13) 3257 at 4 d . <br> Ans. 25458 | $\begin{aligned} & \text { (24) } 2708 \text { at } 6 \frac{3}{2} \mathrm{~d} . \\ & \text { Ans. } £ 76 \quad 3 \end{aligned}$ | (35) 7924 at $9 \frac{1}{2} \mathrm{~d}$. Ans. $£ 31313$ 』 |
| :---: | :---: | :---: |
| ) 2056 at $4 \frac{1}{4} \mathrm{~d}$. | (25) 3271 at 7 d . | (36) 2150 at 938 |
| Ans. £36 82 | Ans. £95 8 | Ans. $£ 87610 \frac{1}{2}$ |
| (15) 3752 at $4 \frac{1}{2} \mathrm{~d}$. | (26) 3254 at $7 \frac{1}{4} \mathrm{~d}$. | (37) 6825 at 10 d . Ans. £263 1010 |
| 2107 at 4393 d . | (27) 2701 at $7 \frac{1}{2} \mathrm{~d}$. | (38) 5724 at $10 \frac{1}{4} \mathrm{~d}$. |
| Ans. $£ 411401$ | Ans. $£ 8481 \frac{1}{2}$ | Ans. $£ 24493$ |
| (17) 3210 at 5 d . | (28) 3714 at $73 \frac{3}{4}$ d. | (39) 6327 at $10 \frac{1}{4} \mathrm{~d}$. |
| Ans. £66 176 | Ans. $£ 119187 \frac{1}{2}$ | Ans. £270 $\mathbf{4}^{3}$ |
| 18) 2715 at $5 \frac{1}{4} \mathrm{~d}$. | (29) 2710 at 8 d . | (40) 3254 at $10 \frac{1}{2} \mathrm{~d}$. |
| Ans. £59 7 9 ${ }^{\frac{3}{4}}$ | Ans. £90 68 | Ans. £142 73 |
| 9) 3120 at $5 \frac{1}{2} \mathrm{~d}$. | (30) 3514 at $8 \frac{1}{4} \mathrm{~d}$. | (41) 7291 at 103 d . |
| Ans. £71 100 | Ans. £120 $1510 \frac{1}{2}$ | Ans. £326 1161 |
| (20) 7521 at 533 d . | (31) 2759 at $8 \frac{1}{2} \mathrm{~d}$. | (42) 3256 at 11 d . |
| Ans. £180 393 | Ans. $£ 07143 \frac{1}{2}$ | Ans. £149 |
| 1) 3271 at 6 d . | (32) 9872 at $8 \frac{3}{4} \mathrm{~d}$. | (43) 7254 at $11 \frac{1}{4} \mathrm{~d}$. |
| Ans. £81 156 | Ans. £359 184 | Ang. £340 0 T $\frac{1}{2}$ |
| (22) 7914 at $6 \frac{1}{4} \mathrm{~d}$. | (33) 5272 at 9 d . | (44) 3754 at $11 \frac{1}{2} \mathrm{~d}$. |
| Ans. $£ 206110 \frac{1}{2}$ | Ans. £197 140 | Ans. £179 17 ' |
| 3) 3250 at $6 \frac{1}{2} \mathrm{~d}$. | (34) 6325 at 914 d . | (45) 7972 at $11 \frac{3}{4} \mathrm{~d}$ |
| Ans. £88 05 | Ans. £243 1564 | Ans. £390 511 |

Rule 3.-When the price is more than 1 shilling and less than 2, take the part or parts, with so much of the given price as is more than 1 shilling, which add to the given quantity, and divide by 20 , and it will give the answer.

$\begin{array}{r}\frac{1}{2} \frac{1}{24} 3715 \text { at } \\ 1549 \frac{1}{2} \\ 20 \lcm{386 \left\lvert\, 99 \frac{1}{2}\right.} \\ \hline 19399 \frac{1}{2}\end{array}$
$\left\lvert\, \begin{aligned} & \text { (3) } 2712 \text { at } 123 \mathrm{~d} . \\ & \text { Ans. } £ 144 \quad 1 \quad 6 \\ & \text { (4) } 2107 \text { at } 1 \mathrm{~s} . \quad \text { Jd. } \\ & \text { Ans. } £ 11427\end{aligned}\right.$


(6) 2790 at $1 \mathrm{sc} .1 \frac{1}{\mathrm{~d}}$.(21) 7250 at 18. $5 \frac{7 d}{}$. (36) 2104 at 18. 9 d . Ans. £156 189 Ans. $£ 521110 \frac{1}{2}$ Ans. $£ 18420$
(7) 7904 at $1 \mathrm{~s} .1 \frac{1}{4} \mathrm{~d}$.(22) 2597 at $1 \mathrm{~s} .5 \frac{1}{2} \mathrm{~d}$.( 37 ) 2571 at $1 \mathrm{~s} .9 \frac{1}{4} \mathrm{~d}$. Ans. £452 168 Ans. £189 7 3t Ans. £227 129 97
8) 3750 at $1 \mathrm{s}$.2 d . Ans. £218 150
9) 3291 at 1 s . $2 \frac{2}{4} \mathrm{~d}$. Ans. $£ 19580_{4}^{3}$
(10) 9254 at $1 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d}$. Ans. £559 111
(11) 7250 at 1 s .2 ąd. Ans. $£ 445115 \frac{1}{2}$
12) 7591 at 1 s .3 d . Ans. $£ 47489$
(13) $63 \% 5$ at $1 \mathrm{~s} .3 \frac{1}{4} \mathrm{~d}$. Ans. $£ 401180$
(14) 5271 at $1 \mathrm{s}$. . $3 \frac{1}{2} \mathrm{~d}$. Ans. $£ 3408$ 4 $\frac{1}{2}$
(15) 3254 at 1 s . $3 \frac{3}{4} \mathrm{~d}$. Ans. £213 $1010 \frac{1}{2}$ (16) 2915 at 1 s .4 d . Ans. £194 68
(17) 3270 at 1 s .44 d . Ans. £221 8 1t
(18) 7059 at $1 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. Ans. £485 6 1立
119) 2750 at $1 \mathrm{~s} .4 \frac{4}{2} \mathrm{~d}$. Ans ${ }^{[191918} 18$ 6
(23) 7210 at $1 \mathrm{~s} .5 \frac{3}{4} \mathrm{~d}$. (38) 2104 at $1 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$. Ans. £533 $49 \frac{1}{2}$ Ans. £188 98 24) 7524 at 1 s .6 d . (89) 7506 at $1 \mathrm{s} .9 \frac{3}{4} \mathrm{~d}$. Ans. £564 60 Ans. $£ 68047 \frac{1}{2}$
(25) 7103 at $1 \mathrm{s} ..6 \frac{1}{2} \mathrm{~d}$. (40) 1071 at 1 s .10 d . Ans. £540 $25 \frac{3}{4}$ Ans. £98 36
(26) 3254 at $1 \mathrm{~s} .6 \frac{1}{2} \mathrm{~d}$. (41)5200 at $1 \mathrm{~s} .10 \frac{1}{4} \mathrm{~d}$. Ans. £250 167 Ans. £482 18
(27) 7925 at $1 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d}$. ( 42 )2117at $1 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. Ans. £619 $29 \frac{3}{4}$ Ans. £198 9 4 $\frac{1}{2}$
(28) 9271 at 1 s 7 d .

Ans. £733 191
(29) 7210 at 1 s . $7 \frac{1}{4} \mathrm{~b}$. Ans. $£ 57860 \frac{1}{2}$ (30) 2310 at $1 \mathrm{~s} 7 \frac{1}{2} \mathrm{~d}$. (45)2105at $1 \mathrm{~s} .11 \frac{1}{4} \mathrm{~d}$ Ans. £187 139 Ans. £203 1854
(31) 2504 at 1s. $7 \frac{3}{4} \mathrm{~d}$.(46)1006at 1s. $11 \frac{1}{2} \mathrm{~d}$ Ans. £206 12 Ans. £98 101 (32) 1752 at 1 s .8 d . (47)2705 at Is. $11 \frac{3}{4} \mathrm{~d}$. Ans. £14600 Ans. £267 $13.7 \frac{3}{3}$ (33) 2905 at $1 \mathrm{~s} .8 \frac{\mathrm{~d}}{}$. (48) $5000 \mathrm{at} 1 \mathrm{~s} .11 \frac{1}{2} \mathrm{~d}$. Ans. £245 2 2ì Ans. £489 118 (34) 7104 at $1 \mathrm{~s} .8 \frac{1}{2} \mathrm{~d}$. (49)4000at $1 \mathrm{~s} .11 \frac{3}{4} \mathrm{~d}$. Ans. £606 16 of Ans. £395 168

Rule 4．－When the price consists of any even number of shillings under 20 ，multiply the given quantity by half the price，doubling the first figure of the product for shillings， and the rest of the product will be pounds．

此等 When the price is 10 s ．take half of the quantity，and if any remain，it is 10 s ．

| 2750 at 2s． | （4） 1572 at 8 s ． | （7） 5271 at 14 s ． |
| :---: | :---: | :---: |
| Ans．£275 | 0 Ans．£628 160 | Ans，£3689 140 |
| 2） 3254 at 4 s ． | （5） 2102 at 10 s ． | （8） 3123 at 16 s ． |
| Ans．$£ 65016$ | 0 Ans．£1051 00 | Ans．£2498 80 |
| 2710 at 6 s ． | （6） 2101 at 12 s ． | （9） 1621 at $\rfloor 8 \mathrm{~s}$ |
| Ans．£813 | 0 Ans £1260 120 | Ans．$£ 145818$ |

Rule 5．－When the price consists of odd shillings，mul－ tiply the given quantity by the price，and divide by 20 ；the product will be the answer．

皆 if any remain it is 5 s ．


Rule 6．－When the price is shillings and pence， they are the aliquot parts of a pound，divide by the ali parts，which will give the answer at once；but if they not aliquot parts，then multiply the quantity by the shil－ lings，and take parts for the rest，add them together，and divide by 20 ．

(10) 2547 at $7 \mathrm{~s} .3 \frac{1}{2} \mathrm{~d}$. Ans. £928 $11 \quad 10 \frac{1}{2}$
(11) 3271 at $5 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$. Ans. $£ 94746 \frac{1}{2}$
(12) 2103 at $15 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$. Ans. £1616 13 7 7
(18) 7152 at 17 s .63 d . Ans. $£ 628070$
(14) 2510 at 14 s .7 f d . Ans. £1832 16 5 $\frac{1}{2}$
15) 3715 at $9 \mathrm{~s} .4 \frac{1}{2} \mathrm{~d}$.

Ans. $£ 174181 \frac{1}{2}$
(16) 2572 at $13 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. Ans £.752 36
(17) 7251 at $14 \mathrm{~s} .8 \frac{1}{4} \mathrm{~d}$.

Ans. $£ 53241903$
(18) 3210 at $15 \mathrm{~s} .7 \frac{3}{4} \mathrm{~d}$.

Ans. £2511 $31 \frac{1}{2}$
9271 at $19 \mathrm{~s} .2 \frac{1}{2} \mathrm{~d}$.
Ans. £2602 147
(20) 5746 at $19 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. Ans. £5688 53

Rule 7.-1st. When the price is pounds and shillings, multiply the quantity by the pounds, and proceed with the shillings, if they are even, as in the 4th rule; if odd, take the aliquot parts, add them together, and the sum will be the answer.

2ndly. When the price is pounds, shillings, and pence, and the shilling and pence are the aliquot parts of a pound, multiply the quantity by the pounds, and take parts for the rest.

3rdly. When the price is pounds, shillings, pence, and farthings, and the shillings and pence not the aliquot parts of a pound, reduce the pounds and shillings into shillings, multiply the quantity by the shillings, take parts for the rest, add them together, and divide by 20.

When the given quantity is no more than three figures, proceed as in Compound Muitinlication.


Rule 8.-When the price and quantity given are of several denominations, multiply the price by the integers, and take parts of the integers for the rest.
(1) At $£ 3.17 \mathrm{~s} .6 \mathrm{~d}$. per cwt .-what is the value of 25 cwt . 2 qrs. 14 lbs . of tobacco?

(2) At £1. 4s. 9d. per cwt.—what will $17 \mathrm{cwt} .1 \mathrm{qr} 17 lbs.$. of cheese come to ?

Ans. $£ 21: 10: 8$.
(3) Sold 85 cwt .1 qr. 10 lbs . of cheese, at $£ 1.7 \mathrm{~s} .8 \mathrm{~d}$. per cwt. What does it come to ? Ans. £118:1:01
(4) Hops at £4. 5s. 8d. per cwt.-what must be given for 72 cwt. 1 qr. 18 lbs.?

Ans. £310: 3:2.
(5) At £1. 3s. 4d. per cwt.-what is the value of 27 cwt. 2 qrs. 15 lbs. of Malaga raisins ?

Ans. $\mathbf{\text { £ } 2 9 : 9 : 6 1 .}$
(6) Bought 78 cwt .3 qr .12 lbs . of currants, at $£ 2.17 \mathrm{~s} .9 \mathrm{~d}$. per cwt.-what did I give for the whole?

Ans. 2227 : 14.
(7) Sold 56 cwt .1 qr. 17 lbs . of sugar, at $£ 2.15 \mathrm{~s}$. Od. per cwt.-what does it come to ?

Ans. $1157: 4$ : $4 \frac{1}{4}$.
(8) Tobacco at £3. 17s. 10d. per cwt.-what is the worth of 97 cwt. 15 lbs . ?

Ans. £378: 0:3.
(9) At £4. 14s. 6d. per cwt.-what is the value of 37 cwt . 2 qrs. 13 lbs . of double-refined sugar ?

Ans. $£ 177$ : $14: 8 \frac{1}{2}$.
(10) Bought sugar at £3. 14s. 6d. per cwt.-what did I give for 15 cwt .1 qr .10 lbs ?

Ans. £57: 2 : 9.
(11) At £4. 15 s .4 d . per cwt.-the value of 172 cwt .3 qrs . 12 lbs . of tobacco is required ? Ans, £823: 19:04.
(12) Soap at $£ 3.11 \mathrm{~s} .6 \mathrm{~d}$. per cwt.-what is the value of 53 cwt .17 lbs ? Ans. 2 190:0:4.

## MENTAL ARITHMETIC.

When the price is less than one shilling, calculate for the given number of yards, gallons, lbs., \&c. at 1 penny, and multiply by the given price. When fartiongs occur, add $\ddagger$ of what it comes to at a penny, for a half-penny add one half, and for three farthings three quarters.

When quarters, halves, \&c. occur in the quantity take $\frac{1}{2} \mathrm{~d}$. for half a yard, $\frac{3}{4} \mathrm{~d}$. for three quarters, \&c.

> EXAMPLES.

1) What will 84 lbs . cost at 7 d . per lb. ?

84 at 1 penny equal to 7 s .

(2) What will 120 yards come to at 11d. per yard?

$$
10 \text { s. at } 1 \text { penny. }
$$

$$
11
$$

$$
\overline{25 \quad 10} \text { Ans. }
$$

(3) What will $126 \frac{1}{4} \mathrm{oz}$. cost at 7 d . per oz. ?

$$
10 \mathrm{~s} .6 \frac{1}{4} \mathrm{~d} \text {. }
$$

7
$£ 3 \quad 13 \quad 7 \frac{3}{4}$ Ans.
(4) What will 52 yards come at $6 \frac{1}{2}$ d. per yard ?

$$
\text { 4s. 4d. Here in multiplying by } 6 \text {, }
$$ $6 \frac{1}{2}$ one half of 4 s .4 d . is taken in.

$2 \overline{2} 8$ Ans.
(5) What will 77 lbs . cost at $8 \frac{1}{2} \mathrm{~d}$. per lb. ?

6s. 5 d .

6) What will $126 \$$ gallons cost at 11d. por gallon? $10 \mathrm{~s} .6 \frac{1}{4} \mathrm{~d}$.

11
$\$ 5 \longdiv { 1 5 \quad 8 \frac { 3 } { 4 } }$ Ans.
(7) What will 960 gallons come to at $10 \frac{\mathrm{y}}{\mathrm{d}}$. per gallon ? $£ 4$

$$
\stackrel{10 \frac{1}{8}}{240 \quad 10} \mathrm{Ans.}
$$

When the quantity is an even number of dozens, take the price in pence as shillings, (because 12 articles at 1 penny cost 1 shilling,) and multiply by the number of dozens in the quantity. Add 3d. for 1 farthing, 6d. for a half-penny, \&c.

## EXAMPLES.

(8) What will 144 yards cost at $9 \frac{1}{2} \mathrm{~d}$. per yard ?

The price taken as shillings $=9 \mathrm{~s} .6 \mathrm{~d}$.

$$
\begin{aligned}
& 12 \mathrm{doz} . \\
& \mathrm{Ans} .
\end{aligned}
$$

(9) What will 78 lbs . come to at 8 d . per lb .?

8s. 3d. $\frac{1}{2}$ of 8s. 3d. taken in

(10) What wiii 80 yards cost at $11 \frac{3}{4} \mathrm{~d}$. per yard?

80 yards at 1s..........\&4 0 s.
80 farthings deducted

| 18 |
| ---: |
| $\boxed{〔 318} 4$ |

(11) What will 100 ells come to at 11 d . per ell?

100 ellsat 1s..............£5 Os.
100 pence deducted

$$
\begin{array}{r}
84 \\
\frac{84}{} 118
\end{array} \text { Ans. }
$$

To find the value of 100 articles having the price of one given.
Rule. - For every farthing take as many pence, and twice as many shillings.

## EXAMPLES.

(12) What will 100 buttons cost at $2 \frac{1}{2} \mathrm{~d}$. each?

$$
2 \frac{1}{2}=\text { ro-farthings. }
$$

As many pence............ \&0 os. lod.
Twice as many shillings

(13) What will 100 lbs. cost at $5 \frac{1}{4} \mathrm{~d}$. per lb. ?

1 s .9 d .

| 2 | 2 | 0 |
| ---: | ---: | ---: |
| $£ 2$ | 3 | 9 |
| Ans. |  |  |

(14) What will 100 doz . of pens cost at $11 \frac{1}{2} \mathrm{~d}$. per doz.? 3 s .10 d .

| 4 | 12 | 0 |
| :---: | :---: | :---: |
| $£ 4$ | 15 | 10 | Ans.

By taking farthings as pence the value is increased 4 times; and by taking two shillings for every farthing, it is increased 96 times, and $96+4=100$.

To find what one lb . will come to any price per ounce
Rule.-Reduce the price into farthings, consider them as shillings, and divide by 3 .

## EXAMPLES.

(15) What will 1 lb . of coffee cost at $8 \frac{1}{4} \mathrm{~d}$. per oz.?

$$
8 \frac{1}{4} \mathrm{~d} .=\frac{33 \mathrm{far}}{3}=11 \mathrm{~s} . \text { Ans }
$$

(16) What will 1 lb . of tea cost at $7 \frac{3}{4} \mathrm{~d}$. per ounce?
3) 31 10s. 4d. Ans.

48 farthings make 1 shilling, and 16 oz . make 1 lb .-hence $48 \div 16=3$ divisor.

To find the value of an ounce when the price per lb . is given.

Rule.-Take the shillings as farthings and multiply by 3 .

## EXAMPLE

(17) What must be given for 1 ounce, if 1 lb . cost 7 s .6 d . $7 \frac{1}{2}$ farthings.

$$
\frac{3}{22 \frac{1}{2}=5 \frac{1}{2}-\frac{1}{2} \mathrm{~d} . \text { Ans. }}
$$

To find what one cwt. will come to at any number of pence per lb.

Rule.--Multiply 9 s. 4d. by the number of pence in the price, because 9 s .4 d . are equal to 112 d . or ewt. at 1 penny perlb.

## EXAMPLES.

(18) What will 1 cwt . cost at $9 \frac{1}{2} \mathrm{~d}$. per lb . ?

9 s .4 d .
$\begin{array}{ll} & 9 \frac{1}{2} \\ & \text { Ans. }\end{array}$
(19) What will 1 cwt . cost at $10 \frac{1}{4}$ d per lb. ?

$$
9 \mathrm{~s} . \quad 4 \mathrm{~d} .
$$



When the price is more than one shilling, find the amount at a shilling, and multiply by the price; should pence occur take aliquot parts; if they be not aliquot parts, proceed as in the rule for pence, and add to the product.

## EXAMPLES.

(20) What will 88 yards come to at 1 s .3 d . per yard ?
$\left.3 \mathrm{~d} .=\frac{1}{4}\right) £ 4$ 8s. at 1 shilling.

$$
\frac{1}{£ 5} \frac{2}{10} \text { Ans. }
$$

(21) What will 4000 ells cost at 1s. 2d. per ell.?
$£ 200$

| $33 \quad 6 \quad 8$ |
| ---: | ---: |
| 233 |

(22) What will 118 lbs . come to at $16 \frac{1}{2} \mathrm{~d}$ per lb .?

(23) What will 64 yds. of cloth cost at 1 s .113 d . per yd £6 8s. at 2 s . per yard.
64 farthings deducted $1 \quad 4$
$\begin{array}{lll}£ 6 & 6 & 8\end{array}$ Ans.
(24) What will 108 cwt . cost at 3s. $11 \frac{1}{2} \mathrm{~d}$. per cwt. ? £21 12s.

|  | 4 | 6 | deducted |
| :--- | :--- | :--- | :--- |
| £21 | 7 | 6 | Ans. |

Should the shillings and pence be an even part of a pound, divide the quantity by the even part for the answer.

## EXAMPLES.

(25) What will 84 cwt cost at 6 s .8 d . per cwt. ?

$$
\text { 6s. 8d. }=\frac{\left.\frac{1}{3}\right) 84}{£ 28} \text { Ans. }
$$

(26) What will 76 lbs . cost at 2s. 6d. per lb. ?

$$
2 \mathrm{~s} .6 \mathrm{~d} .=\frac{\left.\frac{1}{8}\right) 76}{\frac{£ 910 \text { Ans. }}{} \text { A9 }}
$$

When the quantity is 240 , the pence in the price taken as pounds will be the answer, because 240d. make £1.: the same may be done with any number divisible by 240 .

## EXAMPLES.

(27) What will 240 cwt . of coals cost at $7 \frac{1}{4} \mathrm{~d}$. per cwt. ? $7 \frac{1}{d} \mathrm{~d} .=£ 75 \mathrm{~s}$. Ans. $\quad \frac{1}{4}=5 \mathrm{~s}$.
(28) What will 240 tons of steel cost at 1 s . $5 \frac{1}{2} \mathrm{~d}$. per ton ? £17. 10s. Ans.
(29) What will 240 yards of cloth come to at $9 \mathrm{~s} .7 \frac{1}{2} \mathrm{~d}$. per yard?

$$
£ 115 \text { 10s. Ans. }
$$

(30) What will 120 lbs . of tea cost at $3 \mathrm{~s} .9 \frac{1}{2} \mathrm{~d}$. per lb .?

$$
\begin{array}{ll}
\left.\frac{1}{2}\right) £ 45 & 10 \mathrm{~s} . \\
\hline £ 22 & 15
\end{array}
$$

(31) What will 60 ewt. of coals cost at $9 \frac{1}{4} \mathrm{~d}$. per cwt. ?

$$
\begin{array}{ll}
\left.\frac{1}{4}\right) £ 9 & 5 \mathrm{~s} . \\
£ 2 & 6 \\
\hline
\end{array}
$$

(22) What will 480 lbs . of sugar cost at $7 \frac{1}{2} \mathrm{~d}$. per lb .? £7 10 s.

(33) What will 960 lbs . of tea come to at 4 s .6 d . per lb .?

$$
\begin{gathered}
£ 54 \\
\begin{array}{c}
4 \\
£ 216
\end{array} \text { Ans. }
\end{gathered}
$$

When the price consists of pounds, shillings, pence, and farthings.

Rule.-Find the amount at $£ 1$, and multiply by the number of pounds in the price; calculate for the shillings and pence as in the preceding rules, and add the whole together.

## examples.

(34) What will 168 gallons of rum cost at £1.11s. 3d. per gallon?

$$
\begin{aligned}
& £ 168 \text { at } £ 1 . \text { per gal. } \\
& 84 \text { at } 10 \mathrm{~s} \text { do. } \\
& 10 \quad 10 \text { at } 1 \mathrm{~s} . ~ 3 \mathrm{~d} \text {. do. } \\
& £ 262 \quad 10 \text { Ans. }
\end{aligned}
$$

(35) What will 360 cwt . of cheese cost at $£ 3.19 \mathrm{~s} .6 \mathrm{~d}$. per cwt. ?

$$
\begin{aligned}
& £ 1440 \text { at £4 per cwt. } \\
& 9 \text { deducted. } \\
& \begin{array}{l}
£ 1431 \\
\text { Ans. }
\end{array}
\end{aligned}
$$

To find what any number of cwts. qrs. and lbs. will come to at a given price per lb .

Rule.- Write down the cwts., and to the right hand of these place all the lbs. contained in the qrs. and lbs. together, to this last number, add 12 lbs . for each ewt. which will reduce the whole to pounds, then multiply by the price for the answer.

## EXAMPLES.

(36) What will 3 cwt .1 qr .16 lbs . cost at 1 s .3 d . per lb . ? 344 lbs.
36
3d. $\overline{=1}) 380$ at 1 s.
95
$\overline{475 \mathrm{~s} .}=£ 23.15 \mathrm{~s}$. Ans.
(37) What will 7 cwt. 2 qrs. 24 lbs. of steel cost at 2 s .6 d . per lb.?

$$
\text { s. } 6 \mathrm{~d} .=\frac{\begin{array}{r}
\frac{1}{8} \\
£ 84 \\
£ 108 \\
84
\end{array}}{} \begin{aligned}
& 780 \mathrm{lbs} . \\
& \text { Ans. }
\end{aligned}
$$

12 lbs. are added for every cwt. which is the difference between a numeral hundred (100) and 112 lbs.

The method for calculating tons, cwts., qrs. and lbs. commonly called the Iron Rule.

Rule.-Consider the tons as pounds, and call the cwts. shillings, then every qr. will equal 3 d . and every lb . equal nearly $\frac{1}{9}$ of a penny; to three times the qrs. add $\frac{1}{9}$ of the lbs. for pence, put down the tons and cwts as pounds and shillings, and the quantity is calculated at $£ 1$. per ton, or 1 s. per cwt., then multiply by the price for the answer.

## EXAMPLES.

(38) What will 431 tons, 13 cwt. 1 qr. 10 lbs . of iron cost at $£ 3.6 \mathrm{~d} .8 \mathrm{~d}$. per ton.

$$
£ 431 \quad 13 \mathrm{~s} .4 \mathrm{~d} .
$$

$3 \frac{1}{3}=\mathfrak{L} .6 \mathrm{~s} .8 \mathrm{~d}$.

| 1205 | 6 | $\bigcirc$ |
| :---: | :---: | :---: |
| 143 | 17 | 91 |
| $£ 1438$ | 17 | $9{ }^{\frac{1}{4}}$ |

(39) What will 696 tons, 15 cwt. 1 ar. l2lbs. of iron come to at 7 s . 6 d per cwt. ?

| $£ 696$ | 15 s. | $4 \frac{1}{4} \mathrm{~d}$ |
| ---: | ---: | ---: |
|  |  | $7 \frac{1}{2} \mathrm{~d}$ |
| 4877 | 7 | $5 \frac{3}{4}$ |
| 348 | 7 | 8 |
| 52255 | 15 | $1 \frac{3}{4}$ |

QUESTIONS TO BE ANSWERED MENTALLY.
(1 What will 240 cwt . cost at $7 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d}$. per cwt. ?
Ans. $£ 00: 15 s$
(2) What will 99 yards of cloth cost at 6 s .8 d . per yard ? Ans. £33.
(3) What will 1800 lbs . of coffee cost at 1 s .8 d . per lb . ?

Ans. £150.
(4) What will 72 oz . of tea come to at $8 \frac{1}{2} \mathrm{~d}$. per oz. ?

Ans. £2: 11 s .
(5) What will 48 lbs . of sugar cost at $9 \frac{1}{2} \mathrm{~d}$. per lb. ?

Ans. £1 : $18 s$.
(6) What will 56 lbs . of coffee cost at 2 s .6 d . per lb. ?

> Ans. £7.
(7) What wiil 36 gross of buttons cost at $11 \frac{3}{4} \mathrm{~d}$. per gross? Ans. £l : 15 : 3.
(8) What will 64 yards of calico come to at 1 s . $1 \frac{1}{2} \mathrm{~d}$. per yard? Ans. £3: 12 s .
(9) What will 1600 yards of cloth cost at £1. 2s. 6d. per yard?

Ans. £1800.
(10) What will 1200 ells come to at 5 s. per ell ?

Ans. £300.
(11) What will 240 cwt . of lead cost at $5 \mathrm{~s} .9 \frac{3}{4} \mathrm{~d}$. per cwt. ?

Ans. £69: 15 s .
(12) What will 366 cwt . of cheese cost at 2 s .6 d . per cwt. ? Ans. £45: 15s.
(13) What will 240 books cost at $7 \mathrm{~s} .6 \frac{1}{4} \mathrm{~d}$. each ?

Ans. $£ 90: 5 s$.
(14) What will 216 ells of cambric cost at 3 s .4 d . per ell ?

Ans. £36.
(15) What will 3 cwt. of salt at 1 d . per lb.?

Ans. £1 : 8s.
(16) What will 108 yards of calico come to at 1 s .8 d . per yard? Ans. £9.
(17) What will 240 lbs. of tea cost at $4 \mathrm{~s} .10 \frac{3}{4} \mathrm{~d}$. per lb. ?

Ans. £58: 15s.
(18) What will 600 firkins of butter cost at $£ 3.6 \mathrm{~s} .8 \mathrm{~d}$. per firkin? £2000.
(19) What will 144 oz . of pepper cost at $5 \frac{1}{2} \mathrm{~d}$. per oz. ?

Ans. $£ 3: 6 s$.
(20) What will 240 yards of cloth cost at 9 s. $6 \frac{3}{4} \mathrm{~d}$ per yard?

Ans. £114: 15 s .
(21) What will 900 gross of pens cost at 4 s . per gross?

Ans. $£ 180$.
(22) What will 48 cwt . of lead come to at 19 s . $11 \frac{3}{2} \mathrm{~d}$. per cwt. ? Ans. £47: $19 s$.
(23) What will 240 cwt . of raisins cost at 8s. $10 \frac{3}{4} \mathrm{~d}$. per cwt. ${ }^{\text {? }}$

Aus. £106 15 s .
(24) What will 99 fother of lead cost at £1. 6s. 8d. per fother?

Ans. $£ 132$.
As it would require numerous examples (like the above) to exercise sufficiently the thinking faculties of the pupil, the teacher may ask them from a Ready-Reckoner, or from memory, as he may deem best. To multiply them here would increase the size of the present work beyond its prescribed limits.

## TARE AND 'TRET.

Tare is an allowance made to the buyer of any commodity, for the weight of the box, cask, \&c. containing the same.

Tret is an allowance of 4 lbs . in every 104 lbs . or 1 lb . in 26 lbs . on account of waste, dust, \&c.

Cloff is an allowance of 2 lbs . in e very 3 cwt ., or 1 lb . in every 168 lbs. to make the weight hold out when retailed.

Gross Weight is the whole weight of any sort of goods, and that which contains it.

Suttle $W_{\text {eight }}$ is when part of the allowance is deducted from the gross.

Neat Weight is the pure weight, when all allowances are deducted.

Rule 1.-When the rate is at so much per bag, barrel, \&c. multiply the number of bags, barrels, \&c. by the tare, and subtract the product from the gross : the remainder is neat.

To reduce pounds into gallons, multiply by 2 , and divide by 15.
(1) In 7 frails of raisins, each weighing 5 cwt. 2 qrs. 5 lbs . gross, tare at 23 lbs. per frail-how much neat weight? Ans. 37 cwt .1 qr. 14 lbs .

(2) In 241 barrels of figs, each 3 qrs. 19 lbs . gross, tare 10 lbs. per barrel-how many pounds neat ?

Ans. 22413.
(3) What is the neat weight of 25 hogsheads of tobacco, weighing gross 163 cwt . 2 qrs. 15 lbs . tare 100 lbs . per hogshead? Aus. 141 cwt .1 qr .7 lbs .
(4) In 16 bags of pepper, each 85 lbs .4 oz . gross, tare 3 lbs. 5 oz. per bag-how many pounds neat ?

Ans. 1311.
Rule 2.-When the tare is at so much in the whole gross weight, subtract the given tare from the gross, the remainder is neat.
(2) What is the neat weight of 5 hogsheads of tobacco, weighing gross 75 cwt .1 qr .14 lbs .-tare in the whole 752 lbs. ?
(6) In 75 barrels of figs, each 2 qrs. 27 lbs. gross; tare in the whole 597 lbs .-how much neat weight ?

Ans. 50 cwt . $\mathrm{l} q$.
Rule 3.-When the tare is at so much per cwt., divide the gross weight by the aliquot parts of a ewt. wheh subrract from the gross, the remainder is neat.
Note. -711 ss . is $\frac{7}{1} \frac{1}{6} ; 8 \mathrm{lbs}$. is $\frac{\mathrm{T}}{14} \mathrm{lb} .14 \mathrm{lbs}$. is $\frac{7}{8} ; 16 \mathrm{lbs}$ is $\frac{3}{7}$.
( 7 ) What is the neat weight of 18 butts of currants, each 8 cwt . 2 qrs. 5 lbs ; tare at 14 lbs . per cwt . ?

| $\begin{array}{ll} 2 & 5 \\ 9 & 92=18 \end{array}$ |  |
| :---: | :---: |
| 76 | 317 |
|  | 2 |
| $\left.14=\frac{1}{8}\right) 153$ | 36 |
| 19 | 025 |
| Ans. 134 | $28 \frac{3}{4}$ |

(8) In 25 barrels of figs, each 2 ewt. 1 qr. gross, tare 16 lbs. per cwt.-how much neat weight ?

Ans. 48 cwt .24 lbs .
(9) What is the neat weight of 9 hogsheads of nutmegs, each weighing gross 8 cwt. 3 qrs. 14 lbs ; tare 16 lbs . per ewt. ? Ans. $68 c w t .1 q r .24 \mathrm{lbs}$.
(10) What is the neat weight of 12 casks of argol, gross 84 cwt. 2 qrs. 14 lbs. per cwt. ?

Ans. 74 cwt .5$\} \mathrm{lls}$.
Rule 4.-When tret is allowed with tare, divide the pounds suttle by 26 , the quotient is the tret, which subtract from the suttle, the remainder is neat.
(11) In 1 butt of currants, weighing 12 cwt. 2 qrs. 24 lbs. gross; tare 14 lbs . per cwt.; tret 4 lbs. per 10 llbs . -how many pounds neat? $\quad 12 \quad 2 \quad 24$

$$
\begin{aligned}
& \frac{4}{50} \\
& \frac{28}{14} \\
& \left.14=\frac{1}{8}\right) 1424 \\
& \text { gross. } \\
& \frac{178}{} \text { tare. } \\
& \begin{array}{c}
(26) 1246 \\
47
\end{array} \text { suttle. }
\end{aligned}
$$

Ans. 1199 neat.
(12) In 7 cwt. 3 qrs. 27 lbs. gross; tare 36 lbs. ; tret 4 lbs . per 104 lbs .-how many pounds neat? Ans. 826 lbs .
(18) In 152 cwt. 1 qr. 3 lbs. gross; tare 10 lbs. per cwt. ; tret 4 lbs . per 104 lbs . -how much neat weight ?

Ans. 133 cwt. 1 qr. 12 lbs.
(14) In 15 chests of sugar, weighing 117 cwt .21 lbs . gross; tare 173 lbs.; tret 4 lbs. 104 lbs.-how many cwt. neat?

Ans. 111 cwt .22 lbs.
Rule 5.-When cloff is allowed, multiply the ewt. suttle by 2 , divide the product by 3 ; the quotient will be the pounds cloff, which subtract from the suttle, the remainder will be neat.
(15) What is the neat weight of 3 hogsheads of tobacco, weighing 15 cwt .3 qrs .20 lbs . gross; tare 7 lbs . per cwt. ; tret 4 lbs . per 104 lbs . ; cloff 2 lbs . per 3 cwt . ?

$$
\begin{aligned}
& \left.7=\frac{1}{01}\right) 15 \quad 3 \quad 20 \text { gross. } \\
& 327 \frac{1}{2} \text { tare. } \\
& \left.\frac{1}{26}\right) 14 \quad 320 \frac{1}{2} \text { suttle. } \\
& 28 \text { tret. } \\
& 14112 \frac{1}{2} \text { suttle. } \\
& 9 \frac{1}{2} \text { cloff. } \\
& \text { Ans. } 1413 \text { neat. }
\end{aligned}
$$

(16) In 7 hogsheads of tobacco, each weighing gross 5 cwt . 2 qrs. 7 lb . ; tare 8 lbs . per cwt. ; tret 4 lbs. per 104 lbs . ; cloff 2 lbs . per 3 cwt .-how much neat weight ?

Ans. 34 cwi. 2 qrs. 8 lb .

## INTEREST.

## Interest is either Simple or Compound.

## SIMPLE INTEREST

Is the Profit allowed in lending or forbearance of any sum of money for a determined space of time.

The principal is the money lent, for which interest is to be received.

The rate per cent is a certain sum agreed on between the borrower and the lender, to be paid for every $£ 100$ for the use of the principal for 12 months.

The amount is the principal and interest added together.

Interest is also applied to Commission, Brokage, Purchasing of Stock, and Insurance.

To find the interest of any sum of money for a year.
Rule.-Multiply the principal by the rate per cent; that product, divided by 100 , will give the interest required.

## For several years.

Rule 2.-Multiply the interest of one year by the number of years given in the question, and the product will be the answer.

## EXAMPLE.

(1) What is the interest of $£ 375$. for a year, at 5 per cent. per annum ?

$$
\begin{array}{r}
\frac{5}{18 \mid 75} \\
20 \\
10 \mid 00 \text { Ans. } £ 18 \quad 15 \mathrm{~s} \\
\hline
\end{array}
$$

(2) What is the interest of $£ 268$. for 1 year at 4 per cent. per annum ? Ans. £10: 14 : $4 \frac{3}{4}$.
(3) What is the interest of $£ 945.10 \mathrm{~s}$. for 1 year at 4 per cent. per annam! Ans. £37: $16: 4 \frac{3}{7}$.
(4) What is the interest of $£ 547.15 \mathrm{~s}$. at 3 per cent. per annum for 3 years ? Ans. £49: 5 114.
(5) What is the interest of £254. 17s. 6d. for 5 year, at 4 per cent. per annum? Ans. £50: 19: 5s.
(6) What is the interest of $£ 556.13 \mathrm{~s} .4 \mathrm{~d}$. at 5 per cent. per annum for 5 years ?

Ans. $£ 139: 3: 4$.

## COMMISSION

Is an allowance from merchants to their factors or correspondents, in the buying or selling of goods, and is generally at a certain rate per cent, according to the custom of the country where the factor resides.

Rule.-Multiply the principal by the rate per cent as before; and for $\frac{1}{4}, \frac{1}{2}$, or $\frac{3}{4}$, take the part or parts from the principal, which, added to the product, and divided by 100 , will give the answer.
(7) What is the commission of $£ 287$. 10s. at $3 \frac{1}{2}$ per cent. ? $\frac{1}{2} \frac{1}{2} £ 287.10 \mathrm{~s}$.

| 3 |  |
| :---: | :---: |
| 862 | $10=3$ |
| 143 | $15=\frac{1}{2}$ |
| $1 0 \longdiv { 0 6 }$ | $5=3 \frac{1}{2}$ |
| 20 |  |
| $1 \mid 25$ |  |
| 12 |  |
| $\overline{310}$ | Ans. £10: 1: 3 |

(8) What must I allow my correspondent for disbursing on my account $£ 529.18 \mathrm{~s}$. 5 d , at 21 per cent.?

Ans. £11: $18: 5 \frac{1}{2}$.
(9) My correspondent writes me word, that he has bought goods to the amount of $£ 754.16 \mathrm{~s}$. on $m y$ account-what does his commission amount to at $2 \frac{1}{2}$ per cent. ?

Ans. £18: 17: 43.
(10) If 1 allow my factor $3 \frac{3}{4}$ per cent for commissionwhat may he demand on the laying out of £876. 5s. 10d. $\ell$ Ans $532: 17: 2 \frac{1}{2}$

## PURCHASING OF STOCK.

Rule.- Multiply the sum to be purchased by ene excess bove 100 ; divide the product by 100 , the produce of which added to the given sum, is the purchase required.

It under par, (that 1 s , under 100,) multiply by the rate er cent. ; that product, divided by 100, gives ther purchase ereof.
(11) What is the purchase $£ 575.10 \mathrm{~s}$. Bank stock, at $1 \frac{3}{4}$ per cent. ?
$\times 5+1=31$
£575 10s.

| 6 |
| ---: |
| $3453 \quad 0$ |


20
14|42
12
-510
£. s. $d$.
$57510 \quad 0$
$18214 \quad 5$
Ans. $\begin{aligned} & 1758 \quad 4 \quad 5\end{aligned}$
(12) What is the purchase of £254. 17s. Bank annuities at $97 \frac{1}{4}$ per cent. ?
$12 \times 8+1=97$
$£ 254$ 17s.
3058
12
4
8

|  | 24465 | 12 | $0=96$ |
| :---: | :---: | :---: | :---: |
| 12 | 254 | 17 | $0=1$ |
|  | 63 | 14 | $3=\frac{1}{4}$ |
|  | $\begin{array}{r} 247 \overline{7} 8 \overrightarrow{4} \\ 20 \end{array}$ | 3 | $3=97$ |
|  | 16\|83 |  |  |
|  | 12 |  |  |
|  | $\overline{9 \mid 99}$ |  |  |
|  | 4 |  |  |
|  | 3\|96 |  |  |

Ans. £247: $16: 93$.
(13) At $110 \frac{1}{4}$ per cent.-What is the purchase of $£ 2054$ 16s. South-Sea Stock? Ans. £2265: 8: 4. (14) At $104 \frac{3}{8}$ per cent. South-Sea annuities-what is the purchase of £1797. 14s.? Ans. £1876: 6: 113 +
(15) What is the purchase of $£ 2750$. 17 s . South-Sea old annuities, at 102 各 per cent? Ans. $£ 2823: 1: 2 \frac{1}{4}+$

## BROKAGE

Is an allowance to Brokers, for helping merchants or factors to persons, to buy or sell them goods.

Rule.-Divide the sum given by 100, and take parts from the quotient with the rate per cent.
(16) If I employ a broker to sell goods for me to the value of $£ 2575.17 \mathrm{~s} .6 \mathrm{~d}$.-what is the brokage at 4 s . per cent. ?
£. $s . \quad d$.
$25 \left\lvert\, \begin{array}{rrr}75 & 17 & 6\end{array}\right.$
20
15|17
12
$2 \mid 10$
£. $s . \quad d$.
$\begin{array}{lllll}4 \mathrm{~s} . & \frac{1}{5} & 25 & 15 & 2 \\ \text { Ans. } & 25 & 3 & 0 & 0\end{array}$
(17) What is the brokage of $£ 796.14 \mathrm{~s} .7 \mathrm{~d}$. at 6 s . per cent. ? Ans. £2: 7: 91
(18) When a broker sells goods to the amount of $£ 7105$. 5 s .10 d .-what may he demand for brokage, if he be allowed 5 s .6 d . ?

$$
\text { Ans. } £ 19: 10: 9 \frac{1}{4} .
$$

(19) If a broker is employed to buy a quantity of goods to the value of $£ 975.6 \mathrm{~s} .4 \mathrm{~d}$.-what is the brokage at 6 s .6 d . per cent. ? Ans. £3:3:4 $\frac{1}{2}$.

When the time is $\frac{1}{4}, \frac{1}{2}$. or $\frac{3}{4}$ of a year, besides a number of years given.
Rule.-Take parts of the interest for a year, which add to the interest of the several years given, and it will give the answer.
(20) What is the interest of $£ 554.10$ s. for 3 months, at 4 per cent. per annum?
£. s. 55410

(21) What is the interest of £336. 15 s .6 d . for $2 \frac{3}{2}$ years, at 5 per cent. per annum?

| $£$. | $s$. | $d$. |
| :---: | :---: | :---: |
| 336 | 15 | 6 |
|  |  | 5 |
| $16 \mid 83$ | 17 | 6 |


(22) What is the interest of $£ 325.7 \mathrm{~s} .6 \mathrm{~d}$. at 6 per cent. per annum, for $3 \frac{1}{2}$ years ? Ans. $268: 6: 64$.
(23) What is the interest of $£ 547.2 \mathrm{~s} .4 \mathrm{~d}$. for $5 \frac{1}{2}$ years, at 4 per cent, per annum? Ans. £120: 7: $3 \frac{1}{4}$.
(24) What is the interest of £257. 5s. 1d. at 4 per cent. for one year and 3 quarters? Ans. £18:0: $1 \frac{1}{2}$.
(25) What is the interest of £479. 5s. for 5 years and a quarter, at 5 per cent. per annum? Ans. £125:16:03.

When the rate per cent is $\frac{1}{4}$, $\frac{1}{2}$, or $\frac{3}{4}$, more than the pounds given in the ratc, proceed as in Commission, and it will give the answer for 1 year ; and for several, proceed as in the last rule.
(26) What is the interest of £175. 17s. for two years and 3 quarters, at $4 \frac{1}{2}$ per cent. per annum ?

(27) What is the interest of $£ 397.9 \mathrm{~s} .5 \mathrm{~d}$. for 2 years and a quarter at $3 \frac{1}{2}$ per cent. per annum ?

Ans. £31: 6.
(28) What is the interest of $£ 576.2 \mathrm{~s} .7 \mathrm{~d}$. for 7 years and a quarter, at $4 \frac{1}{2}$ per cent. per annum ?

Ans. £187: $19: 1 \frac{1}{2}$.
(29) What is the interest of $£ 279.13 \mathrm{~s} .8 \mathrm{~d}$. at $5 \frac{1}{4}$ per cent. per annum, for $3 \frac{1}{2}$ years?

Ans. £51: 7: 10.
When the interest is required for any number of weeks.
Rule.-As 52 weeks are to the interest of the given sum for a year : so are the weeks given to the interest required.
(30) What is the interest of $£ 379.13 \mathrm{~s}$. 2d. for four weeks, at $4 \frac{1}{2}$ per cent. per annum ?


| $£$. | $s$. | $d$ |
| ---: | ---: | ---: |
| 379 | 13 | 2 |
|  |  | 4 |
| $15 \mid 18$ | 12 | 8 |
| $\frac{20}{3 \mid 72}$ |  |  |
| $\frac{12}{872}$ |  |  |
| 4 |  |  |
| $2 \mid 88$ |  |  |

Or thus : multiply by the number of weeks, and divide the product by 4 and 13 being \&. s. $d$. $4 \times 13=52$

| $13) 15$ | 3 | $8 \frac{1}{2}$ |
| ---: | ---: | ---: |
| 21 | 3 | $4 \frac{1}{4}$ |

歺等 As it is 4 weeks, I do not multiply, but only divide by 13 .
(31) What is the interest of £259. 13 s . 5 d . for 20 weeks, at 5 per cent. per annum ? Ans. £4: 19: 104.
(32) What is the amount of $£ 375.6 \mathrm{~s} .1 \mathrm{~d}$. for 12 weeks, at $4 \frac{1}{2}$ per cent. per annum? Ans. £379:4:014.
(33) What is the amount of $£ 256.5 \mathrm{~s}$. 3 d . for 25 weeks, at $2 \frac{3}{4}$ per cent. per annum? Ans. £259: 13

When the interest is for any number of days.
Rule.-Multiply the pence of the principal by the days and rate per cent. for a dividend, cut off two figures on the right-hand. and divide by 365 : the quotient will be the answer in pence. Or,

As 365 days are to the interest of the given sum for a year, so are the days given, to the interest required.
(34) What is the interest of $£ 240$. for 120 days, at 4 per eent. per annum ?

(35) What is the interest of $£ 379.5 \mathrm{~s} .4 \mathrm{~d}$. for 3 years and 75 days, at 5 per cent. per annum ?

Ans. $£ 60: 15:-$
(36) At $5 \frac{1}{2}$ per cent. per annum-what is the interest of L985. 2s. 7 d . for 5 years, 127 days ?

$$
\text { Ans. } £ 289: 15: 3 .
$$

(37) What is the interest of $£ 2726.1 \mathrm{~s} .4 \mathrm{~d}$. at $4 \frac{1}{2}$ per cent. per annum, for 3 years, 154 days?

$$
\text { Ans. } £ 419: 15: 6\}
$$

When the amount, time, and rate per cent. are given, to find the principal.

Rule.-As the amount of $£ 100$. at the rate and time given, is to 100 , so is the amount given, to the principal required.
(38) What principal being put to interest will amount to £402. 10s. in 5 years, at 3 per cent. per annum?
£. £. £. s.
$3 \times 5+100=115: 100:: 40210$

| 20 | 20 |
| :---: | :---: |
| 2300 | 8050 |
|  | 100 |

(39) What principal being put to interest for 9 years, will amount to $£ 734.8$ s. at 4 per cent. per annum ?

Ans. £540.
(40) What principal being put to interest for 7 years, at 5 per cent. per annum will amount to £334. 16s. ?

Ans. $£ 248$
When the principal, rate per cent., and amount are given, to find the time.
Rule.-As the interest of the principal for 1 year is to 1 year, so is the whole interest to the time required.
(41) In what time will $£ 350$. amount to $£ 402$. 10 s. at 3 per cent. per annum ?
£.
350 As 10 10: $1:: 52$ 10:5
$3 \quad 20 \quad 20 \quad$ \&. s.
$\overline{10 ; 50} \quad-\frac{210}{21,0) 105 ; 0(5}$ yrs. Ans.
20
10,00
(42) In what time will $£ 540$. amount to $£ 734$. 8 s . at 4 per cent. per annum ? Ans. 9 years.
(43) In what time will $£ 248$. amount to $£ 334$. 16 s. at 5 per cent. per annum ? Ans. 7 years.
When the principal, amount, and time are given, to find the rate per cent.
Rule.-As the principal is to the interest for the whole time, so is $£ 100$. to the interest for the same time. Divide that interest by the time, and the quotient will be the rate per cent ?
(44) At what rate per cent. will $£ 350$. amount to $£ 402$ 10 s . in five years' time?

$350) 105000(300 \mathrm{~s} . \quad £ 15 \div 5=3$ per cent.
(45) At what rate per cent. will $£ 248$. amount to $£ 334$ 16 s . in 7 years' time? Ans. 5 per cent.
(46) At what rate per cent. will $£ 540$. amount to $£ 734$. 8 s . in 9 years' time?

Ans. 4 per cent.

## SHORT AND PRACTICAL METHODS OF FINDING THE INTEREST OF ANY SUM,

For years, months, and days, at any rate per cent.
Rule.-Multiply the principal by double the rate, cut off the unit figure from the pounds, and you have the answer in shillings for one year.

EXAMPLES.
(47) What is the interest of $£ 360.10 \mathrm{~s}$, at $4 \frac{1}{2}$ per cent. per annum?
£360. 10s.
$9=$ double the rate.
324,410
In multiplying by 12
take in 6 d . for 10 s . $\quad \overline{5,4}$

$$
\begin{array}{r}
4 \\
\hline 1,6 \\
\hline
\end{array}
$$

$$
\text { Ans. } £ 16: 4: 5 \frac{1}{4} .
$$

(48) What is the interest of £214. 12s. 6d. at $3 \frac{1}{2}$ per cent. ? £214. 12s. 6d.


Take in 4d. for 7s 6d.

$$
\begin{array}{r}
12 \\
\hline 2,8 \\
\quad 4 \\
\hline 3,2
\end{array}
$$

Rejecting the unit figure is equal to dividing by 10, and taking the pounds as shillings, equal to dividing by 20. Hence $10 \times 20=200$ the divisor when the rate per cent. is doubled.

Should the rate be an aliquot part of 100 , divide the principal by the aliquot part, and the quotient will be the interest for one year.

| 5 | per cent $=\frac{1}{20}$ | of 100 |
| :--- | :--- | :--- |
| 4 | ditto $=\frac{1}{25}$ | ditto |
| $3 \frac{1}{3}$ | ditto $=\frac{1}{30}$ | ditto |
| $2 \frac{1}{2}$ | ditto $=\frac{1}{40}$ | ditto |
| 2 | ditto $=\frac{1}{50}$ | ditto |
| $1 \frac{1}{4}$ | ditto $=\frac{1}{80}$ | ditto |

When the time and rate (multiplied together) make an aliquot part of 100 .
EXAMPLE.
(49) Find the interest of $£ 432$. 5s. for $3 \frac{3}{4}$ years at 4 per cent. ?

$$
\begin{aligned}
& \begin{array}{c}
3 \frac{3}{3} \times 4=15 \\
10 \\
\left.5\right|_{\mid} ^{\frac{1}{2}} \left\lvert\, \begin{array}{lll}
\frac{1}{2} & £ 432 & 5 \mathrm{~s} . \\
43 & 4 & 6
\end{array}\right.
\end{array} \\
& \text { 21 } 123 \\
& \text { Ans. } \frac{1}{6+16 \quad 9}
\end{aligned}
$$

To find the interest for years at 5 per cent.
Rule.-Take the pounds of the principal as shillings, and multiply by the years; because the interest of £1. for 1 year is 1 s .

> EXAMPLE.
(50) What is the interest of $£ 380.10 \mathrm{~s}$. for 3 years and 4 months ?

$$
\begin{array}{rrr}
£ 19 & \text { 0s. } & 6 \mathrm{~d} . \\
& & 3 \frac{1}{3} \\
\hline 57 & \mathbf{1} & 6 \\
\begin{array}{c}
\frac{1}{3} \\
= \\
\mathbf{6}
\end{array} & \mathbf{6} & 10 \\
\text { Ans. } £ 63 & 8 & \mathbf{4} \\
\hline
\end{array}
$$

To calculale the interest for any rate per cent.
Rule.-Multiply the interest at 5 per cent. by the rate proposed and divide by 5 , or for
$2 \frac{1}{2}$ per cent. take $\frac{1}{2}$ of the interest at 5 per cent.
4


To find the interest for months at 5 per cent.
Rule.-Take the pounds of the principal as pence, and multiply by the months.

The reason for this rule is evident, because the interest of $\mathcal{L}$. at 5 per cent. is 1s. per year, or 1d. per month.

EXAMPLES.
(51) What is the interest of $£ 148$. for 7 months ?

$$
\begin{aligned}
& \text { 148d. }=12 \mathrm{~s} .4 \mathrm{~d} . \\
& \text { Ans. } \begin{array}{l}
\mathrm{El} \quad 6 \quad 4 \\
\hline
\end{array}
\end{aligned}
$$

(52) What is the interest of $£ 76.16 \mathrm{~s}$. for 11 months?

$$
6 \text { s. } 4 \frac{3}{4} \mathrm{~d} \text {. }
$$



To find the interest for years and months at 5 per cent.
Rule.-Take the years and months as shillings and pence, and take such parts of the principal, as those shillings and pence are of $£ 1$. ; because any sum of money will double itself, if left at simple interest for 20 years at 5 per cent,
EXAMPLE.
(53) What is the interest of $£ 70.10$ s. 6d. for 3 years and 4 months?

$$
3 \text { yrs. } 4 \text { mo. }\left|\frac{\frac{1}{6}}{}\right| \frac{£ 70 \quad 10 \mathrm{~s} .6 \mathrm{~d}}{11 \quad 151 \text { Ans. }}
$$

To find the interest for any number of days at 5 per cent.
Rule.- Multiply the pounds of the principal by the number of days, and divide the product by 365 for the interest in shillings, or 7300 for the interest in pounds.

$$
365 \times 20=7300
$$

'54) What is the interest of $£ 584.10 \mathrm{~s}$. for 42 days at 5 per cent. ?


To find the interest for days at any rate per cent.
Rule.-Multiply the principal by the days, also by double the rate, and divide by 73000 or $365 \times 200$.

EXAMPLE.
(55) Required the interest of $£ 291.17 \mathrm{~s} .6 \mathrm{~d}$. for 72 days at 3 per cent ?

$$
\begin{gathered}
\begin{array}{c}
£ 291 \frac{7}{8} \\
\frac{72}{582} \\
2037 \\
\frac{63}{21015}=\frac{7}{8} \\
6 \\
78000 \\
\hline
\end{array} \quad \begin{array}{l}
\text { 126099(£). 14s. } 6 \frac{1}{2} \mathrm{~d} . \text { Ans. }
\end{array} \\
\hline
\end{gathered}
$$

The rate of interest generally allowed in Saving's Banks is $3 \frac{1}{3}$ per cent. which may be calculated by the following Rule.

Find the interest at 5 per cent. and deduct $\frac{1}{3}$.

## Interest.

EXAMPLE.
(56) Required the interest of £84. 10s. for 9 months at $3 \frac{1}{3}$ per cent. ?

| $84 \frac{1}{2} \mathrm{~d}$. | $=7 \mathrm{s}$. | $0 \frac{1}{2} \mathrm{~d}$. |
| :---: | :---: | :---: |
|  |  | 9 |

To calculate the interest of any sum at 6 per cent. which is the legal rate of Interest in Scotland and Ireland.

Rule.-Multiply the principal by the number of months, and take the pounds in the product as shillings, cut off the unit figure and multiply it by $1 \frac{1}{5}$ for pence; should years occur, reduce them to months, and for days take aliquot parts of a month.

## EXAMPLES.

(57) What is the interest of $£ 325.7 \mathrm{~s} .6 \mathrm{~d}$. at 6 per cent. for 3 years and 6 months ?
$\frac{325 \frac{3}{8}}{\frac{42}{650}}$
$\frac{1300}{\frac{15}{1366,5}}$ for $\frac{3}{8}$
Ans. $£ 68661 \frac{1}{5}=6 \mathrm{~d}$.
(58) Required the interest of $£ 257$. 5s. 1d. at 6 per cent. for 1 year and 4 months?

$$
\begin{aligned}
& 275 \frac{1}{4} \\
& \frac{16}{4} 6 \times 1 \frac{1}{5}=7 \frac{1}{5} \mathrm{~d} .
\end{aligned}
$$

Ans. £20 $117 \frac{1}{5}$
(59) Required the interest of £848. for 7 months and 8 days at 6 per cent. per annum ?


The interest of $£ 1$. for 1 month at 6 per cent. $1 \frac{1}{5} \mathrm{~d}$. ; cutting off the unit figure divides it by 10 , and considering the figures left as shillings, which being reduced to pounds and shillings, divides again by 20 , and $10 \times 20=200$ : therefore 200 d . and $\frac{1}{5}$ of 200 equal the number of pence in $£ 1$.

For 2 per cent. take $\frac{1}{3}$ of the interest at 6 per cent.

| .. | $1 \frac{1}{2}$ | ditto | $\frac{1}{2}$ | ditto | ditto |
| :--- | :--- | :--- | :--- | :--- | :--- |
| .. | 3 | ditto | $\frac{1}{2}$ | ditto | ditto |
| .. | 4 ditto deduct | $\frac{1}{3}$ | ditto | ditto |  |

When the months are an even number, the operation may be materially shortened.

For $4 \frac{1}{2}$ per cent. multiply by $\frac{3}{4}$ of the time, and proceed as at 6 per cent.

For 4 per cent. multiply by $\frac{2}{3}$ of the time.

| .. | 3 | ditto | ditto | $\frac{1}{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| litto | dito |  |  |  |
| .. | $1 \frac{1}{2}$ | ditto | ditto | $\frac{1}{3}$ |
| ditto |  |  |  |  |
| ditto | $\frac{1}{4}$ | ditto |  |  |

examples.
(60) What is the interest of £88. 6s. 8d, for 4 months at $4 \frac{1}{2}$ per cent. ?
$£ 88$ 6s. 8d.
$3=\frac{3}{4}$ of 4 months.

| $26, \overline{5}$ | 0 | 0 |
| ---: | ---: | ---: |
| Ans. 1 | $6 \quad 6$ |  |

(61) Required the interest of $£ 117.10 \mathrm{~s}$. at 4 s . per cent. ior 6 months?
£117. 10s.

$$
\begin{aligned}
& 4=\frac{2}{3} \text { of } 6 \text { months. } \\
& \text { Ans. £2 } 7 \quad 0
\end{aligned}
$$

(62) Required the interest of $£ 763$. 12s. at 3 per cent. for 10 months?

(63) Required the interest of $£ 118.13 \mathrm{~s} .4 \mathrm{~d}$. at 2 per cent. for 9 months ?

$$
\begin{aligned}
& £ 118 \text { 13s. } 4 \mathrm{~d} \text {. } \\
& 3=\text { of } 9 \text { months. } \\
& \text { Ans. } \begin{array}{l}
\overline{35,6} \begin{array}{lll}
\bar{£} 15 & 15 & \frac{0}{7 \frac{\mathrm{~T}}{5}} \\
\hline
\end{array} \\
\hline
\end{array}
\end{aligned}
$$

(64) Required the interest of $£ 199.10$ s. at $1 \frac{1}{2}$ per cent. for 8 months?

$$
\text { Ans. } \begin{aligned}
& \frac{£ 19910 \mathrm{~s} .}{29,9 \quad 0} \\
& \frac{21}{2} 1910 \frac{4}{5}
\end{aligned} \text { of } 8 \text { months. }
$$

The discount of any sum of money, is sometling less than the interest of the same sum, at the same rate, and for the same time; nevertheless in business, Bankers and others who discount bills, generally charge interest at 5 s . per cent., on the amount of the bill, for the time it has to run, which they deduct, and the remainder is the present worth. Hence the preceding rules for interest may also be used for discounting bills, \&c.

## COMPOUND INTEREST

Is that which arises both from the principal and interest; that is, when the interest on money becomes due, and is not paid, the same rate of interest is allowed on that unpaid interest, as on the principal before.

Rule 1.-Find the first year's interest, which add to the principal, then find the interest of that sum, which add as efore ; and so on for a number of years.
2. -Subtract the given sum from the last amount, and it will give the compound interest required.

## EXAMPLE.

(1) What is the compound interest of $£ 500$. forborne 3 years, at 5 per cent. per annum?

$$
\begin{aligned}
& \text { £. £. £. } \\
& 500 \quad 500 \\
& 525 \\
& \frac{5}{5\lfloor 00} \quad \frac{25}{525} 1 \text { st year } 551 \quad 5 \text { 2nd year. }
\end{aligned}
$$

(2) What is the amount of $£ 400$. forborne $3 \frac{1}{2}$ years, at 6 per cent. per annum, compound interest?

Ans. 2490 : $13: 114$.
(3) What will £650. amount to in 5 years, at 5 per cent. per annum, compound interest?

Ans. £829: 11 : 71 $\frac{1}{2}$.
(4) What is the amount of $£ 550.10 \mathrm{~s}$. for 3 years and 6 months, at 6 per cent. per annum, compound interest?

Ans. £675:6:5.
(5) What is the compound interest of £764. for 4 years and 9 months, at 6 per cent. per annum?

$$
\text { Ans. £243: } 18: 8 \text {. }
$$

(6) What is the compound interest of $£ 57.10 \mathrm{~s}$. 6d. for 5 years, 7 months, and 15 days, at 5 per cent. per annum?

$$
\text { Ans. } £ 18: 3: 10 \frac{5}{4} .
$$

(7) What is the compound interest of $£ 259.10 \mathrm{~s}$. for 3 years, 9 months, and 10 days, at $4 \frac{1}{2}$ per cent. per annum ?

Ans. $£ 47: 0: 4 \frac{3}{4}$.

## REBATE OR DISCOUNT

Is the abating so much money on a debt to be received before it is due, as that money, if put to interest, would gain in the same time, and at the same rate. As £100,
present money will discharge a debi of $£ 105$. to be paid $y$ uar to come, rebate being made at 5 per cent.

Rule.-As $£ 100$. with the interest for the time given, : to that interest, so is the sum given to the rebate required.

Subtract the rebate from the given sum, and the remain der will be the present worth.

> EXAMPLE.
(1) What is the discount and present worth of £487. 12s for 6 months, at 6 per cent. per annum?

(2) What is the present worth of $£ 357.10 \mathrm{~s}$. which was agreed to be paid 9 months hence, at 5 per cent. per annum ?

$$
\text { Ans. } £ 344: 11: 6 \frac{3}{3} .
$$

(3) What is the discount of £275. 10s. for 7 months at 5 per cent. per annum ? Ans. £7: 16 : 1章.
(4) Bought goods to the value of £109. 10s. to be paid at 9 months-what present money will discharge the same, if I am allowed 6 per cent. per annum discount?

$$
\text { Ans. £104: } 15: 8 \frac{1}{2} .
$$

(5) What is the present worth of $£ 527.9 \mathrm{~s}$. 1d. payable 7 months hence, at $4 \frac{1}{4}$ per cent. ? Ans. £514: 13: 10 $\frac{1}{2}$.
(6) What is the discount of $£ 85.10$ s. due September the 8 th, this being July the 4 th, rebate at 5 per cent. per annum?

Ans. 158 . $3 \frac{1}{2} d$.
(7) Sold goods for $£ 875$. 5 s . 6d. to be paid 5 months hence-what is the present worth at $4 \frac{1}{2}$ per cent. ?

Ans. £859: 3: 3 $\mathbf{3}_{\mathbf{3}}$. +
(8) What is the present worth of $£ 500$. payable in 10 months, at 5 per cent. per annum?

Ans. $£ 480$
(9) How much ready money can I receive for a note of £75. due 15 months hence, at 5 per cent. ?

Ans. £70:11:9.
(10) What will be the present worth of $£ 150$, payable at three 4 months ; i. e. one-third at 4 months, one-third at 8 months, and one-third at 12 months, at 5 per cent. discount? Ans. $£ 145: 3: 8 \frac{1}{2}$.
(11) Sold goods to the value of $£ 57510 \mathrm{~s}$. to be paid at two 3 months-what must be discounted for the present payment at 5 per cent. ?

Ans. £10: 11: 43.
(12) What is the present worth of $£ 5 \cup 0$. at 4 per cent. $£ 100$ being to be paid down, and the rest at two 6 months ? Ans. £488:7:8군.

## EQUATION OF PAYMENTS

Is when several sums are due at different times, to find a mean time for paying the whole debt; to do which this is the common

Rule.-Multiply each payment by its time of continuance, and divide the sum of the products by the whole debt; the quotient is accounted the mean time.
EXAMPLE.
(1) A owes B $£ 200$, whereof $£ 40$ is to be paid at 3 months $£ 60$. at 5 months, and $£ 100$. at 10 months-at what time may the whole debt be paid together, without prejudice to either?

| $£$. |  | $m$. | $£$ |  |
| ---: | ---: | ---: | :--- | :---: |
| 40 | $\times$ | 3 | $=$ | 120 |
| 60 | $\times$ | 5 | $=$ | 300 |
| 100 | $\times$ | 10 | $=$ | 1000 |
|  |  |  | $2 \mid 00) \frac{14 \mid 20}{7 \text { months. } \frac{1}{10}}$ |  |

(2) B owes C $£ 800$. whereof $£ 200$. is to be paid at 3 months, $£ 100$. at 4 months, $£ 300$. at 5 months, and $£ 200$. at 6 months ; but they agreeing to make but one payment of the whole-I demand what that time must be?

Ans. 4 months, $17 \frac{1}{2}$ days.
(3) I bought of K a quantity of goods, to the value of $£ 360$, which was to have been paid as follows: £120, at 2
months, £200. at 4 months, and the rest at 5 moriths ; but we afterwards agreed to have it paid at one mean time-the time is demanded?

Ans. 3 months, $12 \frac{4}{9}$ days.
(4) A merchant bought goods to the value of $£ 500$, to pay £100. at the end of 3 months, $£ 150$, at the end of 6 months, and $£ 250$. at the end of 12 months; but they afterwards agree to discharge the debt at one payment-in what time was the payment made ?

Ans. 8 months, $11 \frac{1}{5}$ days.
(5) H is indebted to L a certain sum, which is to be paid at 6 different payments; that is, $\frac{1}{4}$ at 2 months, $\frac{1}{8}$ at 3 months, $\frac{1}{8}$ at 4 months, $\frac{1}{4}$ at 5 months, $\frac{1}{8}$ at 6 months, and the rest at 7 months; but they agree that the whole shall be paid at one equated time-what is that time?

Ans. $4 \frac{1}{4}$ months.
(6) A is indebter to $\mathrm{B} £ 120$., whereof $\frac{1}{2}$ is to be paid at 3 months, $\frac{1}{4}$ at 6 months, and the rest at 9 months-what is the equated time of the whole payment?

Ans. 5 months, 7 days.

## BARTER

Is the exchanging one commodity for another, and informs the traders so to proportion their goods, that neither may sustain loss.

Rule 1.-Find the value of that commodity whose quantity is given; then find what quantity of the other, at the rate proposed, you may have for the same money.
2.-When one has goods at a certain price, ready money, but in bartering, advances it to something more, find what the other ought to rate his goods at, in proportion to that advance and then proceed as beforc.

## EXAMPLES.

(t) What quantity of chocolate, at 4s. per lb. must be delivered in barter for 2 cwt . of tea at 9 s . per lb . ?
cwt.

2
112
224
9
4) 2016 the value of the tea. 504 lbs of chocolate.
(2) A and B barter; A hath 20 cwt. of prunes, at 4 d . per lb. ready money, but in barter will have 5 d . per lb . and B hath hops worth 32s. per cwt. ready money ;-what ought B to rate his hops at in barter, and what quantity must be given for the 20 cwt . of prunes?

| $l b . \quad d . \quad d . \quad s$. |  |  |
| :---: | :---: | :---: |
|  | 112 | As 4:5:: 32 |
| 8. | 20 | 5 |
| 40 | $\widetilde{2240}$ | 4) $\overline{160}$ |
| 12 |  | c. q. $l$. $\overrightarrow{40 \mathrm{~s}}$ |
| $48 \mid 0) 1120 \left\lvert\, 0\left(2319 \frac{1}{4} \frac{6}{8}\right.$ Ans. \right. |  |  |
| 160 |  |  |
| 144 |  |  |
| $\underline{16}=1 q r . \frac{10}{4} \%$. |  |  |

(3) How much tea at 9 s . per lb. can I have in barter tor 4 ewt. 2 qrs. of chocolate, at 4 s per lb. ? Ans. 2 cwt .
(4) Two merchant's barter; A hath 20 cwt . of cheese at २1s. 6d. per cwt. ; B hath 8 pieces of Irish cloth, at $£ 3.14 \mathrm{~s}$. per piece-I desire to know who must receive the difference, and how much ?

Ans. $B$ must receive of $A$ £8:2s.
(5) A and B barter; A hath $3 \frac{1}{2}$ lbs. of pepper, at $13 \frac{1}{2} \mathrm{~d}$. per lb. ; B hath ginger at $15 \frac{1}{4} \mathrm{~d}$. per lb . -how much ginger must be delivered in barter for the pepper?
$3 l b$. $1 \frac{3}{6} \frac{5}{6} \mathrm{oz}$.
(6) How many dozen of candles at 5s. 2d. per dozen must be delivered in barter for 3 cwt . 2 qrs. 16 lbs. of tallow at 37 s . 4 d . per cwt. ?

Ans. 26 doz. $3 \frac{5}{6} \frac{4}{2} l b$.
(7) A hath 608 yards of cloth, worth 14s, per yard, for which B gives him $£ 125.12 \mathrm{~s}$. in ready money, and 85 cwt . 2 qrs. 24 lbs. of bees'-wax. The question is-what did B reckon his bee's-wax at per cwt. ?

Ans. £3: 10 s.
(8) A and B barter; A hath 320 dozen of candles, at 48 . 6d. per dozen, for which B gives him £30. in money, and the rest in cotton, at 8 d . perlb.-I desire to know how much cotton B gives A besides the money?

Ans. 11 cwt .1 qr.
(9) If B hath cotton at 1 s . 2 d . per lb .-how much must he give A for 114 lbs . of tobacco, at 6 d . per lb. ?

Ans. $48 \frac{1}{12} 4$ lbs.
(10) C hath nutmegs worth 7 s .6 d . per lb , ready money, but in barter will have 8 s . per lb . and D hath leaf-tobacco, worth 9 d . per lb . ready money-how much must D rate his tobacco at per lb. that his profit may be equivalent with C's. ? Ans. $9 \frac{1}{2} d$. $\frac{4}{10}$

## PROFIT AND LOSS

Is a rule that discovers what is got or lost in the buying or selling of goods : and instructs us to raise and fall our price, so as to gain or lose so much per cent. or otherwise.

The questions in this rule are performed by the Rule of Three.

## EXAMPLES.

(1) If a yard of cloth be bought for 11s. and sold for 12 s . 6d.-what is the gain per cent. ?

$$
\text { s. s. d. } \quad £ .
$$

$$
\text { As } 11: \begin{array}{rr}
1 & 6:: 100 \\
\frac{12}{18} & 20 \\
& 2000 \\
\hline
\end{array}
$$


(2) If 60 ells of Holland cost £18.-What must 1 ell be sold for, to gain 8 per cent. ?

$$
\begin{aligned}
& \text { £. £. £. } \\
& \text { As } 100: 18:: 108
\end{aligned}
$$

(3) If lb . of tobacco cost 18 d . and be sold for 20 d .-what is the gain per cent ?

Ans. $\mathfrak{£}$ º
(4) If a parcel of cloth be sold for $£ 560$. and at 12 pet cent. gair -what is the prime cost ?

Ans. £5vo
(5) If a yard of cloth be bought for 13 s . 4 d . and sold again for I6s.-what is the gain per cent?

Ans. $£ 20$.
(6) If 112 lbs of iron cost 27 s . 6 d .-what must 1 cwt . be sold for to gain $£ 15$. per cent. ? Ans. $£ 1: 11: 7 \frac{1}{2}$.
(7) If 375 yards of broad cloth be sold for $£ 490$. and 20 per cent. profit-what did it cost per yard ?

$$
\text { Ans. £1: } 1: 9 \frac{1}{4} .
$$

(8) Sold 1 cwt of hops for $£ 60.15 \mathrm{~s}$. at the rate of 25 per cent. profit-what would have been the gain per cent. if I had sold them for $£ 80$ per cwt.?

$$
\text { Ans. £64: } 12: 2+
$$

(9) If 90 English ells of cambric cost $£ 60$.-what must I sell it at per yard, to gain $£ 18$ per cent. Ans. 12s. $7 d$.
(10) A plumber sold 10 fother of lead for £204. 15s. (the fother being $19 \frac{1}{2} \mathrm{cwt}$.) and gained after the rate of $£ 12.10 \mathrm{~s}$. per cent.-what did it cost him per cwt. ? Ans. 18s. $8 d$.
(11) Bought 436 yards of cloth at the rate of 8 s . 6 d . per yard, and sold it for 10 s .4 d . per yard.-what was the gain of the whole?

Ans. £39: 19: 4.
(12) Paid £69. for 1 ton of steel, which is retailed at 6 d . per lb .-what is the profit or loss by the sale of 14 tons?

Ans. £182. loss.
(13) Bought 124 yards of linen for $£ 32$.-how should the same be retailed per yard to gain $£ 15$ per cent.?

Ans. 5s. $11 \mathrm{~d} . \frac{28}{124}$.
(14) Bought 249 yards of cloth, at 3 s . 4 d . per yard, retailed the same at 4 s . 2d. per yard-what is the profit in the whole, and how much per cent. ?

Ans. £10:7:6 profit, and 25 per cent.

## FELLOWSHIP

Is when two or more join their stocks and trade together so to determine each other's particular share of the gain or loss, in proportion to his principal in the Joint Stock.

## 100

## Feliowship.

By this rule a bankrupt's estate may be divided amongst his creditors ; as also legacies may be adjusted when there is a deficiency of assets or effects.

Fellowship is either with or without Time.

## FELLOWSHIP WITHOUT TIME.

Rule.-As the whole stock is to the whole gain or loss, so is each man's share in stock, to his share of the gain or loss.

Proor.-Add all the shares together, and the sum will be equal to the given gain or loss: but the surest way is, as the whole gain or loss is to the whole stock, so is each man's share of the gain or loss, to his share in stock.

## EXAMPLE.

(1) Two merchants traded together; A put into stock £20. and B£40., and they gained £50.-what was each person's share thereof?

$$
20 \times 40=60
$$

| £. £. £. | £. £. £. | £. s. $d$. |
| :---: | :---: | :---: |
| As $60: 50:$ : 20 | As $60: 50:: 40$ | $33 \quad 6 \quad 8$ B's share. |
| 20 | 40 | 1613 4 A's share. |
| $60) 1000$ | 60)200,0 | £50 0 0 Proof. |
| £1613 4 | $£ 336$ |  |

(2) Three merchants trade together, A, B, and C; A puts in £20, B£30, and C $£ 40$; they gained $£ 180$.-what is each man's share of the gain?

Ans. $A £ 40 ; B £ 60 ; C$ £80.
(3) A, B, and C, enter into partnership: A puts in £364, B £482, and C $£ 500$, and they gained £867.-what is each man's share in proportion to his stock ?

$$
\text { Ans. } A^{\prime} \text { 's £234:9:34-rem. } 70 ; B ' s £ 310: 9: 5-
$$ rem. $248 ; C^{\prime}$ 's 322 : $1: 3 \frac{1}{2}$ —rem. 1028.

(4) Four merchants, B, C, D, and E, made a stock; B puts in $£ 227, \mathrm{C} £ 349, \mathrm{D} £ 115$, and $\mathrm{E} £ 439$; in trading they gained $£ 428$-I demand each merchant's share of the gain?

$$
\text { Ans. } B^{\prime} \text { ' } £ 85: 19: 63-690 ; C \text { ' } £ 132 \quad 3: 9-120 \text {; }
$$

$$
\text { D's £43:11:13-250; E's £ } 166: 5: 6 t-70 .
$$

(5) Three persons D, E, and F, joined in company ; D's stock was $£ 750$, E's $£ 460$, and F's $£ 500$, and at the end of 12 months, they gairied $£ 684$. -what was each man's particular share of the gain?

Ans $D$ 's £300; $E$ 's £184; $F$ 's £200. (6) A merchant is indebted to $\mathrm{B} £ 275.14 \mathrm{~s}$. ; to $\mathrm{C} £ 304$. 7 s . ? to $\mathrm{D} £ 152$.; and $\mathrm{E} £ 104.6 \mathrm{~s}$. ; but upon his decease his estate is found to be worth but $£ 675$. 15 s .-how must it be divided amongst his creditors?
Ans $B^{\prime} s £ 222: 15: 2-6584 ; C$ ' $s 245: 18: 1 \frac{1}{2}-15750$; $D$ 's £122:16:23-12227; E's £84:5:5-15620.
(7) Four persons trade together in a joint stock, of which A has $\frac{1}{3}, \mathrm{~B} \frac{1}{4}, \mathrm{C} \frac{1}{5}, \mathrm{D} \frac{1}{6}$, and at the end of 6 months they gained £100.--what is each man's share of the said gain?

$$
\text { Ans. } A ' s £ 35 \cdot 1: 9-48 ; B ' s £ 26: 6: 3 \frac{3}{4}-36 \text {; }
$$

$$
C^{\prime} s £ 21: 1: 0 \frac{1}{2}-120 ; D ' s £ 17: 10: 10 \frac{1}{2}-24 .
$$

(8) Two persons purchased an estate of $£ 1700$. per annum freehold, for $£ 27200$, when money was at 6 per cent. interest, and 4 s . per pound land tax, whereof D paid $£ 15000$. and E the rest ; some time after the interest of the money falling to 5 per cent. and 2 s per pound land tax, they sold the said estate for 24 years' purchase-I desire to know each person's share?

Ans. D's $£ 22500 ; E^{\prime} s £ 18300$.
(9) D, E, and F, join their stocks in trado ; the amount of their stocks is $£ 647$. and are in proportion as 4,6 , and 8 are to one another, and the amount of their gains is equal to D's stock-what is each man's stock and gain ?
Ans. D's stock £143: $15: 6 \frac{1}{1} \frac{2}{8}$ gain £31 : 19:0—207040. E's .. $215: 13: 4 \quad \cdots \quad 47: 18: 6-810560$. Fs .. $287: 11: 1 \frac{6}{\mathrm{~T} 8} \ldots \quad 68: 18: 0-414080$.

## FELLOWSHIP WITH TIME.

Rule.-As the sum of the product of each man's money and time is to the whole gain or loss, so is each man's product to his share of the gain or loss.

Proof.-As in Fellowship without Time.

## EXAMPLE.

(1) D and E enter into partnership, D puts in £40. for 3 months, and E £75. for 4 months, and they gain £70.what is each man's share of the gain ?

Ans. D's £20; E's £50.

| $10 \times 3=120$ | As $420: 70:: 120$ | As $420: 70:: 300$ |
| :---: | :---: | :---: |
| $75 \times 4=\frac{300}{420}$ | $42 ; 0) 840 \mid 0(20$ | $42 \mid 0) 21 \overline{300} 0(50$ |
|  | $\underline{840}$ | $\underline{2100}$ |

(2) Three merchants join in company ; D puts in stock $£ 195.14 \mathrm{~s}$. for three months, E £179. 18s. 3d. for 5 months, and $F £ 59.14 \mathrm{~s} .10 \mathrm{~d}$. for 11 months; they gain $£ 364.18 \mathrm{~s}$. -what is each man's part of the gain ?

Ans. $D$ 's £ $99: 18: 71$ - 75455 ; $E$ 's £153: $2: 3 \frac{1}{2}$ 28250; and $F^{\text {'s }}$ £111: 17: 1--410812.
(3) Three merchants join in company for 18 months: D puts in $£ 500$. and at 5 months' end takes out $£ 200$; at 10 months' end puts in $£ 300$. and at the end of 14 months takes out $£ 130$. E puts in $£ 400$. and at the end of 3 months £270. more at 9 months he takes out £140. but puts in £100. at the end of 12 months, and withdraws £99. at the end of 15 months. F puts in $£ 900$. and at 6 months takes out $£ 200$; and at the end of 11 months puts in $£ 500$. but takes out that, and $£ 100$. more at the end of 18 months. They gain £200.-I desire to know each man's share of the gain ? Ans. D's £50:7:6—21720; E's £62: $12: 51-$ 29859 ; and $F$ 's £87: 0:04-14167.
(4) D, E, and F, hold a piece of ground in common, for which they are to pay £36. 10 s. 6d. D puts in 23 oxen 27 days; E 21 oxen 35 days; and F 16 oxen 23 days-what is each man to pay of the said rent?

Ans. $D £ 13: 3: 1 \frac{1}{2}-624 ; E £ 15: 11: 5-1688$; and F£7•15: 11-1136.

## aLLIGATION.

## alligation is either medial or alternate.

## ALLIGATION MEDIAL

Is when the price and quantities of several simples are given to be mixed, to find the mean price of that mixture.

Rule.-As the whole composition is to its total value, so is any part of the composition to its mean price.

Proof.-Find the value of the whole mixture at the mean rate, and if it agrees with the total value of the several quantities at their respective prices, the work is right.

## EXAMPLE

(1) A farmer mixed 20 oushels of wheat, at 5 s . per bushel, and 36 bushels of rye, at 3 s . per bushel, with 40 bushels of barley, at 2s. per bushel-I desire to know the worth of one bushel of this mixture?

| $20 \times 5=100$ | As $96: 288:: 1: 3$ |
| :--- | :---: |
| $36 \times 3=108$ |  |
| $40 \times 2=80$ |  |
| 96 | Ans. 3 s. |

(2) A vintner mingles 15 gallons of Canary, at 8 s . per gallon, with 20 gallons at 7 s . 4 d . per gallon, 10 gallons of Sherry, at 6 s .8 d . per gallon, and 24 gallons of white wine at 4s. per gallon-what is the worth of 1 gallon of this mixture?

Ans. 6s. $2 \frac{1}{2} d . \frac{46}{60}$.
(3) A grocer mingled 4 cwt . of sugar, at 56 s . per cwt, 7 cwt. at 43 s . per cwt. and 5 cwt . at 37 s . per cwt.-1 demand the price of 2 cwt . of this mixture? Ans. $£ 4: 8: 9$.
(4) A maltster mingles 30 quarters of brown malt, at 28 s . per quarter, with 46 quarters of pale, at 30 s . per quarter, and 25 quarters of high dried ditto, at 25 s . per quarterwhat is the value of 8 bushels of this mixture?

$$
\text { Ans. } £ 1: 8: 2 \frac{1}{4} \frac{6}{10} .
$$

(4) If I mix 27 bushels of wheat, at 5 s .6 d . per bushel, with the same quantity of rye, ut 4 s . per bushel, and 14 bushels of barley, at 2 s .8 d . per bushel-what is the worth of 1 bushel of this mixture?

Ans. 4s. $3 \frac{3}{4}$ d. $\frac{28}{65}$,
(6) A grocer mingled 3 cwt . of sugar, at 56 s . per cwt., 6 cwt . at $£ 1.17 \mathrm{~s}$. 4 d . per cwt., and 3 cwt , at $£ 3.14 \mathrm{~s}$. 8 d . per cwt.-what is 1 cwt . of this mixture worth ?
Ans. £2:11:4.
(7) A mealman has flour of several sorts, and would mix 3 bushels at 3 s . 5 d . per bushel, 4 bushels at 5 s . 6 d . per bushel, and 5 bushels at 4 s . 8 d . per bushel-what is the worth of 1 bushel of this mixture? Ans $4 s .7 \frac{1}{2} d . \frac{4}{12}$,
(8) A vintner mixes 20 gallons of Port, at 5 s . 4 d . per gallon, with 12 gallons of white wine, at 5 s . per gallon, 30 gallons of Lisbon, at 6 s . per gallon, and 20 gallons of Mountain at 4 s . 6 d . per gallon-what is 1 gallon of this mixture worth ? Ans. 5 s. $3 \frac{3}{4} d . \frac{50}{82}$.
(9) Suppose 10 bushels of wheat at 7 s . per bushel and 20 bushels of rye, at 4s. per bushel, and 30 bushels of barley, at 3 s . per bushel, were mixed together; how must the compound be sold per bushel, without loss or gain? 4s.
(10) A person mixing a quantity of oats, at 2 s .6 d . per bushel, with the like quantity of beans, at 4 s .6 d . per bushel -would be glad to know the price of 1 bushel of that mixture?

Ans. 3s. 6d
(11) A refiner having 12 lbs . of silver bullion, of 6 oz . fine would melt it with 8 lbs . of 7 oz . fine, and 10 lbs . of 8 oz . fine-I require the fineness of 1 lb . of that mixture?

$$
\text { Ans. } 6 \mathrm{oz} .18 \text { dwts. } 16 \mathrm{grs} .
$$

(12) If with 40 bushels of corn, at 4 s . per bushel, there are mixed 10 bushels at 6 s . per bushel, 30 bushels at 5 s . per bushel, and 20 bushels at 3 s . per bushel-what will 10 bushels of that mixture be worth ? Ans. £2. 38.
(13) A tobacconist will mix 50 lbs . of tobacco, at 11 d . per $\mathrm{lb} .$, with 30 lbs . at 14 d . per lb., 25 lbs . at 2 d. per lb., and 37 lbs . at 2 s . per $\mathrm{lb} .$, -what will 1 lb . of this mixture be worth? Ans. $16 \frac{3}{4} d . \frac{118}{142}$.

## ALLIGATION ALTERNATE

Is when the price of several things are given, to find such quantities of them to make a mixture, that may bear a price propounded.

In ordering the rates and given prices observe,

1. Place them one under the other, and the
propounded price, or mean rate, at the left-
and of them, thus,
2. Link the several rates together by 2 and 2 ; always observing to join a greater and less than the mean.
3. Against each extreme, place the difference of the mean and its yoke fellow.

When the price of the several simples and the mean rate are given without any quantity, to find how much of each simple is required to compose the mixture.

Rule.-Take the difference between each price and the mean rate, set them alternately, and they will be the answer required.
Proof.-By Alligation Medial.

## examples.

(1) A vintner would mix four sorts of wine together, at 18d., 20d., 24d., and 28d. per quart-what quantity of each must he take, to sell the mixture at 22 d . per quart ?


Note. Questions in this rule admit of a great variety of answers, according to the manner of linking them.
(2) A grocer would mix sugar at 4d., 6d., and 10d. per lb . so as to sell the compound at 8 d . per lb .-what quantity of each must he take?

Ans. 2 lbs. at 4d.; 2 lbs. at $6 d$. ; and 6 lbs. at $10 d$.
(3) I desire to know how much tea at 16s., 14s., 9s., and 8s. per lb . will compose a mixture worth 10 s . per lb . ? Ans. 1 lb. at 16s.; 2 lbs. at 14 s .; 6 lbs. at $9 \mathrm{~s} . ;$ and 4 lbs . at 8 s .
(4) A farmer would mix as much barley at 3 s .6 d . per bushel, rye at 4s. per bushel, and oats at 2s. per bushel, as to make a mixture worth 2 s .6 d . per bushel-how much is that of each sort? Ans. 6 of barley, 6 of rye, and 30 of oats.
(5) A grocer would mix raisins of the Sun at 7d. per lb. with Malagas at 6d., and Smyrnas, at 4d. per lb.-I desire to know what quantity of each sort he must take to sell them at $5 \mathrm{~d} . \mathrm{per} \mathrm{lb}$. ?

Ans. 1 lb . of raisins of the Sun, 1 lb . of Maiagas, and 3 lbs. of Smyrnas.
(6) A tobacconist would mix tobacco at 2s., 18 d ., and 15 d . ser lb . so as the compound may bear a price of 1 s .8 d . per b. -what quantity of each must he take?

Ans. 7 lbs. at $2 \mathrm{~s} ., 4 \mathrm{lbs}$. at 1 s .6 d., and 4 lbs. at $1 \mathrm{~s} .3 d$.

## ALLIGATION PARTIAL

Is when the price of all the simples, the quantity of but one of them, and the mean tate, are given to find the several quantities of the rest in proportion to that given.

Rule.-Take the difference between each price, and the mean rate as before. Then,
As the difference of that simple, whose quantity is given, is to the rest of the differences severally, so is the quantity given, to the several quantities required.

## EXAMPLE.

(1) A tobacconist being determined to mix 20 lbs . of tobacco, at 15 d . per lb . with others at 16 d . per $\mathrm{lb} ., 18 \mathrm{~d}$. per lb ., and $2 \% \mathrm{~d}$. per lb .-how many pounds of each sort must he take, to make 1 lb . of that mixture worth 17 d .?

Ans. Proof.

(2) A farmer would mix 20 bushels of wheat at 60 d . per bushel, with rye at 36 d. , barley at 24 d. , and oats at 18 d . per bushel-how much of each sort must he take to make the composition worth 32d. per bushel ?

Ans. 20 bushels of wheat, 35 bushels of rye, 70 bushels of barley, and 10 bushels of oats.
(3) A person is desirous of mixing wheat at 4 s . per bushel, rye at 3 s . per bushel, and barley at 2 s . per bushel, with 12 bushels of oats, at 18d. per bushel-I would be glad to know how many bushels of each sort he must take to make the composition worth 3s. 6d. per bushel?

Ans. 96 bushels of wheat, 12 bushels of rye, 12 bushels of barley, and 12 bushels of oats.
(4) A distiller would mix 40 gallons of French brandy at 12s. per gallon, with English at 7s., and spirita at 4s. pes
gallon-what quantity of each sort must he take to afford it for 8 s . per gallon?

Ans. 40 gallons French, 32 English, and 32 spirits.
(5) A grocer would mix teas of $12 \mathrm{~s} ., 10 \mathrm{~s}$. , and 6 s . with 20 lbs . at 4 s . per lb.-how much of each sort must he take to make the composition worth 8 s . per lb .

Ans. 20 lbs. at $4 \mathrm{~s} ., 10 \mathrm{lbs}$. at $10 \mathrm{~s} ., 10 \mathrm{lbs}$. at 6s., and 20 lbs. at 12 s .
(6) A wine merchant is desirous of mixing 18 gallons of Canary, at 6 s .9 d . per gallon, with Malaga, at 7 s .6 d . per gallon, Sherry at 5 s. per gallon, and white wine at 5 s . 3 d . per gallon-how much of each sort must he take that the mixture may be sold for 6 s . per gallon?

Ans. 18 gallons of Canary, 13 $\frac{1}{2}$ Malaga, $13 \frac{1}{2}$ of Sherry, and 27 of white wine.

## ALLIGATION TOTAL

Is when the price of each simple, the quantity to be compounded, and the mean rate are given, to find how much of each sort will make the quantity.

Rule.-Take the difference between each price, and the mean rate as before; then,

As the sum of the differences is to each particular difference, so is the quantity given, to the quantity required.

## EXAMPLE.

-(1) A grocer has four sorts of sugar, viz., 12d., 10d., 6d., and 4 d . per lb ., and would make a composition of 144 lbs . worth 8 d . per lb .-I desire to know what quantity of each ne must take?

(2) A druggist having four sorts of tea, of $5 \mathrm{~s} ., 6 \mathrm{~s} ., 8 \mathrm{~s}$., and 9 s . per lb ., would have a composition of 87 lbs . worth 7 s . per lb .-what quantity must there be of each?

Ans. $14 \frac{1}{2}$ lbs. of 5 s ., 29 lbs . of 6 s ., 29 lbs . of $8 \mathrm{~s} .$, and

$$
14 \frac{1}{2} \text { lbs. of } 9 \mathrm{~s} \text {. }
$$

(3) A vintner had four sorts of wine, viz., white wine at 4s. per gallon; Fiemish at 6s. per gallon; Malaga at 8s.
per gallon; and Canary at 10s. per gallon; and would make a mixture of 60 gallons, to be worth 5 s. per gallon-what quantity of each must he take?

Ans. 45 gallons of white wine, 5 gallons of Flemish, 5 gallons of Malaga, and 5 gallons of Canary.
(4) A grocer having four sorts of currants, at 11d., 9d., 6 d ., and 4 d . per lb ., is desirous of making a composition of 240 lbs . worth 8 d . per lb .-how much of each sort must he take? Ans. 96 lbs . at $11 \mathrm{~d} ., 48 \mathrm{lbs}$. at $9 \mathrm{~d} ., 24 \mathrm{lbs}$. at $6 \mathrm{~d} .$, and 72 lbs. at $4 d$.
(5) A silversmith had four sorts of gold, viz., of 24 carats fine, of 22,20 , and 15 carats fine; and would make as much of each sort together, so as to have 42 oz . of 17 carats finehow much must he take of each?

Ans. 4 of 24, 4 of 22,4 of 20 , and 30 of 15 carats fine.
(6) A druggist having some drugs of $8 \mathrm{~s} ., 5 \mathrm{~s}$., and 4 s . per lb . made them into two parcels; one of 28 lbs . at 6 s . per lb . the other of 42 lbs . at 7 s . per lb .-how much of each sort did he take for each parcel?

Ans. 12 lbs . of 8 s . 8 lbs . of 5 s . 8 lbs . of 4 s . $\overline{28} \mathrm{lbs}$. at 6 s .

Ans. 30 lbs . of 8 s .
6 lbs . of 5 s . 6 lbs . of 4 s .
$\overline{42}$ at 7 s . per lb.

## POSITION ;

## Or, THE RULE OF FALSE,

Is a rule, that by false or supposed numbers, taken at pleasure, discovers the true one required. It is divided into two parts, Single and Double.

## SINGLE POSITION

Is by using one supposed number, and working with it as the true one, you find the real number required, by the following

Rule.-As the total of the errors is to the true total, so is the supposed number, to the true one required.

Proof.-Add the several parts of them together, and if it agrees with the sum, it is right

## EXAMPJ.E.

(1) A school-master being asked how many scholars he had, said, if I had as many, half as many, and one quarter, as many more, I should have 88 -how many had he?

| As $110: 88:: 40$ | 32 |
| :---: | :---: |
| $\frac{40}{}$ | 32 |
| $11,0) 352 \mid 0(32$ Ans. | 16 |
| 33 | $\underline{8}$ |
| $\frac{82}{22}$ | $\underline{=}$ |
| 22 |  |

(2) A person having about him a certain number of Portugal pieces, said, if the third, fourth, and sixth of them were added together, they would make 54-I desire to know how many he had? Ans. 72.
(3) A gentleman bought a chaise, horse, and harness, for $£ 60$.; the horse came to twice the price of the harness, and the chaise to twice the price of the horse and harness-what did he give for each?

Ans. Horse £13:6:8, harness £6:13:4, chaise £40.
(4) A, B, and C, being determined to buy a quantity of goods which would cost them £120, agreed among themselves that $B$ should pay a third part more than $A$, and $C$ a fourth part more than B-I desire to know what each man must pay?

Ans. $A £ 30, B £ 40, C £ 50$.
(5) A man meeting a maid driving a flock of geese, said, Where are you going, sweetheart, with these 50 geese? She replied, I have not 50 , but if I had $\frac{1}{2}$ as many more, a third and a quarter as many more, I should have 50 -how many had she? Ans. 24.
(6) A person delivered to another a sum of money unknown, to receive the interest for the same at 6 per cent. per annum, simple interest, and at the end of 10 years, received for principal and interest, $£ 300$.-what was the sum lent ?

Ans. £187: 10 s .

## DOUBLE POSITION

Is by making use of two supposed numbers; and if both prove false, (as it generally happens,) they are, with their errors, to be thus ordered:

Rule 1.-Place each error against its respective position.
2. Multiply them cross-wise.
3. If the errors are alike, $i$. e., both greater, or both less than the given number, take their difference for a divisor, and the difference of the products for a dividend. But if unlike, take their sum for a divisor, and the sum of the products for a dividend; the quotient will be the answer.

## EXAMPLE.

(1) A, B, and C, would divide $£ 200$. among them, so that B may have £6. more than $A$, and $\mathrm{C} £ 6$. more than B -how much must each have?
Suppose A had 40 then suppose A had 50


(2) A man had two silver cups of unequal weight, having one cover to both, of 5 oz .; now if the cover be put on the least cup, it will be double the weight of the greater cup, and set on the greater cup, it will be thrice as heavy as the least cup-what is the weight of each cup?

Ans. 3 ounces least, 4 greater.
(3) A, B, and C, playing at hazard together, the money staked was 196 guineas; but disagreeing, each seized as many as he could; A got a certain quantity; $B$ as many as $A$ and 16 more; and $C$ the sixth part of both their sunnshow many had each ?

Ans. $A$ 76, $B 92, C 28$.
(4) A gentleman bought a house with a garden, and a horse in the stable, for $£ 500$; now he paid four times the price of the horse for the garden, and five times the price of the garden for the house-what was the value of the house, garden, and horse separately?

Ans. Horse £20., garden £80., and housc £400.
(5) Three persons discoursing concerning their ages, says H , I am 30 years of age ; says $\mathrm{K}, \mathrm{I}$ am as old as H and $\frac{1}{4}$ of L ; and says $\mathrm{L}, \mathrm{I}$ am as old as you both-what was the age of each person? Ans. $H 30, K 50$, and $L 80$.
(6) D, E, and F, playing at cards, staked 324 crowns, but disputing about the tricks, each man took as many as he could; D got a certain number; E as many as D , and 15 more; and F got a fifth part of both their sums added toge-ther-how many did each get?

Ans. $D 127 \frac{1}{2}, E 142 \frac{1}{2}$, and F 54.
(7) A, stealing apples, was taken by B, and to appease him, gave him half of what he had, and B gave him back 10 ; going farther, he met C , who took from him half of what he had left, and gave him back 4; after that, meeting with D he gave him half of what he had, and he returned him back 1. At last getting safe away, he found he had 18 left-how many had he at first?

Ans. 60.
(8) A gentleman going into a garden, meets with some ladies, and says to them, good morning to you, 10 fair maids: Sir, you mistake, answers one of them, we are not 10 ; but if we were twice as many more as we are, we should be as many above 10 as we are now under-how many were they?

Ans. 5.

## EXCHANGE

Is the receiving money in one country for the same value paid in another.

The par of exchange is always fixed and certain, it being the intrinsic value of foreign money, compared with sterling, but the course of exchange rises and falls upon various occasions.

## I. FRANCE.

They keep their accounts at Paris, Lyons, and Rouen, in livres, sols, and deniers, and exchange by the crown-4s.6d. at par.

Note.-12 deniers make 1 sol.
20 sols - 1 livre.
3 livres - 1 crown.
To change French into Sterling.
Rule.-As 1 crown is to the given rate, so is the French sum to the sterling required.

To change sterling into French.
Rule.-As the rate of exchange is to 1 crown, so is the sterling sum to the French required.

EXAMPLES.
(1) How many crowns must (2) A merchant at Paris be paid at Paris, to receive in remits to his correspondent in London £180., exchange at 4s. 6d. per crown?
d. or. £.

As $54: 1:: 180:$
240
$5 4 \longdiv { 4 3 2 0 0 } 8 0 0 \mathrm { cr }$.
432 London 800 crowns, at 4 s .6 d . each, what is the value in sterling?

$$
c r . d . \quad c r .
$$

As $1: 54:: 800$

$$
\frac{\frac{54}{12) 43200}}{2 / 0) 360] 0} \underset{£ 180}{ }
$$

(3) How much sterling must be paid in London, to receive in Paris 758 crowns, exchange at 56 d . per crown ?

$$
\text { Ans. } £ 176: 17: 4
$$

(4) A merchant in London remits $£ 176.17 \mathrm{~s}$. 4d. to his correspondent at Paris-what is the value in French crowns, at 56 d . per crown?

Ans. 758.
(5) Change 725 crowns, 17 sols, 7 deniers, at $54 \frac{1}{2} \mathrm{~d}$. per crown, into sterling-what is the sum?

$$
\text { Ans. £164: } 14: 0 \frac{1}{6} \cdot \frac{638}{2} \frac{8}{20}
$$

(6) Change £164. 14s. $0 \frac{1}{4} \mathrm{~d}$. $\frac{638}{7 \frac{3}{2}}$. sterling into French crowns, exchange at $54 \frac{1}{2} \mathrm{~d}$. per crown-what is the sum?

Ans. 725 crowns, 17 sols, 7 deniers.

## II. SPAIN.

They keep their accounts at Madrid, Cadiz, and Seville, in dollars, rials, and maravedies, and exchange by the piece of eight $=4 \mathrm{~s} .6 \mathrm{~d}$. at par.

Note. - 34 maravedies make 1 rial.
8 rials 10 rials 1 piastre, or piece of eight.
1 dollar.

Rule.-As with France.
7) A merchant at Cadiz remits to Lendon 2547 pieces of eight, at 56d. per piece-how much sterling is the sum? Ans. £594: 6s
(6) How many pieces of eight at 56 d . each, will answer a bill of £594. 6s. sterling?

Ans. 2547.
(9) If I pay a bill of $£ 2500$. -what Spanish money may I draw my bill for at Madrid, exchange at $57 \frac{1}{2} \mathrm{~d}$. per piece or eight?

Ans. 10434 pieces of eight, 6 rials, $8 \frac{20}{2} \frac{\mathrm{j}}{3} \mathrm{mar}$.

## III. ITALY.

They keep their accounts at Genoa and Leghorn, in livres, sols, and deniers, and exchange by the piece of eight, or dollar $=4 \mathrm{~s}$. 6 d . at par.

Note.-12 deniers make 1 sol.

$$
\begin{gathered}
20 \text { sols } \\
5 \text { livres } \\
6 \text { livres } 1 \text { livre. } 1 \text { piece of eight, at Genoa. } \\
1 \text { piece of eight, at Leghorn. }
\end{gathered}
$$

The exchange at Florence is by ducatoons; the exchange at Venice by ducats.

> Note. -6 solidi make 1 gross.
> 24 gross 1 ducat.

Rule.-The same as before.
(10) How much sterling money may a person receive in London, if he pays in Genoa, 976 dollars, at 53 d . perdollar ? Ans. £215: $10: 8$.
(11) A merchant remitted £215. 10s. 8d. sterling to Leg-horn-how many dollars will he receive there, the exchange being at 53d. per dollar?

Ans. 976.
(12) A factor having sold goods at Florence, for 250 ducatoons, at 54 d . each-what is the value in pounds sterling?

$$
\text { Ans. } £ 56: 5 \mathrm{~s} .
$$

(13) A bill of $£ 56$. 5 s . is remitted to Florence to be paid in ducatoons, at 54 d . each-how many will be received?

Ans. 250.
(14) If 275 ducats at 4 s . 5 d . each, be remitted from Venice to London-what is the value in pounds sterling?

Ans. £60: 14 : 7.
(15) A gentleman travelling, would exchange $£ 60.14 \mathrm{~s} .7 \mathrm{~d}$. sterling, for Venice ducats, at 4s. 5d. each-how many must he receive ?

Ans. 275.

## IV. PORTUGAL.

They keep their accounts at Oporto and Lisbon, in reas, and exchange on the milrea $=6 \mathrm{~s}$. $8 \frac{1}{2} \mathrm{~d}$. at par.

Note.- 1000 reas make 1 milrea.
Rule.-The same as with France
(16) A gentleman being desirous to remit to his correspondent in London 2750 milreas, exchange at 6 s . 5 d . per milrea -how much sterling will he be creditor for in London?

$$
\text { Ans. } £ 882: 5: 10 \text {. }
$$

(17) If a bill be drawn from London of $£ 882.5 \mathrm{~s} .10 \mathrm{~d}$. sterling-how many milreas, at 6 s .5 d . each, is equal in value to the said sum?

Ans. 2750.
(18) A merchant at Oporto remits to London 4366 milreas and 183 reas, at 5 s. $5 \frac{5}{8} \mathrm{~d}$. exchange per milrea-how much sterling must be paid in London for this remittance?

Ans. £1193: 17: 63. $\frac{175}{1080}$.
(19) If I pay at London a bill of $£ 1193.17 \mathrm{~s} .6 \frac{3}{4} \mathrm{~d}$. $17 \mathrm{~T}^{1000}$. what must I draw for on my correspondent at Lisbon, exchange at 5 s .5 sid. per milrea?

Ans. 4366 milreas, 183 reas.

## V. HOLLAND, FLANDERS, and GERMANY.

They keep their accounts at Antwerp, Amsterdam, Brussels, Rotterdam, and Hamburg; some in pounds, shillings, and pence as in England; others in guilders, stivers, and pennings; and exchange with us on our pound at 33 s . 4 d . Flemish at par.

Note.- 8 pennings make.............. 1 groat. 2 groats, or 16 pennings... 1 stiver. 20 stivers ................... 1 guilder or florin.
Also 12 groats, or 6 stivers $\ldots \ldots .1$ schelling. 20 schellings or 6 guilders 1 pound.

To change Flemish into Sterling.
Rule.-As the given rate is to 1 pound, so is the Flemish sum to the sterling required.

## To change Sterling into Flomish.

Rule.-As. £1. sterling is to the given rate so is the sterling given to the Flemish sought.
(20) Remitted from London to Amsterdam a bill of $£ 754$. 10s. sterling-how many pounds Flemish is the sum, the exchange being at 33s. 6d. Flemish per pound sterling?
Ans. £1263:15:9. Flemish.
(21) A merchant at Rotterdam remits £1263. 15 s . 9d. Flemish to be paid in London-how much sterling money must he draw for, the exchange being at 33 s . 6 d . Flemish per pound sterling ?

Ans. $£ 754$ : 10 s.
(22) If 1 pay in London 2852.12 s .6 d . sterling-how many guilders must I draw for at Amsterdam, exchange at 34 schellings, $4 \frac{1}{2}$ groats per pound sterling?

Ans. 8792 guilders, 13 stivers, $14 \frac{1}{2}$ pennings.
(23) What must I draw for at London, if I pay at Amsterdam 8792 guilders, 13 stivers, $14 \frac{1}{2}$ pennings, exchange at 34 schellings, $4 \frac{1}{2}$ groats per pound sterling?

Ans. £852:12:6.
To convert Bank money into current, and the contrary.
Note.-The bank money is worth more than the current. The difference between the one and the other is called agio and is generally from 3 to 6 per cent, in favour of the bank.

## To change Bank into Current Money.

Rule.-As 100 guilders bank, is to 100 with the agio added, so is the bank given, to the current required.

To change Current into Bank Money.
Rule.-As 100 with the agio added, is to 100 bank, so is the current money given, to the bank required.
(24) Change 794 guilders, 15 stivers, 4 pennings, current money into the bank florins, agio $4 \frac{3}{8}$ per cent.

Ans. 761 guilders, $8 \frac{328}{33}$ stivers.
(25) Change 761 guilders, $8 \frac{328}{334}$ stivers, bank, into current money, agio $4 \frac{3}{6}$ per cent.

Ans. 794 guilders, 15 stivers, 4 pennings.

## VI. IRELAND.

(26) A gentleman remits to Ireland £575. 15s. sterlingwhat will he receive there, the exchange being at 10 per cent. ?

Ans. $£ 633: 6: 6$.
(27) What must be paid in London for a remittance of £633. 6s. 6d. Irish, exchange being at 10 per cent. ?

Ans. £575: 15s.
COMPARISON or WEIGHTS and MEASURES.
(1) If 50 Dutch pence be worth 65 French pence-hou many Dutch pence are equal to 350 French pence?

Ans. $269 \frac{15}{65}$.
(2) If 12 yards at London make 8 ells at Paris-how many ells at Paris will make 64 yards at London?

Ans. $42 \frac{8}{12}$,
(3) If 30 lbs . at London, make 28 lbs . at Amsterdam, how many lbs. at London will be equal to 350 lbs . at Amsterdam?

Ans. 375.
(4) If 95 lbs . Flemish make 106 lbs. English-how many Ibs. English are equal to 275 lbs . Flemish? Ans. $306 \frac{80}{9}$.

## CONJOINED PROPORTION

Is when the coin, weight, or measure, of several countries are compared in the same question; or it is linking together a varlety of proportions.

When it is required to find how many of the first sort of coin, weight, or measure, mentioned in the question, are equal to a given quantity of the last.

Rule.-Place the numbers alternately, beginning at the left-hand, and let the last number stand on the left-hand; then multiply the first row continually, for a dividend, and the second for a divisor.

Proof.-By as many single Rules of Three as the question requires.

> EXAMPLE.
(1) If 20 lbs . at London make 23 lbs . at Antwerp, and 155 lbs . at Antwerp make 180 lbs . at Leghorn-how many lbs. at London are equal to 72 lbs. at Leghorn?

| Left. | Right. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 20 | 23 | $20 \times 155 \times 72=223200$ |  |  |
| 155 | 180 | $23 \times 180=4140$, and |  |  |
| 72 |  |  |  |  |
|  | $223200 \div 4140=53 \frac{378}{414}$. Ans. |  |  |  |

(2) If 12 lbs . at London make 10 lbs . at Amsterdam, and 100 lbs. at Amsterdam, 120 lbs. at Toulouse-how many lbs. at London are equal to 40 lbs . at Toulouse? Ans. 40.
(3) If 140 braces at Venice are equal to 156 braces at Leghorn, and 7 braces at Leghorn equal to 4 ells Englishhow many braces at Venice are equal to 16 ells English ?

Ans. $25 \frac{80}{624}$.
(4) If 40 lbs . at London make 36 lbs . at Amsterdam, and 90 lbs. at Amsterdam make 116 lbs. at Dantzic-how many; lbs. at London are equal to 130 lbs . at Dantzic?

Ans. $112 \frac{288}{4176}$.
When it is required to find how many of the last sort of coin, weight, or measure, mentioned iu the question, are equal to a quantity of the first.

Rule.-Place the numbers alternately, beginning at the left-hand, and let the last number stand on the right-hand; then multiply the first row for a divisor, and the second for a dividend.
(5) If 12 lbs . at London make 10 lbs . at Amsterdam, ind 100 lbs . at Amsterdam 120 lbs . at Toulouse-how many lbs. at Toulouse are equal to 40 lbs . at London? Ans. 40 lls .
(6) If 40 lbs . at London make 36 lbs . at Amsterdam. and 90 lbs. at Amsterdam 116 lbs. at Dantzic-how many lls. at Dantzic are equal to 122 lbs . at London? Ans. $141 \frac{18}{36} \frac{7}{6}$.

## PROGRESSION

consists of two parts,
ARITHMETICAL AND GEOMETRICAL.

## ARITHMETICAL PROGRESSION

Is when the rank of numbers increases or decreases regularly by the continual adding or subtracting of the equal numbers; as $1,2,3,4,5,6$, are in Arithmetical Progression, by the continual increasing or adding of one; $11,9,7,5,3,1$, by the continual decreasing or subtracting of two.

Note.-When any even number of terms differs by Arithmetical Progression, the sum of the two extremes will be equal to the two middle numbers, or any two means equally distant from the extremes, as $2,4,6,8,10,12$, where $6+8$, the 2 middle numbers, are $=12+2$ the two extremes, and $=10+4$ the two means $=14$.

When the number of terms is odd, the double of the middle term will be equal to the two extremes or any two means equally distant from the middle term; as $1,2,3,4,5$, where the double of $3=5+1=2+4=6$.
In Arithmetical Progression five things are to be observed, viz.,

1. The first term,
2. The last term, called the extremes,, $\begin{aligned} & \mathrm{F} \text {. } \\ & \mathrm{L} \text {. }\end{aligned}$
3. The number of terms,

N .
4. The common difference, D.
6. The sum of all the terms, S.

Any three of which being given, the other two may be found.

1. The first term, the last term, and the number of terms being given, to find the sum of all the terms.

Rule.-Multiply the sum of the extremes by half the number of terms, and the product is the total or sum of all the terms: Or thus,
$\mathbf{F}, \mathrm{L}, \mathrm{N}$, are given to find S .
N .
$\overline{\mathrm{F}+\mathrm{L}} \times-=\mathrm{S}$
2
EXAMPLE,
(1) How many strokes does the hammer of a clock strike in 12 hours?

$$
12+1=13, \text { then } 13 \times 6=78 . \text { Ans. }
$$

(2) A man bought 17 yards of cloth, and gave for the first yard 2 s . for the last 10 s . what did the 17 yards amount to? Ans. £5 : 2 s .
(3) If 100 eggs were placed in a right line, exactly a yard asunder from one another, and the first a yard from a basket, what length of ground does that man go who gathers up the hundred eggs singly, returning with every egg to the basket to put it in?

Ans. 5 miles, 1300 yards.
II. The first term, the last term, and the number of terms given, to find the common difference.

Rule.-Take one from the number of terms, divide the difference of the extremes by the remainder, and the quotient will be the common difference: Or thus,
$\mathrm{F}, \mathrm{L}, \mathrm{N}$, are given to find D .
L-F
$\xrightarrow[N-1]{=}=$.
N-1

## EXAMPLE.

(4) A man had 8 sons, the youngest was 4 years old and the eldest 32 ; they increased in Arithmetical Progressionwhat was the common difference of their ages?
$32-4=28$, then, $28 \div 8-1=4$, common difference.
(5) A man is to travel from London to a certain place in 12 days, and to go about 3 miles the first day, increasing every day by an equal excess, so that the last day's journey may be 58 miles-what is the daily increase, and how many miles distant is that place from London?

Ans. 5 daily increase, and distant from London 366,
III. Given the first term, the last term, and common difference, to find the number of terms.

Rule.-Divide the difference of the extremes by the common difference; add one to the quotient, and the sum is the number of terms: Or thus,
$\mathrm{F}, \mathrm{L}, \mathrm{D}$, are given to find N.
$\frac{\mathrm{L}-\mathrm{F}}{\mathrm{D}}+\mathrm{H}=\mathrm{N}$.

## EXAMPLE.

(6) A person travelling into the country, went 3 miles the first day, and increased every day by 5 miles, till at last he went 58 miles in 1 day-how many days did he travel?
$58-3=55$, then $55 \div 5=11$ and $+1=12$, number of days.
(7) A man being asked how many sons he had, said the youngest was 4 years old, and the oldest 32 , and that he increased 1 in his family every 4 years-how many had he?

Ans. 8.
1V. Given the last term, number of terms, and common difference, to find the first term.

Rule.-Multiply the common difference by one less than the number of terms, which product subtract from the last term, the difference will be the first: Or thus,
$\mathrm{L}, \mathrm{N}, \mathrm{D}$, are given to find F .

$$
\mathrm{L}-\overline{\mathrm{D} \times \mathrm{N}}-1=\mathrm{F} .
$$

## EXAMPLE.

(8) A man in 10 days went from London to a certain town in the country, every day's Journey increasing the former by 4, and the last he went was 46 miles-what was the first ?
$4 \times 10-1=36$, then $46-36=10$, the first day's journey.
(9) A man takes out of his pocket, at 8 several times, so many different numbers of shillings, every one excceding the former by 6, the last 46 -what was the first? Ans. 4.
V. Given the common difference, the number of terms, and the sum of the series, to find the first term.

Rele.-Divide the sum of the series by the number of terms, subtract half the product of the common difference, multiplied by the number of terms less one, gives the first term. Or thus.
$\mathrm{N}, \mathrm{D}, \mathrm{S}$, are given to find F .

$$
\frac{\mathrm{S}}{\mathrm{~N}} \frac{\mathrm{D} \times \stackrel{\widetilde{\mathrm{N}}-1}{2}}{2}=\mathrm{F} .
$$

EXAMPLE.
(10) A man is to receive $£ 360$. at 12 several payments, each to exceed the former by $£ 4$, and is willing to bestow the first payment on any one who can tell him what it iswhat will the person have for his pains?
$360 \div 12=30$, then $30 \frac{4 \times 1 \overline{2-1}}{2}=8$, the first payment.
VI. Given the first term, the common difference, and the number of terms, to find the last term.

Rule.-Multiply the common difference, by one less than the number of terms, which product added to the first term, gives the last: Or, thus,

F, N, D, are given to find $L$
$\mathrm{ND}-\mathrm{D}+\mathrm{F}=\mathrm{L}$.
example.
(11) What is the last number of an Arithmetical Progression beginning at 6 , and continuing by the increase of 8 to 20 places?
$20 \times 8-8=152$, then $152+6=158$, the last number.

## GEOMETRICAL PROGRESSION

Is the increasing or decreasing of any rank of numbers by some common ratio; that is, by the continual multiplication or division of some equal number ; as, 2, 4, 8, 16, increase by the multiplier 2 ; and $16,8,4,2$, decrease by the divisor 2

Note. - When any number of terms is continued in Geometrical Progression, the product of the two extremes will be equal to any two means equally distant from the extremes; as, $2,4,8,16,32,64$, where $64 \times 2$ are $=4 \times 32$, and $\delta \times 16=128$.

When the number of terms is odd, the middle term multiplied into itself will be equal to the two extremes or any two uneans equally distant from the mean; as, $2,4,8,16,32$, where $2 \times 32=4 \times 16=8 \times 8=64$.

In Geometrical Progression, the same five things are to be observed as in Arithmetical, viz..

1. The first term.
2. The last term.
3. The number of terms.
4. The equal difference, or ratio.
5. The sum of all the terms.

Note.-As the last term in a long series of numbers is very tedious to come at by continual multiplication, therefore, for the readier finding it out, there is a series of numbers made use of in Arithmetical Proportion, called indices, beginning with an unite, whose common difference is one; whatever number of indices you make use of, set as many numbers (in such Geometrical Proportion as is given in the question) under them.
As ${ }^{1,2,3,4,5,6, \text { indices. }}$
2, 4, 8, 16, 32, 64, nambers in Geometrical Proportion.
But if the first term in Geometrical Proportion be different from the ratio, the indices must begin with a cypher. As ${ }^{0}, 1,2,3,4,5,6$, indices.
${ }^{\text {As }} 1,2,4,8,16,32,64$, numbers in Geometrical Proportion.
When the indices begin with a cypher, the sum of the indices made choice of must always be one less than the number of terms given in the question: for 1 in the indices is over the second term, and 2 over the third, \&c.

Add any two of the indices together, and that sum will agree with the product of their respective terms.

As in the first table of indices ................. $2+5=7$
Geometrical Proportion ......................... $4 \times 32=128$

$4 \times 16=64$
I. In any Geometrical Progression proceeding from unity, the ratio being known, to find any remote term without producing all the intermediate terms.

Rule.-Find what figures of the indices, added together, would give the exponent of the term wanted; then multiply the numbers standing under such exponent into each other, and it will give the term required.

When the exponent 1 stands over the second term, the number of exponents must be one less than the number of terms.

## EXAMPLE.

(1) A man agrees for 12 peaches, to pay only the price of the last, reckoning a farthing for the first and a half
penny for the second, \&c., doubling the price to the last what must he give for them?

(2) A country gentleman going to a fair to buy some oxen, met with a person who had 23 ; he demanded the price of them, was answered £16. a head: the gentleman bid him £15. a-head, and would buy all; the cther told him it could not be taken; but if he would give what the last ox would come to at a farthing for the first, and double it to the last, he should have all-what was the price of the oxen?

Ans. £4369: 1: 4.
II. In any Geometrical Progression, not proceeding from unity, the first term and the ratio being given, to find any remote term, without producing all the intermediate terms.

Rule.- Proceed as in the last rule, only observe that every product must be divided by the first term.

## EXAMPLE.*

(3) A sum of money is to be divided amongst 8 persons, the first to have £20., the second $£ 60$., and so on in triple proportion-what will the last have ?
$\begin{aligned} & 0,1,2,3,540 \times 540 \\ & 20,60,180,5.40,20\end{aligned}=14580$, then $\frac{14580 \times 60}{20}=43740$ Ans. $3+3+1=7$, one less than the number of the terms.
(4) A gentleman dying, left 9 sons, to whom and to his executors he hequeathed his estate in the following manner: -To his executors £50.; his youngest son was to have as much more as the executors, and each son to exceed the next younger by as much more-what was the oldest son's portion?

Ans, $£ 25600$
III. The first term, ratio, and number of terms given, to and the sum of all the terms.

Rule.-Find the last term as before; then subtract the first from it, and divide the remainder by the ratio, less 1 , to the quotient of which add the greater, and this gives the sum required.

## EXAMPLE.

(5) A servant, skilled in numbers, agreed with a gentleman to serve him twelve months, provided he would give him a farthing for the first month's service, a penny for the second, and fourpence for the third, \&c.-what did his wages amount to?

Ans. £5825: $8: 5 \frac{5}{\mathbf{q}}$. $256 \times 256=65536$, then $65536 \times 64=4194304$. $\begin{aligned} & 0,1,2, \\ & 1,4,16,64,256, \\ & 4-1\end{aligned} \frac{4194304-1}{4-1}=1398101$, then $4+4+$ $3=11$, No. of terms
less 1: $\quad \begin{aligned} 1398101+4194304= \\ 5592405 \text { farthings. }\end{aligned}$
(6) A man bought a horse, and by agreement was to give a farthing for the first nail, 3 for the second, \&ce. : there were 4 shoes, and in each shoe 8 nails-what was the worth of the horse ?

Ans. £965114681693: 13:4.
(7) A certain person married his daughter on New-year's day, and gave her husband 1s. towards her portion, promising to double it on the first day of every month, for one yearwhat was her portion?

Ans. £204: 15 s .
(8) A laceman well versed in numbers agreed with a gentleman to sell him 2.2 yards of rich gold brocade lace, for 2 pins the first yard, 6 pins the second, \&c., in triple pro-portion-I desire to know what he sold the lace for, if the pins were valued at 100 for a farthing; also what the laceman got or lost by the sale thereof, supposing the lace stood him in $£ 7$. per yard?

Ans. The lace sold for $£ 326886: 0: 9$.
Gained £326732:0:9.

## PERMUTATION

Is the changing or varying the order of things.
Rule.-Multiply all the given terms one into another, and the last product will be the number of changes required.

## EXAMPLE.

(1) How many changes may be rung upon 12 bells, and how long would they be ringing but once over, supposing 10 changes might be rung in one minute, and the year to contain 365 days, 6 hours ?
$1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \times 9 \times 10 \times 11 \times 12=47900160$ C
changes, which $\div 10=47900160$ minutes; and if reduced
is $=91$ years, 3 weeks, 5 days, 6 hours.
(2) A young scholar coming into town for the convenience of a good library, demanded of a gentleman with whom he lodged, what his diet would cost for a year; who told him $£ 10$; but the scholar not being certain what time he would stay, asked him what he must give him for so long as he should place his family, consisting of 6 persons, (besides himself,) in different positions every day at dinner. The gentleman thinking it would not be long, tells him $£ 5$, to which the scholar agrees-what time did the scholar stay with the gentleman?

Ans 5040 days.

PART II.

## VULGAR FRACTIONS.

## INTRODUCTION.

A Fraction is a part or parts of a unit, and written with two figures, with a line between them, as, $\frac{1}{4}, \frac{5}{6}, \frac{3}{8}, \& \mathrm{c}$.

The figure above the line is called the numerator, and the under one the denominator: which shews how many parts the unit is divided into; and the numerator shews how many of those parts are meant by the fraction.

There are four sorts of Vulgar Fractions ; proper, improper, compound, and mixed, viz.,

1. A proper fraction is when the numerator is less than the denominator, as, $\frac{2}{4}, \frac{3}{6}, \frac{7}{8}, \frac{7}{17}, \frac{101}{761}$, \&c.
2. An improper fraction is when the numerator is equal to or greater than the denominator, as, $\frac{5}{2}, \frac{8}{4}, \frac{1}{12}$, $1 \frac{3}{2}{ }^{7}$, \&c.

3 A compound fraction is the fraction of a fraction, and known by the word of, as, $\frac{1}{3}$ of $\frac{2}{3}$ of $\frac{7}{9}$ of $\frac{8}{17}$ of $\frac{9}{T^{2}}$, \&c.
4. A mixed number or fraction is composed of a whole number and a fraction, as $8 \frac{2}{7}, 17 \frac{1}{2}, 8 \frac{7}{9}$, \&c.

## REDUCTION OF VULGAR FRACTIONS.

## 1. To reduce fractions to a common denominator.

Rule 1.-Multiply each numerator into all the denominators, except its own, for a new numerator; and all the denominators, for a common denominator. Or,
2.-Multiply the common denominator by the several given numerators separately, and divide the product by their several denominators; the quotients will be the new numerators.

## EXAMPLES.

(1) Reduce $\frac{2}{4}$ and $\frac{4}{7}$ to a common denominator.
$\left\{\times 7=14,4 \times 4=16\right.$, then $4 \times 7=28$ den. $=\frac{14}{2} \frac{4}{8}$ and $\frac{1}{2} \frac{6}{8}$.
(2) Reduce $\frac{1}{2}, \frac{3}{4}$, and $\frac{5}{8}$, to a common denominator. Ans. $\frac{32}{64}, \frac{48}{64}, \frac{40}{64}$.
( 3 ) Reduce $\frac{3}{5}$, $\frac{8}{9}$, and $\frac{7}{18}$, to a common denominator.
Ans. $\frac{270}{450}, \frac{40}{43} 0, \frac{315}{450}$
(4) Reduce $\frac{6}{10}, \frac{2}{4}, \frac{1}{7}$, and $\frac{3}{6}$, to a common denominato:-

(5) Reduce $\frac{4}{5}, \frac{2}{3}, \frac{3}{7}$, and $\frac{1}{6}$, to a common denominator. Ans. $\frac{672}{84}, \frac{560}{184}, \frac{360}{84}, \frac{105}{840}$
(6) Reduce $\frac{2}{6}, \frac{5}{9}, \frac{2}{8}$, and $\frac{3}{5}$, to a common denominator. Ans. $\frac{720}{2160}, \frac{12200}{2160}, \frac{54}{2} 1500, \frac{1296}{21186}$

## 2. To reduce a vulgar fraction to its lowest term.

Rule.-Find a common measure by dividing the lower term by the upper, and that divisor by the remainder following, till nothing remains; the last divisor is the common measure ; then divide both parts of the fraction by the common measure, and the quotient will give the fraction required.

4 If the common measure happens to be 1 , the fraction is already in its lowest term; and when a fraction hat' cyphers at the right hand, it may be abreviated by cutting them off; as, $\left.\frac{34}{14} \right\rvert\, \frac{9}{0}$.

## EXAMPLES.

(7) Reduce $\frac{24}{3}$ to the lowest terms.

$$
\text { 24) } 32(1
$$

com. measure $\left.\frac{24}{8}\right) 24(3$

$$
24
$$

(8) Reduce $\frac{30}{125}$ to its lowest terms,
(9) Reduce $\frac{2008}{68}$ to its lowest terms.
(I0) Reduce $\frac{192}{5} 96$ to its lowest terms.
then 8$) \frac{2}{3} \frac{4}{2}\left(=\frac{3}{4}\right.$ Ans.
(11) Reduce $\frac{825}{6} \frac{5}{6}$ to its lowest terms.
(12) Reduce $\frac{51884}{6912}$ to its lowest terms.
3. To reduce a mixed number to an improper fraction.

Rule.-Multiply the whole number by the denominator of the fraction, and to the product add the numerator for a new numerator, which place over the denominator.
$\square$ To express a whole number fraction ways, set 1 for the denominator given.

## EXAMPLES.

13) Reduce $18 \frac{3}{7}$ to an improper fraction. Ans. ${ }^{129}$. $18 \times 7+3=129$, new numerator.
(14) Reduce $56 \frac{13}{2}$ to an improper fraction. Ans. $\frac{124}{2} \frac{4}{2} 5$
(15) Reduce $183 \frac{5}{27}$ to an improper fraction. Ans. $3 \frac{9}{2} \frac{8}{18}$.
(16) Reduce $13 \frac{4}{5}$ to an improper fraction.
(17) Reduce $27 \frac{2}{9}$ to an improper fraction.
(18) Reduce $514 \frac{5}{16}$ to an improper fraction.

Ans. ${ }^{24}{ }^{5}$.
4. To reduce an improper fraction to its proper terms.

Rule.-Divide the upper term by the lower.

## EXAMPLES.

(19) Reduce ${ }^{1 \frac{2}{7} 9}$ to its proper terms.

$$
129 \div 7=18 \frac{3}{7}
$$

(20) Reduce ${ }^{1 \frac{24}{2} 5^{5}}{ }^{5}$ to its proper terms.

Ans. $56 \frac{1}{2} \frac{1}{2}$,
(21) Reduce ${ }^{3 \frac{8}{2} \frac{4}{2}}{ }^{8}$ to its proper terms.

Ans. $1833_{2}^{5}$.
(22) Reduce $\frac{69}{5}$ to its proper terms.
(23) Reduce ${ }^{2 \frac{4}{9}}$ 数 to its proper terms.
(24) Reduce ${ }^{8} \frac{22}{16}{ }^{9}$ to its proper terms.

Ans. $27 \frac{2}{\%}$.
Ans. $514 \frac{5}{16}$
5. To reduce a compound fraction to a single one.

Rule.-Multiply all the numerators for a new numerator, and all the denominators for a new denominator.

Reduce the new fraction to its lowest terms by Rule 2.

## examples.

(25) Reduce $\frac{2}{3}$ of $\frac{3}{5}$ of $\frac{5}{8}$ to a single fraction. $2 \times 3 \times 5=30$ $3 \times 5 \times 8=123$ reduce to the lowest term $=\frac{1}{4}$. Ans.
(26) Reduce $\frac{5}{9}$ of $\frac{4}{7}$ of $\frac{11}{12}$ to a single fraction. Ans. $\frac{220}{756}=\frac{35}{180}$.
(27) Reduce $\frac{11}{12}$ of $\frac{13}{14}$ of $\frac{21}{29}$ to a single fraction.

$$
\text { Ans. } \frac{3003}{487^{2}}=\frac{143}{2} \frac{3}{32} \text {. }
$$

(28) Reduce $\frac{3}{4}$ of $\frac{5}{6}$ of $\frac{9}{10}$ to a single fraction.

Ans. $\frac{135}{240}=\frac{9}{16}$.
(29) Reduce $\frac{4}{5}$ of 6 of $\frac{7}{9}$ to a single fraction.

Ans. $\frac{168}{360}=\frac{7}{15}$.
(30) Reduce $\frac{2}{7}$ of $\frac{5}{9}$ of $\frac{8}{10}$ to a single fraction.

Ans. $\frac{80}{630}=\frac{8}{63}$.
e To reduce fractions of one denomination to the fraction of another, but greater, retaining the same value.
Rule.-Reduce the given fraction to a compound one, by comparing it with all the denominations between it and the denomination which you would reduce it to; then reduce that compound fraction to a single one.

## EXAMPLE.

(31) Reduce $\frac{7}{8}$ of a penny to the fraction of a pound.

Ans. $\frac{7}{8}$ of $\frac{1}{12}$ of $\frac{1}{20}=\frac{7}{19200}$.
(32) Reduce $\frac{1}{4}$ of a penny to the fraction of a pound.

Ans. $\frac{1}{96}$.
(33) Reduce $\frac{4}{5}$ of a dwt. to the fraction of a pound troy.

Ans. ${ }^{\frac{4}{20}}{ }^{4}$
(34) Reduce $\frac{7}{8}$ of a lb . Avoirdupois to the fraction of a cwt. Ans. $\frac{1}{128}$.
To reduce fractions of one denomination to the fraction of another, but less, retaining the same value.
Rule.-Multiply the numerator by the parts contained in the several denominations between it and that you would reduce it to, for a new numerator, and place it over the given denominator.

Reduce the new fraction to its lowest terms,

## 128 Reduction of Vulgar Fractions.

## EXAMPLES.

(35) Reduce $\frac{7}{70}$ of a pound to the fraction of a penny. $7 \times 20 \times 12=1680, \frac{1088}{10} 80$ reduced to its lowest term $=\frac{7}{8}$
(86) Reduce $\frac{1}{6} \sigma$ of a pound to the fraction of a penny. Ans, $\downarrow$.
(37) Reduce $\frac{4}{1200}$ of a lb . Troy to the fraction of a pennyweight.

Ans. $\frac{4}{5}$.
(38) Reduce $\frac{78}{785}$ of a cwt. Avoirdupois to the fraction of a lb.

Ans. $\frac{7}{7}$.

## 8. To reduce fractions of one denomination to another of the same value having the numerator given of the required fraction.

Ruce.-As the numerator of the given fraction is to its denominator, so is the numerator of the intended fraction to its denominator.

## EXAMPLES.

(39) Reduce $\frac{2}{3}$ to a fraction of the same value, whose numerator shall be 12 . As $2: 3:: 12: 18$. Ans. $\frac{12}{18}$.
(40) Reduce $\frac{5}{4}$ to a fraction of the same value, whose numerator shall be 25 .

Ans. $\frac{23}{3}$
(41) Reduce $\frac{5}{7}$ to a fraction of the same value, whose nu merator shall be 47 .

47
Ans. -
65 $\frac{4}{5}$
9. To reduce fractions of one denomination to another of the same ratue having the denominator given of the fraction requared.
Rule.-As the denominator of the given fraction is to its numerator, so is the denominator of the intended fraction to its numerator.

## EXAMPLES.

(42) Reduce $\frac{2}{3}$ to a fraction of the same value, whose denominator shall be 18. As. 3:2:: 18:12. Ans. $\frac{12}{18}$.
(43) Reduce $\frac{5}{7}$ to a fraction of the same value, whose denominator shall be 35 .

Ans. $\frac{25}{35}$.
(44) Reduce $\frac{5}{7}$ to a fraction of the same value, whose denominator shall be $65 \frac{4}{5}$.
10. To reduce a muxed fraction to a single one.

Rule.-When the numerator is the integral part, multiply it by the denominator of the fractional part, adding in the numerator of the fractional part for a new numerator; then multiply the denominator of the fraction by the denominator of the fractional part for a new denominator.

> EXAMPLES.

$$
36 \frac{3}{3}
$$

45) Reduce ${ }_{48}$ to a simple fraction. $36 \times 3+2=110$ numerator. $48 \times 3=144$ denominator. $23 \frac{5}{7}$
(46) Reduce $\overline{38}^{\text {to a }}$ a simple fraction.

Ans. $\frac{110}{144}=\frac{53}{12}$.

When the denominator is the integral part, multiply it by the denominator of the fractional part, adding in the numerator of the fractional part for a new denominator; then multiply the numerator of the fraction by the denominator of the fractional part for a new numerator.

## EXAMPLES.

47
(47) Reduce $\frac{-654}{65}$ to a simple fraction. 19
(48) Reduce ${ }_{44 \frac{1}{3}}$ to a simple fraction.

Ans. $\frac{235}{329}=\frac{5}{7}$.
Ans. $\frac{57}{133}=\frac{3}{7}$.
11. To find the proper quantity of a fraction in the known parts of an integer.

Rule.-Multiply the numerator by the common parts of the integer, and divide by the denominator.

## EXAMPLES.

(49) Reduce $\frac{3}{4}$ of a pound sterling to its proper quantity.

$$
3 \times 20=60, \text { and } \div 4=15 s . \text { Ans. }
$$

(50) Reduce $\frac{3}{8}$ of a shilling to its proper quantity.

Ans. $4 \frac{1}{2} d$.
(51) Reduce $\frac{4}{7}$ of a lb. Avoirdnpois to its proper quantity. Ans. $9 \mathrm{oz} .2 \frac{2}{7} d r$.
(52) Reduce $\frac{7}{9}$ of a cwt. to its proper quantity.

Ans. 3 qrs. $3 \mathrm{lb} .1 \mathrm{oz} .12 \frac{4}{9} d r$.
(58) Reduce $\frac{3}{5}$ of a lb. Troy to its proper quantity.

Ans. 7 oz. 4 dwts
(54) Reduce $\frac{3}{5}$ of an ell English to its proper quantity. Ans. 2 qrs. $3 \frac{1}{9}$ nails.
(55) Reduce $\frac{4}{5}$ of a mile to its proper quantity.

Ans. 6 furl. 16 poles
(56) Reduce $\frac{8}{8}$ of an acre to its proper quantity.

Ans. 2 roods, 20 poles.
(57) Reduce $\frac{6}{7}$ of a hogshead of wine to its proper quantity. Ans. 54 gallons.
(58) Reduce $\frac{3}{9}$ of a barrel of beer to its proper quantity.

Ans, 12 gallons.
(59) Reduce $\frac{5}{T^{2}}$ of a chaldron of coals to its proper quantity. Ans, 15 bushels.
(60) Reduce $\frac{3}{5}$ of a month to its proper time.

Ans. 2 weeks. 2 days, $19 \frac{1}{5}$ hour.
12. To reduce any given quantily to the fraction of any greater denomination, retainug the same value.
Rulf.-Reduce the given quantity to the lowest term mentioned for a numorater, under which set the integral part (reduced to the same term) for a denominator, and it will give the fraction required.

EXAMPLES.
(61) Reduce 15 s , to the fraction of a pound sterling.

$$
\text { Ans. } \frac{15}{2} \frac{1}{6}=
$$

(62) Reduce $4 \mathrm{~d} .3 \frac{2}{5}$ qrs. to the fraction of a shilling.

Ans. $\frac{2}{5}$.
(63) Reduce $9 \mathrm{oz} .2 \frac{2}{7} \mathrm{dr}$. to the fraction of a lb. AvoirduJois.

Ans. $\frac{4}{7}$.
'61' Reduce 3 qrs. $8 \mathrm{lbs} .1 \mathrm{oz} .12 \frac{4}{9} \mathrm{dr}$. to the fraction of a cwt.

Ans. $\frac{7}{9}$.
(65) Reduce 6 os. . Kdwts. to the fraction of a lb. Troy. Ans. $\frac{9}{15}$.
(66) Reduce 2 qrs. $3 \frac{1}{9}$ nails, to the fraction of an English ell.

Ans. $\frac{3}{4}$.
(67) Reduce 6 furlongs, 16 poles, to the fraction of a mile.

Ans. $\frac{4}{5}$.
(68) Reduce 2 roods, 20 poles, to the fraction of an acre.

Ans. 音.
(69) Reduce 54 gallons to the fraction of a hogshead of wine. Ans. $\frac{6}{7}$.
(70). Reduce 12 gallons to the 'raction of a barrel of Deer. Ans. 1.
(71) Reduce 15 bushels to the fraction of a chaldron of coals.

Ans. $\mathrm{T}^{\mathrm{s}}$.
(72) Reduce 2 weeks, 2 days, $19 \frac{1}{5}$ hours, to the fraction of a month. Ans. $\frac{3}{5}$.

## ADDITION OF VULGAR FRACTIONS.

Rule.- Reduce the given fractions to a common denominator, then add all the numerators together, under which place the common denominator.

EXAMPLES.
(1) Add $\frac{2}{3}$ and $\frac{5}{7}$ together.
(2) Add $\frac{3}{3}, \frac{2}{5}$, and $\frac{5}{6}$ together.

$$
\frac{14}{2} \frac{4}{2}+\frac{1}{2} \frac{5}{2}=\frac{29}{2} \frac{9}{T}=1 \frac{8}{2 r} \cdot \text { Ans }
$$

Ans. $1 \frac{146}{148}$.
(3) Add $\frac{4}{5}, 4 \frac{1}{3}$, and $\frac{2}{5}$ together.
(4) Add $7 \frac{2}{3}$ and $\frac{2}{5}$ together.
(5) Add $\frac{2}{7}$ and $\frac{2}{3}$ of $\frac{3}{4}$ together. Ans. $4 \frac{70^{\circ}}{}$. Ans. $8{ }_{1}^{1} \frac{1}{15}$.
(6) Add $5 \frac{2}{3}, 6 \frac{7}{3}$, and $4 \frac{1}{2}$ together. Ans, $\frac{11}{14}$.

When the fractions are of several denominations, reduce them to their proper quantities, and add as before.
(7) Add $\frac{3}{4}$ of a pound to $\frac{5}{6}$ of a shilling. Ans. 15 s .10 d .
(8) Add $\frac{1}{2}$ of a penny to $\frac{\frac{2}{3}}{5}$ of a pound. Ans. 13s. $4 \frac{1}{2} d$.
(9) Add $\frac{3}{4}$ of a lb. Troy to $\frac{7}{6}$ of an ounce.

Ans. 9 oz. 3 dwts. 8 grs.
(10) Add $\frac{4}{5}$ of a ton to $\frac{5}{6}$ of alb . Ans. $16 \mathrm{cwt} .13 \mathrm{oz} .5 \frac{1}{3} \mathrm{dr}$.
(11) Add $\frac{3}{5}$ of a chaldron to $\frac{3}{4}$ of a bushel.

Ans. 24 bush. 3 pecks.
(12) Add $\frac{x}{6}$ of a yard to $\frac{2}{3}$ of an inch.

Ans. 6 inches, 2 bar. .

## SUBTRACTION OF VULGAR FRACTIONS.

Rule 1.-Reduce the given fractions to a common denominator, then subtract the less numerator from the greater, and place the remainder over the common denominator.
2.-When the lower fraction is greater than the upper, subtract the numerator of the lower fraction from the denominator, and to that difference add the upper numerator, carrying one to the unit's place of the lower whole number.

## EXAMPLES.

(1) From $\frac{3}{4}$ take $\frac{5}{7}$. $3 \times 7=21,5 \times 4=20,21-20=1$ numerator. $4 \times 7=28$ denominator $=\frac{1}{28}$ Ans.
(2) From $\frac{5}{6}$ take $\frac{3}{5}$ of $\frac{5}{8}$.

Ans. $\frac{1}{2}$.
(3) From $5 \frac{2}{3}$ take $\frac{9}{10}$.
(4) From $\frac{38}{7}$ take $\frac{3}{5}$.
(5) From $\frac{1}{2} \frac{9}{8}$ take $\frac{1}{7}$ of $\frac{2}{3}$.
(6) From $64 \frac{1}{4}$ take $\frac{2}{3}$ of $\frac{3}{4}$.

Ans. $4 \frac{2}{3} \frac{3}{8}$.
Ans. $\frac{49}{235}$ Ans. $\frac{35}{4} 20^{\circ}$.

When the fractions are of several denominations, reduce them to their proper quantities, and subtract as before.
(7) From $\frac{3}{4}$ of a pound take $\frac{3}{4}$ of a shilling. Ans. 14 s .3 d .
(8) From $\frac{2}{3}$ of a shilling take $\frac{1}{2}$ of a penny. Ans. $7 \frac{1}{2} d$.
(9) From $\frac{3}{4}$ of a pound Troy, take $\frac{1}{6}$ of an ounce.

Ans. $8 \mathrm{oz} .16 \mathrm{dwts}, 16 \mathrm{gr}$ s.
(10) From $\frac{4}{5}$ of a ton take $\frac{5}{6}$ of a lb .

Ans. 15 cwt. 3 qrs. 27 lbs. 2 oz. $10 \frac{7}{3}$ dr.
(11) From $\frac{2}{3}$ of a chaldron take $\frac{3}{4}$ of a bushel.

Ans. 23 bushels, 1 peck.
(12) From $\frac{1}{6}$ of a yard take $\frac{2}{3}$ of an inch. Ans. 5 in. 1 b.c.

## MULTIPLICATION OF VULGAR FRACTIONS.

Rule.-Prepare the given numbers (if they require it) by the rules of Reduction; then multiply the numerators together for a new numerator, and the denominators for a new denominator.

When any number, either whole or mixed, is multiplied by a fraction, the product will always be less than the multiplicand, in the same proportion as the multiplying fraction is less than the unit.

## EXAMPLES.

(1) Multiply $\frac{3}{2}$ by $\frac{3}{5}$. Ans. $3 \times 3=9$ num. $4 \times 5=20$ den. $=\frac{9}{20}$.
(2) Multiply $\frac{7}{9}$ by $\frac{7}{3}$.
(3) Multiply $48 \frac{3}{5}$ by $13 \frac{5}{6}$.
(4) Multiply $430 \frac{6}{10}$ by $18 \frac{3}{7}$.
(5) Multiply $\frac{16}{2}$ by $\frac{3}{4}$ of $\frac{3}{7}$ of $\frac{4}{4}$.
(6) Multiply $\frac{9}{10}$ by $\frac{2}{3}$ of $\frac{3}{4}$ of $\frac{5}{6}$.
(7) Multiply $\frac{3}{4}$ of $\frac{2}{3}$ by $\frac{2}{3}$ of $\frac{1}{3}$.
(8) Multiply $\frac{1}{}$ of $\frac{3}{8}$ by $\frac{5}{5}$.
(9) Multiply ${ }^{5} \frac{6}{7}$ by $\frac{5}{6}$.

Ans. $\frac{1}{2} \frac{1}{2}$. Ans. $672 \frac{9}{36}$. Ans. $7935 \frac{2}{7}$ ㅎ Ans. $\frac{90}{294}=\frac{16}{40}$. Ans. $\frac{3}{8}$ Ans. $\frac{1}{9}$.

$$
\text { Ans. } \frac{13}{2 / 24} \text {. }
$$

Ans. $4 \frac{37}{3}$.
(10) Multiply 24 by 3 .

Ans. 16.
Ans. $3 \frac{1}{2}$.
(11) Multiply $9 \frac{1}{2}$ by $\frac{2}{6}$.
(12) Multiply $£ 3.3 \mathrm{~s} .4 \mathrm{~d}$. by itself. Ans. $£ 10: 0: 6 \frac{1}{2} .{ }_{6}^{6}$.

## division of vulgar fractions.

Rule.-Prepare the given numbers (if they require it) by the rules of Reduction; then multiply the denominator of the divisor into the numerator of the dividend for a new numerator, and the numerator of the divisor into the denominator of the dividend for a new denominator.

When any whole number is divided by a fraction less than unity, the quotient will be greater than the dividend; but if any fraction be divided by a whole number greater than unity, the quotient will be less than the dividend.

## EXAMPLES.

(1) Divide $\frac{9}{20}$ by $\frac{3}{5}$. $5 \times 9=45$ num. $3 \times 20=60$ den ${ }_{8}^{6} 5=3$.
(2) Divide $\frac{14}{2} \frac{4}{6}$ by $\frac{2}{3}$. Ans. $\frac{7}{8}$.
(3) Divide 6729 90 by $13 \frac{5}{6}$.
(4) Divide $7935 \frac{2}{7}$ by 183.
(5) Divide $\frac{8}{8}$ by $\frac{3}{3}$ of $\frac{3}{4}$ of .
(6) Divide $3_{3}$ of 16 by $\frac{5}{4}$ of $\frac{3}{8}$.
(7) Divide $\frac{1}{2}$ of $\frac{2}{3}$ by $\frac{3}{3}$ of $\frac{3}{2}$.
(8) Divide $9_{T^{\frac{2}{2}}}$ by $\frac{1}{\frac{1}{2}}$ of 7 .
(9) Divide 5 by $\frac{7}{10}$.
(10) Divide 16 by 24.
(11) Divide $5205 \frac{2}{10}$ by $\frac{4}{5}$ of 91 .
(12) Divide $3 \frac{1}{6}$ by $9 \frac{1}{2}$.

Ans. $48 \frac{3}{3}$. Ans. $430 \frac{3}{3}$.
Ans. $\stackrel{\circ}{\mathrm{T}}$.
Ans. $19 \frac{13}{43}$. Ans. $\frac{24}{3}=\frac{3}{2}$. Ans. $2 \frac{1}{2} \frac{3}{7}$. Ans. $7{ }_{3}$. Ans. 3. Ans. $71 \frac{1}{2}$.

Ans. $\frac{1}{6}$.

## the single rule of three direct in vulgar fractions.

Rule.-Reduce the numbers as before directed in Reduction, so that the first and third may be of the same name; multiply the numerator of the first fraction by the denominator of the second and third, for a new denominator; then multiply the denominator of the first fraction by the numerator of the second ard third, for a new numerator; that fraction will be the answer to the question, which reduca
to its proper quantity.-Or, when the three terms are property reduced, proceed as in the Rule of Three in whole numbers.

## FXAMPLES.

(1) If $\frac{3}{4}$ of a yard cost $£$-what will $\frac{9}{10}$ of a yard come to at that rate?

Ans. $\frac{1}{2} \frac{9}{4}=15 s$.
$\frac{3}{4} \mathrm{yd} .: \frac{5}{8} £ .:: \frac{9}{10} \mathrm{yd} .: £_{\frac{1}{2} \frac{8}{4}}$.
for $4 \times 5 \times 9=180 \mathrm{num}$, or $\left.8 \times \frac{9}{9}=\frac{45}{8} \frac{3}{4}\right) \frac{4}{6}\left(\frac{1}{2} \frac{3}{20}\right.$.
and $3 \times 8 \times 10=240 \mathrm{den}$.
(2) If $\frac{5}{6}$ of a yard cost $\boldsymbol{f}_{3}^{3}$-what will $\frac{1}{1} \frac{1}{2}$ of a yard cost?

Ans. 14 s. $8 d$
(3) If $\frac{5}{7}$ of a cwt. cost $£ \frac{1}{2} \frac{1}{2}$-what will 1 cwt. cost?

$$
\text { Ans. } £ 1: 5: 8 .
$$

(4) If $\frac{7}{8}$ of a lb. cost $\frac{3}{4} \mathrm{~s}$. -how many pounds will $\frac{8}{9}$ of 1 s . buy? Ans. $1 \frac{1}{2}, l l$.
(5) If $\frac{3}{5}$ of an ell of holland cost $2 \frac{1}{3}$-what will $12 \frac{2}{3}$ ells cost at that rate?

Ans. $£ 7: 0: 8,3_{3}^{5}, 5$.
(6) If $12 \frac{1}{2}$ yards of cloth cost 15 s . 9d.-what will $48 \frac{1}{4}$ yards cost at the same rate? Ans. $\mathfrak{£ 3}: 0: 9 \frac{1}{2} \cdot 2^{4} 5$.
(7) If $\frac{9}{10}$ of a cwt. cost 284 s . -what will $7 \frac{1}{2}$ ewt. cost at the same rate?

Ans. £118:6:8.
(8) If 3 yards of broad cloth cost £24-what will $10 \frac{2}{5}$ yards cost? Ans. $£ 9: 12 s$.
(9) If $\frac{1}{4}$ of a yard cost $£_{3}^{2}$ —what will $\frac{3}{5}$ of an ell English come to at the same rate? Ans. £2.
(10) If 1 lb . of cochincal cost $£ 1.5 \mathrm{~s}$. -what will $36_{\mathrm{T}}^{7} \mathrm{lbs}$. come to ?

Ans. £45:17:6.
(11) If 1 yard of broad cloth cost $15 \frac{8}{8}$. -what will 4 pieces cost, each containing $27 \frac{3}{9}$ yards ? Ans. £85: $14: 3 \frac{1}{4} \cdot \frac{5}{7}$.
(12) Bought $3 \frac{1}{2}$ pieces of silk, each containing $24 \frac{3}{8} \mathrm{ells}$, at 6s. 0?d. per ell-I desire to know what the whole quantity cost ? Ans. £25:17: $24.1 \frac{5}{6}$.

## the single rule of three inverse in vUlGar FRAC'TIONS.

## EXAMPLES.

(1) If 28 men can buiid a house in $503^{3}$ days-how many men can do the same in 12 days? Ans. $1188_{1 / 2}$ men.
(2) If $25 \frac{2}{2} \mathrm{~s}$. will pay for the carriage of 1 cwt . $145 \frac{1}{4}$ miles -how far may $6 \frac{1}{2}$ ewt. be carried for the same money?

$$
\text { Ans. } \because 2_{20}^{3} \text { miles. }
$$

(3) If $3 \frac{1}{4}$ yards of cloth, that is $1 \frac{1}{5}$ yard wide, be sufficient to make a cloak-how much must I have of that sort which is $\frac{4}{5}$ yard wide, to make another of the same size?

Ans. $4 \frac{7}{3}$ yards.
(4) If 3 men can do a piece of work in $4 \frac{1}{2}$ hours-in how many hours will 10 men do the same work?

Ans. $1 \frac{7}{20}$ hours.
(5) If a penny white loaf weighs 7 oz . when a bushel of wheat costs 5 s .6 d .-what is the bushel worth when the penny white loaf weighs but $2 \frac{1}{2} \mathrm{oz}$.?

Ans. $15 \mathrm{~s} .4 \frac{4}{3}$ d.
(6) What quantity of shaloon that is $\frac{3}{4}$ yard wide will line $7 \frac{1}{2}$ yards of cloth that is $1 \frac{1}{2}$ yards wide?

Ans. 15 yards.

## THE DOUBLE RULE OF THREE

## in vulgar fractions.

## EXAMPLES.

(1) If a carrier receives $£ 2 \frac{\mathrm{I}}{10}$ for the carriage of 3 cwt. 150 miles-how much ought he to receive for the carriage of 7 cwt. $3 \frac{1}{2}$ qrs. 50 miles?

Ans. £1: $16: 9$.
(2) If £100. in 12 months gain £6. interest-what principal will gain $£ 3 \frac{3}{3}$ in 9 months? Ans. 75.
(3) If 9 students spend $£ 10 \frac{7}{9}$ in 18 days-how much will 20 students spend in 30 days?

Ans. £39: $18: 4 \frac{350}{1435}$.
(4) A man and his wife having laboured 1 day earned 4 ss. -how much must they have for $10 \frac{1}{2}$ days when their 2 sons t.elped them?

Ans. £4: $17: 1 \frac{1}{2}$.
(5) If $£ 50$. in 5 months gain $£ 2 \frac{37}{144}$-what time wili $£ 13 \frac{1}{3}$ require to gain $\sum_{1} \frac{1}{1}$ ?

Ans. 9 months.
(6) If the carriage of 60 cwt . 20 miles cost $£ 14 \frac{1}{2}$-what weight can I have carried 30 miles for $£ 5 \frac{7}{16}$ ?

Ans. 15 ctid.

## DECIMAL FRACTIONS.

## NUMERATION.

In Decimal Fractions the integer, or whole thing, as one pound, one yard, one gallon, \&c. is supposed to be divided into ten equal parts, and those parts into tenths, and so on without end.

So that the denominator of a decimal, being always known to consist of a unit, with as many cyphers as the numerator has places, is therefore never set down; the parts being only distinguished from the whole numbers by a comma prefixed; thus,, 5 which stands for $\frac{5}{10} ;, 25 \frac{25}{100} ;, 123$ for $\frac{123}{1000}$.

But the different value of figures appears plainer by the following table.

Whole numbers. Decìmal parts.

$$
\begin{aligned}
& 7654321234567
\end{aligned}
$$

From which it plainly appears. that as whole numbers increase in a tenfold proportion to the left-hand, decimal parts decrease in a tenfold proportion to the right-hand; so that cyphers placed before decimal parts, decrease their value by removing them farther from the comma. or unit's place: thus, ,5 is 5 parts of 10 or $\frac{5}{10}$; , 05 is 5 parts of 100 ,
 of 10000 , or тणठठ. But cyphers after decimal parts do not alter their value, for $, 5,50,500 ~ \& ~ c$. are each but $\frac{5}{10}$ of the unit.

A Finite Decimal is that which ends at a certain number of places; but an infinite is that which nowhere ends.

## ADDITION OF DECIMALS.

Rule.-In setting down the proposed numbers to be added, great care must be taken in placing every figure directly underneath those of the same value, whether they be mixed numbers, or pure decimal parts : and to perform which there must be a due regard had to the commas, or separating points, which ought always to stand in a direct line, one under another; and to the right-hand of them carefully place the decimal parts, according to their respective values; then add them as in whole numbers.

## EXAMPLES.

(1) Add $72,5+32,071+2,1574+371,4+2,75+480,8784$.
(2) Add $30,07+2,0071+59,4+3207,1$.
(3) Add $3,5+47,25+927,01+2,0073+1,5$.
(4) Add $52,75+47,21+724+31,452+3075$.
(5) Add $3275+27,514+1,005+725+7,32$,
(b) Add $27,5+52+3,2075+5741+2720$.

## SUBTRACTION OF DECIMALS.

Rule.-Subtraction of decimals differs but little from whole numbers, only in placing the numbers, which must be carefully observed, as in Addition.
(1) From , 2754 take
(2) From 2,37 take
(3) From 271 take
4) From 270,2 take

EXAMPLES.

| , 2371 | (5) From 571 take | 54,72 |  |
| ---: | :--- | :--- | ---: |
| 1,76 | (6) | From 625 take | 76,91 |
| 215,7 | (7) | From 23,415 take | , 3742 |
| 76,4075 | $(8)$ | From ,107 take | , 0007 |

## MULTTIPLICATION OF DECIMALS.

Rule.-Place the factors, and multiply them as in whole numbers, and from the product towards the right-hand, cut off as many places for decimals as there are in both factors
together ; but if there should not be so many places in the product, supply the defect with cyphers to the left-hand.
examples
(1) Multiply ,2365 by ,2435. Ans. ,057587\%5.

| (2) Mult. 2,071 by | 2,27 | (7) Mult. 27,35 by 7,70071 |  |  |
| :--- | :--- | ---: | ---: | :--- | ---: |
| (3) Mult. $27,15 \mathrm{by}$ | 25,3 | (8) | Mult. $5,721 \mathrm{by}$ | , 0075 |
| (4) Mult. 79347 by | 23,15 | (9) | Mult. $2,07 \mathrm{by}$ | , 007 |
| (5) Mult. 17105 by | , 3257 | (10) | Mult. $20,15 \mathrm{by}$ | , 2705 |
| (6) Mult. 17105 by | , 0237 | (11) | Mult., 907 by | , 0025 |

When any number of decimals is to be multiplied by 10 , $100,1000,8 \mathrm{c}$., it is only removing the separating point in the multiplicand so many places towards the right-hand as there are cyphers in the multiplier; thus , $578 \times 10=5,78$, $, 578 \times 100=57,8 ., 578 \times 1000=578 ., 578 \times 10000=5780$.

## CONTRACTED MULTIPLICATION OF DECIMALS.

Rule.-Put the unit's place of the multiplier under that place of the multiplicand that is intended to be kept in the product; then invert the order of all the other figures i. $e$. write them all the contrary way; then in multiplying, begin at the figure in the multiplicand, which stands over the figure you are then multiplying with, and set down the first figure of each particular product directly one under the other, and have a due regard to the increase arising from the figures on the right-hand of that figure you begin to multiply at in the multiplicand.
${ }^{6} 5^{5}$ That in multiplying the figure left out every time next the right-hand in the multiplicand, if the product be 5 , or upwards to I5, carry 1 ; if 15 , or upwards to 25 , carry 2 ; and if 25 , or upwards to 35 , carry 3 , \&c.

## EXAMPLES.

(12) Multiply 384,672158 by 36,8345 , and let there be only 4 places of decimals in the product.

Contracted way. 384,672158 5438,63
$\overline{115401647}$ 23080329 3077377 115402 15387
1923
14169,2065

| Common way. |  |
| ---: | :--- |
| 384,672158 |  |
| 19 | 36,8345 |
| 1923 | 360790 |
| 1536888632 |  |
| 115401 | 6474 |
| 3077377 | 264 |
| 23080329 | 48 |
| 115401647 | 4 |
| 14169,2066 |  |

(13) Multiply 3,141 ă 92 by 52,7438 , and leave only 4 places of decimals.

Ans. 165,6994.
(14) Multiply 2,38645 by 8,2175 , and leave only 4 places of decimals. Ans. 19,6107.
(15) Multiply 375,13758 by 16,7324 , and let there be only 1 place of decimals. Ans. 6276,9.
(16) Multiply 375,13758 by 16,7324 , and leave only 4 places of decimals.

Ans. 6276,952.
(17) Multiply 395,3756 by ,75642, and let there be only 4 places of decimals.

Ans. 299,07

## DIVISION OF DECIMALS.

This rule is also worked as in whole numbers: the only difficulty is in valuing the quotient, which is done by any of the following rules.

Rule 1.-The first figure in the quotient is always of the same value with that figure of the dividend, which answers or stands over the place of units in the divisor.
2.-The quotient must always have so many decimal places as the dividend has more than the divisor.

Note. 1.-If the divisor and dividend have both the same number of decimal parts, the quotient will be a whole number.
2.-If the dividend hath not so many places of decimals 3s are in the divisor, then so many cyphers must be annexed to the dividend as will make them equal and the quotien will then be a whole number.

## 140 Contracted Division of Decimals.

3.-But if, when the division is done, the quotient has not so many figures as it should have places of decimals, then so many cyphers must be prefixed as there are places wanting.

## EXAMPLES.

(1) Divide 8564,825 by 6,321 . Ans. 1354,9 .
(2) Divide 48 by 1,44
(3) Divide 217,75 by 65
(4) Divide 125 by ,1045
(5) Divide 709 by 2,574
(6) Divide 5,714 by 8275
(7) Divide 7382,54 by 6,4252
(8) Divide , 0851648 by 4323
(9) Divide 267,15975 by 1,25
(10) Divide 72,1564 by ,1347
(11) Divide 715 by , 3075

When the numbers are to be divided by $10,100,1000$, $10000, \& c$. , it is performed by placing the separating point in the dividend so many places towards the left-hand, as there are cyphers in the divisor.

$$
\text { Thus, } \begin{array}{r|l}
5784 \div 10=578,4 & 5784 \div 1000=5,784 \\
5784 \div 100=57,84 & 5784 \div 10000=, 5784
\end{array}
$$

## CONTRACTED

## DIVISION OF DECIMALS.

Rule.-By the first rule find what is the value of the first figure in the quotient; then, by knowing the first figure's denomination, the decimal places may be reduced to any number, by taking as many of the left-hand figures of the dividend as will answer them; and in dividing omit one figure of the divisor at each following operation.

Note.-That in multiplying every figure left out in the divisor, you must carry 1 , if it be 5 or upwards to 15 ; if 15 or upwards to 25 , carry 2, ; if 25 or upwards to 35 , carry 3, \&c.

## EXAMPLES.

(12) Divide 721,17562 by 2,257432 , and let there be only 3 places of decimals in the quotient.

Contracled way.
2,257432)721,17562)319,467 $\frac{6772296}{439460}$ $\frac{225743}{213717} \ldots$ $-203169 \ldots$
$\frac{9030 . .}{1518 \ldots}$ $1354 \ldots$
$164 \ldots$ 158 $-6$

Common way. 2,257432)721,17562(310,467
$\frac{8772296}{489460}$

| 225743 | 2 |
| :--- | :--- |
| 203717 | 00 |
| 208168 |  |

$\frac{203168}{10548} \frac{88}{120}$

| 9029 | 728 |
| ---: | ---: |
| 1518 | 3920 | $\frac{1354}{163} \frac{4592}{03280}$ $158) 02(24$

(13) Divide 8,758615 by $5,271416 \pi$.
(14) Divide 51717591 by $8,7586$.
(15) Divide 25,1367 by 217,35 .
(16) Divide 51,47542 by, 123415 ,
(17) Divide 70,23 by 7,9863.
(18) Divide 27.104 by 3,712 .

## REDUCTION OF DECIMALS.

1. To reduce a Vulgar Fraction to a Decimal.

Rule.-Add cyphers to the numerator, and divide by the denominator: the quotient is the decimal fraction required.

## EXAMPLES.

(1) Reduce $\frac{1}{4} \ldots \ldots$ to a decimal
(2) Reduce $\frac{1}{2} \ldots \ldots$ to a decimal
(3) Reduce $\frac{3}{4} \ldots$. to a decimal
(4) Reduce $\frac{3}{8} \ldots \ldots$ to a decimal
(5) Reduce $\frac{2}{26}$. . . .to a decimal
(6) Reduce $\frac{15}{14}$ of $\frac{10}{1} \frac{0}{3}$ to a decimal
4)1,06(,25 Ans

Ans. ,5.
Ans. ,75.
Ans. ,375.
Ans. ,1923076+ Ans., 604395B-1

Note 1.-If the given parts are of several denominations, they may be reduced by so many distinct operations as there are different parts, or by first reducing them into their lowest denominations, and then divide as before. Or,
2.-Write the given numbers perpendicularly under each other for dividends; proceed orderly from the least to the greatest ; on the left thereof draw a line, and place opposite to every denomination such a number for a divisor as will reduce each of them to the next superior name; then proceed to divide by the first and every divisor as in Divisicn, and the last quotient will be the decimal required. Or,
3.-Write half the greatest even number of shillings for the first decimal figure, and let the farthings in the given pence and farthings possess the second and third places; observing to increase the 2 place by 5 , if the shillings are odd, and the third place by 1 , when the farthings exceed 12 , and by 2 when they exceed 37 , which will give the decimal required.
(7) Reduce 5 s . to the decimal of a $\mathbf{£}$.
(8) Reduce 9 s . to the decimal of a $£$.
(9) Reduce 16 s . to the decimal of a $£$.
(10) Reduce 12s. 6 d . to the decimal of a $£$.
(11) Reduce $12 \mathrm{~s} .8 \frac{1}{4}$ d. to the decimal of a $£$.

Ans. ,25. Ans. ,45.
Ans. ,8.
Ans. ,625.

Ans. ,634375.

| First. | Second.$4 \mid 1$ | Third. <br> 2) 12 |  |
| :---: | :---: | :---: | :---: |
| 12s. : 81 |  |  |  |
| 12 | $1 2 \longdiv { 8 , 2 5 }$ | ,634 | 8 |
| 152 | 20 12,6875 |  | 4 |
| 4 | ,634875 |  | 3 |
| 060)609(,634375 |  |  |  |

(12) Reduce 4 s .6 d . to the decimal of a crown. Ans. ,9
(13) Reduce 11 oz .17 dwts . to the decimal of a lb. Troy. Ans. ,9875
(14) Reduce 12 drams to the decimal of a lb. Avoírdupois

Ans. ,046875
(15) Reduce 2 qrs. 14 lbs . to the decimal of a cwt.

Ans. ,625
(16) Reduce 6 furlongs, 4 poles, to the decimal of a mile.

Ans. $76 \% 5$.
(17) Reduce 2 quarts, 1 pint, to the decimal of a gallon. Ans. ,625.
(18) Reduce 4 gallons, 2 quarts of wine, to the decimal of a hogshead. Ans. , $071428+$. (19) Reduce 2 gallons, 1 quart of beer, to the decimal of a barrel. Ans. ,0625.
(20) Reduce 52 days to the decimal of a year.

Ans. , $142465+$.
2. To find the value of a Decimal Fraction, in the known parts of an integer.
Rule.-Multiply the decimal given by the number of parts of the next inferior denomination cutting off the decimals from the product; then multiply the remainder by the next inferior denomination; thus proceeding, till you have brought the least known parts of the integer.

> EXAMPLES.
(21) What is the value of ,634375 of a $£$.

| , 634375 |
| ---: |
| 12,687500 |
| 12 |
| 8,250000 |
| 1,000000 |

(22) What is the value of, 9875 of a lb. Troy?

Ans. 11 oz .17 dwts .
(23) What is the value of , 046875 of a lb . avoirdupois? Ans. 12 drams
(24) What is the value of ,625 of a cwt?

Ans. 2 qrs. 14 lbs
(25) What is the value of , 625 of a gallon?

Ans. 2 quarts, 1 pint
(26) What is the value of , $071428+$ of a hogshead of wine?

Ans. 4 gallons, 2 quarts
[27) What is the value of , 0625 of a barrel of beer?
Ans. 2 gillons, 1 quart.
(28) What is the value of , $142465+$ of a yer?

Ans. 52 days,


| Decimal TABLES of Coin, $\bar{W}_{\text {eight, }}$ and Measure. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ,003348 | 80 | ,317460 |  |  | Decimals. |
| 2 | ,002790 | 70 | ,277777 | 3 | -005952 |  |
| 3 | ,002232 | 60 | ,238095 | 2 | '003968 |  |
| 4 | ,001674 | 50 | ,198412 | 1 | '001984 |  |
| 5 | ,001116 | $\begin{aligned} & 40 \\ & 30 \\ & 20 \end{aligned}$ | $\begin{array}{r} , 158730 \\ , 119047 \end{array}$ |  |  |  |
| 6 | ,000558 |  |  | TABLE VII. |  |  |
| $1+$ Oz. Decimals. <br> 3 , 000418 <br> 2 , 000279 <br> 1 , 000139 |  |  | ,039682, |  |  |  |
|  |  | 10 |  | Measure. |  |  |
|  |  | ,035714 |  |  |  |  |
|  |  | 8 | $\begin{aligned} & , 031746 \\ & , 027777 \end{aligned}$ | Liguid. Lry. |  |  |
|  |  | 1 Gallon 1 Quarter Integers. |  |  |
| TABLE V. |  |  |  |  |  | ,023809 |  |
| Avolrdup. Wt. |  | 4 ,01587 |  | Pints ${ }^{\prime}$ Dec. ${ }^{\text {Push. }}$ |  |  |
|  |  | 3 | ,011904 |  |  |  |
| 1 lb . | Integer. | 2 | ,007936 |  | ,375 | 4 |
|  |  | 1 | ,003968 |  | ,25 | 2 |
| ances | Decimals. | $\begin{gathered} \text { Pints. } \\ 4 \end{gathered}$ | Decimals. |  |  | 1 |
| 7 | ,4375 |  | ,001984 | Q.pt. D c. Pk. |  |  |
| 6 | ,375 | 3 | ,001488 | Q ,09375 |  | 3 |
| 5 | ,3125 | 2 | ,000992 | 2 , | ,0625 | 2 |
| 4 | ,3125 | 1 | ,000496 | $1 \mid, 03125$ |  | - 1 |
| 3 | ,1875 | 1 Hogshead the |  | Decimals. Q. pks. |  |  |
| 2 | ,125 |  |  | ,0234375 |  | Q. phs |
| 1 | ,0625 |  |  | $, 015625$ |  | 2 |
| Drams Decimals. |  | Integer. |  |  |  |  |
| 8 | ,03126 |  |  | Decimals. Pints. <br> , 005859 3 <br> , 005906 2 <br> , 001953 1 |  |  |
| 7 | ,027343 |  |  |  |  |  |  |  |
| 6 | ,023437 |  |  |  |  |  |  |  |
| 5 | ,019531 |  |  |  |  |  |  |  |
| 4 | ,015625 | Gals. Decimal |  |  |  |  |
| 3 | ,011718 | 30 | ,476190 | TABLE VIII. |  |  |
| 2 | ,007812 | 20 | ,317460 |  |  |  |  |
| 1 | ,003906 | 10 | $\begin{array}{r} 158730 \\ .142857 \end{array}$ | Long Measure. |  |  |
| TABLES VI. <br> Liq. Measure. <br> 1 Tun the Integer. |  | 8 | ,126984 | 1 Mile the Integer. |  |  |
|  |  | 7 | $\begin{aligned} & , 111111 \\ & , 095238 \end{aligned}$ |  |  |  |
|  |  | Yards. Decimals. |  |  |  |  |  |
|  |  | 4 | ,079365 | $\begin{array}{r} 1000 \\ 900 \end{array}$ | ,568182 |  |
|  |  | $\begin{aligned} & , 068492 \\ & , 0+7619 \end{aligned}$ | , 511364 |  |  |
| Gals. Decimals. |  |  |  |  |  | 3 | $\begin{aligned} & 900 \\ & 800 \end{aligned}$ |
| 100 | ,396825 | 2 | $\begin{gathered} , 0+7619 \\ 031746 \end{gathered}$ | $\begin{array}{r} 800 \\ 700 \end{array}$ | ,454545 |  |
| 90 | ,357141 | 1 | $\begin{array}{r} , 031746 \\ , 015873 \end{array}$ | 600 | 340909 |  |


| Decimal TABLES of Coin, Weight, and Measure. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 400 | ,227272 | 60 | ,164383 | TABLE X. <br> Cloth Measure. 1 Yard the Integer. Qrs. the same as the fourth Table. |  |
| 300 | ,170454 | 50 | ,136986 |  |  |
| 200 | ,113636 | 40 | ,109589 |  |  |
| 100 | ,056818 | 30 | ,082192 |  |  |
| 90 | ,051136 | 20 | ,054794 |  |  |
| 80 | ,045454 | 10 | ,027397 | Nails. | Decimals. |
| 70 | ,039773 | 9 | ,024657 | , | ,1875 |
| 60 | ,034091 | 8 | ,021918 | 2 | ,125 |
| 50 | ,028409 | 7 | ,019178 | 1 | ,0625 |
| 40 | ,022727 | 6 | ,016438 |  |  |
| 30 | ,017045 | 5 | ,013698 | TABLE XI. Lead Weight. 1 Fother the Inte |  |
| 20 | ,011364 | 4 | ,010959 |  |  |
| 10 | ,005682 | 3 | ,008219 |  |  |
| 9 | ,005114 | 2 | ,005479 |  |  |
| 8 | ,004545 | 1 | ,002739 | Hund. Decimals. |  |
| 7 | ,003977 | 1 Day the Integer. |  | 10 9 | ,512820 |
| 6 | ,003409 | Hours. Decimals, |  | 8 | ,410256 |
| 4 | ,00234] |  |  | 7 |  |
| 4 3 | , 002273 | 12 | ,5 458333 |  | ,307692 |
| 3 2 | ,001704 | 110 | ,458333 | 5 | ,256410 |
| 1 | ,000568 |  | ,375 | $\begin{aligned} & 4 \\ & 3 \end{aligned}$ | ,205128 |
| Feet. | Decimals. | 8 | ,333333 |  | $\begin{aligned} & , 153846 \\ & , 102564 \end{aligned}$ |
| 2 | 0003787 | 7 | ,291666 | $3$ |  |
| 1 | 0001894 |  | ,25 | 1 | $\begin{aligned} & 102564 \\ & , 051282 \end{aligned}$ |
| Inches Decimals. |  | 54 | ,208333 | Qrs. | Decimals. |
| 6 | ,0000947 |  | ,166666 | 2 | ,025641 |
| 8 | ,0000474 | 3 | ,125 |  |  |
| 1 | ,0000158 | 1 | ,083333 | lfs. | De |
| TABLE IX.Time. |  | Min. | Decimals. | 13 | ,0059523 |
|  |  | 30 | ,020833 | 12 | ,0054945 |
| 1 Year the Integer. |  | 20 | ,013888 | 11 | ,0050366 |
| Months the same as |  | 10 | ,006944 | 10 | ,0045787 |
| Pence in the second Table. |  | 98 | ,00625 |  | ,0041208 |
|  |  | ,005555 | 7 | ,0036630 |  |
|  |  | 7 |  | ,004861 | ,0032051 |
| 365 | 1,000000 |  | 6 | ,004166 | 7 | ,0027472 |
| 300 | ,821918 | 5 | ,003472 | 5 | ,0022893 |
| 200 | ,547945 | 4 | ,002777 | 4 | ,0018315 |
| 100 | ,273973 |  | ,002083 | 3 | ,0013736 |
| 90 | ,246575 | 2 | ,001388 | 2 | ,0009157 |
| ¢ 0 | ,219178 | 1 | ,000694 | 1 | ,0004578 |

## THE RULE OF THREE IN DECIMALS.

## examples.

(1) If $26 \frac{1}{\frac{1}{2}}$ yards cost $£ 3.16 \mathrm{~s}$. 3 d .-what will $32 \frac{1}{4}$ yards come to?

$$
\begin{aligned}
& \boldsymbol{Y d s} \text {. £. Yds. } \\
& \text { 26,5 : 3,8125 :: 32, } 25 \\
& \text { 32,25 } \\
& 26,5) \overline{122,953125}\left(4,63974=£ 4: 12: 9 \frac{1}{2} .\right.
\end{aligned}
$$

(2) What will the pay of 540 men come to at $£ 1.5 \mathrm{~s} .6 \mathrm{~d}$. per man? Ans. £688: 10 s .
(3) If $7 \frac{3}{4}$ yards of cloth cost $£ 2.12 \mathrm{~s}$. 9d.-what will $140 \frac{1}{3}$ yards of the same cost ${ }^{\text {? }}$

Ans. £47: $16: 3 \frac{1}{2}$. +
(4) If 1 chest of sugar weighing 7 cwt. 2 qrs. 14dlbs. cont £36. 12s. 9d.-what will 2 cwt .1 qr .21 lbs . of the same cost?

Ans. £11: 14: 23 . +
(5) A groeer buys 24 tons, 12 cwt .2 qrs. 14 lb .12 oz . of tobacco for $£ 3678.6 \mathrm{~s} .4 \mathrm{~d}$.-what will 1 oz . come to ?

Ans. $1 d$.
(6) What will 326 lbs .1 qr . of tobacco come to when $1 \frac{1}{2}$ lbs. are sold for 3 s . 6d. ? Ans. $£ 38: 1: 3$.
(7) What is the worth of 19 oz .3 dwts. 5 grs . of gold, at £2. 19s. per oz. ?

Ans. $£ 56: 10: 5 \frac{1}{2}$.
(8) What is the worth of $827 \frac{3}{4}$ yards of painting, at $10 \frac{1}{2} \mathrm{~d}$. per yard?

Ans. £36:4:31.+
(9) If I lent my friend $£ 34$. for $\mathrm{s}_{\mathrm{y}}$ of a year-how much ought he to lend me $\frac{5}{12}$ of a year to requite my kindness ?

Ans. £51.
(10) If $3 \frac{1}{2}$ yards of cloth cost £1. 1s. 6d.-how many yards may be bought for $£ 32.15 \mathrm{~s} .6 \mathrm{~d}$. ?

Ans. 106 yds. 2 qrs. 3 nails,
11) If 1 oz . of silver cost 5 s .6 d .-what is the price of a tankard that weighs $1 \mathrm{lb} .10 \mathrm{oz} .10 \mathrm{~d} w t \mathrm{~s} .4 \mathrm{grs}$. ?

Ans. £6: $3: 9 \frac{1}{2}$. +
(12) If 1 lb . of tobacco cost 15 d .-what cost 3 hogsheads, weighing together 15 cwt .1 qr .19 lbs . ?

$$
\text { Ans. } £ 107: 18: 9 .
$$

(18) If 1 cwt. of currants cost $£ 2.9 \mathrm{~s} .6 \mathrm{~d}$.-what will 45 ewt. 3 qrs. 14 lbs. cost at the same rate? Ans. £ $113: 10: 9 \frac{3}{4}$.
(14) Bought 6 chests of sugar, each 6 cwt .3 qrs. at $£ 2$. 1 Gs. per cwt-what do they come to? Ans. £113: 8s.
(15) Bought a tankard for $£ 10$ 12s. at the rate of 5 s .4 d . per ounce-what is the weight?

Ans, 39 oz. 15 dwts.
(1f) (Gave $£ 187.3 \mathrm{~s} .3 \mathrm{~d}$. for 25 cwt .3 qrs .14 lbs . of to-becoo-what rate did I buy it per lb .? Ans. $15 \frac{1}{2} d$.
(17) Prught 29 lbs .4 oz . of coffee for $£ 10.11 \mathrm{~s}$. 3 d .whint wes the value of 3 lbs .? Ans. 1 1: $1: 8$.
(:\%) If I give 1 s . 1 d . for $3 \frac{1}{\mathrm{~h}} \mathrm{lbs}$. of cheese-what will be the value of 1 cwt .?

Ans. £1: 14-8.

## $\therefore$ EXTRACTION OF THE SQUARE ROOT.

' Extracting the Square Root is to find out such a number as being multiplied into itself, the product will be equal to the given number.

Rule. 1.-Point the given number, beginning at the unit's place, then to the hundreds, and so upon every second figure throughout.
2.-Seek the greatest square number in the first point towards the left-hand, placing the square number under the first point, and the root thereof in the quotient; subtract the square number from the first point, and to the remainder bring down the next point, and call that the Resolvend.
3.-Double the quotient, and place it for the divisor on the left-hand of the resolvend, seek how often the divisor is contained in the resolvend, (preserving always the unit's place, ) and put the answer in the quotient, and also on the right-hand side of the divisor: then multiply by the figure last put in the quotient, and subtract the product from the resolvend; bring down the next point to the remainder, (if there be any more,) and proceed as before.

Roors. 1. 2. 3. 4. 5. 6. 7. 8. 9.
Squares. 1. 4. 9. 16. 25. 36. 49. 64. 81.
EXAMPLES.
(1) What is the square root of 119025 ?
$119025(345$ Ans.

(2) What is the square root of 106929 ?
(3) What is the square root of 2268741 ?
(4) What is the square root of 7596796 ?
(1.)) What is the square root of 36372961 ?
(i) What is the square root of 22071204 ?

Ans, 327.
Ans. 1506,23+. Ans. 2756,228+. Ans. 6031. Ans. 4698.

When the given number consists of a whole number and decimals together, make the number of decimals even, by adding cyphers to them, so that there may be a point fall in the unit's place of the whole number.
17) What is the square root of 3271,4207 ? Ans. $57,19+$. (s) What is the square root of 4795,25731 ? Ans. $69,247+$. (3) What is the square root of 4,372594 ? Ans. $2,091+$. (10) What is the square root of 2,2710957 ?

Ans. 1,50701+.
(11) What is the square root of, 00032754 ? Ans. , $01809+$.
12) What is the square root of 1,270054 ? Ans. $1,1269+$.

To extract the Square Root of a Vulgar Fraction.
Rule.-Reduce the fraction to its lowest terms: then extract the square root of the numerator for a new numerator, and the square root of the denominator for a new denominator.

If the fraction be a surd, i. e., a number where a root can never be exactly found, reduce it to a decimal and extract the root of it.

## EXAMPLES.

(13) What is the square root of $\frac{23}{3} \frac{3}{1} \frac{4}{8}$ ?

Ans. $\frac{2}{3}$.
(14) What is the square root of $\frac{2704}{2} \frac{4}{25}$ ? Ans. $\frac{4}{5}$. (15) What is the square root of $\frac{9216}{12544}$ ?

> SURDS.
(16) What is the square root of $\frac{275}{341}$ ?
(17) What is the square root of $\frac{357}{476}$ ?
18) What is the square root of $\frac{4788}{549}$ ?

Ans. ,89802+. Ans. ,86602+. Ans. ,93309+.

## To extract the Square Root of a Mixed Number.

Rule 1.-Reduce the fractional part of the mixed number to its lowest term, and then the mixed number to an improper fraction.
2.-Extract the roots of the numerator and denominat for a new numerator and denominator.

G 2

## 150

 Extraction of the Square Root.If the mixed number given be a surd, reduce the fractional part to a deci mal, annex it to the whole number, and extract the sifuare ioot thereop.
EXAMPLES.
(19) What is the square root of $51 \frac{21}{2} \frac{1}{3}$ ?

$$
\begin{aligned}
& \text { Ans. } 7 \frac{1}{2} . \\
& \text { Ans. } 5 \frac{1}{3} .
\end{aligned}
$$

(20) What is the square root of $27_{1 \frac{9}{6} 6}$ ?
(21) What is the square root of $9 \frac{43}{45}$ ?

## surds.

(22) What is the square root of $85 \frac{14}{15}$ ?
(23) What is the square root of $8 \frac{5}{7}$ ?

Ans. 9,2 $7+$.
(24) What is the square root of $6 \frac{2}{5}$ ?

$$
\text { Ans. } 2,9519+
$$

Ans. 2,5298+.
THE APPLICATION.
(1) There is an army consisting of a certain number ot men, who are placed rank and file (that is in the form of a square, each side having 576 men)-I desire to know how many the whole square contains? Ans. 331776.
(2) A certain pavement is made exactly square, each side of which contains 97 feet-I demand how many square feet are contained therein?

Ans. 9409.

## To find a mean proportional between any two given nnmbers.

Rune.-The square root of the product of the given numbers is the mean proportional sought.

## examples.

(3) What is the mean proportional between 3 and 12 ?
$3 \times 12=36$, then $\sqrt{ } 36=6$, the mean proportional.
(4) What is the mean proportional between 4276 and 842 ?

Ans. 1897,4+.
To find the side of a sq are equal in area to any given superficies.
Rule.-The square root of the contents of any given superficies, is the side of a square equal in area.

## examples.

(5) If the contents of a given circle be $1 \times 2$-what is the side of the square?

Ans. 12,649+.
(6) If the area of a cirele be 750 -what is the side of the square equal ? Ans. 27,38612+.

The area of a carcle given to find the diameter.
Rule.-As. $355: 452$, or as $1: 1,273239$ :: the area so the square of the diameter: or, multiply the square root of the area by 1,12837 , and the product will be the diameter.

EXAMPLE.
(7) What length of cord will be fit to tie to a cow's tail, the other end fixed in the ground, to let her have the liberty of eating an acre of grass, and no more, supposing the cow and tail to be $5 \frac{1}{2}$ yards?

Ans. 6,13 +perches.
The area of a circle given to find the periphery or circumfercnce.
Rule.-As $113: 1420$, or as $1: 12,56637$ :: the area to the square of the periphery;-or, multiply the square root of the area by 3,5449 , and the product is the circumference.

## examples.

(8) When the area is 12 -what is the circumference?

Ans. 12, 2799+.
(9) When the area is $160-$ what is the periphery?

Âns. $44,839+$
Any two sides of a right-angled triangle given to find the third side.

1. The base and perpendicular given to find the hypothenuse.

Rule.-The square root of the sum of the squares of the base and perpendicular is the length of the hypothenuse.

EXAMPLES.
(10) The top of a castle from the ground is 45 yards high, and surrounded with a ditch 60 yards broad; what length must a ladder be to reach from the outside of the ditch to the top of the castle? Ans. 75 yards.

## Ditch.

Base 60 yards.
(11) The wall of a town is 25 feet high, which is surrounded by a moat of 30 feet in breadth-I desire to know the length of a ladder that will reach from the outside of the moat to the top of the wall ?
2. The hypothenuse and perpendicular given to find the base.

Rule.-The square root of the difference of the squares of the hypothenuse and perpendicular is the length of the jase.
3. The base and hypothenuse given to find the perpendicular.

Rule.-The square root of the difference of the squares of the hypothenuse and base is the height of the perpendi:ular.

45 The last two questions may be varied for examples to he last two propositions.
thy number of men being given, to form them into a square batalia, or to find the number of rank and file.
Rule.-The square root of the number of men given, is he number of men either rank or file.
(12) An army consisting of 331776 men-I desire to know fow many rank and file?

Ans. 576.
(13) A certain square pavement contains 48841 square tones, all of the same size-I demand how many are conaned in one of the sides?

Ans. 221.

## EXTRACTION OF THE CUBE ROOT.

To extract the cube root of any given number is to find a umber which when multiplied twice by itself will produce re given number.
Rule 1.-Point every third figure of the cube given, eginning at the unit's place, seek the greatest cube in the rst point and subtract it therefrom, put the root in the notient, and bring down the figures in the next point for a ividend.
2.-To find a divisor multiply the square of the figure aced in the quotient by 300, find how often it is contained t the dividend, and put the answer in the quotient for the cond figure of the root.
3. Multiply the part of the root formerly found by the st figure placed in the root, and the product by 30, add is and the square of the last figure placed in the root to e divisor, multiply the sum of these by the last figure pla$d$ in the root, and subtract the product from the dividend, ing down another point for a new dividend, and proceed in e same manner.

Roots. 1. 2. 3. 4. 5. 6. 7. 8. 9. Cubes. 1. 8. 27. 64. 125. 216. 343. 512. 729. EXAMPLES.
(1) What is the cube root of 14886936 ? $1 \dot{48} 8 \dot{6} 93 \dot{6}(246$

| $2 \times 2 \times 300$ | $=1200 \quad \frac{8}{j 6886}$ |
| ---: | :--- |
| $2 \times 4 \times 30$ | $=240$ |
| $4 \times 4 \times$ | $=\frac{16}{1456 \times 4=5824}$ |
| $24 \times 24 \times 300$ | $=\frac{172800}{j 1062936}$ |
| $24 \times 6 \times 30$ | 4320 |
| $6 \times 6 \times$ | $=\frac{36}{177156 \times 6=1062936}$ |

(2) What is the cube root of 389017 ?
(3) What is the cube root of 5735339 ?
(4) What is the cube root of 32461759 ?
(5) What is the cube root of 84604519 ?
(6) What is the cube root of 259694072 ?
(7) What is the cube root of 48228544 ?
(8) What is the cube root of 27054036008 ?
(9) What is the cube root of 22069810125 ?
(10) What is the cube root of 122615327232 ?
(11) What is the cube root of 219365327791 ?
(12) What is the cube root of 673373097125 ?

Ans. 6081.
Ans. 8765.
When the given number consists of a whole number and decimal together, make the number of decimals consist of 3, 6, 9, \&c. places, by adding cyphers thereto, so that there may be a point fall in the unit's place of the whole number
(13) What is the cube root of 12,977875 ?

Ans. 2,35.
(14) What is the cube root of 36155,027576 ?

Ans. 33,06. +
(15) What is the rube root of .001906624 ?

Ans. ,124.

To extract the Cube Root of a Vulgar Fraction.
Rule.-Reduce the fraction to its lowest terms, then extract the cube root of its numerator and denominator for a new numerator and denominator.

## EXAMPLES.

(16) What is the cube root of $\frac{25}{8} \frac{0}{8}$ ?

Ans. $\frac{5}{3}$.
(17) What is the cube root of $\frac{324}{1500}$ ?

Ans. $\frac{3}{5}$.
(18) What is the cube root of $\frac{1520}{5130}$ ?

Ans, $\frac{2}{2}$.
To extract the Cube Root of a Mixed Number.
Rule.-Reduce the fractional part to its lowest terms, and then the mixed number to an improper fraction: extract the cube roots of the numerator and denominator for a new numerator and denominator.

## EXAMPLES.

(19) What is the cube root of $12 \frac{1}{2} \frac{7}{7}$ ?

Ans. $2 \frac{1}{3}$.
(20) What is the cube root of $81 \frac{5}{343}$ ? Ans. $3 \frac{1}{7}$.
(21) What is the cube root of $405_{1}^{2} \frac{8}{255}$ ? Ans. $7 \frac{2}{5}$.

## THE APPLICATION.

(1) If a cubical piece of timber be 47 inches long, 47 inches broad, and 47 inches deep-how many cubical inches doth it contain?

Ans. 103823.
(2) There is a cellar dug, that is 12 feet every way, in length, breadth, and depth-how many solid feet of carth were taken out of it?

Ans. 1728
(3) There is a stone of a cubic form, which contains 389017 solid feet-what is the superficial contents of one of ts sides?

Ans. 5329.
Between two numbers given, to find two mean proportionals.
Rule.-Divide the greater extreme by the less, and the cube root of the quotient, multiplied by the less extreme, gives the less mean; multiply the said cube root by the less mean, and the product will be the greater mean proportional.

## EXAMPLES.

(4) What are the two mean proportionals between 6 and $162^{3}$

Ans. 18 and 54.
(5) What are the two mean proportionals between 4 and 108 ?

Ans 12 and 36.

## Extraction of the Biquadrate Root. 155

To find the side of a Cube that shall be equal in solidity to any given solia as, a globe eylinder, prism, cone, de.
Rule.-The cube root of the solid content of any solid body given is the side of a cube of equal solidity.

EXAMPLE.
(6) If the solid content of a globe be 10648-what is the side of a cube of equal solidity? Ans. 22.

The side of a cube being given, to find the side of the cube that shatl be double, treble, dc., in quantity to the cube given.
Rule.-Cube the side given, and multiply it by 2, 3, \&c. the cube root of the product is the side sought.

EXAMPLE.
(7) There is a cubical vessel, whose side is 12 inches, and it is required to find the side of another vessel that is to contain three times as much ?

Ans. 17,307.

## EXTRACTING OF THE

## BIQUADRATE ROOT.

To extract the biquadrate root, is to find out a number which being involved four times into itself, will produce the given number.

Rule.-First extract the square root of the given number, and then extract the square root of that square root, and it will give the biquadrate root required.

EXAMPLES.
(1) What is the biquadrate of 27 ?
(2) What is the biquadrate of 76 ?
(3) What is the biquadrate of 275 ? Ans. 5719140625.
(4) What is the biquadrate root of 531441 ?
(5) What is the biquadrate root of 33862176 ?
(6) What is the biquadrate root of 5719140625 ?

Ans. 275.

## 156 Extracting the Roots of all Powers

## A GENERAL RULE FOR <br> EXTRACTING THE ROOTS OF ALL POWERS.

1.-Prepare the number given for extraction, by pointing off from the unit's place, as the root required directs.
2.-Find the first figure in the root by the table of powers, which subtract from the given number.
3.-Bring down the first figure in the next point to the remainder and call it the dividend.
4.-Involve the root into the next inferior power to that which is given, multiply it by the given power, and call it the divisor.
5.-Find a quotient figure by common division, and annex it to the root; then involve the whole root into the given power, and call it the Subtrahend.
6.-Subtract that number from as many points of the given power as are brought down, beginning at the lowest place, and to the remainder bring down the first figure of the next point for a new dividend.
7.-Find a new divisor, and proceed in all respects as before.

## EXAMPLES

1) What is the square root of 141376 ?
$1 \dot{1} 1 \dot{3} 7 \dot{6}(376$

d
Simple Interest.
(2) What is the cube root of 58157376 ?

| 531573761376 $27$ |
| :---: |
|  |
|  |
| 7)25043 divid |
| 20720043 dividen |
| 53157376 subtrahend. |


(3) What is the biquadrate root of 19987178376 ?

19987173376(376
81
$1 0 8 \longdiv { 1 1 8 8 }$ dividend. I874161 subtrahend. 2026121124556.3 dividend. 19987173376 subtrahend.

| $3 \times$ | $3 \times$ | $3 \times$ | 4 |
| ---: | ---: | ---: | ---: |
| $37 \times$ | $=108$ divisor. |  |  |
| $37 \times$ | $37 \times$ | 37 | $=1874161$ subtrahend. |
| $37 \times$ | $37 \times$ | $37 \times$ | 4 |
| 37 | $=202612$ divisor. |  |  |
| $376 \times$ | $376 \times$ | $376 \times$ | 376 |$=19987173376$ subtrahend..

## SIMPLE INTEREST.

There are five letters to be observed in Simple Intere st viz.
P. the principal.
T. the time.
R. the ratio or rate per cent.
I. the interest.

A, the amount.

## Simple Interest.

## A table of ratios.

| 3 | , 03 | $5 \frac{1}{2}$ | , 055 | 8 | , 08 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $3 \frac{1}{2}$ | , 035 | 6 | , 06 | $8 \frac{1}{2}$ | , 085 |
| 4 | , 04 | $6 \frac{1}{2}$ | , 065 | 9 | , 09 |
| $4 \frac{1}{2}$ | , 045 | 7 | , 07 | $9 \frac{1}{2}$ | , 095 |
| 5 | , 05 | $7 \frac{1}{2}$ | , 075 | 10 | , 1 |

4 The ratio is the simple interest of $£ 1$. for 1 year, at the rate per cent. proposed, and is found thus :

As $100: 3:: 1:, 03$. As $100: 3,5:: 1:, 085$.
When the principal, time, and rate per cent. are given, to find the interest
Rule.-Multiply the principal, time, and ratio together and it will give the interest required.

Note.-The proposition and rule are better expressed thus:
I. When $\mathrm{P}, \mathrm{R}, \mathrm{T}$, are given to find I .

Rule. $p r t=1$.
*** When two or more letters are put together like a word, they are to be multiplied one into another.

> EXAMPLES.
(1) What is the interest of $£ 945$. 10 s . for 3 years, at 5 per cent. per annum?

$$
945,5 \times, 05 \times 3=141,825, \text { or } £ 141: 16: 6 \text {. Ans. }
$$

(2) What is the interest of 5547.14 s . at 4 per cent. per annum for 6 years?

Ans. £131 : 8: 11. 2,08 qrs.
(3) What is the interest of $£ 796.15 \mathrm{~s}$. at $4 \frac{1}{2}$ per cent. per annum for 5 years? Ans. $£ 179: 5: 4.2$ qrs.
(4) What is the interest of $£ 397.9 \mathrm{~s} .5 \mathrm{~d}$. for $2 \frac{1}{2}$ years at $3 \frac{1}{2}$ per cent. per annum? Ans. £34:15: 6. 3,5499 qrs.
(5) What is the interest of $£ 554.17 \mathrm{~s} .6 \mathrm{~d}$. for 3 years, 6 months, at $4 \frac{1}{2}$ per cent. per annum ? Ans. $£ 87: 7: 10.1,1$ qrs.
(6) What is the interest of $£ 236.18 \mathrm{~s} .9 \mathrm{~d}$. for 3 years, 9 months, at $5 \frac{1}{2}$ per cent. per annum ?

Ans. £48: 17: 4. 1,625 qrs.

## When the interest is for any number of days only.

Rule.- Multiply the interest of one pound for one day at the given rate, by the principal and number of days, and it will give the answer.
interest of £1. for one day.

| per cent. | Decimals. | per cent. | Decimals. |
| :---: | :---: | :---: | :---: |
| 3 | , 00008219178 | $6 \frac{1}{2}$ | , 00017808219 |
| $3 \frac{1}{2}$ | , 00009589041 | 7 | , 00019178082 |
| 4 | , 00010958904 | $7 \frac{1}{2}$ | , 00020547945 |
| $4 \frac{1}{2}$ | , 00012328767 | 8 | , 00021917808 |
| 5 | , 0013698630 | $8 \frac{1}{2}$ | , 00023287671 |
| $5 \frac{1}{2}$ | , 00015068493 | 9 | , 00024657534 |
| 6 | , 00016438356 | $9 \frac{1}{2}$ | , 00026027397 |

Note.-The above table is thus found.
As $365:, 03:: 1:, 00008219178$. And as $365:, 035$. :: 1 : ,00009589041, \&c.

## EXAMPLES.

(7) What is the interest of $£ 240$. for 120 days, at 4 per cent. per annum?
, $00010958904 \times 240 \times 120=£ 3: 8: 1 \frac{1}{4}$. Ans.
(8) What is the interest of £563. at 6 per cent. per annum, for 126 days? Ans. £11: $13: 2 \frac{1}{2} .+$
(9) What is the interest of $£ 560$. for 60 days, at 5 per cent. per annum? Ans. £4: $12: 0 \frac{1}{2} .+$
(10) What is the interest of £364. 18s. for 154 days, at 5 per cent. per annum? Ans. £7: $13: 11$ द. +
(11) What is the interest of $£ 725.15 \mathrm{~s}$. for 74 days, at 4 per cent. per annum ? Ans. £5:17:821.+
(12) What is the interest of $£ 100$. from the 1st. of June, 1849, to the 9 th. of March following, at 5 per cent. per annum?

Ans. £3: 16 113 $\frac{3}{4}$. +
II. When $\mathrm{P}, \mathrm{R}, \mathrm{T}$, are given to find A .

Rule. $p r t+p=\mathrm{A}$.

## EXAMPLES.

(13 What will $£ 279.12 \mathrm{~s}$. amount to in 7 years, at $4 \frac{1}{2}$ per cent. per annum?
$279,6 \times, 045 \times 7+279,6=£ 367: 18: 5.3,04$ qrs. Ans.
(14) What will $£ 320.17 \mathrm{~s}$. amount to in 5 years, at $3 \frac{1}{2}$ per cent. per annum?

Ans. $£ 376$ : $19: 11.2,8$ qrs.
(15) What will £679. 13s. amount to in 6 years, at 5 per cent. per annum? Ans. £883:10:10. 3,2 qrs.

When there is any odd time given with the whole years, reduce the odd time into days, and work with the decimal parts of a year, which are equal to those days.
16) What will $£ 926.12 \mathrm{~s}$. amount to in $5 \frac{1}{2}$ years, at 4 per cent. per annum ?
(17) What will $£ 368.16 \mathrm{~s}$. amount to in $7 \frac{3}{4}$ years, at $6 \frac{1}{2}$ per cent. per annum?

Ans. £554: 11: 7. 3,68 qrs.
(18) What will $£ 273.18 \mathrm{~s}$. amount to in 4 years, 175 days, at 3 per cent. per annum?

Ans. $£ 310: 14: 1.3,35080064$ qrs.
III. When $\mathrm{A}, \mathrm{R}, \mathrm{T}$, are given to find P .

Rule. $\frac{a}{t r+1}=\mathrm{P}$.

## examples.

(:9) What principal being put to interest will amount to £367. 13s. 5 d . 3,04 qrs. in $\gamma$ years, at $4 \frac{1}{2}$ per cent. per annum?
$, 045 \times 7+1=1,315$, then $367,674 \div 1,315=£ 279: 12 s$.
(20) What principal being put to interest will amount to £376. 19s. 11d. 2,8 qrs. in 5 years, at $3 \frac{1}{2}$ per cent. per annum? Ans. £320: 17 s .
(21) What principal being put to interest will amount to £883. 10s. 10d. 3,2 qrs. in 6 years, at 5 per cent. per annum ? Ans. $£ 679: 13 \mathrm{~s}$.
(22) What principal being put to interest will amount to $£ 1130.9 \mathrm{~s}$. Od. 1,92 qrs. in $5 \frac{1}{2}$ years, at 4 per cent. per annum?

Ans. $9926: 12 s$.
(23) What principal will amount to $£ 554.11 \mathrm{~s} .7 \mathrm{~d} .3,68$ qrs. in $7 \frac{3}{4}$ years, at $6 \frac{1}{2}$ per cent. per annum? Ans. £368: $16 s$.
(24) What principal will amount to $£ 310.14 \mathrm{~s}$. 1d. 3,35080064 qrs. in 4 years, 175 days, at 3 per cent. per annum?
IV. When A, P, T, are given to find R .

Rule. $\frac{a-p}{p t}=R$.
examples.
(25) At what rate per cent. will £279, 12s. amount to £367. 18s. 5 d. 3,04 qrs. in 7 years?
$367,674-279,6=88,074$, and $279,6 \times 7=1957,2$, then $88,074 \div 1957,2=, 045$, or $4 \frac{1}{2}$ per cent. Ans.
(26) At what rate per cent. will £320. 17 s . amount to £376. 19s. 11d. 2,8 qrs. in 5 years? Ans. $3 \frac{1}{2}$ per cent.
(27) At what rate per cent. will £679. 13s, amount to £883. $10 \mathrm{~s} .10 \mathrm{~d} .8,2$ qrs. in 6 years? Ans. 5 per cent.
28) At what rate per cent. will £926. 12s. amount to $1130.9 \mathrm{~s} .0 \mathrm{~d} .1,92 \mathrm{qrs}$. in $5 \frac{1}{2}$ years ? Ans. 4 per cent.
(29) At what rate per cent. will £368. 16 s. amount to £554. $11 \mathrm{~s} .7 \mathrm{~d} .3,68$ qrs. in $7 \frac{3}{4}$ years? Ans. $6 \frac{1}{2}$ per cent. (30) At what rate per cent. will £273. 18s. amount to $£ 310.14 \mathrm{~s} .1 \mathrm{~d} .3,35080064$ qrs. in 4 years, 175 days?

Ans. 3 per cent.
V. When $\mathrm{A}, \mathrm{P}, \mathrm{R}$, are given to find T .

Rule. $\frac{a-p}{p r}=\mathrm{T}$.
examples.
(31) In what time will $£ 279.12 \mathrm{~s}$. amount to $£ 367.13 \mathrm{~s}$. 3d. 3,04 qrs. at $4 \frac{1}{2}$ per cent. ?
$367,674-279,6=88,074$, and $279,6 \times, 045=12,5820$, then $88,074 \div 12,5820=7$ years Ans.
(32) In what time will $£ 320.17 \mathrm{~s}$. amount to $£ 376.19 \mathrm{~s}$. $11 \mathrm{~d} .2,8$ qrs. at $3 \frac{1}{2}$ per cent. ? Ans. 5 years.
(33) In what time will $£ 679.13 \mathrm{~s}$. amount to $£ 883.10 \mathrm{~s}$. $10 \mathrm{~d} .3,2$ qrs. at 5 per cent. ? Ans. 6 years.
(31) In what time will $£ 926.12 \mathrm{~s}$. amount to $£ 1130.9 \mathrm{~s}$. $0 \mathrm{~d} .1,92$ qrs. at 4 per cent.?

Ans. $5 \frac{1}{2} y$ ears.
(35) In what time will $£ 368$ 16s. amount to $£ 554.11 \mathrm{~s}$. 7d. 3,68 qrs. at $6 \frac{1}{2}$ per cent. ?

Ans. 73 years.
(36) In what time will $£ 273.18 \mathrm{~s}$. amount to $£ 310$. 14 s . 1d. 3,35080064 qrs. at 3 per cent.? Ans. 4 years, 175 days.

## ANNUITIES OR PENSIONS, \&c., IN ARREARS.

Annuities or pensions, \&cc. are said to be in arrears, when they are payable, or due, either yearly, half-yearly, or quarterly, and are unpaid for any number of payments.

Note--U represents the annuity, pension, or yearly rent; $\mathrm{T}, \mathrm{R}, \mathrm{A}$, as before.
I. When $\mathrm{U}, \mathrm{R}, \mathrm{T}$, are given to find A .

Rule. $\frac{t u-t u}{2} \times r:+t u=A$.
EXAMPLES.
(37) If a salary of $£ 150$. be forborne 5 years, at 5 per cent. what will it amount to ${ }^{\text {D }}$
$5 \times 5 \times 150-\overline{5 \times 150}=3000$, then $\frac{3000}{2} \times, 05+\overline{5 \times 150}=$
$£ 825$. Ans.
(38) If £250. yearly pension be forborne 7 years-what will it amount to in that time at 6 per cent. ? Ans. £2065.
(39) There is a house let upon a lease for $5 \frac{1}{2}$ years, at E60. per annum - what will be the amount of the whole time at $4 \frac{1}{2}$ per cent. ?

Ans. $£ 363: 8: 3$
(40) Suppose an annual pension of $£ 28$. remains unpaid for 8 years-what would it amount to at 5 per cent. ?

Ans. $\mathfrak{f 2 6 3 : 4 s}$
Note.-When the annuities, \&c., are to be paid half-yearly or quarterly, then
For lalf-yearly payments, take half of the ratio, half of the annuity, \&c., and twice the number of years, and

For quarterly payments, take a fourth part of the ratio, a fourth part of the annuity, \&c., and four times the number ot years, and work as before.

## EXAMPLES.

(41) If a salary of $£ 150$. payable every half-year, remains unpaid for 5 years-what would it amount to in that time at 5 per cent.?

Ans. £834: 7: 6.
(42) If a salary of £150. payable every quarter, was left anpaid for 5 years-what would it amount to in that time at 5 per cent. ?

Ans. $£ 839: 1: 3$.
Note.-It may be observed, by comparing these last examples, that the amount of the half-yearly payments is more advantageous than the yearly, and the quarterly more than the half-yearly.
II. When A, R, T, are given to find U.

Rule. $\frac{2 a}{t t r-t r+2 t}=\mathrm{U}$
EXAMPL.ES.
(43) If a salary amounted to £82 5 . in 5 years, at 5 pey cent.-what was the salary?

$$
\begin{gathered}
825 \times 2=1650,5 \overline{5 \times 5 \times 05}-5 \times, 05+5 \times 2=11, \text { then } \\
1650 \div 11=£ 150 \text { Ans. }
\end{gathered}
$$

(44) If a house be let upon a lease of $5 \frac{1}{2}$ years, and the amount for that time be $£ 363.8 \mathrm{~s} .3 \mathrm{~d}$. at $4 \frac{1}{2}$ per cent.-what is the yearly rent?

Ans. $\boldsymbol{£}^{60}$.
(45) If a pension amounted to $£ 2065$. in seven years, at 6 per cent.-what is the pension? Ans. £250.
(46) Suppose the amount of a pension be £263. 4s. in 8 years, and at 5 per cent.-what is the pension $?$ Ans. $£ 28$.

Note. - When the payments are half-yearly then take $4 a$, half of the ratio, and twice the number of years; and if quarterly then take $8 a$, one-fourth of the ratio, and four times the number of years; and proceed as before.
(47) If the amount of the salary, payable half-ycarly for 5 years, and at 5 per cent. be £\&34. 7s. 6d. -what is the salary?

Ans. £150.
(48) If the amount of the annuity, payable quarterly, be £839. 1s. 3d. for 5 years, at 5 per cent.-what is the annuity?
III. When $\mathrm{U}, \mathrm{A}, \mathrm{T}$, are given to find R .

Rule, $\frac{2 u-2 u t}{u t t-u t}=R$.

## EXAMPLES.

(49) If a salary of $£ 150$. per annum, amount to $£ 825$. in 5 years-what is the rate per cent.? Ans. 5 per cent.

$$
150
$$

$8: 25 \times 2-150 \times 5 \times 2=150$, then $-150 \times 5 \times 5-150 \times 5=, 05$
(50) If a house be let upon a lease for $5 \frac{1}{2}$ years, at $£ 60$. per annum, and the amount for that time be $£ 363$. $8 \mathrm{~s} .3 \mathrm{~d} .-$ what is the rate per cent.?

Ans. $4 \frac{1}{2}$ per cent.
(51) If a pension of £250. per annum amounts to £2065. in 7 years-what is the rate per cent.? Ans. 6 per cent.
(52) Suppose the amount of a yearly pension of $£ 28$. be $£ \preceq 63.4 \mathrm{~s}$. in 8 years-what is the rate per cent. ?

Ans. 5 per cent.
Note. -When the payments are half-yearly, take $4 a$, $4 u t$ for a dividend, and work with half the annuity, and double the number of years for the divisor; if quarterly, take $8 a-8 u t$, and work with a fourth of the annuity, and four times the number of years.
(53) If a salary of $£ 150$. per annum, payable half-yearly, amount to £834. 7s. 6d. in 5 years-what is the rate per cent. ? Ans. 5 per cent.
(54) If an annuity of $\boldsymbol{£ 1 5 0}$. per annum, payable quarterly, amount to $£ 839.1 \mathrm{~s}$. 3 d . in 5 years-what is the rate per cent. ?

$$
\text { Ans. } 5 \text { per cent. }
$$

IV. When $\mathrm{U}, \mathrm{A}, \mathrm{R}$, are given to find T .

Rule. First $\stackrel{2}{r}-1=x$ then $\sqrt{ } \frac{2 a}{u r}+\frac{x x}{4}-\frac{x}{2}=$ T.

## EXAMPLES.

(55) In what time will a salary of $£ 150$. per annum amount to $£ 825$. at 5 per cent. ?
$\frac{2}{, 05} 1=39 \cdot \frac{825 \times 2}{150 \times, 05}=220, \frac{39 \times 39}{4}=380,25$, then
$\sqrt{ } 220+380,25=24,5$, and $24,5-\frac{39}{2}=5$ years Ans.
(56) In what time will a yearly pension of £28. amount to £ 263.4 s . at 5 per cent. ? Ans. 8 years.
Note.-If the payments are half-yearly, take half of the ratio and half of the annuity; if quarterly, one fourth ot the ratio and one-fourth of the annuity; and T will be equal to those half-yearly or quarterly payments.
(57) If an annuity of £150. per annum, payable halfyearly amount to $£ 834.7 \mathrm{~s} .6 \mathrm{~d}$. at 5 per cent.-what time was the payment forborne?

Ans. 5 years.
(58) If a yearly pension of $£ 150$. payable quarterly, amount to $£ 839.1 \mathrm{~s} .3 \mathrm{~d}$. at 5 per cent.-what was the time of forbearance?

Ans. 5 years.

## PRESENT WORTH OF ANNUITIES.

Note.-P represents the present worth; U, T, R, as before.

1. When $\mathrm{U}, \mathrm{T}, \mathrm{R}$, are given to find P .

Rule. $\frac{t t r-t r+2 t}{2 t r+2}: \times u=\mathbf{P}$.

> EXAMPLES.
(59) What is the present worth of £150. per annum, to continue 5 years, at 5 per cent. ?

$$
\begin{gathered}
\overline{5 \times 5 \times, 05}-\overline{5 \times, 05}+\overline{5 \times 2}=11 . \overline{5 \times, 05 \times 2}+2=2,5, \text { then } \\
11 \div 2,5 \text { and } \times 150=£ 660 . \text { Ans. }
\end{gathered}
$$

(60) What is the yearly rent of a house of $£ 60$. to continue $5 \frac{1}{2}$ years, worth in ready money, at $4 \frac{1}{2}$ per cent.?

Ans. £291: $6: 3$.
(61) What is the present worth of $£ 250$. per annum, to continue 7 years, at 6 per cent.? Ans. £1454:4:6.
(62) What is a pension of £28. per annum, worth in ready money, at 5 per cent. for 8 years? Ans. £188.
The same thing is to be observed as in the first rule of annuities in arrears, concerning half-yearly and quarterly payments.
(63) What is the present worth of $£ 150$. payable halfyearly, for 5 years, at 5 per cent.? Ans. £667: 10 s.
(63) What is the present worth of $£ 150$. payable quarterly for 5 years, at 5 per cent. ${ }^{\text { }}$

Ans. $£ 671$ : 5 s.
Note.-By comparing the last examples it will be found that the present worth of half-yearly payments is more advantageous than yearly; and quarterly than half-yearly.
II. When P, T, R, are given to find U

Rule. $\frac{t r+1}{t t r-t r+2 t}: \times 2 p=\mathrm{U}$.

## EXAMPLES.

(65) If the present worth of a salary be $\mathfrak{£ 6 6 0}$. to continue 5 years, at 5 per cent.-what is the salary?

$$
\begin{aligned}
& 5 \times, 05+1=1,25 \quad 5 \times 5 \times, 05-5 \times, 05+10=11, \\
& \text { then } \frac{1,25}{11} \times 660 \times 2=£ 150 . \text { Ans. }
\end{aligned}
$$

(66) There is a house to be let upon a lease for $5 \frac{1}{2}$ years to come-I desire to know the yearly rent, when the present worth at $4 \frac{1}{2}$ per cent. is £291. 6s. 3d. ? Ans. £60.
(67) What annuity is that which for 7 years' continuance at 6 per cent. produces $£ 1454.4 \mathrm{~s}$. 6 d . present worth ?

Ans. $£ 250$.
(68) What annuity is that which for 8 years' continuance produces $£ 188$. for the present worth, at 5 per cent. ?

> Ans. £28.

Note.-When the payments are half-yearly, take half the ratio, twice the number of years, and multiply by $4 p . ;$ and when quarterly, take one-fourth of the ratio, four times the number of years, and multiply by $8 p$.
(69) There is an annuity, payable half-yearly, for 5 years come-what is the yearly rent, when the present worth, at per cent., is $£ 667.10$ s. ?

Ans. £150. (70) There is an annuity payable quarterly, for 5 years to me-I desire to know the yearly income, when the present orth, at 5 per cent., is $x^{6} 671.5 \mathrm{~s}$. ?

Ans. £150
III. When U, P, T, are given to find R.

Rule. $\frac{t u-p \times 2}{2 p t+t u-t t u}=\mathrm{R}$.

## EXAMPLES.

71) At what rate per cent. will an annuity of £150. per mum, to continue 5 years, produce the present worth of 660 ?
$30 \times 5-660 \times 2=180, \quad \overline{2 \times 660 \times 5}+\overline{150 \times 5}-150 \times 5 \times 5$ $=3600$, then $180 \div 3600=, 05=5$ per cent.
(72) If a yearly rent of $£ 60$. per annum, to continue $5 \frac{1}{2}$ zars, produce $£ 291.6 \mathrm{~s} .3 \mathrm{~d}$. for the present worth, what is 2e rate per cent. ?

Ans. $4 \frac{1}{2}$ per cent.
(73) If an annuity of $£ 250$. per annum, to continue 7 ears, produce $£ 1454.4 \mathrm{~s} .6 \mathrm{~d}$. for the present worth, what is re rate per cent.?

Ans. 6 per cent.
(74) If a pension of $£ 28$. per annum, to continue 8 years, roduce £188. for the present worth-what is the rate per ent. ?

Ans. 5 per cent.
Note. When the annuities are rents, \&c., are to be paid alf yearly or quarterly, then,

For half-yearly payments, take half of the annuity, \&c., nd twice the number of years, the quotient will be the ratia $f$ half the rate per cent. ; and,
For quarterly payments, take a fourth part of the annuity, cc., and four times the number of years, the quotient will be he ratio of the fourth part of the rate per cent.
(75) An annuity of $£ 150$. per annum, payable half-yearly. laving 5 years to come, is sold for $£ 667$. 10s. what is the ate per cent.?

Ans. 5 per cent
(76) If an annuity of $£ 150$. per annum, payable quarterly raving 5 years to come, be wold for $£ 671$. 5 s. what is the ate per cent.?

Ans. 5 per cent.
IV. When $\mathrm{U}, \mathrm{P}, \mathrm{R}$, are given to find T .

Rule. $\frac{2}{r}-\frac{2 p}{u}-1=x$, then, $\sqrt{ } \frac{2 p}{u r}+\frac{x x}{4}-\frac{x}{2}=\mathrm{T}$.
EXAMPLES.
(77) If an annuity of $£ 150$. per annum, produce $£ 660$. for the present worth, at 5 per cent.-what is the time of its continuance?

$$
\begin{gathered}
\frac{2}{, 05}-\frac{660 \times 2}{150}-1=30,2 \quad \frac{660 \times 2}{150 \times, 05}=176 \\
\frac{30,2 \times 30,2}{4}=228,01, \text { then } \sqrt{ } 2 \overline{28,01+176}=20,1 \\
\text { and } 20,1-\frac{30,2}{2}=5 \text { years Ans. }
\end{gathered}
$$

(78) For what time may a salary of $£ 60$. be purchased for £291. 6s. 3d at $4 \frac{1}{2}$ per cent.? Ans. $5 \frac{1}{2}$ years.
(79) For how long a time may $£ 250$. per annum be purchased for £1454. 4s. 6d. at 6 per cent.? Ans. 7 years.
(80) What time may a pension of £28. per annum be bought for £188. at 5 per cent.?

Ans. 8 years.
Note. -When the payments are half-yearly, then U will be equal to half the annuity, \&c., $R$ half the ratio, and $T$ the number of payments; and

When the payments are quarterly, $U$ will be equal to a fourth part of the annuity, \&c., R the fourth of the ratio, and T the number of payments.
(81) If an annuity of $£ 150$. per annuin, payabie hatyearly, be sold for $£ 667.10 \mathrm{~s}$. at 5 per cent.-I desire to know the number of payments, and the time to come?

Ans. 10 payments, 5 years.
(82) An annuity of $£ 150$. per annum, payable quarterly sold for $£ 671$. 5 s. at 5 per cent.-what is the number of pay ments, and time to come?

Ans. 20 payments, 5 ypars.

## ANNUITIES, ETC., TAKEN IN REVERSION.

1. To find the present worth of an anmuity, ic., taken in reverson.

Rule 1.-Find the present worth
of the yearly sum at the given rate, $t t r-t r+2$;
and for the time of its continuance $\overline{\text { thus, }} \overline{2 t r+2}: \times u=P$.

## 168

## Simple Interest.

2. Change $P$ into $A$, and find what principal being put to interest will amount to A, at the same rate, $a$ and for the time to come before the $-=\mathbf{P}$ annuity, \&c. commences; thus, tr. +1

## EXAMPLES.

(83) What is the present worth of an annuity of $£ 150$. per annum, to continue $\tilde{5}$ years, but not to commence till the end of 4 years, allowing 5 per cent. to the purchaser ?

$$
\frac{5 \times 5 \times, 05-5 \times, 05+2 \times 5}{5 \times, 05 \times 2+2} \times 150=660, \text { then } \frac{660}{4 \times 05+1}
$$

$=£ 550$. Ans.
(84) What is the present worth of a lease of $£ 50$. per annum, for 4 years, but not to commence till the end of 5 years, allowing 4 per cent. to the purchaser ?

$$
\text { Ans. } £ 152: 5: 11.3 \text { qrs. }
$$

(85) A person having the promise of a pension of £20. per annum, for 8 years, but not to commence till the end of 4 years, is willing to dispose of the same at 5 per cent.-what will be the present worth ?

$$
\text { Ans. £111: } 18: 1.14 d .+
$$

2. To find the ycarly income of an annuity, dc., in reversion.

Rule 1.-Find the amount of the present worth, at the given rate, and for the time before the reversion

$$
\text { thus, } p t r+p=\mathrm{A} \text {. }
$$

2.-Change $A$ into $P$, and find what annuity being sold will pro- $\operatorname{tr}+1$ duce P , at the same rate, and for $-\times 2 p=\mathrm{U}$. the time of its continuance, thus, $t t r-t r+2 t$

## EXAMPLE.

(86) A person having an annuity left him for 5 years, which did not commence till the end of 4 years, disposed of t for $£ 550$. allowing 5 per cent. to the purchaser-what was the yearly income?

$$
\begin{aligned}
& 550 \times 4 \times, 05+550=660 \frac{5 \times, 05+1}{5 \times 5 \times, 05-5 \times, 05+5 \times 2} \\
& =, 113636 \text {; then } 113636 \times 660 \times 2=£ 150 . \text { Ans. }
\end{aligned}
$$

## A TABLE

## FOR CALCULATING INTEREST, \& DISCOUNTING BILLS OF EXCHANGE.

The manner of using this table is so plain and simple that it cannot be misunderstood by the commonest capacity, and so little trouble is necessary in the calculation, that it cannot be objected to on that account; for instance-multiply the sum on which interest is required by the rate per cent., then by the multiplier opposite the number of days; or by the multiplier and then by the rate per cent.; strike off the number of figures in the multiplier, and two figures more on the right hand, and the remaining figures on the left will be the sum in pounds; then multiply by 20,12 , and 4 , and the amount of interest will be obtained.

EXAMPLES.
What is the interest of $£ 987$. at 2 and 5 per cent. for 73 days ?


What is the interest of $£ 1000$. at 3 per cent. for 35 days ? 09589 multiplier.
$\frac{1000}{9589000}$
$\frac{3}{2,8767000}$
$\frac{20}{17,534}$
$\frac{12}{6,408}$
$\frac{4}{4,632}$

| Days | Multipliers | Days | Multipliers. | Days | Mnitipliers. | Days. | Multiplierc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 00274 | 47 | 128767 | 93 | 254705 | 139 | 380822 |
| 2 | 00548 | 48 | 131507 | 94 | 257534 | 140 | 383562 |
| 3 | 008219 | 49 | 134247 | 95 | 260274 | 141 | 386301 |
| 4 | 010959 | 50 | 136986 | 96 | 263014 | 142 | 889041 |
| 5 | 013699 | 51 | 139726 | 97 | 205753 | 143 | 391781 |
| 6 | 016438 | 52 | 142466 | 98 | 268493 | 144 | 30452 |
| 7 | 019178 | 53 | 145205 | 99 | 271233 | 145 | 39726 |
| 8 | 021918 | 54 | 147945 | 100 | 273973 | 140 | 4 |
| 9 | 024658 | 55 | 150685 | 101 | 276712 | 147 | 40274 |
| 10 | 027397 | 56 | 153425 | 102 | 279452 | 148 | 40548 |
| 11 | 030137 | 57 | 150164 | 103 | 282192 | 149 | 408219 |
| 12 | 0:32877 | 58 | 158904 | 104 | 284932 | 150 | 410959 |
| 13 | 035616 | 59 | 161644 | 10.5 | 287671 | 151 | 418699 |
| 14 | 038\%55 | 60 | 164384 | 106 | 290411 | 152 | 416438 |
| 15 | $0 \pm 1096$ | 61 | 167123 | 107 | 293151 | 153 | 419177 |
| 16 | 043835 | 62 | 160863 | 108 | 29589 | 154 | 421918 |
| 17 | 046575 | 63 | 172603 | 109 | 29863 | 155 | 424658 |
| 18 | 049315 | 64 | 175342 | 110 | 30137 | 156 | 427397 |
| 19 | 052055 | 65 | 178082 | 111 | 30411 | 157 | 430187 |
| 20 | 054795 | 60 | 1808.2 | 112 | 306849 | 158 | 432877 |
| 21 | 057534 | 67 | 18350 | 113 | 303589 | 159 | 435016 |
| 22 | 060274 | 68 | 186301 | 114 | 812320 | 100 | 438356 |
| 23 | 0033014 | 69 | 189041 | 115 | 315038 | 161 | 441096 |
| 24 | 065753 | 70 | 191781 | 116 | 317808 | 162 | 443835 |
| 25 | 068493 | 71 | 19452 | 117 | 320548 | 163 | 4.46575 |
| 26 | 071233 | 72 | 19726 | 118 | 323288 | 104 | 449315 |
| 27 | 073973 | 73 | 2 | 119 | 326027 | 165 | $45: 2055$ |
| 28 | 076712 | 74 | 20274 | 120 | 328767 | 166 | 454705 |
| 29 | 079452 | 75 | 20548 | 121 | 331507 | 167 | 457534 |
| 30 | 082192 | 76 | 208219 | 122 | 334247 | 168 | 460274 |
| 31 | 08493\% | 77 | 210959 | 123 | 336986 | 169 | 463014 |
| 32 | 087671 | 78 | 213699 | 124 | 839726 | 170 | 465753 |
| 33 | 090411 | 79 | 216438 | 125 | 34.2466 | 171 | 468403 |
| 34 | 0:3151 | 80 | 219178 | 120 | 345205 | 172 | 471233 |
| 3.5 | 00589 | 81 | 221918 | 127 | 347945 | 173 | 473973 |
| 36 | 00863 | 82 | 224658 | 128 | 350685 | 174 | 476712 |
| 37 | 10137 | 83 | 227307 | 129 | 353425 | 175 | 479452 |
| 38 | 10411 | 84 | 230137 | 130 | 356164 | 176 | 482102 |
| $\Delta 9$ | 106849 | 85 | 239877 | 131 | 358004 | 177 | 484932 |
| 40 | 109589 | 86 | 235618 | 132 | 361644 | 178 | 487671 |
| 41 | 112329 | 87 | 238356 | 133 | 364384 | 179 | 490411 |
| 42 | 115068 | 88 | 241096 | 134 | 367123 | 180 | 493151 |
| 43 | 117808 | 89 | 243835 | 135 | 369863 | 181 | 49589 |
| 44 | 120548 | 90 | 246575 | 136 | 372603 | 182 | 49863 |
| 45 | 123288 | 91 | 249315 | 137 | 375342 | 183 | 50137 |
| $\pm 6$ | 126027 | 82 | 252055 | 138 | 378082 | 184 | 50411 |

## Calculating Table.

| Days. | Multip | Days. | Multipliers. | Days. | ultipliers. |  | Mnltipliers |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185 | 506849 | 230 | 630137 | 275 | 758425 | 320 | 876712 |
| 189 | 509589 | 231 | 632877 | 276 | 756104 | 321 | 879452 |
| 187 | $5123: 9$ | 232 | $63 * 616$ | 277 | 750304 | 32.2 | 882192 |
| 188 | 515068 | 2:13 | 638356 | 278 | 761644 | 323 | 884932 |
| 189 | 517808 | 234 | $6 \pm 1096$ | 279 | 764384 | 324 | 887671 |
| 190 | 520548 | 235 | 643835 | 280 | 767123 | 325 | 890411 |
| 191 | 523288 | 236 | 646575 | 281 | 769863 | 326 | 893151 |
| 192 | 520027 | 237 | 649315 | 282 | 772603 | 327 | 89589 |
| 193 | 528767 | 238 | 652055 | 283 | 775312 | 328 | 89868 |
| 194 | 531507 | 239 | 654795 | 284 | 775082 | 329 | 90137 |
| 195 | 534247 | 240 | 657534 | 285 | 780822 | 330 | $90+11$ |
| 196 | 636983 | 241 | 660274 | 286 | 783562 | 331 | 006849 |
| 197 | 539726 | 212 | 063014 | 287 | 786301 | 335 | 909589 |
| 198 | 542466 | 248 | 0655753 | 288 | 789041 | 333 | 912329 |
| 199 | 545205 | 244 | 668493 | 289 | 791781 | 334 | 915068 |
| 200 | 547945 | 245 | 671233 | 290 | 71452 | 335 | 917808 |
| 201 | 550185 | 246 | 673973 | 291 | 70720 | 336 | 920548 |
| 202 | 553425 | 247 | 676719 | 292 | 8 | 337 | 923288 |
| 203 | 550164 | 248 | 679452 | 203 | 80274 | 338 | 426027 |
| 204 | 55890 t | 249 | 8210 | 29.4 | 80547 ! | 339 | 928767 |
| 205 | 561644 | 250 | (68403: | 295 | 808219 | 340 | 931507 |
| 206 | 564.78t | 231 | 687631 | 296 | 810959 | 341 | 934247 |
| 7 | 565123 | 23: | 690411 | 297 | 813699 | 342 | d36986 |
| 208 | 569863 | 233 | 69:3151 | 298 | 816438 | 343 | 939726 |
| 209 | 672603 | 254 | 69.589 | 299 | 819178 | 344 | 94.2466 |
| 210 | 575342 | 25.5 | 69863 | 300 | 821918 | 345 | 945205 |
| 211 | 万7\%082 | 256 | 70137 | 301 | 89.1658 | 346 | 947945 |
| 213 | $5 \times 0 \times 2.9$ | 217 | $70+11$ | 312 | 82739 т | 347 | 038.5 |
| 213 | 5 S 3069 | 2.8 | 70.5849 | 303 | 810137 | 348 | 953425 |
| 214 | 5.8(130) | 259 | 709589 | 304 | 833.577 | 349 | 956164 |
| 215 | 689041 | 260 | $71: 329$ | 30.5 | 8355616 | 350 | 958904 |
| 216 | 501781 | 261 | 710018 | 300 | 8.383 .56 | 331 | 961644 |
| 217 | 59452 | 262 | 717808 | 307 | $8 \pm 1096$ | $35: 2$ | $964: 84$ |
| 218 | 59726 | 263 | 720548 | 308 | 843-30 | 3.88 | 967123 |
| $21!$ | 6 | 204 | 72:3288 | 309 | 8405\%75 | 354 | 969863 |
| 220 | 60274 | 265 | $7260: 37$ | 310 | 84! $: 315$ | 355 | 972003 |
| $2 \cdot 1$ | 60.548 | 265 | 728767 | 311 | $85: 055$ | 350 | 97.5342 |
| $2 \because 2$ | 608219 | 267 | 731507 | 312 | 854795 | 357 | 978082 |
| 223 | 610959 | 268 | 734247 | 313 | 857534 | 3.8 | 980522 |
| 224 | 613699 | 219 | $7369 \times 6$ | 314 | 860274 | 359 | 983562 |
| 225 | 616438 | 270 | 739726 | 315 | 803014 | 360 | 986801 |
| 226 | 619178 | 271 | 74.466 | 316 | 865753 | 361 | 989041 |
| 227 | 621918 | 272 | 74.2205 | 317 | 868493 | 262 | 991781 |
| 228 | 024658 | 273 | 747945 | 318 | 8712:33 | 363 | 99458 |
| 229 | C27397 | 274 | 750685 | 319 | 87397 | 364 | 99.26 |

# DUODECIMALS; 

OR WHAT ARE GENERALLY CALLED<br>Cross-Multiplication, and Squaring of dimensions by Artificer, and Workmen.

## RULES FOR MULTIPLYING DUODECIMALLY.

1.-Under the multiplicand write the corresponding denominations of the multiplier.
2.-Multiply each term in the multiplicand (beginning at the lowest) by the feet in the multiplier; write each result under its respective term, observing to carry a unit under every 12 from each lower denomination to its next superior.
3.-In the same manner multiply the multiplicand by the primes in the multiplier, and write the result of each term one place more to the right hand of those in the multiplicand.
4.-Work in the same manner with the seconds in the multiplier, setting the result of each term two places to the right hand of those in the multiplicand, and so on for thirds, fourths, \&c.

## EXAMPLES.

ft. in. ft. in.
(1) Multiply 79 by 36


|  |  | ft.in | in.p | ft. in.p. |  |  |  | f. in. $p$. |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (2) | Mult. | 85 |  | by | y 4 | 4 | Ans. | 38 |  | 1 |  |
| (3) | Mult. | 98 |  |  | y 7 | 6 | $a$. | 72 | 6 |  | 0 |
| (4) | Mult. | 81 |  |  | y 3 | 5 | $a$. | 27 | 7 |  | 5 |
| (5) | Mult. | 7 | 6 |  | y 5 | 9 | $a$. | 43 | 1 |  | 6 |
| (6) | Mult. | 47 |  |  | y 3 | 10 | $a$. | 17 | 6 |  | 0 |
| (7) | Mult. | 75 | 5 | 9 by | y 3 | 5 | 3 a | 25 | 8 |  | 623. |
| (8) | Mult. | 104 | 4 | 5 by | y 7 | 8 | 6 a | 79 | 11 |  | 066. |
| (9) | Mult. | 75 | 7 |  | y 9 | 98 | $a$ | 730 | 7 |  | 8 |
| (10) | Mult. | 978 | 8 |  | y 8 | 9 | $a$. | 854 | 7 |  | 0 |
| (11) | Mult. | 579 | 9 |  | y 9 | 5 | $a$. | 543 | 9 |  | 9 |
| (12) | Mult. | 759 | 9 |  | y 17 | 7 | $a$. | 1331 | 11 |  | 3 |
| (13) | Mult. | 875 | 5 |  | y 35 | 8 | $a$. | 3117 | 10 |  |  |
| (14) | Mult. | 793 | 3 |  | y 38 | 10 | $a$. | 6960 | 10 |  | 6 |
| (15) | Mult. | 592 | 2 |  | y 48 | 11 | $a$. | 12677 | 6 | 1 | 0 |
| (16) | Mult. | 578 | 9 |  | y 39 | 11 | $a$. | 10288 | 6 |  | 3 |
| 17) | Mult. | 311 | 4 | 7 by | y 36 | 7 | 5 a. | 11402 | 2 |  | 41111 |
| (18) | Mult. | 3217 | 7 | 3 by | y 9 | 3 | 6 a. | 2988 | 2 |  | 04 |

THE APPLICATION.
Artificers' work is computed by different measures, viz.,

1. Glazing and masons' flat work by the foot.
2. Painting, plastering, paving, \&c. by the yard.
3. Partitioning, flooring, roofing, tiling, \&c. by the square of 100 feet.
4. Brick-work, \&c. by the rod of $16 \frac{1}{2}$ feet, whose square is $272 \frac{1}{4}$.
5. measuring by the foot square. as glaziers and masons' flat work.

## EXAMPLES.

(19) There is a house with 3 tiers of windows, 3 in a tier; the height of the first tier is 7 feet 10 inches, the second is 6 feet 8 inches, and the third 5 feet 4 inches, the breadth of each is 3 feet 11 inches-what will the glazing come to at 14d. per foot?

## Duodecimals.

Duodecimals.
ft. in.
$\left.\begin{array}{rr}7 & 10 \\ 6 & 8\end{array}\right\}$ heights
5
5 4 added
596 in a tier
311 in a breadth.
$\longdiv { 3 7 8 6 }$
$\begin{array}{rll}54 & 6 & 6 \\ 238 & 0 & 6\end{array}$
(20) What is the worth of 8 squares of glass, each measuring 4 feet 10 inches long, and 2 feet 11 inches broad, at $4 \frac{1}{2} \mathrm{~d}$. per foot? Ans. $£ 2: 2: 3$ ㄱ․
(21) There are 8 windows to be glazed, each measures 1 foot 6 inches wide, and 3 feet in height-how much will they come to at $7 \frac{3}{4} \mathrm{~d}$. per foot? Ans. £1: 3: 3.
(22) What is the price of a marble slab, whose length is 5 feet 7 inches, and the breadth 1 foot 10 inches, at 6 s . per foot? Ans, £3:1:5.

> 2. measuring by the yard square, as pavters, painters, plasterers, and joiners.

睹 ber of square yards.

## examples.

(23) A room is to be ceiled, whose length is 74 feet 9 inches, and width 11 feet 6 inches-what will it come to at $3 \mathrm{~s} .10 \frac{1}{2} \mathrm{~d}$. per yard?

Ans. £18:10:14.+
(24) What will the paving of a court-yard come to at $4 \frac{3}{4} \mathrm{~d}$. per yard, the length being 58 feet 6 inches, and breadth 54 feet $\partial$ inches?

Ans. $87: 0: 104 .+$
(25) A room painted 97 feet 8 inches about, and 9 feet 10 inches high-what does it come to at 2s. $8 \frac{3}{3}$ d. per yard ?

$$
\text { Ans. } £ 14: 11: 2 \frac{1}{2} .+
$$

(26) What is the content of a piece of wainscotting in yards square, that is 8 feet 3 inches long, and 6 feet 6 inches broad, and what will it come to at 6s. 71 $\frac{1}{2}$ d. per yard ?

$$
\text { Ans. } £ 1: 19: 5 \frac{1}{2}++
$$

127) What will the paving of a court-yard come to at 3 s . 2d. per yard, if the length be 27 feet 10 inches, and the breadth 14 feet 9 inches? Ans. £7:4:54.+
(28) A person has paved a court-yard, 42 feet 9 inches in ront, and 68 feet 6 inches in depth, and in this he has laid a foot-way the depth of the court, of 5 feet 6 inches in breadth; the foot-way is laid with Purbeck-stone, at 3s. 6d. per yard, and all the rest with pebbles at 3 s . per yard-what will the whole come to ? Ans. £49:17:012.+
(29) What will the plastering of a ceiling at 10 d . per yard come to, supposing the length at 21 feet 8 inches, and the breadth 14 feet 10 inches?

Ans. £1: 9:9.+
(30) What will the wainscotting of a room come to at 6 s . per square yard, supposing the height of the room (taking in the cornice and moulding) be 12 feet 6 inches, and the compass 83 feet 8 inches; and three window shutters each 7 feet 8 inches, by 3 feet 6 inches; and the door 7 feet, by 3 feet 6 inches? The shutters and door being worked on both sides, is reckoned work and half work.

Ans. $£ 36: 12: 2 \frac{1}{2} .+$

## 3. Measuring by the square of one hundred feet, as flooring, partitioning, roofing, TILING, ETC.

EXAMPLES.
31) In 173 feet 10 inches in length, and 10 feet 7 inches .n height, of partitioning-how many squares ?

Ans. 18 squares, 39 feet, 8 inches, 10 parts.
(32) If a house of three stories, besides the ground floor, was to be floored at $£ 6.10$ s. per square, and the house measures 20 feet 8 inches, by 16 feet 9 inches; there are 7 fire places, whose measures are two of 6 feet, by 4 feet 6 inches each, two of 6 feet, by 5 feet, 4 inches each, and two of 5 feet 8 inches by 4 feet 8 inches, and the seventh of 5 feet 2 inches, by 4 feet, and the well hole of the stairs is 10 feet 6 inches, by 8 feet 9 inches-what will the whole come to ?

Ans. $£ 53: 13: 3 \frac{1}{2} .+$
(33) If a house measures within the walls 52 feet 8 inches in length, and 30 feet 6 inches in breadth, and the roof oe of a true pitch-what will its roofing come to at 10 s .6 d . per square?

Ans. $£ 12: 12: 11 \frac{3}{4}$. +
Note.-In tiling, roofing, and slating, it is customary to reckon the flat and half of any building, within the walls, to be the measure of the roof of that building, when the said roof is of a true pitch, i.e. when the rafters are $\frac{3}{3}$ of the breadth of the building; and if the roof be more or less than the true pitch, they measure from one side to the other with a rod or string.
(34) What will the tiling of a barn cost, at 25 s .6 d . per square, the length being 43 feet 10 inches, and breadth 27 feet 5 inches on the flat, the eave-boards projecting 16 inches on each side?

Ans. £24: 9: 54. +

## 4. Measuring by the rod.

Note.-Bricklayers value their work at the rate of a brick and a half thick; and if the thickness of the wall be more or less, it must be reduced to that thickness by this.

Rule.-Multiply the area of the wall by the number of half bricks the thickness the wall is of; the product divided by 3 , gives the area.

## EXAMPLES.

(35) If the area of a wall be 4085 feet, and the thickness 2 bricks and a half-how many rods doth it contain? Ans. $25+$ rods.
(36) If a garden wall be 254 feet round, and 12 feet 7 inches high, and 3 bricks thick-how many rods doth it contain? Ans. 23 rods, 130 feet, 7 inches.
(37) How many square rods are there in a wall $62 \frac{1}{2}$ feet long, 14 feet 8 inches high, and $2 \frac{1}{2}$ bricks thick ?

Ans. 5 rods, 166 feet, $6+\mathrm{in}$.
(38) If the side walls of a house be 28 feet 10 inches in length, and the height of the roof from the ground 55 feet 8 inches, and the gable, or triangular part at the top, to rise 42 course of bricks, reckoning 4 course to 1 foot: (now 20 feet high is $2 \frac{1}{2}$ bricks thick, 20 feet more at 2 bricks thick, 15 feet 8 inches more at $1 \frac{1}{2}$ bricks thick, and the gable at 1 brick thick)-what will the whoie work come to at $£ 5.16 \mathrm{~s}$. per rod?

Ans. £48: 12:7.†

## PART V.

A Collection of Questions set down promiscuously for the greater trial of the foregoinq Rules.
(1) Write down two millions, five hundred and two thousand, two hundred and five.
(2) What is the value of 14 barrels of soap, at $4 \frac{1}{2} \mathrm{~d}$. per lb . each barrel containing 254 lbs . ?

Ans. £66:13:6.
(3) If $£ 100$. principal gain £5. interest in 12 months, what principal will gain £20. in 8 months ?

Ans. £600.
(4) What number is that, from which if the square of 14 be deducted, and to the remainder the square of 12 be added, the sum will be 250?

Ans. 302.
(5) A and B, traded together; A put in $£ 320$. for five months, B £460. for 3 months, and they gained £100.what must each man receive?

Ans. $A £ 53: 13: 9 \frac{270}{298}$. and $B £ 46: 6: 2 \frac{28}{2988}$.
(6) How many yards of cloth at 17 s .6 d . per yard, can I have for 13 cwt . 2 qrs. of wool at 14 d . per lb.?

Ans. 100 yards, $3 \frac{1}{5}$ qrs.
(7) What number added to the cube of 21 , will make the sum equal to 113 times 147 ?

Ans. 7350.
(8) If I buy 1000 ells of linen, Flemish, for $£ 90$.-what may I sell it at per ell in London to gain £10. by the whole? Ans. 3 s .4 d .
(9) A has 648 yards of cloth at 14s. per yard, ready money, but in barter will have 16s.; B has wine at £42. per tun, ready money; the question is-how much wine must be given for the cloth, and what is the price of a tun of wine in barter?

Ans. £48. the tun; and 10 tuns, 3 hhds., $12 \frac{3}{5}$ gallons of wine must be given for the cloth.
(10) A jeweller sold jewels to the value of $£ 1200$. for which he received in part 876 French pistoles, at 16s. 6d. each-what sum remains unpaid?

Ans. £477: 6 s .
(11) An oilman bought 417 cwt. 1 qr . 15 lbs . gross weight, of train oil, tare 20 lbs . per 112 lbs .-how many nett gallons were there, allowing $7 \frac{1}{2} \mathrm{lbs}$. to a gallon? Ans. 5120.
(12) I bought three score pieces of holland for three times as many pounds, and sold them again for four times as much: but if they had cost me as much as I sold them for-what should I have sold them for to gain after the same rate ?

Ans. £320.
(13) What number taken from the square of 54 , will leave 19 times 46 ?

Ans. 2042.
(14) If I buy a yard of cloth for 14 s .6 d . and sell it for 16 s .9 d .-what do 1 gain per cent.?

Ans. £15: $10: 4 \frac{24}{174}$.
(15) Bought 27 bags of ginger, each weighing gross $84 \frac{3}{4} \mathrm{lbs}$. tare $1 \frac{3}{8} \mathrm{lb}$. per bag, tret 4 lbs . per 104 lbs .-what do they come to at $8 \frac{1}{2} \mathrm{~d}$. per lb .? Ans. $£ 76: 13: 2 \frac{1}{2}$.
(16) If $\frac{2}{3}$ of an ounce avoirdupois cost $\frac{7}{8}$ of a shillingwhat will $\frac{5}{6}$ of a lb. cost? Ans. $17 s .6 d$.
(17) If $\frac{5}{6}$ of a gallon cost $\frac{5}{8}$-what will $\frac{5}{9}$ of a tun cost? Ans. £105.
(18) A young man received $£ 210$. which was $\frac{2}{3}$ of his elder brother's portion ; now three times the elder brother's portion was half of the father's estate-I demand how much the estate was?

Ans. £1890.
(19) If the salary of an officer be £48. per annum-what must he receive for 232 days?

Ans. $£ 30: 10: 24$.
(20) A gentleman spends one day with another £1. 7s. $10 \frac{1}{2} \mathrm{~d}$., and at the year's end layeth up $£ 340$.-what is his yearly income? Ans. £848:14:4 $\frac{1}{2}$.
(21) A lady's fortune consisted of a cabinet worth $£ 200$. containing 16 drawers, each having two partitions, each of which contained £37, and two crowns-pray what was her portion ${ }^{3}$

Ans. $£ 1400$.
(22) A has 13 fother of lead to send abroad, each being $19 \frac{1}{2}$ times 112 lbs ; B has 39 casks of tin, each $388 \mathrm{lbs} .-$ how many ounces difference is there in the weight of these commodities?

Ans. 212160 oz.
(23) A captain and 160 sailors took a prize worth $£ 1360$. of which the captain had $\frac{1}{5}$ for his share and the rest was equally divided among the sailors-what was each man's share? Ans. The captain had £272., and each sailor, $£ 6: 16 s$.
(24) What number is that to which if you add $7 \frac{2}{3}$ the whole will be $12 \frac{1}{4}$ ? Ans. $4 \frac{7}{12}$.
(25) A usurer put out $£ 75$. for 12 months, and received for principal and interest £81.-I demand at what rate per cent. be received interest?

Ans. 8 per cent.
(26) What will £956. amount to in $7 \frac{1}{2}$ years, at 5 per cent. simple interest? Ans. £1314:10s.
(27) At what rate per cent. will $£ 956$. amount to $£ 1814$. 10 s . in $7 \frac{1}{4}$ years at simple interest? Ans. 5 per cent.
(28) If for $£ 1.4 \mathrm{~s}$. I have 1200 lbs . weight carried 36 miles -how many lbs. weight can I have carried 24 miles for the same money?

Ans. 1800 lbs.
(29) If 8 cannons in one day spend 48 barrels of powder -I demand how many barrels 24 cannons will spend in 22 days ?
(30) What number is that which being multiplied by $\frac{2}{3}$ will produce $\frac{1}{4}$ ?

Ans. $\frac{3}{3}$,
(31) A has 24 kine worth 72s. each, and B 7 horses worth £13. a piece-how much will make good the difference in case they interchange their said cattle? Ans. £4:12s.
(32) A man dies, and leaves $£ 120$. to be given to 3 persons, viz. A, B, and C; to A a share unknown, B twice as much as A , and C as much as A and B -what was the share of each?

Ans. $A £ 20$; $B £ 40 ; C £ 60$.
(33) A person dying, left his widow $£ 1780$. and $£ 1250$, to each of his 4 children : he had been $25 \frac{1}{2}$ years in trade, and had cleared at an average £126. a year-what had he to begin with?

Ans. £3567.
(34) There is a sum of $£ 1000$, to be divided among 3 men, in such a manner that if A has $£ 3$. B shall have $£ 5$. and C £8. -how much must each man have?

Ans. $A £ 187: 10 \mathrm{~s}$.; $B £ 312: 10 \mathrm{~s}$. : and $C £ 500$
(35) How many changes may be rung on 6 bells ?

Ans. 720.
(36) A merchant at Amsterdam is indebted to another in London £642. and would pay it in spanish guilders, at 2 s . per piece-how many must the English merchant receive?

Ans. 6420.
(37) If 360 men be in garrison, and have provisions for 6 months, but hear of no relief at the end of 5 months-how many men must depart, that the provisions may last as much longer?

Ans. 288.
(38) The less of two numbers is 187, their difference 34, the square of the product is required ?

Ans. 1707920929
(39) A butcher sends his man with £216. to a fair to buy cattle : oxen at £11., cows at 40s., coits at £1. 5s., and hogs at $£ 1.15 \mathrm{~s}$. a piece, and of each a like number-how many of each sort did he buy?

Ans. 13 of each sort, and £8. over.
(40) What number added to $11 \frac{5}{7}$ will prodoce $36 \frac{337}{5} \frac{7}{6}$ ?

Ans. $24 \frac{513}{61}{ }^{3}$.
(41) What number multiplied by $\frac{3}{7}$ will produce $11_{17}^{9}$ ? Ans. $26 \frac{4}{5} \frac{6}{1}$.
(42) A man had twelve sons, the youngest was 3 years old, and the oldest 58 ; they increased in Arithmetical Progression, what was the common difference of their ages?

Ans. 5 years.
(43) What is the value of 7179 hhds. of tobacco, each weighing 13 cwt . at £2. 1s. per cwt? Ans. £191320: 7s.
(44) My factor sends me word that he has bought goods to the value of $£ 500.13 \mathrm{~s} .6 \mathrm{~d}$. upon my account-what will his commission come to at $3 \frac{1}{2}$ per cent?

$$
\text { Ans. £17: } 10: 5,2 \text { qrs. } \frac{68}{780}
$$

(45) Miss Kitty told her sister Charlotte, whose father had before left them $£ 13200$. apiece, that their grandmother by will had raised her fortune to $£ 15000$. and had made her own $£ 20000$. -what did the old lady leave them?

Ans. $£ 8600$.
(46) A snail in getting up a May-pole, only 20 feet high, was observed to climb 8 feet every day, but every night it came down again 4 feet-in what time by this method did it reach the top? Ans. 4 days.
(47) If the $\frac{1}{3}$ of 6 be 3 -what will $\frac{1}{4}$ of 20 be? Ans. $7 \frac{1}{2}$.
(48) What is the difference between 14676 and the fourth of itself?

Ans. 11007.
(49) There is in 3 bags the sum of $£ 1468$. ; viz., in the first bag $£ 461$. and in the second bag £581. - what is in the third bag?

Ans. £426.
(50) What is the decimal of 3 qrs. 14 lbs . of a cwt.?

$$
\text { Ans. } 875 \text {. }
$$

(51) How many lbs. of sugar at $4 \frac{1}{2} \mathrm{~d}$. per Jb. must be given in barter for 60 gross of inkle, at 8 s . 8d. per gross?

Ans. $1886 \frac{2}{3}$.
(52) If I buy yarn at 9 d . per lb . and sell it again for $4 \frac{1}{2} \frac{\mathrm{~d}}{}{ }^{\circ}$. -what is the loss per cent? Ans. £50.
(53) A tobacconist would mix 20 lbs . of tobacco, at 9 d . per lb ., with 60 lbs . at 12 d . per lb . and 40 at 18 d . per lb , with 12 lbs . at 2 s . per lb . - what is 1 lb . of this mixture worth?

Ans. $1 s .2 \frac{1}{4} d .{ }^{\frac{9}{7}{ }^{\circ}}$.
(54) What is the value of 14 barrels of soap at $4 \frac{2}{2} \mathrm{~d}$. per lb. each barrel containing 254 lbs . ${ }^{\text {? }}$ Ans, $£ 66: 13: 6$.
(55) Two persons, A and B, are indebted; the least debt being that of A's, which is $£ 2173$. their difference is $£ 371 .-$. what is $B$ 's debt?

Ans. £2544.
(56) What is the difference between twice eight and twenty, and twice twenty eight; as also between twice five and fifty, and twice fifty five? Ans. 20 and 50.
(57) What number taken from the square of 54 will leave 19 times 46?

Ans. 2042.
(58) A schoolmaster being asked how many scholars he had, said, if I had as many more, half as many, and one quarter as many, I should have 99-how many had he?

Ans. 36.
(59) An ancient lady being asked how old she was, to avoid a direct answer said, I have $y$ children, and there are 3 years between the birth of each of them: the eldest was born when I was 19 years old, which is now exactly the age of the youngest-how old was the lady?

Ans. 62.
(60) What number is that which being added to 168 makes the sum to be 706?

Ans. 538.
(61) $\left\{\begin{array}{l}\text { From } £ 100 \text {. borrowed take } £ 70 \text {, paid, }\end{array}\right.$
\{'Twas a virgin that lent it, what's due to the maid.
Ans. £30.
(62) If when wheat is 4 s . per bushel, the 20 penny loat weighs 18 lbs .-what must the said 20 penny loaf weigh when wheat is 6 s . per bushel? Ans. 12 lbs.
$\left\{\begin{array}{l}\text { Whereas a noble and a mark just } 15 \text { yds. did buy, } \\ \text { How many ells of the same cloth }\end{array}\right.$ HHow many ells of the same cloth for $£ 50$. had I? Ans. 600 E. Ells.
(64) A broker bought for his principal in the year 1720, $£ 400$. capital stock in the South Sea, at $£ 650$. per cent., and sold it again when it was worth but £130. per cent.-how much was lost in the whole?

Ans. £2080.
(65) What number added to the 43 rd part of 4429 will make the sum 240?

Ans. 137.
(66) What number deducted from the 26th part of 2262 will leave the 87 th part of it? Ans. 61.
(67) A gentleman went to sea at 17 years of age; 8 years after he had a son born, who lived 46 years, and died before his father? after whom the father lived twice twenty years, and then died also-what was the age of the father when he died?

Ans. 111 years.
(68) C hath candles at 6 s . per dozen ready money, but in barter will have 6 s .6 d . per dozen; D hath cotton at 9 d . per lb . ready money-I demand what price the cotton must be at in barter; also how much cotton must be bartered for 100 dozen of candles?

Ans. The cotton at $9 \frac{3}{4} d$. per lb., and 7 cwt . 16 lbs . of cotton must be given for 100 dozen of candles.
(69) The sum of two numbers is 360 , the less 114 -what is their difference, product, and quotient?

Ans. 132 diff., 28044 prod., $2 \frac{3}{19}$ quotient.
(70) A brigade of horse, consisting of 384 men, is to be formed into a square body, having 32 men in front-how many ranks will their be?

Ans. 12.
(71) If a clerk's salary be £73. a year-what is that per day?

Ans. 4 s .
(72) B has an estate of $£ 53$. per annum, and pays 5 s .10 d . to the subsidy-what must C pay, whose estate is worth \&100. per annum?

Ans. $11 \mathrm{~s} .0 \mathrm{~d} . \frac{4}{5}$.
(73) If I buy 100 yards of ribband, at 3 yards for 1 shilling, and 100 more for 2 yards at 1 shilling, and sell it at the rate of 5 yards for 2 shillings-whether do I gain or lose, and how much?
(74) What is the value of $\frac{5}{8}$ of 20 s .?

Ans. Lose 3 s .4 d . Ans. 12s. $6 d$.
(75) What number is that from which if you take $\frac{3}{5}$ the remainder will be $\frac{1}{8}$ ? Ans. $\frac{29}{4}$.
(76) My purse and money, quoth Dick, are worth 12 s . 8 d . but the money is worth 7 times as much as the purse-pray what is the sum therein? Ans. 11s. 1 d .
(77) What number is that which makes 9 to be the $\frac{2}{3}$ of it? Ans. $13 \frac{1}{2}$.
(78) A maltster had several sorts of malt, one at 4 s .6 d ., one at 4 s ., and one at 3 s . 6 d . per bushel, to mix an equal quantity of each, what must be the price of a bushel?

$$
\text { Ans. } 4 s
$$

(79) A farmer is willing to make a mixture of rye at 4 s . a bushel, barley at 3 s ., and oats at 2 s . -how much must he take of each to sell at 2 s .6 d . per bushel ?

$$
\text { Ans. } 6 \text { of rye, } 6 \text { of barley, and } 24 \text { of oats. }
$$

(80) If $\frac{3}{8}$ of a ship be worth $£ 3740$. - what is the worth of the whole?

Ans. £9973: $6: 8$.
81) A person said he had 20 children, and that it happened there was a year and a half between each of their
ages; his eldest son was born when he was 24 years old, and the age of his youngest was 21-what was the father's age?

Ans. $73 \frac{1}{2}$ years.
(82) Bought a cask of wine for $£ 62.8$ s. -how many gallons were in the cask, when a gallon was 5 s .4 d . ?

Ans. 234.
(83) B owes C $£ 296.17 \mathrm{~s}$. but he compounds for 7 s .6 d . in the pound-what must $\mathbf{C}$ receive for his debt?

Ans. £111: 6: 42
(84) How many dozens of stockings at 11 groats per pair may I buy for $£ 190.12 \mathrm{~s}$. ? Ans 86 doz .7 pair $\frac{7}{1 T}$.
(85) A sheep fold was robbed 3 nights successively; the first night half of the sheep were stolen, and half a sheep more; the second night half the remainder were lost, and half a sheep more; the last night they took half that were left and half a sheep more; by which time they were reduced to 20 -how many were there at first?

Ans. 167.
(86) The Spectator's club of fat people, though it consisted of 15 persons, is said to have weighed no less than 3 tonshow much at an equality, was that per man?

Ans. 4 cwt.
(87) A merry young fellow in a short time got the better of $\frac{1}{5}$ of his fortune. By the advice of his friends he gave £2200, for an exempt's place in the guards; his profusion continued till he had no more than 880 guineas left, which he found, by a computation, was the $\frac{3}{20}$ part of his money after the commission was bought-pray what was his fortune at first?

Ans. £10450.
(88) B owes $\mathrm{C} £ 395$. 18s. but compounds the whole debt for $£ 100.12 \mathrm{~s}$. What was that in the pound?

$$
\text { Ans. } 5 \text { s. } 0 \frac{3}{3} d . \frac{744}{7} \frac{6}{8}
$$

(89) How many dollars at 4 s .4 d . each must be given for 360 guinders at 2s. 2d. each?

Ans. 180.
(30) Four men have a sum of money to be divided amongst them in such a manner, that the first shall have $\frac{1}{3}$, the second $\frac{1}{4}$, the third $\frac{1}{6}$ of it, and the fourth the remainder, which is 223.-what is the sum?

Ans. £112.
(91) What is the amount of $£ 1000$. for $5 \frac{1}{2}$ years at $4 \frac{3}{4}$ per cent. simple interest ?

Ans. $£ 1261$ : 5 s.
(92) Sold goods amounting to the value of $\mathcal{L i}^{2} 00$. for two four months-what is the present worth at 5 per cent. simple interest?

Ans. $£ 682: 19:$ 少. +
(93) A room 30 feet long, and 18 feet wide, is to be covered with painted cloth-how many yards of $\frac{3}{4}$ wide will sover it ?

Ans. 80.
(94) There are two numbers, the one 48, and the other twice as much-what is the difference between their sum and difference?

Ans. 96.

- (95) Betty told her brother George that though her fortune on her marriage took $£ 19312$. out of her family, it was but ${ }^{\frac{3}{5}}$ of two years' rent (heaven be praised!) of his yearly income -pray what was that?

Ans. £16093: 6:8 a year.
(96) There are two numbers, the one 25 , the other the square of $25-\mathrm{I}$ demand the square root of the sum of their squares?

Ans. 625,4998. +
(97) Says B to C, if I had four of your sheep I should have as many as you: and says C to B, if I had four of yours, I should have twice as many as you-how many had each?

$$
\text { Ans. } B 20, C 28 .
$$

(98) B, C, and D, trading together, gained £120. which is to be shared according to each man's stock; B puts in $£ 19.0$. C $£ 300$. and D $£ 160$.-what is each man's share?

Ans. $B$ ' $s £ 28, C$ 's $£ 60$, and $D$ 's $£ 32$.
(99) A gentleman having 50 s. to pay among his labourers for a day's work would give to every boy 6 d ., to every woman $8 \mathrm{~d} .$, and to every man 16 d . ; the number of boys, women, and men, were the same-I demand the number of each ?

Ans. 20 of each.
(100) There are three numbers, 17, 19, and 48-I demand the difference between the sum of the squares of the first and last, and the cube of the middlemost?

Ans. 4266.
(101) A stone measures 4 feet 6 inches long, 2 feet 9 inches broad, and 3 feet 4 inches deep-how many solid feet doth it contain?

Ans. 41 feet 3 inches.
(102) What does the whole pay of a man of war's crew of 640 sailors amount to for 32 month's service, each man's pay being 22s. 6d. per month ?

Ans. £23040.
(103) If I have an estate of £470. per annum-what may I expend daily, and yet lay up $£ 130$. per annum?

Ans. 18s. $7 \frac{1}{2} d . \frac{90}{365^{\circ}}$
 the quotient will be 72 ?

Ans. 1368.
(105) Reduce $13 \frac{1}{2}$ bushels of coals to the fraction of a chaldron?

Ans. $\frac{3}{8}$.
(106) Bought 28 qrs. 2 bushels of wheat, at 4 s . 6 d . per bushel-what does it come to? Ans. $£ 50: 17 \mathrm{~s}$.
(107) How many lbs. of coffee at 5 s .9 d. per lb . are equal in value to 426 lbs . of tea, at 13 s .4 d . per lb.? Ans. $987 \frac{57}{6 y}$.
(108) What is the value of 27 dozen 10 lbs . of candles, at 5 d . per lb. ?

Ans. £6:19:2.
(109) A traveller would change 500 French crowns at 4 s .6 d . per crown into sterling money, but he must pay a half-penny per crown for changing-how much must he receive? Ans. £111:9:2.
(110) There are two numbers, the one 63 , and the other half as much- 1 demand the product of their squares, and the difference of their product and sum?

Ans. Product of their squares 3938240,25 ; diff. 1890.
(111) Two men depart both from one place, the one goes north, the other south; the one goes 7 miles, and the other 11 miles a day-how far are they distant at the 12th day of their departure?

Ans. 216 miles.
(112) In 672 Spanish guilders, at 2 s . each, how many French Pistoles, at 17s. 6d. per piece? Ans. $76 \frac{28}{3} \frac{8}{8}$.
$\left(\begin{array}{l}\text { When first the marriage knot was tied between my wife and me, } \\ \text { Her age did mine as far exceed as three times three do three; }\end{array}\right.$
(118)

But when 7 years and half 7 years we man and wife had been, My age came then as near to her's as eight is to sixteen.
Ques. What was each of our ages when we married ?
Ans. $10 \frac{1}{2}$ years the man, $31 \frac{1}{2}$ the woman.
(114) If 12 oxen will eat $3 \frac{1}{3}$ acres of grass in 4 weeks, and 21 oxen will eat 10 acres in 9 weeks, how many oxen will eat 24 acres in 18 weeks, the grass being allowed to grow uniformly?

Ans. 36
(115) A lady was asked her age, who replied thus: My age if multiplied by three,
Two sevenths of that product tripled be; The square root of two-ninths of that is four; Now tell my age or never see me more.

Ans. 28 years.
(116) If 48 taken from 120 leave 72, and 72 taken from 91 leaves 19 , and 7 taken thence leaves 12 , what number is that out of which when you have taken $48,72,19$, and 7 , 12 is left?

1 TABLE for finding the Interest of any sum of money for any number of Months, Weeks, or Days, at any rate per cent.


Rule.-Multiply the principal by the rate per cent. and the number of months, weeks, or days, which are required; cut off two figures on the right-hand side of the product, and collect from the table the several sums against the different numbers as, when added, will make the number remaining. Add the several sums together, and it will give the interest required.
N. B. For every 10 that is cut off in months, add 2d.; for every 10 cut off in weeks add $\frac{1}{2} \mathrm{~d}$.; and for every 40 in the days, t d. EXAMPLES.
(1) What is the interest of $£ 2467.10$ s. for 10 months, at 4 per cent per annum?

| £. | $s$. | $\boldsymbol{f}$ | $\boldsymbol{E}$ | s. | $d$. |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 2467 | 10 | 900 | $=75$ | 0 | 0 |
|  | 4 | 80 | $=6$ | 13 | 4 |
| 9870 | 0 | 7 | $=0$ | 11 | 8 |
| 10 | -987 | $=82$ | 5 | 0 |  |
| 98700 | 0 |  | $=$ |  |  |

(2) What is the interest of £2467. 10s. for 12 weeks, at 5 per cent. ?

| $\begin{gathered} \stackrel{£}{2} \\ 2467 \end{gathered}$ | $s$. | $\boldsymbol{\varepsilon}$ | £ | $s$ | ${ }^{\text {d }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 | 1000 | $=19$ | 4 | 7 |
|  | 5 | 400 | $=7$ | 13 | 10 |
| 12337 | 10 |  | $=1$ | 10 | $9 \frac{1}{2}$ |
|  | 12 |  | $50=0$ | 0 | $2 \frac{1}{2}$ |
| $1480 \mid 50$ | 0 | 1480\|5 | $=28$ | 9 | 5 |

(3) What is the interest of $£ 2467.10 \mathrm{~s}$. for 50 days, at 6

| per cent. ? | ? $£$ | $s$.10 | $\bigcirc$ ¢ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2467 |  | 7000 | $=19$ | 3 |  |
|  |  | 6 | 400 | $=1$ | 1 |  |
|  | 14805 | 0 | 2 | $=0$ | 0 | 1 |
|  | 50 |  |  | $=0$ | 0 |  |
|  | $7402 \mid 50$ | 0 | $7402 \mid 5$ | $=20$ | 5 |  |

To find what an estate from $£ 1$. to $£ 60,000$. per annum will come to for 1 day.

Rule.- Collect the annual rent, or income, from the table of 1 year, against which take the several sums for 1 day, add them together, and it will give the answer.
（4）An estate of $£ 376$ ．per annum－what is that per day？

$$
\begin{array}{rrrr}
£ & £ & s . & d . \\
300=0 & 16 & 5 \frac{1}{4} \\
70=0 & 3 & 10 \\
6=0 & 0 & 4 \\
\hline 376=1 & 0 & 7 \frac{1}{4} \\
\hline \hline
\end{array}
$$

To find the amount of any income，salary，or servants＇ wages，for any number of months，weeks，or days．

Rule．－Multiply the yearly income，or salary，by the number of months，weeks，or days，and collect the product from the table．
（5）What will £270．per annum come to for 11 months， for 3 weeks，and for 6 days？

For 11 Months．

| £ | £ £ | $s$. | d． |
| :---: | :---: | :---: | :---: |
| 270 | $2000=166$ | 13 | 4 |
| 11 | $900=75$ | 0 | 0 |
|  | $70=5$ | 16 | 8 |
| $\overline{2970}$ | $\overline{2970}=\overline{247}$ | 10 | （） |


| £ |  |  | d． |
| :---: | :---: | :---: | :---: |
| 270 | $1000=2$ | 14 | $9 \frac{1}{2}$ |
| 6 | $600=1$ | 12 | $10 \frac{1}{2}$ |
|  | $20=0$ | 1 | $1 \frac{1}{4}$ |
| 0 | $\overline{1620}=4$ | 8 | 91 |

For 3 Weeks．

| $\mathfrak{£}$ | $\mathcal{E}$ | $\mathcal{L}$ | $s$. | $d$. |
| ---: | ---: | ---: | ---: | ---: |
| 270 | 800 | $=15$ | 7 | 84 |
| 3 | 10 | $=0$ | 3 | $10 \frac{1}{4}$ |
| 810 | 810 | $=15$ | 11 | $6 \frac{1}{2}$ |

For the whole time．

| $£$ | $s$. | $d$. |
| ---: | ---: | ---: |
| 247 | 10 | 0 |
| 15 | 11 | $6 \frac{1}{2}$ |
| 4 | 8 | $9 \frac{1}{4}$ |
| 267 | 10 | 3 |

Table shewing the number of days from any day in the month， to the same day in the other month through the year．

|  | To | 葸 | 这 | 츷 |  | 感 | $\begin{gathered} \text { 日 } \\ \text { 日 } \\ \hline \end{gathered}$ | $\stackrel{B}{\square}$ | 曾 |  | 厄 |  | 8 <br> 0 <br> 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 31 | 59 | 90 | 20 | 51 | 181 | 212 | 243 | 273 | 30 | 4 |
|  | Febr | 334 | 365 | 28 | 59 | 89 | 120 | 150 | 181 | 212 | 242 | 27 | 303 |
|  | March | 306 | 337 | 365 | 31 | 61 | 92 | 122 | 153 | 184 | 214 | 24 | 275 |
|  | April | 275 | 306 | 334 | 365 | 30 | 61 | 91 | 122 | 153 | 183 | 214 | 244 |
|  | May | 24.5 | 276 | 304 | 335 | 365 | 31 | 61 | 92 | 123 | 153 | 18 | 214 |
|  | June | 214 | 245 | 273 | 304 | 334 | 365 | 30 | 61 |  | I22 | 153 | 83 |
|  | July | 184 | 215 | 243 | 274 | 304 | 335 | 365 | 31 | 62 |  | 123 |  |
|  | August | 153 | 184 | 212 | 243 | 273 | 304 | 334 |  | 31 |  | 92 | 22 |
|  | Septem． | 122 | 153 | 181 | 212 | 242 | 273 | 303 |  |  |  |  |  |
|  | （ctober | 92 | 123 | 151 | 182 | 212 | 243 | 27 | 304 | ， | 365 |  |  |
|  | Novem． | 61 | 92 | 120 | 151 | 181 | 212 | 242 | 273 |  | 334 |  | 30 |
|  | Decem． | 31 | 62 | 90 | 121 | 151 | 182 |  |  |  |  | 4335 | 365 |

Frinted by Webb，Millington \＆Co．，OLley．

Works Published by Webb, Millington, and Co.
Magazinc of Temporance Poetry, Recitations, and Dialogues. Designed for Band of Hope Gatherings. Royal 32 mo ., eloth. Price is.
The Basket of Flowers; or, the Triumphs of Innocence and Piety. A Tale for Youth. Translated and adapted from the French. By the Rev. J. Holdsworth, B.A. Cloth, gilt, and gilt edges. Price is.
Harp of the IHills, and Notes of its Echoes, in Poems and Songs; by Joun Swain. Cloth gilt, and gilt edges. Price 1s.

Vaipy's Family Classical Library; or, English Translations of the most valuable Greek and Latin Classics, comprising those authors whose works may, with propriety, be read by the Youth of both Sexes; forming a valuable series of books for family reading and school presents. Price 2s.6d. per vol., in neat cloth, boards. Published at 4s. 6d.

DEMOSTHENES AND SALLUST. 2 vols.
XENOPHON'S ANABASIS AND CYROPEDIA. 2 vols. THUCYDIDES. 3 vols.
PLUTARCH'S LIVES. 7 vols.
EURIPIDES. 3 vols.
HOMER. By Pope. 3 vols.
CICERO'S ORATIONS, Offices, and Treatises on Old Age and Friendship. 3 vols.
HORACE AND PH ADRUS. 2 vols.
A fevr of the complete sets, in 52 vols., may be had, price $£ 710 \mathrm{~s}$. Published at 511 14s. Od.
"Cicero remarks, 'That not to know what has been transacted in former times, is to continue always a child. If no use is made of the labours of past ages, the world must remain always in the infancy of knowledge.' -Johxson.
Webb, Millington, decos New Indestructible Picture Books; imperial 16mo., printed on paper cloth, and colored. Price 6d.-viz;-Picture Alphabet.-Illustrated A B C. -My Own Primer.-National Alphabet.-Scripture Alphabet.Pictorial Lesson Book.

Webb, Millington, \& Co.'s Indestructible Lesson Books ; royal 18mo., printed on cloth. Price 3d.-viz; Illustrated Alphabet.-First Lessons, - \&ce., \&cc.

Easy Lessons for the Littie Ones, by Miss E. H. Srmappord. In cloth, gilt lettered. Fcap. 8vo. Price 1s. Also, an Abridged Edition, in printed Cloth back. Price 6d.

Willis's Cookery Made Easy: a simple and plain manual of Domestic Management, uniting Elegance with Economy, including also instructions for Trussing and Carving, with descriptive plates, together with the Yorkshire method of curing and drying Hams and Tongues, the manufacture of Ketchupe, Sauces, Vinegars, and Preserves, \&ec, \&ca. Price 1s.

## Published bj Webb, Millington, and Co.,

## VILLAGE STORIES,

BY MISS E. H. STRAFFORD,
Illustrated with many Woodeuts. 12 in a Packet, ls., or 1 d each. Ilittie Hans, the German Boy. Shaggy Jack. The Violet. Pretty Iattle Stories in Rhyme. The Tame Rabbits. My Firat Shilling. The Golden Rule, how George kept it. History of Black Tibby. The Little Musician,-a True Story. Lizzy and Florence. The Printer's Daughter. Lena ; or the Broken Jar,

> Entered at Stntioners' Hall.

## Murray's Grammar in Question and Answer.

## ELLIS゚S MURRAY゚S GRAMMAR:

Being 4 Abridgement of Murray's English Grammar,
In Question and Answer, with Explanatory Notes, and an Appendir containing Exercises in Parsing and Syntax. Designed chiefly for his own pupils. By the Rev. J. Ellis, Vicar of Ebbertson. Price Is.

Murray's Grammar is too well known and justly appreciated to need any notice from us; wo oannot, however, refrain from mentioning with entire approontion an Abridgement of it, as newly srranged Jy the Rev. J. Ellis, Vicar of Ebbertson, which possesses the great advantago of presenting it in the form of Question and Answer, the latter being the author's own words, and which ma terially lessons the labour of the teacher, and impressea the subject more powerfally on the memory of the pupil. We understand that a very large im preasion has been sold in a short space of time.-Leeds Mercury.

## The Manufacturer's Ready Reckoner.

## BARBER'S NEW READY RECKONER,

(The Best Published.)
For the use of those who reckon by the Fractional One-Eighth of a Penny. 18mo., cloth or sheep. Price 1 s .

This Manual will be found of decided advantage to Manufacturers, Slubbera Dverlookers of Mills, \&o., in facilitating the computation of all sums reguiated sy the incresse or decrease of One-Eighth of a Penny; and will answor all prao Hoal purposes belonging to the trade.

## LONDON :

Wsbs, Milingaton, \& Co., 5, Wine Office Court, Fleet-Street, aleo, legda ard otley.
EDINBURGH: Jorn Menzizs, Princes-Street. DUBLIN : Johy Robertior, Grafton-Street.


[^0]:    *The figures placed between prenthesis refer to the Koy, in which the solv. tion will be found.

[^1]:    Nite--To understand the solutions to some of the questions in this work, it is necessary to remark, that a pipe of Claret contains 126 ; Ellons; Port, 138; Sberry IVU Lisbon, 140; Buceilas 140; Mudeira, 1t0; aud Vidonia, 120.

