
The quasi-stellar object, the pulsar, the neutron star
have all come onto the scene of physics within the space of a
few years. Is the next entrant destined to be the black hole?
If so, it is difficult to think of any development that could be
of greater significance. A black hole, whether of “ordinary
size” (approximately one solar mass, 1 M�) or much larger
(around 106 M� to 1010 M�, as proposed in the nuclei of some
galaxies), provides our “laboratory model” for the gravita-
tional collapse, predicted by Einstein’s theory, of the universe
itself.

A black hole is what is left behind after an object has un-
dergone complete gravitational collapse. Spacetime is so

strongly curved that no light can come out, no matter can be
ejected, and no measuring rod can ever survive being put in.
Any kind of object that falls into the black hole loses its sep-
arate identity, preserving only its mass, charge, angular mo-
mentum, and linear momentum (see figure 1). No one has yet
found a way to distinguish between two black holes con-
structed out of the most different kinds of matter if they have
the same mass, charge, and angular momentum. Measure-
ment of these three determinants is permitted by their effect
on the Kepler orbits of test objects, charged and uncharged,
in revolution about the black hole.

How the physics of a black hole looks depends more
upon an act of choice by the ob-
server himself than on anything
else. Suppose he decides to fol-
low the collapsing matter
through its collapse down into
the black hole. Then he will see
it crushed to indefinitely high
density, and he himself will be
torn apart eventually by indefi-
nitely increasing tidal forces.
No restraining force whatso-
ever has the power to hold him
away from this catastrophe,
once he crossed a certain critical
surface known as the “hori-
zon.” The final collapse occurs
a finite time after the passage of
this surface, but it is inevitable.
Time and space are inter-
changed inside a black hole in
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Figure 1. Figurative representation of a black
hole in action. All details of the infalling matter
are washed out. The final configuration is be-
lieved to be uniquely determined by mass, elec-
tric charge, and angular momentum.
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an unusual way; the direction of increasing proper time for
the observer is the direction of decreasing values of the coor-
dinate r. The observer has no more power to return to a larger
r value than he has power to turn back the hands on the clock
of life itself. He can not even stay where he is, and for a simple
reason: No one has the power to stop the advance of time.

Suppose the observer decides instead to observe the col-
lapse from far away. Then, as the price for his own safety, he
is deprived of any chance to see more than the first steps on
the way to collapse. All signals and all information from the
later phases of collapse never escape; they are caught up in
the collapse of the geometry itself. 

That a sufficient mass of cold matter will necessarily col-
lapse to a black hole (J. [Robert] Oppenheimer and [Hartland]
Snyder1) is one of the most spectacular of all the predictions
of Einstein’s standard 1915 general relativity. The geometry
around a collapsed object of spherical symmetry (nonrotat-
ing!) was worked out by Karl Schwarzschild of Göttingen, fa-
ther of the American astrophysicist Martin Schwarzschild, as
early as 1916. In 1963 Roy Kerr2 found the geometry associ-
ated with a rotating collapsed object. James Bardeen has re-
cently emphasized that all stars have angular momentum
and that most stars—or star cores—will have so much angu-
lar momentum that the black hole formed upon collapse will
be rotating at the maximum rate, or near the maximum rate,
allowed for a black hole (“surface velocity” equal to the speed
of light). Roger Penrose3 has shown that a particle coming
from a distance into the immediate neighborhood of a black
hole (the “ergosphere”) can extract energy from the black
hole. Demetrios Christodoulou4 has shown that the total
mass–energy of a black hole can be split into three parts, 

E2 = mir
2 + L2/4mir

2 + p2.

The first part is “irreducible” (left constant in “reversible
transformations”; always increased in “irreversible transfor-
mations”), and the second and third parts (arising from a ro-
tational angular momentum L and a linear momentum p) can
be added and subtracted at will. 

The three most promising ways now envisaged to detect
black holes are:
� Pulses and trains of gravitational radiation given out at
the time of formation (see PHYSICS TODAY, August 1969, page
61, and August 1970, page 41, for accounts of Joseph Weber’s
pioneering attempts to detect gravitational radiation).
� Broadband electromagnetic radiation extending into the
hard x-ray and gamma-ray regions emitted by matter falling
into a black hole after it has been formed (this is the concept
of [Yakov] B. Zel’dovich and [Igor] D. Novikov. The radiation
is not emitted by the individual particles as they fall in but
by the gas as a whole as it is compressed and heated to 1010

or 1011 K by the “funnel effect” on its way towards the black
hole).
� Jets and other activity produced in the ergosphere of ro-
tating black holes.

Equilibrium configurations
The mass of a superdense star (reached in collapse that does
not go to a black hole) is determined uniquely by its central
density, provided that the equation of state linking pressure
and density is specified. Then, by integrating the equation for
relativistic hydrostatic equilibrium5 outwards to the point
where the pressure drops to zero, we find the total mass cor-
responding to each value of the central density. The idea that
a sufficiently massive star would contract without limit
under the influence of its own gravitational field was sug-
gested by study of the white dwarf stars. These are very

dense stars in which the pressure arises primarily from a de-
generate Fermi gas of electrons. No stable solution exists for
a white dwarf with a mass above the Chandrasekhar limit,
which is about 1.2 solar masses. What is the endpoint of stel-
lar evolution for a star more massive than this critical mass?

The answer depends on the “local physics,” summarized
in the equation of state, and the “global properties” deter-
mined by the gravitational field. One would hope that the dif-
ferent predictions of the Newton, Einstein, and Jordan-Brans-
Dicke theories would provide a way to discriminate between
the theories. However, the equation of state must take into
account all physical phenomena, including high- energy
physics. Ignorance of the equation of state at supranuclear
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Figure 2. Mass of a cold star calculated by numerical inte-
gration from center to surface for selected values of the cen-
tral density. The black curves assume Newtonian hydrostatic
equilibrium. The upper includes only rest mass and mass–
 energy of compression, while the lower adds the correction
for mass–energy of gravitational binding. The colored curve
assumes relativistic hydrostatic equilibrium. The Harrison–
Wheeler equation of state is used in all cases.

Figure 3. Fall towards a Schwarzschild black hole as seen
by a comoving observer (color) and a distant observer
(black). The proper time for the free fall to the center is finite,
although the approach to the Schwarzschild radius as seen
by a distant observer is asymptotic in time. “Geometric dis-
tance” and “geometric time” are measured in units of the
mass of the black hole.
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densities blurs distinction between the contending gravita-
tional theories. Nevertheless, a family of stable neutron stars
exists for all reasonable equations of state. The minimum
mass of this family is about 0.16 solar mass, but the maximum
mass is uncertain by about a factor of four. In figure 2, mass
is plotted versus central density with the assumption of a par-
ticular equation of state (the Harrison–Wheeler equation) to
show the difference between Newtonian gravitation and gen-
eral relativity in the neutron-star region.

Neutron star or black hole?
The physics of the formation of a neutron star or a black hole
is more complicated than the physics of either object itself. It
is believed that in this process, the core of a star, possibly a
late giant, collapses from its original radius of a few thousand
kilometers to a compact object with a radius of a few tens of
kilometers. The core has slowly evolved over thousands of
years to a degree where it is unstable against gravitational
collapse. This does not necessarily mean that its mass lies pre-
cisely at 1.2 solar masses, the first peak in figure 2. It may be
two or five or ten times more massive and still not collapse,
when inflated by sufficiently high temperatures. But cooling
such a system will automatically bring it to the point of col-
lapse. Sterling Colgate, [Michael] M. May, and [Richard] H.
White6,7 have made computer investigations of what hap-
pens, under the simplifying assumption of spherical symme-
try. The material of the star starts moving inwards, at first
slowly, then more and more rapidly, with a characteristic
speedup time of less than a tenth of a second. Soon, a sub-
stantial portion of this mass, the inner part of the core, con-
tracts sufficiently to increase greatly the strength of the grav-
itational fields drawing the inner core together. As a
consequence, the core accelerates more rapidly than the sur-
rounding envelope.

Two very different outcomes ensue, depending on
whether the core mass and its kinetic energy of implosion do
or do not suffice to drive the system on beyond nuclear den-
sities to the point of complete gravitational collapse. Com-
plete collapse produces a “black hole.” On the other hand,
when the mass is too small or the velocity of implosion is too
low the collapse is halted at nuclear or near- nuclear density.
The stopping of so large a mass implies the sudden conver-
sion of an enormous kinetic energy into thermal energy, as if
a “charge of dynamite” had been set off at the center of the
system. The high temperature (about 1012 K) develops high
pressure. The envelope surrounding the inner core is falling
more slowly and suddenly feels this pressure. The implosion
is reversed. The envelope is propelled outward, producing
cosmic rays and an expanding ion cloud. A famous example
of such a supernova event is the Crab nebula, with an esti-
mated mass of the rough order of magnitude of a solar mass.

Rotation, and magnetic fields and magnetic fields cou-
pled to rotation, can significantly change the character of the
implosion, as shown by the recent work of [James] M.
LeBlanc and [James] R. Wilson.8 As the center shrinks, it turns
faster and faster to conserve angular momentum, winding up
the magnetic lines of force like string on a spool. The Fara-
day–Maxwell repulsion between the lines of force causes the
spool to elongate. The lines of force carry matter with them,
shooting jets out from the two poles. It will be interesting to
see how these effects will be modified when the calculation
is expanded to include all the physical details of the Colgate-
May-White analysis and nuclear reactions as well!

Continuing collapse
When the core of the collapsing star is too massive or implod-
ing with too much kinetic energy, the implosion may still
slow down as nuclear densities are encountered, but nuclear
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Figure 4. Kruskal coordinates for
Schwarzschild spacetime, showing the
relation to the usual coordinates (r, t).
Radial light rays are straight lines with
slope = ±1. Only the unshaded region is
covered by the usual range of coordi-
nates: 2m < r < ∞, −∞ < t < +∞. The col-
ored line is the world line of a particle
that starts at A and falls straight towards
the black hole. A distant observer re-
ceives the signal it gives out at A and B.
The ray emitted at C is the last ray that
can escape to infinity, and it only gets to
a distant observer after an infinite
Schwarzschild time. Rays D and E are
caught in the collapse of the geometry
and never reach a distant observer. The
curvature is nonsingular at C but rises
toward infinity as F (r = 0) is approached.
Point F is reached in a finite proper time.
There is as little reason to expect a pho-
ton to escape from inside a black hole at
X and to cross the inner boundary of
everyday space, r = 2m, as there is to ex-
pect advanced electromagnetic waves
to travel inward from infinity.



forces will not stop the implosion. Gravitational forces be-
come overwhelming, the system zooms through the neutron-
star stage, and complete collapse follows. The resulting sys-
tem has been variously termed “continuing collapse,” a
“frozen star,” and a “black hole.” Each name emphasizes a
different aspect of the collapsing system. The collapse is con-
tinuing because even after an infinite time, as measured by a
distant observer, the collapse is still not complete. Rather, the
departure from a static configuration of Schwarzschild ra-
dius r = 2m as seen by a distant observer diminishes exponen-
tially in time, with a characteristic time of the order of 2m, or
about 10 microseconds for an object of one solar mass. The
box explains the purely geometrical system of units em-
ployed in general relativity. In this sense, the system is a
“frozen star.”

In another sense, the system is not frozen at all. On the
contrary, the dimensions shrink to indefinitely small values
in a finite and very short proper time for an observer moving
with the collapsing matter (see figure 3). Moreover, a spher-
ical system appears black from outside; no light can escape.
Light shot at it falls in. A particle shot at it falls in. A “meter
stick” would be let down in vain to measure the dimensions
of the object. The stick is pulled to pieces by tidal forces, and
the broken-off pieces fall in without a trace. In these senses,
the system is a black hole.

Process of formation
At least three processes suggest them selves for the formation
of a black hole:
� Direct catastrophic collapse of a star with a white-dwarf
core, a collapse going through neutron-star densities without
a stop.
� A two-step process: the collapse of a star with a white-
dwarf core to a hot neutron star followed by cooling and col-
lapse to a black hole.
� A multistep process, with first the formation of a stable
neutron star and then the slow accretion of enough matter to
raise the mass above the critical value for collapse.

What happens in the collapse has been well analyzed in
the case of a system of spherical symmetry, and for small de-
partures from spherical symmetry that lend themselves to
analysis by perturbation methods. However, in the general
and very important case of large departures from spherical
symmetry, only a few highly simplified situations have so far
been treated. This fascinating field is largely unexplored. The
central question is easily stated: Does every system after com-
plete gravitational collapse go to a “standard final state,”
uniquely fixed by its mass, charge, and angular momentum
and by no other adjustable parameter?

A dust cloud
Start with a cloud of dust of specific density 10−16 and radius
1.7 × 1019 cm. Let the cloud be imagined to draw itself to-
gether by its own gravitational attraction until its radius falls
to 10−5 of its original value, or 1.7 × 1014 cm. The dust is still
dust. No pressure will arise to prevent the continuing col-
lapse. However, despite the everyday nature of the local dy-
namics, the global dynamics has clearly reached extreme rel-
ativistic conditions. How then does one properly describe
what is going on?

A variety of treatments of this problem have been given,
from the original analysis of J. Robert Oppenheimer and
H. Snyder1 to treatments of [Oskar] Klein9 and others. The
simplest analysis for our purposes is that of [David] L. Becke-
dorff and [Charles] W. Misner10 in which the geometry inte-
rior to the cloud of dust is identical with that of a Friedmann
universe, that is, a three-sphere of uniform curvature.

The geometry within the three-sphere is 

ds2 = a2(η) [−dη2 + dχ2 + sin2χ(dθ2 + sin2θ dφ2)],

where a(η) is the radius of curvature, and the hyperspherical
angle χ would go from 0 to π if the sphere were complete. It
is not; it extends only from the center to the surface of the
cloud.

The density of the cloud at the starting instant is related
to the initial curvature a0 by the standard formula for the
Friedmann universe ρ0 = 3/8πa0

2. As the collapse proceeds, an
increasing fraction of the gravitational energy of the dust
cloud is converted into kinetic energy. However, the total
mass–energy remains constant.

Outside the dust cloud, the geometry remains the static
geometry of Schwarzschild (Birkhoff theorem),

ds2 = −(1 − 2m/r)dt2 + (1 − 2m/r)−1 dr2 + r2(dθ2 + sin2θ dφ2).

The Friedmann geometry and the Schwarzschild geometry
match at the boundary of the dust cloud. A particle located
at this boundary falls according to different laws as calcu-
lated from the Friedmann and Schwarzschild solution. But
the results must agree, and they do.

Light cone
Light given off from a particle at the periphery of the dust
cloud, before arrival at the Schwarzschild radius, will always
escape if emitted radially out ward. However, if it makes an
angle to the radial direction in its own local Lorentz frame, it
will make a still larger angle to the radial direction in a local
Lorentz frame that happens to have zero velocity at the mo-
ment in question. The photon will be trapped unless emitted
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Albert Einstein’s account of gravitation is purely geometrical, and every quantity that arises is
expressed in units of length. From this point of view, the distinction between grams and meters, or
between seconds and meters, is as artificial as the distinction between miles and feet.

Thus, in geometrical units:
1 cm of time (that is, 1 cm of light travel time) is 1 cm/(3 × 1010 cm/s) = 3.3 × 10−11 s =

1/30 nanosecond.
1 cm of mass is 1 cm/(G/c2) = 1 cm/(0.742 × 10−28 cm/g) = 1.4 × 1028 g, which is comparable to the

mass of the Earth. The mass of the Sun, 1.987 × 1033 g in conventional units, is 1.47 km in geometrical
units. The deflection of light passing an object of mass m in geometrical units at a distance of closest
approach b is θ = 4m/b.

1 cm2 of angular momentum is 1 cm2/(G/c3) = 1 cm2/(2.47 × 10−39 s/g) = 4.05 × 1038 g cm2 s−1. The
maximum angular momentum for a black hole of 1-km mass is (1 km)2.

Geometrical units



in an allowed cone around the outward direction. The al-
lowed cone shrinks to extinction when the dust cloud con-
tracts to the Schwarzschild radius. Light that emerges radi-
ally “outwards” after the cloud has contracted within the
Schwarzschild radius never escapes to a faraway observer. It
is caught, not in the matter but in the collapse of the geometry
surrounding the matter.

The Kruskal diagram
According to figure 3, the fall of a test particle towards a black
hole ends at r = 2m as seen by a distant observer. The fall ends
at r = 0 according to someone falling with the test mass itself.
How can two such different versions of the truth be compat-
ible? For an answer, it is enough to focus attention on the
Schwarzschild geometry itself and on a test particle falling in
this geometry.

The central point is simple. The range of coordinates
2m < r < ∞, −∞ < t < +∞ fails to cover all the Schwarzschild
spacetime. Time “goes beyond infinity” just as Achilles goes
beyond the tortoise in the famous paradox of Zeno. In no way

can one see the incompleteness of the usual coordinate range
more clearly than by reference to the Kruskal coordinates11 as
shown in figure 4.

In this diagram, u is spacelike and v is timelike. Points of
the same t-value lie on the straight line v/u = constant. Points
of the same r-value lie on the hyperbola u2 − v2 = constant,
with asymptote u = ±v. A light ray traveling radially outward
is always represented by a straight line of slope dv/du = +1;
one traveling radially inward, by a line of slope dv/du = −1.

One sees that r is a reasonable “position coordinate” for
values of r greater than 2m; but for values of r less than 2m
this coordinate changes character; it becomes a time coordi-
nate rather than a space coordinate. The reverse happens to
t; it changes from a time coordinate to a position coordinate.
One can maintain oneself at a fixed value of r, with r greater
than 2m, by means of a rocket lift or otherwise. However, one
can not maintain oneself at a fixed r less than 2m any more
than one can make time stand still. The evolution of time
forces such a person from r = 1.9m to r = 1.8m and so on, all
the way to r = 0. No escape is possible; he is hemmed in by
the light cone.

Departures from symmetry
A spherical cloud of dust falls into a Schwarzschild “black
hole.” What happens if the cloud departs in a minor way
from sphericity? If it is not endowed with angular momen-
tum, it still collapses to a Schwarzschild black hole. If it has
less than a critical angular momentum, it ends up as a
uniquely defined but distorted black hole, given by the Kerr
geometry, which is appropriate to a rotating system.

The “standard solution” for a black hole of given mass
and angular momentum has certain well-defined quadrupole

www.physicstoday.org April 2009    Physics Today 51

1.4

1.2

1.0

0.8

0 0.4 0.8 1.2 1.6 2

RELATIVE MASS

R
E

L
A

T
IV

E
A

N
G

U
L

A
R

M
O

M
E

N
T

U
M

A

C

B

~~

Figure 5. Ergosphere of a rotating black hole. The region
between the surface of infinite redshift (outer) and the event
horizon (inner), here shown in a cutaway view, is called the
“ergosphere.” When a particle disintegrates in this region and
one of the fragments falls into the black hole, the other frag-
ment can escape to infinity with more rest plus kinetic en-
ergy than the original particle.

Figure 6. Transformations of a black hole between the
static Schwarzschild case (A) and the extreme Kerr case
of maximum angular momentum (B) are accomplished
by accretion of particles. The “irreducible mass” (mass in
the absence of rotation) remains constant in reversible
transformations (black), which involve capture at grazing
incidence to the black hole. In the irreversible transfor-
mation AO C, the irreducible mass increases from 1.0mir

to 1.2mir . The “relative mass” is an abbreviation for “mass
in units of the original value of the irreducible mass.” The
“relative angular momentum” is in units of mir

2, as ex-
plained on page 50.



and higher moments. One finds12,13 that any perturbation
from the standard Kerr solution decreases exponentially with
time. To the outside observer, all details of the gravitational
field get washed out except mass and angular momentum,
provided that the original perturbation was not too large.

In a similar way, all distributions of charge near a black
hole appear to a distant observer to have spherical symmetry.
The extreme gravitational field near a black hole greatly dis-
torts the lines of force from the normal pattern. Far from the
black hole, the lines appear to diverge from a point much
closer to the center of the sphere than the actual location of
the charge. The dipole moment goes to zero as the charge ap-
proaches 2m. Nothing in the final pattern reveals the true lo-
cation of the charge. We see in the black hole simply mass
plus charge, and no other details. The law for the disappear-
ance of the dipole, p, as given by R. Price, is14

p � (log t)/t4.

This disappearance of the dipole takes place according
to the same kind of law as the fadeout of perturba tions of the
quadrupole and higher moments of the mass distribution.

The collapse leads to a black hole endowed with mass
and charge and angular momentum but, so far as we can now
judge, no other adjustable parameters: “A black hole has no
hair.” Make one black hole out of matter; another, of the same
mass, angular momentum, and charge, out of antimatter. No
one has ever been able to propose a workable way to tell
which is which. Nor is any way known to distinguish either
from a third black hole, formed by collapse of a much smaller
amount of matter and then built up to the specified mass and
angular momentum by firing in enough photons, or neutri-
nos, or gravitons. And on an equal footing is a fourth black
hole, developed by collapse of a cloud of radiation altogether
free from any “matter.”

Electric charge is a distinguishable quantity because it
carries a long-range force (conservation of flux; Gauss’s law).
Baryon number and strangeness carry no such long-range
force. They have no Gauss’s law. It is true that no attempt to
observe a change in baryon number has ever succeeded. Nor
has anyone ever been able to give a convincing reason to ex-
pect a direct and spontaneous violation of the principle of
conservation of baryon number. In gravitational collapse,
however, that principle is not directly violated; it is tran-
scended. It is transcended because in collapse one loses the
possibility of measuring baryon number, and therefore this

quantity can not be well defined for a collapsed object. Sim-
ilarly, strangeness is no longer conserved.

Angular momentum
The third property of a black hole is angular momentum.
When it is non zero, the geometry becomes more complicated.
One deals with the Kerr solution2 to the field equations in-
stead of the Schwarzschild solution. There are two interesting
surfaces associated with the Kerr geometry, the “surface of
infinite redshift” and inside it, the “event horizon.” An object
at or within the event horizon can send no photons to a dis-
tant observer, independent of the object’s state of motion or
the direction of photon emission. For this reason, the event
horizon is also called the “one-way membrane.”

The Schwarzschild geometry represents the degenerate
case of the Kerr geometry, in which the surface of infinite red-
shift and the event horizon coincide. In the general case, the
two surfaces are separated everywhere except at the poles, as
shown in figure 5. The very interesting region between these
surfaces is called the “ergosphere.” A particle that comes
within the ergosphere can still, if properly powered, escape
again to infinity. However, its life in this region has an un-
usual feature; there is no way for it to remain at rest, rocket
powered or not!

Energy can be extracted from the ergosphere by a mech-
anism that may occasionally have significance for a cosmic
ray. Consider a particle that enters the ergosphere and disin-
tegrates, one fragment falling into the hole and the other es-
caping to infinity (see figure 5). R. Penrose3 has shown that
the process can be so arranged that the emerging fragment
has more energy at infinity than the original particle.

The extra energy is effectively extracted from the rota-
tional energy of the black hole. If a particle can dip through
the ergosphere and escape with some of the energy and an-
gular momentum of the black hole, it is also true that a par-
ticle that is captured can increase the energy and angular mo-
mentum of the black hole. Capture is possible when the
particle passes by sufficiently close to the black hole. The crit-
ical impact is smaller for a capture that increases the angular
momentum of the system. Therefore, random accretion of
particles leads to a gradual decrease of the angular momen-
tum of the system. Selective accretion of particles with the
maximum positive impact parameter is more appropriate to
a black hole immersed in the debris from the collapse of a ro-
tating star. Such favorable accretion can increase the angular
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Figure 7. Closest stable circular

orbits for the Schwarzschild and
Kerr black holes. For Newtonian
gravity there are stable orbits of all
radii down to zero. The parabola
gives the radius of each orbit as a
function of angular momentum. For
the curved geometries, there are
both a minimum (black) and a max-
imum (color) in the effective poten-
tial for each value of the angular
momentum down to a critical value

below which there is only a point of inflection—hence no stable orbits. A is the minimum Schwarzschild stable orbit; B and
C are the minimum stable Kerr orbits for counterrotating and corotating particles, respectively. These results have great sig-
nificance for the amount of gravitational radiation a particle can emit before falling into a black hole.
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momentum of the black hole to a critical value L = m2 = 2mir
2,

at which 29% the total energy of the black hole is rotational
energy. When this value is reached, further speedup is im-
possible.

The possibility of increasing and decreasing the angular
momentum of the black hole leads to a “phase diagram”
somewhat similar to those in thermodynamics. In figure 6,
due to Demetrios Christodoulou, reversible changes in angu-
lar momentum are made by the accretion of a particle out of
the most favorable orbit, at grazing incidence to the black
hole. If the angular momentum is changed by the capture of
a particle out of a less favorable orbit, the “irreducible mass”
(the mass of the black hole in the absence of rotation) must
increase. There is no process whereby the irreducible mass
can be caused to decrease. Therefore transformations accom-
plished by the accretion of particles from unfavorable orbits
(for example, from head-on impact) are irreversible and lead
to a steady movement upwards on the “phase diagram” of
mass versus angular momentum.

Gravitational radiation
The discovery of quasars, objects with enormous energy re-
lease, led many workers to investigate gravitational collapse
as a mechanism superior to fission or fusion for converting
mass to energy. A closer look caused discouragement.

The difficulty can be understood by a study of figure 7,
which shows the radii of orbits of different angular momen-
tum in the Kerr, Schwarzschild, and Newtonian cases. In the
Newtonian case, there are stable circular orbits of all radii
down to zero. The one-dimensional potential for the radial
motion has a minimum for all values of the angular momen-
tum. This is not the case for general relativity. There is a low-
est value for the angular momentum and a corresponding ra-
dius for which there is a minimum in the potential. This is
the stable orbit closest to the black hole.

When a particle emits gravitational radiation, it spirals
into the black hole, moving to lower and lower orbits as it
loses energy. When the energy of the particle decreases below
the value in the last stable orbit, the particle is captured di-
rectly without further radiation. For the Schwarzschild black
hole, the closest stable orbit is quite far from the center, and
the particle can emit only about 5.7% of its mass as gravita-
tional radiation before it precipitously falls into the black hole
(point A in figure 7). If the particle is orbiting contrary to the
rotation of the Kerr black hole, it leaps in from an even greater
distance where it has lost only 3.8% of its energy (point B in
figure 7). But if the particle is corotating with the black hole,
it remains in stable orbit until it radiates 42.3% of its mass as
gravitational energy (point C in figure 7). These results, ob-
tained by James Bardeen, give a great incentive for reexam-
ining other  energy- release mechanisms in the context of the
Kerr geometry.

Search for black holes
The existence of black holes has been predicted for over thirty
years. No one who accepts general relativity has seen any
way to escape their existence. Moreover, a black hole is a
characteristic geometrodynamical entity. A neutron star
could still exist in Newtonian theory; not so a black hole.

It took 34 years from the prediction of a neutron star by
[Fritz] Zwicky15 in 1934 to its discovery as a pulsar by Antony
Hewish and others16 in 1968. If the prediction of black holes
by Oppenheimer and Snyder in 1939 is also followed after 
34 years by their discovery, what will be the technique by
which they are detected in 1973?

Of all objects that one can conceive to be traveling

through empty space, few offer poorer prospects of detection
than a solitary black hole of solar mass. No light comes di-
rectly from it. It can not be seen by its lens action or other ef-
fect on a more distant star. It is difficult enough to see Venus,
12 000 km in diameter, swimming across the disk of the Sun;
looking for a 15-km object moving across a far-off stellar light
source would be unimaginably difficult.

Therefore, we turn to a black hole that is not isolated:
� A black hole that affects a companion normal star 
only through its gravitational pull (Ya. Zel’dovich and 
O. Guseynov).17

� One close enough to draw in matter from the normal star
([Iosif] S. Shklovsky).18

� One embedded in a normal star.
� A black hole moving through a cloud of dispersed matter.

The possibility of capitalizing on a double-star system is
most favorable when the black hole is so near to a normal star
that it draws in matter from its companion. Such a flow from
one star to another is well known in close binary systems,19,20

but no unusual radiation emerges. When one of the compo-
nents is a neutron star or a black hole, a strong emission in
the x-ray region is expected.

Gas being funneled down into a black hole undergoes
heating by compression.21 The temperature is extremely high
(1010–1012 K), but only a fraction of the radiation escapes, be-
cause it comes from a region of high redshift close to the
Schwarzschild radius of the black hole. Zel’dovich, Novikov,
and Schwarzmann conclude that the bulk of the radiation
emerges in the visible part of the spectrum or in the x-ray and
gamma-ray region, depending on the mass of the black hole. 

This article is adapted from the report by R. Ruffini, ]. A. Wheeler,
“Relativistic Cosmology and Space Platforms,” in The Significance
of Space Research for Fundamental Physics, European Space
Research Organization, Neuilly-sur-Seine, France (1971).

References
1. J. R. Oppenheimer, H. Snyder, Phys. Rev. 56, 455 (1939). 
2. R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963). 
3. R. Penrose, Riv. Nuovo Cimento, numero speciale 252 (1969). 
4. D. Christodoulou, Phys. Rev. Lett. 25, 1596 (1970). 
5. B. K. Harrison, K. S. Thorne, M. Wakano, J. A. Wheeler, Gravita-

tional Theory and Gravitational Collapse, U. Chicago Press, Chi -
cago (1965). 

6. S. Colgate, R. H. White, Astrophys. J. 143, 626 (1966). 
7. M. M. May, R. H. White, in Relativity Theory and Astrophysics: Vol.

3, Stellar Structure, J. Ehlers, ed., American Mathematical Society,
Providence, RI (1967); see also Phys. Rev. 141, 1232 (1966). 

8. J. M. LeBlanc, J. R. Wilson, Lawrence Radiation Laboratory pub-
lication UCRL-71873, Berkeley, CA (1969). 

9. O. Klein, in Werner Heisenberg und die Physik unserer Zeit, Vieweg,
Braunschweig, Germany (1961). 

10. D. L. Beckedorff, C. W. Misner, un published communication
(1962). 

11. M. D. Kruskal, Phys. Rev. 119, 1743 (1960); C. Fronsdal, Phys. Rev.
116, 778 (1959). 

12. W. Israel, Phys. Rev. 164, 1776 (1967). 
13. A. G. Doroshkevich, Ya. B. Zel’dovich, I. D. Novikov, Zh. Eksp.

Teor. Fiz. 49, 170 (1965); Sov. Phys. JETP 22, 122 (1966). 
14. R. Price, unpublished communication. 
15. W. Baade, F. Zwicky, Proc. Natl. Acad. Sci. USA 20, 254 (1934). 
16. A. Hewish et al., Nature 217, 709 (1968). 
17. Ya. B. Zel’dovich, O. Kh. Guseynov, Dokl. Akad. Nauk USSR 162,

791 (1965). 
18. I. S. Shklovsky, Astrophys. J. 148, L1 (1967). 
19. V. F. Gaposchkin, Handbuch der Physik L-225, Springer-Verlag,

Berlin (1958). 
20. O. Struve, Stellar Evolution: An Exploration from the Observatory,

Princeton U. Press, Princeton, NJ (1952). 
21. Ya. B. Zel’dovich, I. D. Novikov, Sov. Phys. Dokl. 9, 246 (1964). �

www.physicstoday.org April 2009    Physics Today 53


