Bueni sanucku THY imeni B.1. Bepnancpkoro. Cepisi: TexHiuHi Hayku

UDC 004.432
DOI https://doi.org/10.32838/2663-5941/2020.1-1/24

Sulema Ye.S.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute

2

Peschanskii V.Yu.
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute

29

TIMEWISE DATA PROCESSING
WITH PROGRAMMING LANGUAGE ASAMPL

The domain-specific programming language ASAMPL is presented and its translation is discussed in the
paper. This programming language enables data processing by using specific operators which enable data
timewise processing, multimodal data synchronization, and aggregation. It gives flexibility in working with
such data sources as remote sensors and cloud storages. The program code in programming language ASAMPL
includes nine sections. The Libraries section allows a programmer to declare a list of imported libraries to
be used in the program code. The Handlers section and the Renders section enable selection of handling and
rendering tools from predefined libraries for their further use. The Sources section consists of a list of declara-
tions for access to external resources. The Sets section enables declaration of data types. The Elements section
is used for definition of single-value data. The Tuples section is used for definition of data tuples which are
timewise ordered data values, a tuple is a specific data type of ASAMPL. The Aggregates section is used for
definition of complex data structures called aggregates, this data type is a specific data type of ASAMPL. The
Actions section includes any necessary operators which implement the logic of data processing in a program.
The paper also presents the translator of a program code in ASAMPL and explains its components. The per-
formance of the ASAMPL language compiler was evaluated based on two characteristics: run time and size
of executable code. The comparison has shown that a program compiled by an ASAMPL translator is twice
as short as a program in programming language C ++, which implements the same logic of data processing.
The proposed programming language ASAMPL is aimed at the development of applied software dealing with
multimodal data defined with respect to time. It can be used in a wide range of applications where timewise

data processing is required.

Key words: timewise data processing, programming language, program code translation.

Problem statement. The task of timewise data
processing is topical for many engineering applica-
tions, including medical engineering. It concerns
the case when data is obtained from certain external
source producing a sequence of values accompanied
with time stamps. In this case, there is a need in time-
wise data processing, including data synchronization.
In spite of that this task can be solved by using gen-
eral-purpose languages, employing a domain-specific
language can be a better option in some application
cases.

Review of the literature. There is a wide range
of programming languages developed and, thus, the
number of research papers and books presenting dif-
ferent approaches of programming is also significant.
Let us focus on some interesting researches related to
the research presented in this paper. In [1], the author
presents two views on real-time programming: based
on use of general purpose languages and base on
use of special purpose synchronous languages. The
advantages and disadvantages of both approaches are
highlighted and discussed. In [2], the authors survey
the literature available on the topic of domain-specific

Tom 31 (70) 4. 1N2 12020
132

languages and discuss terminology, risks and benefits,
example domain-specific languages, design method-
ologies, and implementation techniques. The recent
researches show that the interest to domain-specific
languages is rising. Thus, there is a number of papers
[3-9] which presents programming languages devel-
oped for a certain specific purpose. In particular,
research [8] presents an approach of programmable
programming languages. The general view on pro-
gramming languages design is given in [10].

Task statement. The purpose of the research is the
development of domain-specific language ASAMPL,
which enables timewise data processing, as well as
the development of a translator for this domain-spe-
cific language.

Presentation of the Main Research Material.
The program language ASAMPL [11] is designed
in order to create software tools for multimodal data
processing which has to be carried out with respect
to time scale represented by time stamps. These time
stamps correspond to time moments when data of cer-
tain modality is obtained. The data can be received as
a result of measuring a specific parameter character-

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

izing an object of study. Let us present the language
concept.

A program code in programming language
ASAMPL consists of nine basic sections, the general
scheme of which is as follows:

'Program’, name, '{',

libraries section,

handlers section,

renderers section,

sources section,

sets section,

elements section,

tuples section,

aggregates section,

actions section,

’}l;

The Libraries section allows a programmer to
declare a list of imported libraries to be used in the
program code. The Handlers section and the Renders
section enable selection of handling and rendering
tools from predefined libraries for their further use.
The Sources section consists of a list of declarations
for access to external resources. The Sets section ena-
bles declaration of data types. The Elements section
is used for definition of single-value data. The Tuples
section is used for definition of data tuples which are
timewise ordered data values. A tuple is a specific
data type of ASAMPL. Its nearest analogue in high-
level programming language is an array or a struc-
ture. The Aggregates section is used for definition of
complex data structures called aggregates. This data
type is specific data type of ASAMPL and in fact it is
a tuple of tuples. Finally, the Actions section includes
any necessary operators which implement the logic of
data processing in the program.

Let us define the program structure and opera-
tors in programming language ASAMPL by using
Extended Backus-Naur Form. Then the program in
ASAMPL can be defined by the syntactic rule (1).

program = PROGRAM , identifier ,"{" ,
LIBRARIES , "{", { identifier , (1S |"="), link ,";"
Y[, comment 1"},

HANDLERS , "{", { identifier , (1S |"=") , link ,";"

Y [, comment 1"}, ,

RENDERERS, "{", { identifier , (1S |"="), link ,

vv;n } ["M , commem‘] vv}u ,

SOURCES, "{", { identifier , (1S |"="), link ,";" }

[/, comment]"}",

SETS, "{", { identifier , (IS |"="),type,";" F["//" (1)
,comment |"}",

ELEMENTS , "{", { identifier , (IS |"="), (set_

type |value) ,";" } ["//", comment 1"}",

TUPLES , "{", { identifier , (1S |"="), set_type ,
"M, comment 1"},

AGGREGATES "{", { identifier , (1S |"="),"[" . (
identifier | values_tuple ,";" } [/", comment |"}",
ACTIONS, "{", { operator ,";" } [""", comment |
YL, comment],"}

The following operators are defined in program-
ming language ASAMPL: TIMELINE, SEQUENCE,
IF THEN, CASE OF, SUBSTITUTE FOR WHEN,
DOWNLOAD FROM, UPLOAD TO, IS, RENDER
WITH.

The timewise processing operator TIMELINE
(TIMELINE AS) is a specific operator which allows a
programmer to apply a certain action during a defined
time period. Actions included into the operator body
are carried out simultaneously. This operator can be
considered as a specific type of a loop. There are three
types of this operator:

— TIMELINE time value 1 : step : time value 2
{a list of simultaneous actions}

— TIMELINE AS time values tuple {a list of
simultaneous actions}

— TIMELINE UNTIL condition {a list of simul-
taneous actions}.

This operator is defined by the syntactic rule (2).

timewise_processing_operator = TIMELINE , (
identifier

| time_value) ,":", (identifier | time value),":",
(identifier | time _value) ,"{", { action } ,"}" 2)
| TIMELINE , AS , time_values_tuple ,"{" , {

action } ,"}"

| TIMELINE , UNTIL , logical_expression ,"{" ,
{ action } ,"}";

The operator of sequential processing SEQUENCE
{a list of sequential actions} is a specific operator which
allows to unite data processing actions, which have to be
carried our sequentially, in one compound action. This
operator is defined by the syntactic rule (3).

sequential_processing operator = SEQUENCE , 3)
“{", {action,[""1},"}";

The branch statement IF THEN (IF THEN ELSE)
is a standard operator defined in many other lan-
guages. It is defined by the syntactic rule (4).

branch_statement =1F , logical_expression ,

THEN, "{", { action } ,"}" | IF , logical expres-)
sion , THEN , "{", { action } ,"}" , ELSE , "{", {
action } ,"}";

The selection statement CASE OF (CASE OF
ELSE) is also a standard operator available in many
high-level programming languages. This operator is
defined by the syntactic rule (5).

selection_statement = CASE , identifier , OF ,"{"

, { (identifier | value) ,":" , action } ,"}" | CASE

, identifier , OF ,"{" , { (identifier | value) ,":" , %)
action } ,"}" ,ELSE , "{", (identifier | value) ,":" ,
action ,"}" ;

133

Bueni sanucku THY imeni B.1. Bepnancpkoro. Cepisi: TexHiuHi Hayku

The replacement operator SUBSTITUTE FOR
WHEN is a specific operator which enables replace-
ment of one data set by another one if a certain con-
dition is true. For example, it can be used for replace-
ment of high-resolution data by low-resolution data if
the communication channel is limited. It is defined by
the syntactic rule (6).

replacement_operator = SUBSTITUTE , identifier , 6)
FOR , identifier , WHEN logical_expression ;

The downloading operator DOWNLOAD FROM
(DOWNLOAD FROM WITH) is a specific operator
which allows to download data from a certain data
source such as remote device, cloud storage, local
storage, etc. and to assign this data to a variable that
can be of any type: an element, a tuple, and an aggre-
gate. Data transformation form a specific data format
is carried out with the use of a predefined handler.
This operator is defined by the syntactic rule (7).

downloading_operator = DOWNLOAD , identifier 7
, FROM , identifier [WITH , identifier] ;

The uploading operator UPLOAD TO (UPLOAD
TO WITH) is a specific operator which allows to
upload data which is assigned to a certain variable
of any type (an element, a tuple, an aggregate) to a
defined resource, which can be either remote or local,
as a file. Transformation of data from the variable
type to a destination format is fulfilled by using a pre-
defined handler. It is defined by the syntactic rule (8).

uploading_operator = UPLOAD , identifier , TO ,)
identifier | WITH , identifier] ;

The assignment operator IS is a standard operator
available in other high-level programming languages.
It is defined by the syntactic rule (9).

assignment_operator = identifier , (1S | "=""),
value ;

®

I
Input stream of characters

¥

The rendering operator RENDER WITH is a spe-
cific operator which enables data reproduction by
using a specific tool for this purpose. This operator is
defined by the syntactic rule (10).

rendering_operator = RENDER | identifier ,

. . 10
WITH , identifier ; (10)
Input stream of characters)-
g l Container for an L
)) abstract syntax
[} Lexical analysis tree
module

I
Stream of lexemes

L

Formed
abstract —»
syntax tree

Syntax analysis
maodule

Interpreter
maodule

Execution of commands
sequence

'

Fig. 1. Generalized scheme of translator

In the ASAMPL translator, there are three main
models, which are essential for processing and run-
ning of programming code: lexer, parser, and inter-
preter.

Lexer is a module of input characters sequence
processing that performs lexical analysis of input
sequence of symbols. The result of lexer execution is
a sequence of lexeme, or tokens.

Lexical analysis executes in terms of formal sets
of rules. In our case, the rules are determined by
ASAMPL language grammar. It assigns a set of lex-
emes that can occur in the input sequence of charac-
ters. The result of this module is a sequence of lex-
emes prepared for their further processing in the next
modules of translator.

Parser is a module that is aimed at comparison
of linear sequence of formal language lexemes, i.e.
ASAMPL lexemes, with its formal grammar. During
the process of parsing, the input linear sequence of

lgnoring blanks, new rows and

tabulation

Lexer_split_tokens

Separation of string

_ 1 lexeme Separation of operator
Separation of Separation of lexeme
name lexeme digit lexeme l
ignore_lines lexem_name lexem_digit lexem_string lexem_operator

Tom 31 (70) 4. 1N2 12020
134

Fig. 2. Generalized scheme of lexical analysis module

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

characters is transformed into an abstract syntax tree
that clearly illustrates the syntactic structure of the
input sequence. It allows to switch to program pro-
cessing of data in the translator.

Thus, the main task of syntax analyzer is pars-
ing the rules implemented according to the recursive
descent parser, i.e. by mutual calling of functions,
when each function corresponds to one of grammar
rules.

Rules that apply sequentially, i.e. from left to
right, absorb lexemes obtained from lexical analyzer.
After absorbing and processing lexemes forming of
abstract syntax tree, which will be interpreted to an
executable code in the next stage, occur.

Let us consider the algorithm of the module in
details: Tree* parser buid tree(std::vector<Lexem>*
lexem_sequence);

The input is a sequence of tokens obtained in the
previous step during the processing of input data. This
function fills in the fields of the Parser class, which
contains links to the input list of tokens, an iterator for
examining them one by one, and a string for storing
errors that might be formed during conversion to an
abstract syntax tree.

Parsing process is recursive, so in addition to cre-
ating a Parser class and processing a return value,
another function is called in the body of the main
module: static Tree * program(Parser * parser).

Let us refer to this function as a root one, as it calls
the handlers for each of program blocks, in which the
variables will be initialized for later use:

static Tree * libraries_section(Parser * parser);

static Tree * handlers_section(Parser * parser);

static Tree * renderers_section(Parser * parser);
static Tree * sources_section(Parser * parser);
static Tree * sets_section(Parser * parser);

static Tree * elements_section(Parser * parser);

static Tree * tuples_section(Parser * parser);

static Tree * aggregates section(Parser * parser);
static Tree * actions_section(Parser * parser);

If no errors occurred during the execution of these
functions, then the result is an abstract syntax tree
that is ready for further processing, otherwise the tree
will be incomplete and therefore not executable. In
this case, the main function returns a NULL value and
outputs an error code containing information about
the line in which it occurred.

Let us consider a scheme of functioning of syntac-
tic parsing of a sequence of tokens in details. There
are two functions that are not the implementation of
one of the rules of formal grammar ASAMPL:

static Tree * accept(Parser * parser, LexemType
Lexem);

static Tree * expect(Parser * parser, LexemType
Lexem);

The Accept function reads each subsequent item
in a token sequence and compares its type with the
type that was passed to it. If the types match, the func-
tion successfully reads the item.

The Expect function calls the Accept function,
after which this function not only checks whether the
next token belongs to a specific type, but also requires
it for each subsequent token. If the check condition
is not met, the function returns an error and outputs
information on which line the error occurred.

static bool ebnf sequence(Parser * parser, Tree *
node to fill, GrammarRule rule)

The Sequence function reads cyclically the rule
passed to it as an argument any number of times.
This function is used to add any number of descend-
ant nodes to those tree leaf nodes that are responsi-
ble for initializing variables or performing prescribed
actions.

static Tree * ebnf one of(Parser * parser, Gram-
mar-Rule rules[],

size_t length)

The one_of function tries to read at least one of
the rules passed to it as an array. If possible, it returns
the result of this rule as another branch of the abstract
syntax tree, and the process completes. If an error
occurred while executing a rule or none of the list
of passed rules could be applied to the next token
sequence, NULL is returned.

static Tree * ebnf one of lexem(Parser * parser,
Lex-emType types[], size t length)

The one of lexem function attempts to read at
least one of the tokens that were passed to it as array
elements. If possible, it returns a node with a type
of token processed as a new node of an abstract syn-
tax tree, and the process completes. In case none of
the list of transmitted tokens could be read, NULL is
returned.

static Tree * ebnf ap main_rule(Parser * parser,
GrammarRule next, GrammarRule ap)

The Ap Main Rule function, which is the result of
left recursion, checks whether the following priority
rule is applied, and if true, checks if the apostrophe
rule is applied.

static Tree * ebnf ap recursive rule(Parser *
parser, LexemType types[], size t typesLen, Gram-
marRule next, GrammarRule ap)

The Ap Recursive Rule function checks whether
transmitted tokens are found, and if they are applied,
whether the rule continues recursively.

The above functions are a list of rules that do not
originate from the ASAMPL formal grammar rules,

135

Bueni sanucku THY imeni B.1. Bepnancpkoro. Cepisi: TexHiuHi Hayku

so they form all other rules that are directly derived
from the formal ASAMPL grammar description.

Each function, which is a direct result of ASAMPL
formal grammar description and is non-finite, con-
tains calls to one of the basic functions, as well as
calls to at least one of these functions. The finite func-
tions do not contain calls to such functions, so they
do not deepen the recursion and return a node leaf,
which is the end of parsing for this branch.

The performance of the ASAMPL language com-
piler was evaluated based on two characteristics: run
time (table 1) and size of executable code (table 2) to
process the same ASAMPL sequence of actions and
methods imported from the libraries.

The results for the ASAMPL compiler were com-
pared with those obtained for the G ++ compiler
(GNU C++) when parsing C ++ program equivalent.
The comparison was made for two sets of ASAMPL
language test code and its C ++ language equivalent.

The comparison was made for two different test
versions of a programming code, with and without
the use of additional arithmetic functions. The com-
parison tables above show that a program compiled
by an ASAMPL translator is twice as short as the
same C ++ program. Accordingly, more complex
data processing programs requires much less mem-
ory using ASAMPL than programs written in other
programming languages.

Table 1
Average running time in milliseconds
ASAMPL G++
Test set 1 1106 1063
Test set 2 1521 1427
Table 2

The size of executable code for processing
video files in rows

ASAMPL G++
Test set 1 4 9
Test set 2 6 14

At the same time, the timing characteristics are
quite close to the average program running time.
Improvement of time characteristics is possible
through optimization of the translator code.

Conclusions. The proposed programming language
ASAMPL is aimed at the development of applied soft-
ware dealing with multimodal data defined with respect
to time. It can be used in a wide range of applications
where timewise data processing is required. The spe-
cific feature of programming language ASAMPL is
its orientation on both multimodal data structures pro-
cessing and work with external devices and data stor-
ages. The translation and execution of program code
developed in programming language ASAMPL can be
fulfilled with the proposed translator.

References:
1. Berry G. Real time programming: special purpose or general purpose languages. INRIA, 1989.
2. Van Deursen A., Klint P., Visser J. Domain-specific languages: an annotated bibliography. ACM SIGPLAN

Notices, 200. Vol. 35, No. 6. PP. 1-11.

3. Gaunt A.L. et al. TerpreT: A Probabilistic Programming Language for Program Induction. Cornell

University, 2016.

4. Bingham E. et al. Pyro: deep universal probabilistic programming. The Journal of Machine Learning

Research, 2019. Vol. 20, No. 1.

5. Carpenter B. et al. Stan: A probabilistic programming language. Journal of Statistical Software, 2017. Vol.

76. No. 1.

6. Hong Ge, Kai Xu, Zoubin Ghahramani. Turing: a language for exible probabilistic inference. AISTATS, 2018.
7. Coblenz M. Obsidian: A Safer Blockchain Programming Language. IEEE/ACM 39th International

Conference on Sofiware Engineering Companion, 2017.

8. Felleisen M. et al. A programmable programming language. Communications of the ACM, 2018. Vol. 61, No. 3.
9. Andersen, L., Chang, S., Felleisen, M. Super 8 languages for making movies. ACM SIGPLAN International

Conference on Functional Programming, 2017. PP. 1-29.

10. Parr T. Language Implementation Patterns. USA, 2010. 389 p.
11. Sulema Ye. ASAMPL: Programming Language for Mulsemedia Data Processing Based on Algebraic
System of Aggregates. Advances in Intelligent Systems and Computing, Springer, 2018. Vol. 725. PP. 431-442.

Cyaema €.C., [lecuancokuii B.JO. YACOBA OBPOBKA JJAHUX
3 BUKOPUCTAHHSM MOBU ITPOI'PAMYBAHHSI ASAMPL
Y emammi npeocmasneno cneyianony mogy npoepamyeantss ASAMPL ma posensanymo cnoci6 it komninsayii.

La mosa mnpocpamysanmuss 0038011€ 00pobRIOGAMU OaHI, GUKOPUCTOBYIOUU CHEYIaNbHl Onepamopu, ujo
0armb MOACIUGICIL 0OPOONIOGAMU HACOBI OAHI, CUHXPOHIZYEAMU MYTbMUMOOAIbHI OaHi Ma 30IUCHIO8AMU
ix aepezayiio. Lle naoae enyykocmi y pobomi 3 maxumu o0dxceperamu OaHux, K OUCAHYINUHI ceHcopu ma

Tom 31 (70) 4. 1N2 12020
136

IndpopmaTuka, 06uKCII0BaIbHA TEXHIKA Ta aBTOMAaTH3aLlis

xmapni cxosuwya. Tlpoepamnuii k00 mosow ASAMPL exmouac 0eg’ssimv Onokie. bnox 6ioniomex 00360/s€
npocpamicmy 02010Cumu Cnucox IMnopmoganux oioiomex, aki 6y0ymv GUKOPUCIAHT 8 NPOSPAMHOMY KOOL.
Bnox obpobdmosauie ma 610k penoepuney 0036015810my 0Opamu iHCmpymenmu 018 00poOKu ma peHoepunzy
3 NONepeoHvbo GU3HAUEHUX 0IONIomeK 01 NooAILU020 iX euxopucmants. birox docepen micmums nepenik
dexnapayiti docmyny 00 308HiWHIX pecypci. Brox muoxcun 003801a€ oconowyeamu munu oanux. brox
eNeMeHmi6 GUKOPUCTOBYEMbCA 0Nl GUSHAYEHHA OAQHUX, WO NPeocmasieHi O0OHUM 3HauyeHHAM. brox
KOPMediCie GUKOPUCTNOBYEMbCA 0TI GUSHAUEHHS KOPMEICI@ OAHUX, SAKI 6NOPSOKOSAHI 34 UACOM; KOPMEdiC
€ cneyugpiunum munom oanux ASAMPL. Bnox acpecamie 3acmoco8yemvcs Osl GUSHAYEHHS CKAAOHUX
CMPYKmMyp OaHUX, AKi HA3UBAIOMbCA azpecamamu;, yeti mun 0anux € cneyugivnum munom oanux ASAMPL.
YV bnox 0iti 6x00amv 6ci HeoOXiOHI onepamopu, SKi peanizyioms i02iKy 00poOKu 0anux y yil npozpami. Y
cmammi makodic NPONOHYEMbC CMPYKMYPa MPAHCAAMOPA NPOSPAMHO20 KOO, Hanucano2o mosoro ASAMPL,
a makodxc nosAcHomses i ckiadosi yacmunu. Egexmusnicms komninamopa moeu ASAMPL oyiniosanace
HA OCHOBI 080X XAPAKMEPUCMUK: YAC GUKOHAHHA MA PO3MIp BUKOHYE6aH020 KoOYy. llopienanHsa nokasarno,
Wo npozpama, cKkomninbosana 3a 0onomozoio mpauciamopa ASAMPL, 606iui kopomwa 3a npocpamy, Axa
Hanucana mogoio npozpamyeanns C++, ma peanizye my camy n102iKy 06pobKu Oanux. 3anponoHosana moea
npoepamysanns ASAMPL npusnauena Ons po3poOnenHs NPUKiaoHo20 NpoSpamHo20 3abe3nedeHHs Ol
06pO6KU MYTEMUMOOATBHUX OGHUX, 6U3HAUEHUX Y uaci. [T Modicna euxopucmosyeamu 6 wupokomy koni 3adad,
O0e nompibHa 06podKa OaHux y 4aci.
Kniouosi cnoga: uacosea o6podxa oanux, Moea npocpamy8ants, MpanHcisayis npoepamHo20 Kooy.

137

