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Abstract 

The aim of this study was to update figures for the presence of dioecy among the 

gymnosperms and investigate its correlation with climate, growth form, pollination and seed 

dispersal syndromes, and risk of extinction. Dioecy was found in almost 65% of contemporary 

gymnosperm species, a higher percentage than previous estimates. It dominates in 8 of the 12 

families. As in angiosperms, dioecious gymnosperms are particularly common in climbers and 

are more commonly found in tropical climates. Analysis of the degree of threat using IUCN red 

list categories showed that the proportion of threatened species is higher in dioecious than in 

monoecious species only in temperate climate. The high sensitivity of dioecious species to 

environmental changes associated with human activity in temperate climate may explain this 
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phenomenon. The monophyly of extant gymnosperms and the relatively small number of 

species (about 1000) create the possibility of treating them as a model group in investigating 

the evolution of sexual systems.   

 

Keywords: Endangered species; Dioecy; Monoecy; Evolution  

 

Introduction 

Dioecy is relatively rare in plants. Hermaphroditic species dominate among angiosperms and 

dioecious species account for around 6% of plants (Renner & Ricklefs, 1995; Weiblen, Oyama 

& Donoghue, 2000; Renner, 2014). Despite its rarity, dioecy does have its advantages. The 

most emphasized advantage of dioecy is the complete exclusion of the risk of self-pollination 

(Darwin, 1876; Charlesworth & Charlesworth, 1978). A second advantage is the optimization 

of resource allocation to both male and female functions. This is one of the explanations why 

fleshy, presumably expensive, fruits are more common in dioecious species (Maynard-Smith, 

1978; Charnov, 1982; Renner & Ricklefs, 1995).  

Nevertheless, it is often emphasized that dioecy is not an optimal sexual system in 

sedentary organisms. Indeed, hermaphroditism is considered to be the best strategy for 

optimizing fitness where cross-pollination opportunities are limited since automatic or 

pollinator-assisted self-pollination is sometimes possible if no other partner is near (Charnov, 

1982). A second disadvantage of dioecy is that the number of individuals producing seed is half 

that of hermaphrodites because seeds are carried only by females. This results in dioecious 

species having reduced seed dispersal, the so-called seed-shadow handicap (Heilbuth, Ilves & 

Otto, 2001). Moreover, although female organisms can optimise resource allocation, they often 
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expend greater reproductive effort over a longer period of time compared to males (Vessella et 

al., 2015; Garbarino et al., 2015; Matsushita, Takao & Makita, 2016; Zarek, 2016). It is also 

known that sexes differ in their response to stress (Juvany & Munné-Bosch, 2015; Ariel & 

Alejandro, 2016), and sexes can also have varying environmental requirements and occupy 

slightly different niches, potentially leading to spatial sex segregation (Cox, 1981; 

Bierzychudek & Eckhart, 1988). 

Due to these disadvantages, a hypothesis has emerged that dioecy is evolutionarily less 

advantageous than hermaphroditism, that is, sporophytes with bisexual strobili or flowers 

(Westergaard, 1958). Supporting this, it has been shown that within the angiosperms, clades 

that consist of dioecious plants contain fewer species than their sister clades; this suggested that 

dioecious species were more prone to extinction and that dioecy was an evolutionary ‘dead end’ 

(Heilbuth, 2000). Nevertheless, species diversification rates have been shown to be as high in 

dioecious as in hermaphrodite lineages (Käfer et al., 2014; Käfer & Mousset, 2014; Sabath et 

al., 2016). Thus, the primary cause of the lower number of dioecious species in sister clades 

could be the frequent reversion to hermaphroditism (Käfer et al., 2017; Goldberg et al., 2017), 

in agreement with reports arguing that such reversions are not infrequent in angiosperms 

(Barrett, 2013; Renner, 2014). 

Dioecy in angiosperms has evolved repeatedly, either from monoecy or from 

gynodioecy (Charlesworth & Charlesworth, 1978; Renner & Won, 2001; Barrett, 2002). There 

is also the possibility of the reverse phenomenon, that monoecy can evolve from dioecy, as 

exemplified in the Momordica genus, where it has possibly happened seven times (Schaefer & 

Renner, 2010). In gymnosperms, dioecy has repeatedly evolved from monoecy, for example, 

10 to 13 times just within the Pinopsida (Leslie et al., 2013). Gymnosperms do not have 

gynodioecy nor any of the many other sexual systems from which dioecy can and has evolved 
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in angiosperms. Differences in the genetic mechanisms of sex determination in both 

angiosperms and gymnosperms suggest that there are multiple pathways of the evolution of 

dioecy. Sex chromosomes are known in only about 40 species of plants, mainly in angiosperms 

(Ming, Bendahmane & Renner, 2011), however, heterochromosomes in gymnosperms have 

been found in Ginkgo biloba L., where a ZW/ZZ system is present, whereas Cycas revoluta 

Thunb. is characterized by a XX/XY system. Species of Podocarpus, such as P. macrophyllus 

(Thunb.) Sweet, P. longefoliolatus Pilg. and P. elatus Seem. ex Parl., also present a unique if 

unspecified system of sex determination (Hizume, Shiraishi & Tanaka, 1988; Ming et al., 

2011); P. macrophyllus females have four sex chromosomes (X1X1X2X2) while males have 

three (X1X2Y). On top of any genetic determination, many dioecious species can change sex 

under the influence of environmental factors.  

More research on reproductive syndromes has been carried out on angiosperms than on 

gymnosperms. It has been shown that dioecy in angiosperms is found more frequently among 

trees, lianas or shrubs than among herbaceous species (Renner & Ricklefs, 1995; Vamosi, 

Mazer, & Cornejo, 2008). Dioecy is also more common in tropical climates and islands than in 

moderate or cold conditions (Bawa, 1980; Baker & Cox, 1984; Vamosi & Vamosi, 2004). 

Additionally, pollination in dioecious species is frequently by wind rather than insects whereas 

seed dispersal is by animals rather than wind (Bawa, 1980; Thomson & Brunet, 1990; 

Charlesworth, 1993; Vamosi, Otto & Barrett, 2003; Schlessman et al., 2014). Accordingly, 

Givnish (1980) concluded that wind-pollinated and animal-dispersed gymnosperms are usually 

dioecious, and wind-dispersed gymnosperms are usually monoecious. However, the 

classification of gymnosperms has recently changed dramatically and there is a need for a 

review of sexual systems in gymnosperms in the light of the new groupings to see if these 

generalisations still hold true.  
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The proportion of gymnosperm species assumed to be dioecious has varied. Thus, 

Givnish (1980) scored 420 (52%) of 804 gymnosperm species as dioecious. Owens and Hardev 

(1990) reported that 25% of 680 species were entirely dioecious and another 11% sometimes 

dioecious, sometimes monoecious. Ming et al. (2011) calculated that 36% of 1010 

gymnosperms are dioecious, including all Gingkoaceae, Cycadaceae and Gnetaceae, and 

Kumar, Kumari and Sharma (2014) reported that 36% of 1021 species are dioecious. Here we 

review the current knowledge about the occurrence of dioecy in gymnosperms and determine 

whether dioecy is related to climate, growth form, pollination system, strobilus type.  

 

Materials and methods 

Data on dioecy were compiled for 1033 species across all gymnosperm families from available 

literature (Farjon, 2010; Osborne et al., 2012; Ickert-Bond & Renner 2016) and databases such 

as The International Plant Names Index, The Plant List, World Checklist of Selected Plant 

Families and The Gymnosperm Database. In addition to sexual dimorphism, data were 

compiled on the climate in which a particular species is present, method of pollination, seed 

dispersal mechanism (animal or wind), growth form (Raunkiaer, 1934; De Langhe et al., 1983), 

and the degree and threat of extinction according to the red list of International Union for 

Conservation of Nature (IUCN). Statistical analysis was carried out using JMP software (SAS 

Institute). 

 

Results 

In total, 667 of the 1033 (64.6%) species currently accepted (see Appendix A; Table 1) are 

dioecious, similar to the 52% obtained in 1980 when the number of accepted gymnosperm 

species was 804 (Givnish 1980). An additional 14 species (c. 1%) had mixed systems (i.e. 
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dioecious and monoecious). Dioecious species are found within 42 of the 84 genera (see 

Appendix A). In six of the 12 gymnosperm families, all species are dioecious - Cycadaceae, 

Ephedraceae, Gingkoaceae, Gnetaceae, Welwitschiaceae and Zamiaceae - and in the 

Podocarpaceae and Taxaceae, the majority of species are dioecious (94.9% and 93.7%, 

respectively). A lower proportion of dioecious species occurs in the Cupressaceae (29.6%) and 

particularly in the Araucariaceae (5.4%). There are no dioecious species in the Sciadopityaceae 

and Pinaceae (but see two Pinus species below). Four families contain species that are either 

mono- or dioecious. There are eight such species in the Cupressaceae, three in the 

Podocarpaceae, two in the Pinaceae (Pinus edulis Engelm. and P. cembroides Zucc. - P. 

cembroides var. bicolor (Little) Silba, (sometimes identified as a distinct species - P. johannis 

M.-F.Robert, then Pinaceae has one dioecious species) is almost completely dioecious and one 

in the Taxaceae (Taxus brevifolia Nutt.). 

All climbing species, and almost all of the chamaephytes (growing <0.5 m above ground 

level) and nanophanerophytes (<3 m above ground) are dioecious (97.6 and 90.4%, 

respectively; Table 2), while among the phanerophytes (>3 m high) dioecious species constitute 

only 43.9%. 

There was a noticeable connection between sexual dimorphism and climate (Table 3). 

Tropical species are predominantly dioecious, while cooler climate species are mostly 

monoecious (Table 3). All ambophilous species (pollinated by both wind and insects) are 

dioecious and almost all dioecious species are dispersed by animals (Table 4). The exception is 

Welwitschia mirabilis the seeds of which are wind-dispersed (see Appendix A). Conversely, 

dioecious species that are wind-pollinated are frequently animal-dispersed (272 species; 93%). 

All monoecious species are wind pollinated and 95% are wind dispersed (336 species; Table 

4).  
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Nearly 95% of gymnosperm species examined are found on the IUCN Red List of 

Threatened Species: 48 dioecious and 4 monoecious species are not classified because of lack 

of data. Table 5 shows that dioecious and monoecious species are unequally distributed across 

categories (Chi2 test p <0.0001); 50.7% of monoecious species are recorded in the LC (Least 

Concern) category, while only 33.4% of dioecious species are in this category. The other 

categories, from NT (Near Threatened) to EW (Extinct in the Wild), include nearly 60% of 

dioecious and around 48% of monoecious species (Table 5). In the case of the 14 species with 

a mixed system (mono-dioecious), 11 species are recorded in LC (Table 5). However, Fisher’s 

exact test showed that probability of being a threatened or endangered species (joined: NT - 

Near Threatened, VU - Vulnerable, EN - Endangered, CR - Critically Endangered, EW - Extinct 

in the Wild) is greater for dioecious than monoecious species only in temperate climates (Table 

6). The climate has a major impact on the degree of threat to the species because the proportion 

of species threatened and endangered in relation to the “Least Concern” (not threatened) species 

increases from cold to tropical climate (Table 6).  

 

Discussion 

Dioecy is the dominant sexual system in gymnosperms found in 667 of 1033 species (64.6%). 

It can be seen that there is a significant difference between gymnosperms (where dioecy 

dominates and there are no hermaphroditic flowers) and angiosperms in which about 6%  of 

the 261,750 total species accepted in the Angiosperm Phylogeny website or 5% of the 

304,419 species accepted in The Plant List species are dioecious (Renner, 2014). In 8 out of 

the 12 families currently in the gymnosperms, dioecy accounts for more than 90% of all 

species (including six families at 100%). The level of ~65% of dioecy in gymnosperms 

supports Givnish’s (1980) estimate of 52% and rejects the 25% calculated by Owens and 
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Hardev (1990) and the 36% calculated by Ming et al. (2011). Partly this is due to increased 

species numbers; for instance, there are now 107 dioecious species in Cycas (Osborne et al., 

2012), up from 20 known to Givnish (1980). 

 

Growth form 

All 36 climbing gymnosperms are dioecious (Table 2). A similar pattern has been found 

in angiosperms, where climbing growth was strongly correlated with dioecy (Renner & 

Ricklefs, 1995). Moreover, a positive correlation between dioecy and woody growth (including 

climbers, shrubs, trees) results primarily from the association between dioecy and climbing 

growth in angiosperms (Renner & Ricklefs, 1995). Shrub growth form is more weakly 

associated with dioecy, while the tree growth form is not associated with dioecy in angiosperms 

(Renner & Ricklefs, 1995). This is consistent with the trend observed in gymnosperms because 

dioecy is much more common in chamaephytes and nanophanerophytes (growing point <3 m 

above ground, mostly shrubs) than in phanerophytes (>3 m above ground, mostly trees): 

respectively 97.6, 90.4% and 43.9% of species (Table 2).  

 

Climate 

The relationship between the climate and the sexual system in gymnosperms is 

complicated since it is affected by the geographical distribution of families. For example, most 

species of Pinaceae (203 species) occur in temperate to mild climates, compared to only 34 

found in a tropical climate (see Appendix A). However, a connection between sexual 

dimorphism and the climate can still be seen; the cooler the climate, the fewer the dioecious 

species (Table 3). Tropical Cycadaceae and Gnetaceae are represented only by dioecious 

ACCEPTED M
ANUSCRIP

T



9 

 

species, whereas Pinaceae of colder areas have no dioecious species (although there are two 

species with a mixed system). Overall, 83.0% of tropical gymnosperms are dioecious, falling 

to 54.7% in temperate areas and 15.6% in cold areas. Dioecy is often connected with a tropical 

climate (Sakai & Weller, 1999). Moreover, this is not an indirect correlation between the 

tropical climate and fleshy fruits or woody growth form, since dioecy is independently 

associated with a tropical climate at the family level in angiosperms (Renner & Ricklefs, 1995). 

It suggests that dioecious taxa developed when the climate on Earth was warmer (Vamosi et 

al., 2003). During periods of cooling, these dioecious taxa were progressively lost from colder 

areas as a result of poorer adaptation to a cool climate.  

Pollination and seed dispersal 

There is a strong relationship between dioecy and pollination by insects in 

gymnosperms, because all species pollinated by both wind and insects (ambophily) are 

dioecious. However, there is no clear answer as to which came first: dioecy or ambophily? 

Contemporary Pinaceae, which are almost all monoecious, are anemophilous, whereas 

entomophily is found in families that currently only contain dioecious species (Cycadaceae, 

Zamiaceae, Gnetaceae, Ephedraceae). Entomophily is not found in extant Pinopsida but was 

present in the extinct family Cheirolepidiaceae in the Mesozoic (Labandeira, Kvaček & 

Mostovski, 2007). Pollination of mesozoic Cycas species by insects is also known. Such an 

association developed at the latest in the Cretaceous (Peñalver et al., 2012), but probably earlier 

(Labandeira, Kvaček & Mostovski, 2007). Ambophily is common in Cycas and is found in 

some living species (Schneider et al., 2002; Kono & Tobe, 2007; Procheş & Johnson, 2009; 

Terry et al., 2012). In the case of C. revoluta, insect exclusion experiments resulted in about 

10% seed set, whereas with natural pollination it was 40% (Kono & Tobe, 2007). Even more 

prominent is the association of Lepidozamia peroffskyana Regel (Cycadales) pollinating beetles 
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(O. Coleoptera); 70% of ovules were pollinated in the presence of beetles along with wind 

exclusion, whereas in the absence of beetles the value dropped to just 0.1% (Hall et al., 2004). 

Perhaps the use of insects is related to the difficulty of carrying pollen through the wind in 

dense vegetation (Procheş & Johnson, 2009). The entomophily of Welwitschia mirabilis 

Hook.f. has long been known (Pearson, 1909). Gnetum L. species are also pollinated by insects 

(Kato, Inoue & Nagamitsu, 1995), while most of Ephedraceae are anemophilous (Rydin & 

Bolinder, 2015). It is still an open question whether entomophily was the primary condition in 

Gnetaceae (Gong et al., 2015) and whether anemophily of Ephedra L. species is secondary 

(Rydin & Bolinder, 2015). The answer may be linked to climate: tropical species are more 

frequently insect-pollinated than those from colder areas (Bawa, 1980) 

Monoecious gymnosperms are primarily dispersed by wind, whereas in dioecious 

species dispersal by animals is dominant (Givnish, 1980).  Animal-dispersed species are found 

in 97% of dioecious gymnosperms and only in 4.8% of monoecious species. A similar 

relationship between fleshy fruit and dioecy has also been found in angiosperms (Renner & 

Ricklefs, 1995), but a significant correlation between dioecy and fleshy fruit was only found in 

the Eumagnoliids and Asterids, but not in Rosids (Vamosi et al., 2003). The type of cone is 

related to the seed dispersal: fleshy cones are often carried by animals, whereas dry cones are 

dispersed by wind. Fleshy seeds and fruits in dioecious plants attract animal seed dispersers and 

increase the efficiency of dispersal (Geldenhuys, 1993) which can favour the development of 

stable dioecious populations (Barot & Gignoux, 2004). 

 

Degree of threat 

The greater proportion of dioecious gymnosperms threatened with extinction may 

support the evolutionary deadend hypothesis (Heilbuth, 2000) for dioecious gymnosperms. 
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However, our study shows a bias because the degree of threat may be associated with other 

ecological factors within dioecious gymnosperms. Undoubtedly, climate has a major impact on 

the degree of threat to the species in our study because the proportion of species that are 

threatened and endangered increases from cold to tropical climate (Table 6). This is confirmed 

by the number of endangered plant species in North America being positively correlated with 

annual temperature (Dobson et al, 1997). However, compared with monoecious species, 

dioecious species are significantly underrepresented in the "Least Concern" category only in 

temperate climates.. Perhaps the explanation for this phenomenon is the long-standing and 

intense human disturbance in temperate regions. Agricultural activity is known to be the key 

negative variable affecting threatened plants (Dobson et al., 1997). Dioecious species may be 

more sensitive to environmental changes (Petry et al., 2016; Retuerto et al., 2018), which could 

explain their threatened status in temperate climates. 

 

Evolution of sexual systems in gymnosperms 

Dominance of dioecy in gymnosperms is somewhat surprising given that dioecy is rare 

in sedentary organisms (Charnov, 1982). The lack of hermaphroditic flowers seems to be the 

key to the prevalence of dioecy in gymnosperms. Perfect flowers are found in more than 80% 

of angiosperm species (Yampolsky & Yampolsky, 1922; Renner & Ricklefs, 1995). This 

provides a successful sexual system because angiosperms have well-developed physical and 

genetic barriers to reduce self-fertilization, including self-incompatibility (SI). SI has been 

reported in over 100 families and is found in an estimated 39% (database size not stated) of 

angiosperms species (Igic, Lande & Kohn, 2008). A comparison of over 1500 species belonging 

to Asteraceae, Brassicaceae and Solanaceae showed that 66% of island and 41% of mainland 

species were self-compatible (Grossenbacher et al., 2017). SI is absent or at best imperfectly 
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developed in gymnosperms (Zavada & Taylor, 1986 Runions & Owens, 1998; Kormatuk, 1999; 

Igic et al., 2008), so the high frequency of dioecy in gymnosperms may be a mechanism to 

avoid self-fertilization (Lloyd, 1974; Charlesworth & Charlesworth, 1978; Grossenbacher et 

al., 2017).  

Mixed sexual systems (monoecy together with dioecy) are relatively rare in 

gymnosperms (14 species, c. 1%). However, the extinct order Bennettitales had species with 

bisexual cones (hermaphroditic strobili) as well as species with unisexual cones (Owens et al., 

Friis, Pedersen, & Crane, 2009). Pinus cembroides var. bicolor is an interesting extant taxon, 

sometimes identified as a distinct species (P. johannis M.-F.Robert). The populations of this 

taxon are almost exclusively dioecious, making it the only completely dioecious taxon in the 

Pinaceae (Flores-Rentería et al., 2013). Dioecy is also found, albeit rarely, in Pinus edulis 

(Floyd, 1983). Similarly, both dioecious and monoecious species can be found in the 

Podocarpaceae and Cupressaceae, often within the same genus, and indeed have species that 

can use both sexual systems. In comparison, in the Taxaceae family, Taxus canadensis Marshall 

is a completely monoecious species and monoecy is relatively common in T. brevifolia (DiFazio 

et al., 1996). All these variations occur in a group with barely a thousand species, whereas 

angiosperms have about three hundred thousand (Christenhusz & Byng, 2016). High rates of 

extinction and niche conservatism could be the reason for the relatively small diversity of 

gymnosperms (Crisp & Cook, 2011). The largest family (Pinaceae) is made up of monoecious 

species, and many of them are found in cool climates, which affects our view of gymnosperms, 

the greatest diversity of which is found in the tropics. 

This study shows that gymnosperms are an interesting model of sexual system evolution 

because of the relatively small number of monophyletic extant species (about 1000) . However, 

this model may have limitations since the extant taxa are distantly related which can 
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significantly influence any analysis of the gymnosperms. Our analyses have provided an 

important snap-shot of the current position of dioecy but do not take into account phylogenetic 

relationships, which would require a different analysis (Donoghue, 1989; Pagel & Harvey, 

1988). However, any such analysis will require the data and insights provided here. 
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Table 1. Sum of monoecious, dioecious and mixed (monoecious and dioecious) species in 

different gymnosperm families. The number of taxa was determined from Farjon (2010), 

Osborne et al. (2012) and Ickert-Bond and Renner (2016). 

Family Total species Monoecious Mixed Dioecious % dioecious 

Araucariaceaea 37 35 0 2 5.4 

Cupressaceaea 135 87 8 40 29.6 

Cycadaceaeb 107 0 0 107 100.0 

Ephedraceaec 54 0 0 54 100.0 

Ginkgoaceaee 1 0 0 1 100.0 

Gnetaceaec 39 0 0 39 100.0 

Pinaceaea 224 222 2 0 0.0 

Podocarpaceaead 178 6 3 169 94.9 

Sciadopityaceaea 1 1 0 0 0.0 

Taxaceaea 32 1 1 30 93.7 

Welwitschiaceaec 1 0 0 1 100.0 

Zamiaceaeb 224 0 0 224 100.0 

Total 1033 352 14 667 64.6 

a Farjon (2010)  

b Osborne et al. (2012) 

c Ickert-Bond & Renner (2016)  

d With the addition of one new species, Podocarpus orarius R.R.Mill & M.Whiting 

e Page (1990) 
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Table 2. Grouping of gymnosperms according to growth forms and sexual dimorphism. The 

division into growth forms was based on the World Checklist of Selected Plant Families 

database from Raunkiaer (1934) with modifications made by De Langhe et al. (1983). As one 

species can occur in the form of various growth forms, the sum of species was given at the 

bottom of the table. Growth forms: phanerophytes (over 3 m high), nanophanerophytes (grows 

clearly above the ground but below 3 m), chamaephytes (grows closely to the ground level, 

always below 0.5 m) and climbing plants 

 

Growth form 
Total 

species 
Monoecious Mixed Dioecious % Dioecious 

Phanerophytes  541 324 11 206 38.1 

Phan./nano. 88 17 1 70 79.5 

Nanophanerophytes  162 7 1 154 95.1 

Nano./cham. 41 1 1 39 95.1 

Chamaephytes  165 3 0 162 98.2 

Climbing 36 0 0 36 100.0 

TOTAL 1033 351 12 670 64.9 

      

Σ Phanerophytes 629 341 12 276 43.9 

Σ Nanophanerophytes 291 25 3 263 90.4 

Σ Chamaephytes 206 4 1 201 97.6 

Σ Climbing 36 0 0 36 100.0 
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Table 3. Occurrence of gymnosperms in particular climatic zones. The range of some species 

covers significant areas in more than one zone. Because one species can occur in many climate 

zones, the sum of species that occur in tropical, temperate, dry and cold areas is given at the 

bottom of the table. The Köppen-Geiger classification was used, which divides climates into 

five main climate groups: tropical, dry, temperate, cold and polar (Peel, Finlayson & McMahon, 

2007) 

Climate 
Total 

species 
Monoecious Mixed Dioecious % Dioecious 

Tropical 403 56 3 344 85.4 

Trop./temp. 70 16 0 54 77.1 

Trop./temp./dry 15 7 1 7 46.7 

Temperate 324 134 3 187 57.7 

Temp./dry 57 20 2 35 61.4 

Temp./cold 54 45 2 7 13.0 

Temp./cold/dry 12 11 0 1 8.3 

Cold 39 36 1 2 5.1 

Cold/dry 30 19 0 11 36.7 

Dry 29 8 2 19 65.5 

TOTAL 1033 352 14 667 64.6 

      

Σ Tropical 488 79 4 405 83.0 

Σ Temperate 532 233 8 291 54.7 

Σ Dry 143 65 5 73 51.0 

Σ Cold 135 111 3 21 15.6 
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Table 4. Dioecious, monoecious and mixed (monoecious and dioecious) gymnosperm species 

divided by pollination and cone type.  

Pollen 

dispersal 
Ambophily Anemophily 

Seed dispersal Zoochory Anemochory Zoochory Anemochory 

Dioecious 372 1 272 22 

Mixed 0 0 12 2 

Monoecious 0 0 16 336 

Total 372 1 300 360 
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Table 5. Dioecious, monoecious and mixed (monoecious and dioecious) gymnosperm species 

divided according to the IUCN Red List of Threatened Species: LC - Least Concern, NT - Near 

Threatened, VU - Vulnerable, EN - Endangered, CR - Critically Endangered, EW - Extinct in 

the Wild. N – number of species. Dioecious and monoecious species are unequally distributed 

across these IUCN categories, Pearson's chi-squared test, p<0.0001 

 Dioecious Mixed Monoecious Sum 

    N  % N  % N  % N % 

LC 222 33.4 11 78.6 179 50.7 412 39.9 

NT 107 16.0 1 7.1 57 16.2 165 16.0 

VU 109 16.3 0 0.0 47 13.4 156 15.1 

EN 111 16.7 2 14.3 50 14.2 163 15. 8 

CR 66 9.8 0 0.0 15 4.3 81 7.8 

EW 4 0.6 0 0.0 0 0.0 4 0.4 

Total 619 92.8 14 100 348 98.9 981 95.0 
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Table 6. Dioecious and monoecious gymnosperm species divided according to the IUCN Red 

List of Threatened Species on two categories: LC - Least Concern, and TE – Threatened and 

Endangered  (combined categories: NT - Near Threatened, VU - Vulnerable, EN - Endangered, 

CR - Critically Endangered, EW - Extinct in the Wild) in particular climatic zones. Fisher’s 

exact test on 2 (dioecious and monoecious) x 2 (LC and TE) contingency table made separately 

in cold, dry, temperate and tropical climate. The number of species appears larger than in the 

database (see Appendix A) because species assigned to more than one climatic zone in the 

database are used in the analysis of every climate zone in which they occur. 

Climate 

Dioecious 

(N species) 

Monoecious 

(N species) P 

IUCN  LC  TE LC  TE 

Σ cold 17 4 83 28 0.7817 

Σ dry 58 15 46 18 0.3231 

Σ temperate 116 175 120 112 0.0079 

Σ tropical 103 302 28 51 0.0728 
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