
Abstract
The 19 known shield volcanoes of the main Hawaiian 

Islands—15 now emergent, 3 submerged, and 1 newly born 
and still submarine—lie at the southeast end of a long-lived hot 
spot chain. As the Pacific Plate of the Earth’s lithosphere moves 
slowly northwestward over the Hawaiian hot spot, volcanoes are 
successively born above it, evolve as they drift away from it, and 
eventually die and subside beneath the ocean surface.

The massive outpouring of lava flows from Hawaiian 
volcanoes weighs upon the oceanic crust, depressing it by as 
much as 5 km along an axial Hawaiian Moat. The periphery 
of subsidence is marked by the surrounding Hawaiian Arch. 
Subsidence is ongoing throughout almost all of a volcano’s life.

During its active life, an idealized Hawaiian volcano 
passes through four eruptive stages: preshield, shield, 
postshield, and rejuvenated. Though imperfectly named, these 
stages match our understanding of the growth history and 
compositional variation of the Hawaiian volcanoes; the stages 
reflect variations in the amount and rate of heat supplied to the 
lithosphere as it overrides the hot spot. Principal growth occurs 
in the first 1–2 million years as each volcano rises from the 
sea floor or submarine flank of an adjacent volcano. Volcanic 
extinction ensues as a volcano moves away from the hot spot.

Eruptive-stage boundaries are drawn somewhat arbitrarily 
because of their transitional nature. Preshield-stage lava is alkalic 
as a consequence of a nascent magma-transport system and less 
extensive melting at the periphery of the mantle plume fed by the 
hot spot. The shield stage is the most productive volcanically, and 
each Hawaiian volcano erupts an estimated 80–95 percent of its 
ultimate volume in tholeiitic lavas during this stage. Shield-stage 
volcanism marks the time when a volcano is near or above the 
hot spot and its magma supply system is robust. This most active 
stage may also be the peak time when giant landslides modify the 
flanks of the volcanoes, although such processes begin earlier and 
extend later in the life of the volcanoes.

Late-shield strata extend the silica range as alkali basalt 
and even hawaiite lava flows are sparsely interlayered with 

tholeiite at some volcanoes. Rare are more highly fractionated 
shield-stage lava flows, which may reach 68 weight percent 
SiO2. Intervolcano compositional differences result mainly 
from variations in the part of the mantle plume sampled by 
magmatism and the distribution of magma sources within it.

Volcanism wanes gradually as Hawaiian volcanoes move 
away from the hot spot, passing from the shield stage into the 
postshield stage. Shallow magma reservoirs (1–7-km depth) 
of the shield-stage volcanoes cannot be sustained as magma 
supply lessens, but smaller reservoirs at 20–30-km depth persist. 
The rate of extrusion diminishes by a factor of 10 late in the 
shield stage, and the composition of erupted lava becomes 
more alkalic—albeit erratically—as the degree of melting 
diminishes. The variation makes this transition, from late shield 
to postshield, difficult to define rigorously. Of the volcanoes old 
enough to have seen this transition, eight have postshield strata 
sufficiently distinct and widespread to map separately. Only 
two, Ko‘olau and Lāna‘i, lack rocks of postshield composition.

Five Hawaiian volcanoes have seen rejuvenated-stage 
volcanism following quiescent periods that ranged from 2.0 
to less than 0.5 million years. The rejuvenated stage can be 
brief—only one or two eruptive episodes—or notably durable. 
That on Ni‘ihau lasted from 2.2 to 0.4 million years ago; on 
Kaua‘i, the stage has been ongoing since 3.5 million years ago. 
As transitions go, the rejuvenated stage may be thought of as the 
long tail of alkalic volcanism that begins in late-shield time and 
persists through the postshield (+rejuvenated-stage) era.

Because successive Hawaiian volcanoes erupt over long 
and overlapping spans of time, there is a wide range in the age 
of volcanism along the island chain, even though the age of 
Hawaiian shields is progressively younger to the southeast. 
For example, almost every island from Ni‘ihau to Hawai‘i had 
an eruption in the time between 0.3 and 0.4 million years ago, 
even though only the Island of Hawai‘i had active volcanoes 
in their shield stage during that time.

Once they have formed, Hawaiian volcanoes become 
subject to a spectrum of processes of degradation. Primary 
among these are subaerial erosion, landslides, and subsidence. 
The islands, especially those that grow high above sea level, 
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experience mean annual precipitation that locally exceeds 
9  m, leading to rapid erosion that can carve deep canyons in 
less than 1 million years.

Hawaiian volcanoes have also been modified by giant 
landslides. Seventeen discrete slides that formed in the past 
5 m.y. have been identified around the main Hawaiian Islands, 
and fully 70 are known along the Hawaiian Ridge between 
Midway Islands and the Island of Hawai‘i. These giant 
landslides displace large amounts of seawater to generate 
catastrophic giant waves (megatsunami). The geologic 
evidence for megatsunami in the Hawaiian Islands includes 
chaotic coral and lava-clast breccia preserved as high as 
155 m above sea level on Lāna‘i and Moloka‘i.

Large Hawaiian volcanoes can persist as islands through 
the rapid subsidence by building upward rapidly enough. But 
in the long run, subsidence, coupled with surface erosion, 

erases any volcanic remnant above sea level in about 15 m.y. 
One consequence of subsidence, in concert with eustatic 
changes in sea level, is the drowning of coral reefs that drape 
the submarine flanks of the actively subsiding volcanoes. 
At least six reefs northwest of the Island of Hawai‘i form a 
stairstep configuration, the oldest being deepest.

Introduction
Most volcanism on Earth is focused along the global 

network of tectonic plate boundaries, either at the midocean-
ridge spreading axes or at volcanic arcs located above 
subduction zones. Other volcanism does occur in midplate 
locations and has been attributed to “hot spots” (Wilson, 
1963) or mantle plumes (Morgan, 1972). A primary postulate 
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Figure 1.  Map showing the Hawaiian Islands (red) and Hawaiian–Emperor volcanic chain, most of which consists of submarine 
seamounts, all depicted by their outlines at 2-km water depth (generalized from Clague and Dalrymple, 1987). Vectors indicate 
Pacific Plate motion relative to presumed fixed mantle hot spot in millimeters per year (mm/yr; from Simkin and others, 2006). 
Fracture zones (F.Z.) from Atwater and Severinghaus (1989). Isochrons along Emperor Seamounts chain show age of volcanism in 
millions of years (Ma; Duncan and Keller, 2004). Ocean floor age (Müller and others, 1997) from imagery available on EarthByte Web 
site (http://www.earthbyte.org/Resources/Agegrid/1997/digit_isochrons.html#anchorFTPa0). Mercator projection.
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is that these commonly linear chains of midplate volcanoes 
form as the lithospheric plate migrates over a fixed or slowly 
moving magma source in the mantle. Of such chains, that 
which includes Hawai‘i is by far the longest lived and most 
voluminous example. This paper is an attempt to summarize 
the geologic history of these remarkable volcanoes, focused 
on the eight main Hawaiian Islands.

Geologic Setting
The Hawaiian Islands are formed by the youngest 

volcanoes in the chain comprising the Hawaiian Islands, the 
Hawaiian Ridge, and the Emperor Seamounts—an alignment 
of more than 129 volcanoes that stretches across more than 
6,100  km of the North Pacific Ocean (fig. 1; Clague, 1996). 
This chain is the type example of an age-progressive, hot-
spot-generated intraplate volcanic province (see, for example, 
Clague and Dalrymple, 1987; Duncan and Keller, 2004; Sharp 
and Clague, 2006), with the oldest volcanoes, about 81 Ma in 
age (Keller and others, 1995), located east of the Kamchatka 
Peninsula of northeastern Asia. A prominent bend in the chain, 
now dated as a gradual transition occurring from 55 to 45 Ma, is 
located more than 3,550 km west-northwest of Hawai‘i (Sharp 
and Clague, 2006). The Hawaiian-Emperor chain cuts obliquely 
across magnetic lineaments and fracture zones, for the most 
part without regard to preexisting structure of the oceanic crust 
(fig. 1; Clague and Dalrymple, 1987), although the Hawaiian 
Ridge is broader and higher near the chain’s intersections with 
the Moloka‘i and Murray Fracture Zones (Wessel, 1993).

The sizes and spacing of the volcanoes are nonuniform. 
Along the Hawaiian leg of the chain, the highest magma flux, 
as total crustal magmatism (probably including some small 
preexisting Cretaceous seamounts), peaked at 18 and 2 Ma 
(near 8 m3/s), whereas the lowest flux (<4 m3/s) was from 
about 48 to 25 Ma (Van Ark and Lin, 2004). The magma 
flux during formation of the entire Emperor chain was low 
(<~4  m3/s), with the greatest flux at about 50 Ma. Only 24 
of the entire chain’s volcanoes failed to breach sea level and 
become islands (as well as Lō‘ihi Seamount, which has not 
yet grown to sea level), but few islands were ever large or 
survived as high islands for more than 1–2 m.y. Only eight 
volcanoes northwest of the main islands grew to 1,500 m or 
more above sea level (Clague, 1996).

The volcanic chain represents an enormous outpouring of 
basaltic lava since 81 Ma. The volume of the main Hawaiian 
Islands, accounting for flexural depression of the crust, is 
nearly twice that calculated from bathymetry alone (Robinson 
and Eakins, 2006). Simply applying this correction to the 
entire chain yields a total volume of about 2×106 km3, with 
about 25 percent erupted since 6 Ma to form the present 
Hawaiian Islands. This estimate roughly doubles an early 
estimate (Bargar and Jackson, 1974) that did not account 
for crustal flexure. Moreover, an average extrusion rate of 
3.1 m3/s (0.07 km3/yr) for the 81-m.y. history of the entire 
Hawaiian-Emperor chain can be derived by graphically 

integrating the flux curve of Van Ark and Lin (2004). That rate 
suggests the magmatic volume of the chain is not twice, but 
closer to six times, that calculated from bathymetry alone.

Much of what we know about Hawaiian volcanoes is 
derived from studies conducted by scientists of the Hawaiian 
Volcano Observatory (HVO) on the active Kīlauea and Mauna 
Loa volcanoes. These studies, combined with early work by 
Harold Stearns and Gordon Macdonald at all the main Hawaiian 
Islands, provide the framework for understanding the growth 
and degradation of the older islands in the chain. The present 
review emphasizes results obtained during the past 25 years, 
the period since summaries were published on the occasion of 
HVO’s 75th anniversary (Decker and others, 1987).

Volcano Growth—A Brief History of 
Ideas on Eruptive Stages

An idealized model of Hawaiian volcano evolution 
involves four eruptive stages: preshield, shield, postshield, 
and rejuvenated stages (fig. 2; Stearns, 1946; Clague, 1987a; 
Clague and Dalrymple, 1987; Peterson and Moore, 1987). 
These stages likely reflect variation in the rate at which heat 
is supplied to the lithosphere as the Pacific Plate overrides 
the Hawaiian hot spot (see, for example, Moore and others, 
1982; Wolfe and Morris, 1996a). Although five volcanoes 
of the main islands likely have all four stages present, none 
has products of all stages exposed, in part because preshield-
stage lava is commonly buried but also because several of the 
volcanoes have not completed their eruptive development. 
Volcanic extinction follows as a volcano moves away from 
the hot spot. Dissection by large landslides may occur at any 
time in the growth or quiescence of a volcano, and subaerial 
erosion is ongoing whenever the volcano is emergent.

This synoptic view of volcano growth originated with 
Harold Stearns 70 years ago, long before the advent of 
plate tectonic theory (Stearns, 1946). Details have been 
added, subtracted, or rearranged as the timing of events has 
been better established, especially through studies of the 
submarine Lō‘ihi Seamount, the submarine flanks of the 
islands, and substantial mapping, radiometric dating, and 
geochemical analysis of the subaerial and submarine rocks 
that form the volcanoes.

For example, in Stearns’s original assessment, shield 
growth culminated in a caldera-forming stage, whereas 
now it is known that calderas can form and fill repeatedly 
during much of the history of the volcano. The shield stage 
itself was frequently subdivided to emphasize whether 
summit eruptions are occurring mainly in the submarine 
environment, at sea level, or almost entirely subaerially, 
owing to the tendency to discharge effusive or explosive 
eruptive products in the different settings (for example, 
Peterson and Moore, 1987). The capacity for groundwater-
driven explosivity in the volcanic record is widespread until 
the summit grows above the main rain belt on the volcano 
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(Clague and Dixon, 2000). Such explosivity may persist 
regardless of a volcano’s height, judging from explosion 
debris that mantles the northwest and southeast rims of the 
caldera atop 4,169-m-high Mauna Loa (Macdonald, 1971; 
Trusdell and Swannell, 2003). Groundwater perched in the 
dike swarms of the summit and upper rift zones may be the 
cause of these explosions.

The transitions from alkalic preshield to tholeiitic shield 
to alkalic postshield stage are commonly gradational if defined 
on the basis of chemical composition. For example, many of 
the Hawaiian volcanoes have interbedded alkalic and tholeiitic 
lava flows near the end of the shield stage, as they make the 
transition to the postshield stage (fig. 3). A similar chemical 
transition marks the earlier change from the preshield to the 

shield stage, at least at Lō‘ihi volcano3. These stratigraphic 
complexities raise the question about how best to define the 
stage boundaries. Should the preshield stage end when the first 
tholeiitic shield lavas erupt or when the last of the preshield 
alkalic lavas erupt? Should the end of the shield stage be the 
youngest tholeiitic basalt or the oldest of the postshield alkalic 
lava? In this paper, we emphasize the gradational character of 
these stage boundaries at many volcanoes.

3Noncapitalized “volcano” is applied informally, whereas capitalization of 
“Volcano” indicates adoption of the word as part of the formal geographic 
name, as listed in the Geographic Names Information System, a database 
maintained by the U.S. Board on Geographic Names. Lō‘ihi Seamount is the 
formal geographic name.

Figure 3.  Alkali-silica diagram (Na2O+K2O versus SiO2) composited from several Hawaiian volcanoes. Rock classification grid 
from Le Maitre (2002); shown dashed is boundary separating tholeiitic from alkalic basalt (Macdonald and Katsura, 1964). Data 
for Kīlauea and Mauna Loa from Wolfe and Morris (1996b); corresponding fields shown generalized to enclose all but a few 
outlying points. Bold black lines, variously solid, dashed, or dotted, indicate fields for increasingly alkalic late shield or transitional 
postshield basalt and minor hawaiite of Haleakalā, Mauna Kea, East Moloka‘i, and Kohala. Postshield lava is commonly even 
more alkalic, plotting in the field that ranges from hawaiite to trachyte, and encompasses all data from Wai‘anae (Pālehua 
Volcanics), Kohala (Hāwī Volcanics), and Mauna Kea (Laupāhoehoe Volcanics). The several exceptions to this fundamental 
pattern of increasingly alkalic composition across the late shield to postshield stages are discussed in the text. Listed in 
the appendix are the specific data sources for these many fields, on the basis of a published Hawaii-statewide whole-rock 
geochemistry GIS database (Sherrod and others, 2007).
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The evolutionary stages, though rooted in geologic 
mapping, are an interpretation of stratigraphic sequences 
imposed after a geologic map is completed. In the submarine 
realm, the assignments necessarily rely on geomorphology and 
petrologic analysis of samples collected by remotely operated 
vehicles or manned submarines. The stage boundaries 
are somewhat arbitrary, because a volcano’s evolution 
is commonly gradational. Two frequently controversial 
transitional periods are (1) the transition from shield to 
postshield stage and (2) the transition from postshield to 
rejuvenated stage.

Of some recent interest is the boundary between 
postshield- and rejuvenated-stage volcanism. An eruptive 
hiatus has long been inferred between the two stages, which 
suggests this boundary could be uniquely defined; indeed, 
the term “rejuvenated” arose to classify the subsequent 
reawakening of a volcano. Stearns (1946) referred to the 
rejuvenated stage as secondary volcanism, and Macdonald 
(1968) called it posterosional, a term that implied that 
substantial time was required to erode the large valleys 
later filled by the youngest volcanic rocks. But radiometric 
dating has shown that little, if any, time elapsed between 
emplacement of volcanic sequences once separated into 
postshield and rejuvenated stages at Wai‘anae (O‘ahu; Presley 
and others, 1997) or Haleakalā (Maui; Sherrod and others, 
2003). All these alkalic lavas are now thought to be of the 
postshield stage. On Kaua‘i, age and chemical data (discussed 
in detail in the section titled “For Kaua‘i, Rejuvenated Stage is 
Gradational from Postshield Stage”) suggest that the boundary 
between postshield and rejuvenated stages is gradational and 
that the eruptive hiatus once used to distinguish the two stages 
is lacking there.

We wrestled with introducing new names for the volcanic 
stages but decided it would only add confusion. Instead, the 
four stages are retained, but with emphasis on the transitional 
or gradational boundaries between sequential stages. As will 
be shown, these transitions vary from volcano to volcano. 
The evolutionary stage model of Hawaiian volcanoes remains 
a robust predictive tool for scientific exploration, but each 
volcano has peculiarities that temper the model’s application.

Some objections persist in the choice of names. For 
example, the shield shape that inspired the name of the 
“shield” stage forms only during the subaerial phase of shield-
stage growth, in contrast to steeper slopes built during the 
submarine phase of the shield stage. As used here, shield 
stage includes the entire period when voluminous tholeiitic 
lavas are erupted. The term “preshield” might be interpreted 
as encompassing volcanic growth from inception until the 
development of the subaerial shield shape, but we use the 
term to indicate only the early alkalic part of volcano growth. 
A similar objection might apply to the term “postshield,” 
because postshield alkalic lavas simply veneer the shield 
and so maintain the volcano’s shield shape. Regardless, we 
use postshield to describe alkalic lava that begins erupting at 
the end of the shield stage. The terms “rejuvenated,” “post-
erosional,” or “secondary” all imply eruption following a time 

gap during which erosion took place. We now know that, at 
least on Kaua‘i, postshield-stage alkalic lava and strongly 
alkalic rejuvenated-stage lava erupted over a lengthy period 
that lacks major time gaps—the earliest rejuvenated-stage lava 
is similar in age to alkalic basalt, hawaiite, and mugearite of 
the postshield stage.

To be clear, the term “shield stage” (as a growth stage) 
should not be equated directly with the term “shield volcano,” 
the term for any broad, typically large volcano. Hawaiian 
volcanoes have long been the archetypal shield volcano.

Brief geographic data for the 17 volcanoes encompassed 
by the main Hawaiian Islands are compiled in table 1. Fifteen 
of those volcanoes are emergent (above sea level), and two 
(Māhukona, Lō‘ihi) are now fully submarine. Also included 
on the list are another two (or three) whose origin as discrete 
volcanoes remains uncertain. Latitude and longitude are 
taken from summit points for most of the volcanoes, although 
approximate caldera centers are included for Kīlauea, Mauna 
Loa, and Māhukona (from topographic maps).

Measuring the Growth of Hawaiian Volcanoes
The rate of growth of Hawaiian volcanoes is typically 

quantified in two ways. Volumetric rates (km3/yr) have been 
described for volcanoes, such as Kīlauea, for which fairly 
precise eruptive volumes have been measured for periods of 
decades or centuries. Also, volumetric rates averaged over 
long time periods have been assigned to a few volcanoes 
where the bulk volume and a fairly good estimate of eruptive 
duration are known. Stratigraphic accumulation rates (m/k.y.) 
are determined by dating sequences of lava flows, either 
in natural exposures or from drill core, which can provide 
substantially thicker sections for sampling. Unlike volumetric 
rates, stratigraphic accumulation rates vary widely, simply 
because of differing geographic distances from a volcano’s 
summit or rift zones, where volcanic accumulations are 
thickest.

Preshield Stage
The earliest growth stage of Hawaiian volcanoes was the 

latest to be discovered, because its products are deeply buried 
in older volcanoes, and substantial technological advances 
were required for sampling in deep water. The preshield stage, 
now known from Lō‘ihi Seamount and Kīlauea, Kohala, and 
perhaps Hualālai volcanoes, appears to be entirely submarine 
and consists of tholeiitic, transitional, alkalic, and strongly 
alkalic lavas. Compositionally transitional volcanic rocks 
were once thought to represent a preshield stage at Māhukona 
volcano because of their high He isotopic ratios (Garcia and 
others, 1990), similar to that of Lō‘ihi lavas, but these rocks 
are now known to be of postshield stage on the basis of 
radiometric ages of about 0.3 Ma (Clague and Calvert, 2009). 
Any preshield-stage strata at Māhukona are probably deeply 
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Table 1. Location and summit altitude of volcanoes from Ni‘ihau to Lō‘ihi.

[Geographic coordinates referable to World Geodetic System 1984. Altitude is in meters and feet above mean sea level, as read from topographic maps; negative 
altitudes indicate bathymetric depth. Footnotes explain the variation between ours and other reported onland summit altitudes]

Volcano Longitude Latitude Summit Feature name; topographic map or other reference

           Known volcanoes

1 Ni‘ihau –160.0834 21.9386 392 m; 1,286 ft1 Keanauhi Valley (1989, 1:24,000)1

2 Kaua‘i –159.4974 22.0585 1,598 m; 5,243 ft Kawaikini; Wai‘ale‘ale (1983)

3 Wai‘anae (O‘ahu) –158.1416 21.5072 1,227 m; 4,025 ft Ka‘ala; Hale‘iwa (1983)

4 Ko‘olau (O‘ahu) –157.7881 21.3581 960 m; 3,150 ft North of Kōnāhuanui; Honolulu (1983)

5 West Moloka‘i –157.1570 21.1422 421 m; 1,381 ft Puu Nana; Moloka‘i Airport (1952, 1:24,000)

6 East Moloka‘i –156.8684 21.1065 1,515 m; 4,970 ft2 Kamakou; Kamalo (1968)

7 Lāna‘i –156.8731 20.8121 1,030 (+) m3; 3,379 ft Lāna‘i South (1984, scale 1:25,000)3

8 Kaho‘olawe –156.5715 20.5617 452 m; 1,483 ft Spot elevation west of Pu‘u ‘O Moa‘ula Nui; 
Kaho‘olawe East (1991)

9 West Maui –156.5863 20.8904 1,764 m; 5,788 ft Pu‘ukukui; Lahaina (1992)4

10 Haleakalā –156.2533 20.7097 3,055 m; 10,023 ft Red Hill summit; Kilohana (1983)

11 Māhukona (submarine) –156.1399 20.1315 –1,100 m; 3,610 ft Clague and Moore (1991)

12 Kohala –155.7171 20.0860 1,678 m; 5,505 ft5 Kaunu o Kaleiho‘ohie; Waipio (1916)5

13 Mauna Kea –155.4681 19.8206 4,205 m; 13,796 ft Summit benchmark; Mauna Kea (1982)

14 Hualālai –155.8644 19.6888 2,521 m; 8,271 ft Summit benchmark HAINOA; Hualālai (1982)

15 Mauna Loa summit –155.6054 19.4755 4,169 m; 13,679 ft Benchmark TU0145; Mauna Loa (1981)

Mauna Loa Caldera –155.5920 19.4722

16 Kīlauea summit –155.2868 19.4209 1,269 m; 4,163 ft Uēkahuna Bluff (benchmark TU2382)6

Kīlauea Caldera –155.2839 19.4064

17 Lō‘ihi –155.2601 18.9201 –975 m; –3,199 ft Fornari and others (1988); earlier reports cite slightly 
shallower summits, 969 m depth (Malahoff, 1987) 
and 950-m depth (Carson and Clague, 1995)

         Suspected volcanoes

18 Southwest of Ka‘ena 
Ridge (submarine)

–158.6490 21.7371 Eakins and others, 2003

60 km WNW of O‘ahu; 
may be same location as 
site C1, above

–158.8526 21.6685 About –3,000 m Eruption(?) 1956 C.E.; Macdonald (1959)

19 Penguin Bank(?)  
(submarine)

–157.6488 20.9722 –200 m Carson and Clague (1995); Price and Elliott-Fisk 
(2004); Xu and others (2007a)

1Ni‘ihau: Highest point is at Pānī‘au benchmark (TU1870), 392 m orthometric altitude (local mean sea level). Previous version of the NGS data sheet reported 
352 m, a typographical error corrected during the preparation of this table. A slightly lower altitude, 381 m, corresponds to the altitude of a spot elevation 
northwest of Kamahakahaka, elsewhere along the coastal bluff (State of Hawaii databook, http://hawaii.gov/dbedt/info/economic/databook/).
2East Moloka‘i: Summit of Kamakou on Kamalo quadrangle (1968) is marked at the junction of ahupua‘a and appears to be highest point. A slightly lower spot 
elevation is located a distance of 100 m southeast on the Moloka‘i East quadrangle (1983).
3Lāna‘i: Summit point Lāna‘i hale has no surveyed benchmark but lies within (higher than) 1,030 m contour (Lāna‘i South, 1:25,000, 1984). Commonly cited is 
altitude 1,026 m (3,366 ft), a spot elevation at nearby Ha‘alelepa‘akai (State of Hawaii databook).
4West Maui: 1992 topographic map has muddy printing of altitude annotations; the 5,788 ft-altitude of Pu‘ukukui resembles 6,788.
5Kohala, Hawai‘i: Modern topographic maps do not show the summit altitude. A spot elevation 5,505 ft appears on Waipio topographic map (scale 1:62,500, 
surveyed 1911–1913 by R.B. Marshall, published 1916 and reprinted 1951). This altitude also appears in booklet “USGS index to topographic and other map 
coverage.” No spot elevation is shown on the 1:250,000-scale island map or the 30 × 60-minute topographic map. The summit lies within (higher than) the 
5,480-ft contour (40-ft contour interval; Kamuela topographic quadrangle, 1982), which is a commonly reported altitude slightly short of the summit.
6Kīlauea: Uēkahuna Bluff (benchmark TU2382) (Miklius and others, 1994).
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buried. The transition from the preshield stage to the shield 
stage can be gradual with interbedded alkalic and tholeiitic 
lavas, as described below for Lō‘ihi Seamount, or abrupt, as 
suggested by existing data at Kīlauea Volcano4 (Calvert and 
Lanphere, 2006; Lipman and others, 2002, 2006).

Lō‘ihi Preshield Stage
Lō‘ihi Seamount, newest of the Hawaiian volcanoes, lies 

about 54 km south of Kīlauea Caldera and 975 m below sea 
level (fig. 4). Its summit is about 2.5 km above the adjacent sea 
floor. Lō‘ihi has well-developed rift zones (Moore and others, 
1982; Fornari and others, 1988) and a summit caldera complex 
(Malahoff, 1987; Clague, 2009) with three inset pit craters 
0.6–1.2 km in diameter, similar in scale to Halema‘uma‘u in 
Kīlauea’s summit caldera. The southernmost pit crater formed 
in 1996 during a strong seismic swarm (Lō‘ihi Science Team, 
1997; Davis and Clague, 1998; Garcia and others, 1998; 
overview in Garcia and others, 2006). Also, the summit and 
flanks of Lō‘ihi are scalloped by landslides (Fornari and 

Lō‘ihi
Hilina bench
(Kīlauea preshield)

Hilo Ridge
(Kohala)

Kaua‘i

Ni‘ihau O‘ahu

Lāna‘i
Kaho‘olawe Kohala

Mauna Loa

Mauna
Kea

Moloka‘i
Maui

Māhukona

Mauna Loa
submarine alkalic rocks

others, 1988) that expose lava sequences on the upper east 
flank (Garcia and others, 1995). Thus, Lō‘ihi demonstrates 
that the major structural features of Hawaiian volcanoes, such 
as calderas, rift zones, and flank failures, are well established 
during the preshield stage or in the transition to the shield stage.

Lō‘ihi whole-rock analyses are chiefly tholeiitic 
and alkalic basalt with sparse picrobasalt, basanite, and 
hawaiite (fig. 5). Dredged submarine rocks at Lō‘ihi show a 
compositional trend from alkalic to tholeiitic with diminishing 
age. It was recognized early on that the recovered alkalic 
lavas had thicker palagonite rinds than the tholeiitic lavas 
and were, therefore, likely older, on average (Moore and 
others, 1982). Recent work (Pauley and others, 2011) shows 
that alkalic glass alters more slowly than tholeiitic glass, so 
the alkalic glasses are even older, relative to the tholeiitic 
ones, than previously thought. Stratigraphic sections of lavas 
from two pit craters at Lō‘ihiʼs summit (Garcia and others, 
1993) and along a fault scarp on the east side of the summit 
(Garcia and others, 1995) show that, indeed, on average, the 
alkalic lavas are older than the tholeiitic lavas, albeit with 
considerable overlap. Interbedding of tholeiitic and alkalic 
glass fragments was also seen in an 11-m-thick section of 
volcaniclastic deposits emplaced during the last 5,900 years 
on the southeast part of the summit (Clague and others, 2003; 
Clague, 2009). Alkalic and tholeiitic lava flows exposed in the 

Figure 4.  Diagrammatic illustration showing oblique aerial view of main Hawaiian Islands. Base illustration courtesy of J.E. Robinson.

4Of the large volcanoes among the Hawaiian Islands, only Kīlauea has the 
term “Volcano” as part of its formal geographic name and, hence, capital V 
(Geographic Names Information System, http://geonames.usgs.gov/).
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walls of the summit pit craters are interbedded through a much 
thicker stratigraphic sequence, 300–370 m, and presumably 
represent a longer interval of time (Garcia and others, 1993). 
All these studies indicate that the compositional trend (older 
to younger) is alkalic to tholeiitic as the volcano evolves from 
the preshield to the shield stage.

Eruptions at Lō‘ihi’s present summit (at 975-m water 
depth), and deeper along the volcano’s upper rift zones have 
been both effusive (Moore and others, 1982; Malahoff, 
1987; Umino and others, 2002) and explosive (Clague and 
others, 2003; Clague, 2009; Schipper and others, 2010a,b), 
suggesting that the early stage may include an early deep 
(chiefly?) effusive substage and a later explosive and effusive 
substage. The explosive alkalic eruptions, due to the high 
magmatic volatile content of the alkalic magmas, appear to be 
mainly from fountains (called poseidic eruptions by Schipper 
and others, 2010a, to distinguish the quenching of volcanic 
fragments in water from that in air) or from Strombolian 
activity (Clague and others, 2003).

Growth rates for Lō‘ihi can be estimated from a 
500-m-thick section of lava flows on the volcano’s east flank. 

Unspiked K-Ar dating yielded ages ranging from about 
100  ka at the base to 5 ka at the top (Guillou and others, 
1997a), suggesting an average lava accumulation rate for the 
preshield stage of about 5 m/k.y. (By way of contrast, shield 
stage rates are 6–16 m/k.y., discussed later.) The K-Ar data 
are vexing, however, because ages from two of the five dated 
samples are inconsistent with their stratigraphic position, 
so we view this accumulation rate cautiously. Radiocarbon 
dating from a foraminifera-bearing volcaniclastic section 
11  m thick produced growth rates as high as 3.7 m/k.y. during 
a few millennia (Clague, 2009). Thus, available evidence 
suggests volcanic growth during the preshield stage and the 
earliest shield stage lags somewhat behind the robust upward 
growth during most of the shield stage. Lō‘ihi’s volume now is 
roughly 1,700 km3 (Robinson and Eakins, 2006), and most of 
it apparently formed during the preshield stage.

When will Lō‘ihi breach sea level? This question of 
simple curiosity can be answered only speculatively. The 
volcano may form an island in as little as 50,000 years from 
now (DePaolo and Stolper, 1996). However, with its summit 
975 m below sea level and growth rate of 5 m/k.y., the island’s 
birth year may lie as much as 200,000 years in the future.

Figure 5.  Alkali-silica diagram (Na2O+K2O versus SiO2) for preshield Lō‘ihi and Kīlauea whole-rock analyses and 
selected glass analyses from Kohala and Hualālai. Rock classification grid from Le Maitre (2002); shown dashed is 
boundary separating tholeiitic from alkalic basalt (Macdonald and Katsura, 1964). Data from Frey and Clague (1983), 
Hawkins and Melchior (1983), Garcia and others (1995), Sisson and others (2002), Hammer and others (2006), and 
Lipman and Calvert (2011, their electronic data repository appendix DR1).
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Kīlauea Preshield Stage
Kīlauea was born less than 300,000 years ago (Calvert 

and Lanphere, 2006). Its preshield-stage lavas range from 
strongly alkalic (including nephelinite) through alkalic basalt 
to transitional and tholeiitic (fig. 5; Lipman and others, 2002; 
Sisson and others, 2002; Coombs and others, 2006; Kimura and 
others, 2006; Lipman and others, 2006). Ages determined by 
40Ar/39Ar dating (Calvert and Lanphere, 2006) on a few samples 
suggest that the transition from preshield to shield stage occurred 
about 150 ka, but the sampling is insufficient to determine the 
temporal span of the transition (as indicated by the stratigraphic 
expanse of interbedded alkalic and tholeiitic lava). Volatiles 
trapped in glasses show that the earliest strongly alkalic lavas 
at Kīlauea erupted subaerially or in shallow water, implying 
that Kīlauea forms only a thin skin on the flank of Mauna Loa 
(Coombs and others, 2006), an idea that originated with Stearns 
and Macdonald (1946, p. 131–136 and plate 1 cross sections) 
and was developed more thoroughly by Lipman and others 
(2006). In contrast to Lō‘ihi Seamount lavas, which have a wide 
range of isotopic ratios and trace element characteristics (Frey 
and Clague, 1983; Staudigel and others, 1984; Garcia and others, 
1993, 1995, 1998, 2006), Kīlauea preshield-stage lavas have 
more uniform isotopic ratios and are interpreted as having been 
derived from a more homogenous source by variable degrees of 
partial melting (Kimura and others, 2006).

Lipman and others (2006) estimate growth rates near the 
end of Kīlauea’s preshield stage of 0.025 km3/yr and a total 
volume of Kīlauea Volcano of 10,000 km3, only 25–66 percent 
of previous estimates. Kīlauea’s alkalic and strongly alkalic 
lavas have an estimated volume of 1,250 km3, and the younger 
transitional basalts an additional 2,100 km3, for a total preshield-
stage volume of 3,350 km3 preceding the transition to the shield 
stage (Lipman and others, 2006).

Kohala Preshield Stage
The Hilo Ridge (fig. 4) was long thought to be a rift zone 

of Mauna Kea volcano, but more recently Holcomb and others 
(2000) and Kauahikaua and others (2000) have shown that it 
is a rift zone of Kohala volcano. Lava samples collected from 
the distal Hilo Ridge have 40Ar/39Ar ages of about 1.1 Ma and 
are therefore older than any dated subaerial flows from Kohala 
(Lipman and Calvert, 2011). Compositionally they are tholeiitic 
basalt (fig. 5), although some of the chemical analyses plot close 
to the tholeiitic-alkalic boundary. These latter samples may 
indicate that lava of the preshield stage or earliest shield stage is 
exposed deep on the rift zone of Kohala volcano (Lipman and 
Calvert, 2011).

Hualālai Preshield Stage (?)
Hualālai volcano has a small sliver of alkalic lava exposed 

along a submarine ridge on its lowermost western flank that 
includes volcaniclastic rocks of hawaiite composition, which 

Hammer and others (2006) inferred to represent the alkalic 
preshield stage because of their stratigraphic position. Hammer 
and others (2006) also concluded that the preshield stage at 
Hualālai included a long time period with interbedded alkalic and 
tholeiitic lavas, similar to what was observed at Lō‘ihi Seamount 
(Moore and others, 1982; Garcia and others, 1993, 1995; Clague 
and others, 2003). An alternate interpretation is that these alkalic 
lavas may instead have been erupted during the shield stage, as 
discussed in a later section (“Shield-Stage Alkalic Volcanism”) 
or were perhaps emplaced by slumping of postshield-stage lavas 
(Lipman and Coombs, 2006). Submarine Kohala and Hualālai 
have not been sampled as extensively as Kīlauea or Lō‘ihi, 
so alkalic preshield-stage lava exposed on them may be more 
abundant than our current collections indicate.

Shield Stage
All Hawaiian volcanoes have a shield stage during which 

voluminous eruptions of tholeiitic basalt dominate. The shield 
stage is the most productive volcanically, marking the time when 
a volcano is near the underlying hot spot and its magma system 
is robust. An estimated 80–95 percent of the volcano’s ultimate 
volume is emplaced during this stage. The volumes of most 
volcanoes active since 6 Ma, from Ni‘ihau southeast to Lō‘ihi, 
are compared in figure 6. The pāhoehoe and ‘a‘ā lava flows of 
the ongoing eruption that began in 1983 along Kīlauea’s East 
Rift Zone, 20 km from the volcano’s summit, are characteristic 
of shield-stage volcanism in both style and composition.

The illustrative volume comparison uses the downward-
revised estimate for Kīlauea’s volume (Lipman and others, 2006), 
with the previously estimated volume shown dashed (Robinson 
and Eakins, 2006). Also shown dashed in figure  6 is the 
proportion that Kīlauea’s loss would contribute to Mauna Loa’s 
volume. That reassignment, however, may not be warranted, 
because the volumes of overlapping volcanoes are customarily 
calculated by assuming vertical boundaries separating each 
volcano (Robinson and Eakins, 2006). If accuracy is the goal, 
then a bolstered Mauna Loa volume (courtesy of Kīlauea’s onlap) 
should be diminished accordingly by Mauna Loa’s position 
upon the flanks of Hualālai and Mauna Kea, which precede it in 
the volcanic chain. Likewise, the recognition that Hilo Ridge is 
a Kohala rift zone would transfer some Mauna Kea volume to 
Kohala volcano (not shown in figure 6 except for the symbols 
for overestimate and underestimate that accompanied the tabular 
data of Robinson and Eakins, 2006). Revisions like these are a 
reminder that error estimates for large volcano volumes are rarely 
better than 30 percent and commonly worse.

Submerged Volcanoes
At least two, and possibly as many as four, volcanoes 

lie submerged off the coasts of the major Hawaiian islands 
(figs. 4, 7). From southeast to northwest, they are Lō‘ihi, 
Māhukona, Penguin Bank, and an edifice on the southwest flank 
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of Ka‘ena Ridge. Lō‘ihi is best known because of its sporadic 
seismic and eruptive activity; it is discussed more fully 
above, as a volcano in the preshield stage. The other three are 
introduced here. Of the four, only Lō‘ihi and Māhukona are 
widely known to be discrete Quaternary volcanoes, as opposed 
to rift zones of already known volcanoes.

Māhukona
Māhukona lies adjacent to the Island of Hawai‘i 

(fig. 7A). Its summit is at about 1,100-m water depth. A 
small, circular depression may mark a caldera (Clague and 
Moore, 1991). The submarine slope continues upward from 
there, owing to onlap by Hualālai and Kohala volcanoes. 
The age of Māhukona’s inception is unknown but was 
likely about 1.5–1 Ma, on the basis of its present distance 
140 km or so from the Hawaiian hot spot. Dredged samples 
suggest that Māhukona survived at least briefly as a subaerial 
volcano (Clague and Moore, 1991); sunken coral reefs form 
a stairstepping series of terraces, one of the most notable 
geomorphic features of the volcano today (fig. 7A).

Penguin Bank
Penguin Bank is the bathymetric shelf extending 

southwest from West Moloka‘i (fig. 7B). It may be a West 
Moloka‘i rift zone or it may be a separate volcano. In some 
reconstructions, Penguin Bank is the first of the several 
volcanoes that coalesced to form Maui Nui (Big Maui), a 
land mass once larger than the present-day Island of Hawai‘i 
(Price and Elliott-Fisk, 2004). Dredged samples from 
Penguin Bank are subtly distinct, geochemically, from West 
Moloka‘i lava (Xu and others, 2007a), which may further 
substantiate Penguin Bank as a separate volcano. Its summit 
location is chosen to coincide with a closed bathymetric 
contour more or less centered in the western part of the bank; 
a distinct bathymetric saddle separates the shallowest part of 
Penguin Bank from West Moloka‘i.

Southwest Flank of Ka‘ena Ridge
Ka‘ena Ridge is a submarine ridge extending northwest 

from the Island of O‘ahu (fig. 7C). Recently it was proposed 
to be a volcanic feature separate from Wai‘anae volcano 
(Tardona and others, 2011). Two topographically distinct 
shields (labeled 1, 2) form likely eruptive vents on the 
southwest flank of the ridge (Smith, 2002; Eakins and others, 
2003). Whether either of these shields marks the summit of 
a separate volcano or whether they are, instead, related to a 
rift zone of Wai‘anae volcano remains to be resolved. The 
eastern shield, explored during a dive by remotely operated 
underwater vehicle in 2001, consists of ‘a‘ā lava flows and 
rounded beach cobbles of altered vesicular, tholeiitic basalt 
that was erupted and emplaced subaerially (Coombs and 
others, 2004). We indicate this eastern shield as the summit 

of a possible Ka‘ena volcano (fig. 7C), in part because the 
top of this shield is shallower than the one to the west, and 
because its location is nearer the shallow end of the Ka‘ena 
Ridge, which may be a rift zone extending from this summit.

Figure 6.  Bar graph of volcano volumes. Shown in order of decreasing 
volume, for all the volcanoes of the eight major Hawaiian Islands. Data 
from Robinson and Eakins (2006) except Kīlauea, whose volume is 
revised downward from their 31,600 km3 (shown dashed) to 10,000  km3 
(Lipman and others, 2006). The volumetric difference, 21,600 km3, 
is added to Mauna Loa’s volume, increasing it to 95,600 km3 (shown 
dashed). Symbols for likely overestimate (+) and underestimate (-) 
from Robinson and Eakins (2006). For the Mauna Kea-Kohala pair, the 
problem arises from the way in which the volcano boundaries partition 
Hilo Ridge, an offshore Kohala rift zone. For Kīlauea, the overestimate 
applies to the 31,600-km3 volume.
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Shield Extrusion Rates

Volumetric Rate
The most precise volumetric rate analyses are for 

Kīlauea Volcano, where the scientific eruption record now 
encompasses 100 years, the written historical record is slightly 
more than twice that, and the oral history of eruptions spans 
a millennium. Basic to the method is the presumption that 
during sustained eruptions, in the absence of deformation, 
the effusion rate is the magma supply rate (Swanson, 1972; 
Dvorak and Dzurisin, 1993). If deformation accompanies an 
eruption, then the deformation data can be recalculated as 
volume change, corresponding to magma storage or discharge 
within the volcanic edifice; these changes are then added to or 
subtracted from erupted volume to calculate the throughput. At 
Kīlauea, the long-term eruption rate for the past 100–200  years, 
0.09–0.11 km3 of dense-rock-equivalent magma per year, is 
essentially the same as the long-term rate (0.12 km3/yr) for the 
Pu‘u ‘Ō‘o eruption along Kīlauea’s East Rift Zone (Heliker 
and Mattox, 2003), which began in 1983 and continues at this 
writing.

Stratigraphic Accumulation Rate
Shield accumulation rates are based on stratigraphic 

positions and ages of multiple samples. Knowledge of 
stratigraphic separation between samples is commonly 
precise, but ages of samples often have poor precision, 
owing to low potassium content, incipient alteration, and 
sporadic extraneous argon in the tholeiitic lava of the shield 
stage. The derived rates range from 1 m/k.y. to as much as 
16  m/k.y., depending on the part of the stratigraphic sequence 
sampled and distance from eruptive vents. Lower rates are 
characteristic of late shield-stage growth far from vents.
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Figure 7.  Maps showing bathymetry of submerged 
volcanoes and suspected volcanoes along the reach of 
the major Hawaiian Islands. Base is from Eakins and 
others (2003); geographic names from Coombs and others 
(2004). Summit locations are from table 1. A, Māhukona, 
a known shield volcano. B, Penguin Bank, a suspected 
volcano that may only be a rift zone of West Moloka‘i 
volcano. C, Ka‘ena Ridge and topographic prominences 
(1, 2) on its southwest flank; the latter two features 
may form a shield volcano discrete from Ka‘ena Ridge 
(rift zone of Wai‘anae volcano). See Macdonald (1959) 
for discussion of the suspected 1956 C.E. submarine 
eruption.
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Rates for Mauna Kea are calculated from dated core in 
the 2.7-km-deep Hawaii Deep Scientific Drilling (HDSD) 
holes (Sharp and others, 1996; Sharp and Renne, 2005). 
Representing Mauna Kea’s mid-to-late shield-stage growth, 
the rates are as great as 8.6 m/k.y. low in the section, 
diminishing upsection to 0.9 m/k.y. in the upper 120 m 
(fig. 8; Sharp and Renne, 2005). The HDSD drill site is 
located 40–45  km from Mauna Kea’s center, and the lower 
section may have erupted from Kohala along the Hilo Ridge. 
Decreased rates late in the shield stage, to about 1 m/k.y., 
are also seen in some dated sections from Waiʻanae (O‘ahu; 
Guillou and others, 2000), West Maui (Sherrod and others, 
2007a), and Ko‘olau volcanoes (O‘ahu; fig. 8; Yamasaki and 
others, 2011).

Kīlauea data come from Scientific Observation Holes 
SOH-1 and SOH-4 (Trusdell and others, 1992, 1999), which 
penetrated about 1.7 km of lava flows along the axis of the 
East Rift Zone, at a location about as far from Kīlauea’s 
summit as the HDSD site is from Mauna Kea’s summit. 
These age-depth results have proven difficult to interpret. 
For example, a rate of 3–4 m/k.y. results from fitting a 
curve to the radiometric ages (Guillou and others, 1997b; 
Quane and others, 2000; Teanby and others, 2002), but this 
implies ages between 425 and 565 ka for the bottom of the 
drill hole, significantly older than dated submarine preshield 
alkalic rocks of Kīlauea (Calvert and Lanphere, 2006). A 
substantially higher rate, 16 m/k.y. during the past 45 k.y., 
was obtained by applying a model depth-age curve drawn 
from paleomagnetic inclination and intensity data for the 
upper 800  m of strata in SOH-1 (Teanby and others, 2002). 
The higher rate may be reasonable for some episodes of 
shield-stage growth along a rift zone axis but is too high 
to characterize durations of 100 k.y. or longer. Calvert and 
Lanphere (2006) similarly urged caution when interpreting 
the complicated argon geochronologic results from the SOH 
samples and the calculated accumulation rates.

Using surface exposures for Kīlauea, a rate of 6 m/k.y. 
is estimated from outcrops in Hilina Pali, where 275–300 m 
of strata are exposed. The age of those strata is known from 
radiocarbon ages of 28.3 and ~43 ka (D.A. Clague, quoted in 
Riley and others, 1999) and the likely occurrence of the Mono 
Lake (35 ka) and Laschamp (40 ka) geomagnetic excursions 
in lava flows of the Hilina section (data of Riley and others, 
1999, interpreted by Teanby and others, 2002).

Shield-Stage Alkalic Volcanism
Rare submarine alkalic lavas from the base of the 

southeast flank of Kīlauea’s Puna Ridge (Clague and others, 
1995; Hanyu and others, 2005; Coombs and others, 2006) and 
from several cones on the west flank of Mauna Loa volcano 
(Wanless and others, 2006a) are apparently neither preshield 
nor postshield lavas, nor do they appear to have erupted 
during transitions from stage to stage. Emplaced during the 
shield stage, the Kīlauea lava, the youngest submarine lava 

recovered from Kīlauea (based on almost complete lack of 
glass alteration to palagonite), was termed “peripheral” alkalic 
lavas by Clague and Dixon (2000). The alkalic Kīlauea flow 
and Mauna Loa cones are located similar distances from 
the summits of Kīlauea and Mauna Loa, respectively, as 
preshield lavas of Lō‘ihi or postshield stage lavas of Hualālai 
and Mauna Kea are from their respective summits, but in 
directions perpendicular to the orientation of the chain rather 
than in line with the chain. The alkalic lava on the submarine 
west flank of Hualālai, interpreted to be preshield alkalic 
lava (Hammer and others, 2006), may instead be shield-stage 
peripheral alkalic lava. Additional sampling and radiometric 
dating should resolve its origin.

Shield Structure: Rift Zones, Radial Vents, and 
Calderas

Essential features of Hawaiian shield growth have been 
described for nearly a century, although not necessarily 
well understood. The past 50 years have seen increasingly 
sophisticated modeling supported by extensive datasets and 
spaceborne technology.

The intrusive structure of the shield develops as the 
volcano grows from the ocean floor. Magmatic pathways 
within the volcano, including the routes for rift zone intrusions, 
are established in earliest shield-stage time, as indicated by 
the existence of a summit caldera and rift zones on Lō‘ihi 
volcano (Malahoff, 1987; Clague and others, 2003). At the 
active, well-monitored Kīlauea Volcano, seismicity effectively 
tracks the passage of magma from mantle depths of 40–60 km 
(Eaton and Murata, 1960) as it rises into the crust beneath the 
summit area. As the rate of magma supply increases, storage 
reservoirs develop at intermediate depths (near the base of the 
oceanic crust) and shallow depths (1–7  km below caldera floor) 
(Clague, 1987a; Ryan, 1987). Magma is shunted from the 
shallow reservoir into the volcano’s rift zones, as documented 
by (1) geodetic and seismic data (Cervelli and Miklius, 2003; 
Klein and others, 1987); (2) CO2 discharge, which is much 
higher from summit vents than from vents on the rift zones 
(Gerlach and Taylor, 1990); and (3) similar trace-element 
concentrations that suggest a shared magma source for lava 
erupted more or less concurrently from both Halema‘uma‘u 
(summit) and Pu‘u ‘Ō‘ō (19 km down the East Rift Zone) 
(Thornber and others, 2010) and even farther down the Puna 
Ridge (Clague and others, 1995).

Rift Zones
A debate still stirs about whether rift-zone intrusions are 

passive or forceful events (Poland and others, this volume, 
chap. 5). As the volcano gains in height, its unbuttressed flank 
or flanks tend to extend by gravitational spreading, which 
favors the development of rift zones by extensional fractures 
and lateral injection of dikes (Fiske and Jackson, 1972; 
Denlinger and Morgan, this volume, chap. 4). But geodetic 
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surveys at Kīlauea have documented compressive uplift of the 
outer rift-zone flank over time spans of years; thus, forceful 
intrusion is a necessary component of rift-zone growth 
(Swanson and others, 1976). Doubtless several conditions are 
required for the lateral displacement or dilation of the flanks, 
such as high intrusion rate, low magma viscosity, and low fault 
strength (Dieterich, 1988).

The concept that Kīlauea’s mobile south flank is 
closely related to its rift-zone structure was suggested 
in the 1960s (Moore and Krivoy, 1964), but the analysis 
by Swanson and others (1976) was probably the first to 
depict dilation reaching to the root of the rift zone, as deep 
as 8 km and therefore near the volcano-seafloor interface 
(fig. 9), so that extension is accommodated largely within 
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the edifice. Deep, low-angle (4°–5°) faults dipping back 
toward the volcano at such depth (now generally thought to 
be 9–10 km) were recognized first from seismic evidence 
(Ando, 1979; Furumoto and Kovach, 1979). These faults 
may be localized in abyssal sediment (Nakamura, 1982), 
which provides favorable properties of low strength and 
normal or excessive pore-fluid pressure. Alternatively, 
displacement may occur across a zone where “much of the 
displacement is taken up by many local adjustments within 
the pillow [lava] complex” (Swanson and others, 1976, 
p. 25). Lipman and others (1985) proposed, on the basis of 
deformation during the 1975 Kalapana earthquake, that the 
Hilina faults connected to this basal low-angle detachment 
and accommodated deep dilation.

Deep faults are required to model the patterns of 
subsidence and compression from geodetic measurements 
and deep seismic hypocenters along Kīlauea’s rift zones 
(Owen and others, 1995, 2000; Cayol and others, 2000). 
The precise results of the geodetic studies vary, depending 
on the time period studied, but they converge on a model 
in which rift-zone intrusions are blade-like dikes that 
extend upward from the ocean floor-volcano interface 
(now depressed to depths of 9–10  km by crustal loading) 
to as shallow as 2–3-km depth, which is the shallow 
zone of frequent seismicity within the rift zone. Deep rift 
expansion, whether by passive or forceful intrusion, is 
interpreted as the primary force driving south-flank motion 
and seismicity (Owen and others, 2000). Deep horizontal 
stress may be increased by the formation of olivine 
cumulates, owing to the additional mass they provide and 
their ability to flow (Clague and Denlinger, 1994).

The quantitative results emphasize a rift zone’s 
magma-storage capacity and the magnitude of ground 
deformation. Historical values for dilation across Kīlauea’s 
East Rift Zone require magma emplacement at rates ranging 
from 0.025 to 0.06  km3/yr (Delaney and others, 1993; 
Owen and others, 1995). Add to this the long-term erupted 
volume of 0.12 km3/yr of the ongoing East Rift Zone 
eruption (averaged over the period 1983–2002; Heliker and 
Mattox, 2003), and the resulting total magma-supply rates 
are in the range 0.15–0.18 km3/yr for much or all of the 
past 20 years (Cayol and others, 2000; Heliker and Mattox, 
2003). These values, within the range cited by Dvorak and 
Dzurisin (1993) for periods of years and even centuries, 
are larger by 60 percent than previous estimates for 
magma supply during sustained activity (0.09–0.1 km3/ yr; 
Swanson, 1972; Dzurisin and others, 1984; Dvorak and 
Dzurisin, 1993), owing to the magma stored by interpreted 
deep dike dilation along the East Rift Zone during the past 
two decades.

Mauna Kea appears to lack rift zones, and its eruptive 
vents form a shotgun scatter pattern across the summit 
region. The volcano also lacks submarine features that 
might be early rift zones. Kauaʻi also lacks obvious rift 
zones above sea level but below sea level, at least four 
ridges appear to be rift zones (Eakins and others, 2003).

Radial Vents
Radial vents are well documented on Mauna Loa, where 

linear eruptive fissures on the west and north flanks of the 
volcano trend away from the summit caldera (Lockwood and 
Lipman, 1987). Several examples are found offshore on the 
west flank, including the submarine 1887 C.E. vents (Fornari 
and others, 1980; Moore and others, 1985) and additional vents 
only recently discovered (Wanless and others, 2006b). Other 
Mauna Loa radial vents crop out as far from the summit as Hilo 
(Hālaʻi-Puu Honu vent alignment; Buchanan-Banks, 1993) and 
in the saddle between Mauna Loa and Mauna Kea. Radial vents 
are probably a consequence of spreading across the arcuate 
Northeast and Southwest Rift Zones of Mauna Loa, which 
causes extension on the west and north sides of the volcano. 
Dikes propagate into this wide extensional zone. Radial vents 
have not been identified on Kīlauea.

On older volcanoes, dikes are commonly the only 
exposed clues to the existence of radial vents. At Waiʻanae 
volcano (O‘ahu), dikes along a southeast-trending rift zone 
follow a radial pattern as they swing around the south side of 
the caldera, perhaps in response to the stress field created by 
caldera growth in late shield time (Zbinden and Sinton, 1988). 
Scattered dikes of almost all orientations have been mapped 
on Kaua‘i (Macdonald and others, 1960). Most are near the 
volcanic center, where varied local stresses may predominate.

Calderas
Calderas are common on Hawaiian shield volcanoes. 

Their topographic rims crown the summits of the active 
Kīlauea and Mauna Loa. Erosion has exposed their shallow 
or mid-depth reaches at older volcanoes, such as Kaho‘olawe, 
West Maui, East Moloka‘i, Ko‘olau, Waiʻanae, and perhaps 
Kaua‘i. Once thought to form only late in the shield stage, 
calderas are now known to appear as early as the preshield 
stage (for example, Lō‘ihi) and then likely develop and fill 
repeatedly throughout the shield stage. Thus, calderas go 
hand-in-hand with the high rate of magmatism that builds the 
Hawaiian Islands.

The repeated injection of magma into a volcano’s summit 
region results in a complex magma reservoir: a nexus of dikes, 
sills, and plugs. Over time this complex develops a greater 
bulk-rock density than the adjacent volcano, owing to the 
nonvesicular, massive character of the intrusions and crystal 
accumulation in the deeper parts of the reservoir. In general, 
Hawaiian calderas are coincident with a positive gravity 
anomaly centered at the point from which the rift zones radiate, 
owing in large part to their position above the dense magma 
column that extends downward through the crust and into 
the mantle (fig. 10) (Kauahikaua and others, 2000). In older 
calderas, such as Ko‘olau (O‘ahu), where the reservoir is fully 
crystallized, the resulting seismic signature includes P-wave 
velocities (VP) of 7.7 km/s at depths less than 2 km (Adams and 
Furumoto, 1965; Furumoto and others, 1965), contrasting with 
the low VP of 4.6 km/s in the surrounding material of the shield.
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Figure 10.  Maps showing calderas, rift zones, and Bouguer gravity anomalies at selected 
Hawaiian volcanoes, all at same scale. A, Kīlauea Volcano, Island of Hawai‘i. Dark brown 
fill, modern topographic caldera; lighter fill, expanse of caldera defined by outer ring faults. 
Structural elements shown by faults (black lines). Erosion is too shallow to provide much 
structural sense from the few dike exposures. Gravity contours from dataset of J.P. Kauahikaua 
(written commun., 2011); gravity maximum, about 330 mGal, is coincident with caldera. B, 
Ko‘olau volcano and caldera, Island of O‘ahu. Note that illustration is rotated 96° clockwise to 
facilitate comparison with the depiction of Kīlauea Volcano in A. Shown by dark brown fill is 
caldera defined by Stearns (1939); an outer boundary (lighter fill) is inferred from map data of 
Walker (1987). Rift-zone dike orientation is generalization used by Walker (1987). Large gaps 
in downrift dike progression correspond to interfluves between canyons, where lava flows at top 
of volcano bury dike exposures. Bouguer gravity anomalies from Strange and others (1965); 
gravity maximum about 310 mGal. C, Kaua‘i volcano (all of the Island of Kaua‘i). Caldera 
boundary, faults, and dikes from Macdonald and others (1960). Bouguer gravity contours from 
Krivoy and others (1965). These contours match the more recent work by Flinders and others 
(2010), whose graphical depiction does not lend itself readily to presentation as isogal lines.
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Figure 9.  Cross sections showing 
structure and geodetic model of a Kīlauea 
rift zone. A, Profile from Swanson and 
others (1976, their A-A′) shows middle East 
Rift Zone of Kīlauea Volcano. No vertical 
exaggeration. Concept of low-angle fault 
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as a consequence of dilation (Swanson 
and others, 1976). Gravity profile above 
section is from dataset of J.P. Kauahikaua 
(written commun., 2011); mGals, milligals. 
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Where they are youthful, Hawaiian calderas form 
topographic features 2–5 km across. They mark rudely circular 
zones of subsidence, lava infilling, and intrusion. Subtle 
arcuate faults may mark the outer limit of caldera-related 
deformation, which extends much farther outboard than the 
prominent cliff of the most mobile part of the caldera. Such is 
the case at Mauna Loa and Kīlauea volcanoes today (fig. 10A) 
(Neal and Lockwood, 2003). Some caldera floors subside at 
least 800–900 m cumulatively through time, to account for 
the depth of exposure seen in caldera-filling rocks at deeply 
eroded volcanoes like Ko‘olau (O‘ahu) (Walker, 1987). 
Whether the subaerially emplaced lava of a caldera sinks 
substantially farther may never be known, because Hawaiian 
volcanoes subside into the submarine realm before erosion can 
expose their deep structural levels.

Older calderas, which may lack any present topographic 
expression, are mapped on the basis of several features that 
define the caldera boundary (Macdonald, 1965; Walker, 
1987). Caldera-filling lava-lake flows commonly are thick 
and vesicle poor; others, from fissures across a caldera’s 
floor, may be thin and vesicular. Structurally the lava flows 
are subhorizontal or dip inward if deformed by caldera 
subsidence. Caldera-filling lava flows might even dip outward 
slightly if they were built up around a central-vent location, 
as around Halema‘uma‘u (Kīlauea), but the dips of those 
flows are less than the 2°–10° dips of lava flows on a shield’s 
flanks. In some instances, talus breccia exposed within the 
rock sequence marks the trace of cliffs that bounded the 
caldera, as on Kaua‘i (Macdonald and others, 1960) and at 
Wai‘anae volcano (O‘ahu; Stearns and Vaksvik, 1935; Sinton, 
1987). At Ko‘olau volcano (O‘ahu), hydrothermal alteration 
is extensive in the caldera-filling lava sequence (Stearns and 
Vaksvik, 1935), perhaps a deeper-seated equivalent to the 
modern fumaroles on the floor of Kīlauea Caldera (Casadevall 
and Hazlett, 1983). The Ko‘olau caldera is also defined, in 
part, by a paucity of dikes relative to the adjacent rift zone 
(Walker, 1987), because the caldera’s episodic collapse buried 
or destroyed that part of the stratigraphic sequence, only to be 
filled anew with intact lava flows.

An enlarging caldera may engulf a previous caldera or 
shift its central region of subsidence, resulting ultimately in 
a set of bounding faults that enclose an area larger than that 
affected in any single caldera-forming event. That process is 
shown by the overlapping concentric or elliptical rims that 
form Mauna Loa’s caldera today. Thus, what is mapped as a 
large caldera in older volcanoes may simply be the convenient 
boundary drawn to encompass exposures of several successive 
caldera formations. Calderas may expand by the capture 
of adjacent pit craters (one of the mechanisms suggested 
by Macdonald, 1965), but the structural relation would be 
difficult to show, and pit craters may simply be casualties of 
proximity, not features fundamental to caldera growth.

The caldera on Kaua‘i is unusual for its substantial 
breadth (see the map of Macdonald and others, 1960); at 
16 km by 20 km, it is two to three times larger than other 
Hawaiian calderas (fig. 10C). The Kaua‘i caldera is also 

unusual, though not unique, in that it does not coincide 
closely with peak gravity values (Krivoy and others, 1965; 
Flinders and others, 2010). The mapped caldera may be a 
subsidence-and-fill feature unrelated or only marginally 
related to what would have been the shield’s original summit 
caldera (Holcomb and others, 1997; Flinders and others, 2010). 
The key structural features that could confirm this idea are 
unidentified because little mapping has taken place on Kaua‘i, 
especially of the older parts of the volcano, since the 1940s 
and 1950s (Macdonald and others, 1960), a reminder that basic 
geologic map data remain incomplete for parts of the Hawaiian 
Islands, even as we forge ahead in the 21st century.

The prevailing view of caldera formation, at Hawai‘i and 
elsewhere, is by subsidence consequent upon withdrawal of 
magma. The withdrawal removes support from a volcano’s 
summit region, causing it to subside. In an alternative 
mechanism, subsidence is due to the load of intrusions 
and cumulate rocks—the trail of present and past magma 
chambers stacked one above the other as the volcano grows 
(see, for example, Walker, 1987, 1988). This mass becomes 
unstable, relative to less dense surroundings, and settles into 
the crust.

Where does the magma go? The magma-withdrawal 
hypothesis is budgetary, in that the volume of caldera 
subsidence should roughly equal the volume of magma 
withdrawn. Objections have arisen about its application to 
Hawaiian calderas, because contemporaneous lava flows 
rarely match the volume of subsidence. With this comparison 
in mind, Macdonald (1965) compiled data for 13 events 
presumed to be related to caldera collapse at Kīlauea Volcano 
in the period 1823–1955. The volumes of subsidence ranged 
from 0.1 to 0.6 km3, but subaerially extruded lava volumes 
(corrected to dense magmatic equivalent) were only a fraction 
of that, from as little as 2 to 80 percent5.

The missing volume for some of these caldera-forming 
events might be accounted for by lava flows erupted in the 
submarine realm. For example, lava flows with thin sediment 
cover and therefore relative youthfulness (identified by high 
sonar backscatter) surround the distal end of Puna Ridge, 
the submarine part of Kīlauea’s East Rift Zone (Holcomb 
and others, 1988). The youngest of these flows is probably 
<200 yr old, covers about 600 km2, and has a volume >6 km3 
if assigned a thickness of 10 m, which is the low value for 
their flow-margin thickness (Holcomb and others, 1988; 
Holcomb and Robinson, 2004, their unit Qx). This flow, 
however, is the lone known example of a shield-stage alkalic 
lava flow on Kīlauea (Clague and others, 1995; Johnson and 
others, 2002; Coombs and others, 2006); thus, it probably 
did not pass through the subcaldera reservoir and rift zone 
of Kīlauea and is unrelated to caldera subsidence prior to 
1790. Adjacent extensive sea-floor lava flows, tholeiitic in 

5It was noted during technical review that these calculations may have little 
bearing on the issue of caldera subsidence if the events were simply draining 
of fluid lava (broad “lakes”) into the rift zones, and not the downdropping of 
solidified lava flows (D.A. Swanson, written commun., 2012).
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composition (Clague and others, 1995), are significantly 
older than the alkalic flow, as are all sampled or observed 
flows along the crest of the Puna Ridge (Clague and others 
1995, Johnson and others, 2002). The large lava flows at the 
submarine end of the rift could be related to caldera collapse 
events, but their ages and volumes are poorly constrained, 
so correlation with known subaerial volcanic events is 
speculative. Despite these uncertainties, their eruption may 
contribute substantially to balancing the budget of summit 
caldera collapses and rift-zone extrusion.

Another objection against the withdrawal hypothesis 
is that collapse need not accompany voluminous 
subaerial eruptions. No caldera collapse is known to have 
accompanied the ‘Ailā‘au eruptions, for example, which shed 
about 5  km3 onto the east flank of Kīlauea during a 50-year 
period about 1445 C.E. Instead, the summit area is thought 
to have remained intact so that lava could continue to spill 
eastward (Clague and others, 1999). ‘Ailā‘au may have had 
little obvious relation to caldera formation, mainly because 
it was essentially a summit eruption (at rates near historical 
rates) and therefore did not depressurize the summit magma 
chamber in the way that rift-zone eruptions do. Regardless, 
initiation of major collapse of the modern caldera occurred 
soon after the end of the ‘Ailā‘au eruption (Swanson 
and others, 2012), which leaves open the suggestion that 
sustained eruptions may prepare the ground for subsequent 
subsidence-related deformation, even if not producing a 
caldera immediately, as in the classic withdrawal model.

Perhaps the answer that overcomes all of these 
objections to the withdrawal model of caldera formation is 
the combination of large lava flows, submarine extrusion, 
the capacity of rift zones to store intruded magma, and the 
element of time. Caldera collapses may follow years-long 
periods when roof-rock strength and honeycombing of voids 
allows the summit region to remain intact while magma 
is withdrawn. For example, geodetic data suggest that 
Kīlauea’s East Rift Zone expanded along an 8.5-km-high 
dike to accommodate about 0.18 km3/yr of magma during 
a 6-year, essentially noneruptive time period between large 
south-flank earthquakes of 1975 and 1982 (Cayol and 
others, 2000). As modeled, the corresponding rift-zone 
fault was 47 km long, dilation was 40 cm/yr, and the area 
of slip on the décollement ultimately covered 132  km2 
(fig. 3 of Cayol and others, 2000). No caldera collapse 
followed this event, probably because input to the volcano 
was being shunted away from the summit (as opposed to 
draining the summit). Regardless, the volume of magma 
involved reaches into the realm needed for some collapse 
events. The episodicity of rift-zone intrusion and its possible 
correlation with specific caldera subsidence events are still 
to be determined. The geodetic constraint represented by 
an active rift zone episodically expanding, over a period 
of a few years, on the order of meters across kilometers-
long dimensions of height and length, will likely prove 
fundamental for understanding shield magmatism, rift-zone 
growth, and caldera subsidence.

Interactions with Water During the Shield 
Stage

Water plays a key role in phreatic and phreatomagmatic 
eruptions and in determining the slope of Hawaiian volcanoes 
above and below sea level. The widely observed phreatic 
eruption on Kīlauea in 1924, the earlier 300-year-long period 
of phreatomagmatic eruptions at Kīlauea that produced the 
Keanakāko‘i Tephra Member of the Puna Basalt (culminating in 
1790 C.E.; Swanson and others, 2012), and the presence of extensive 
older ash deposits on parts of Kīlauea and Mauna Loa—examples 
are the Kalanaokuaiki Tephra (Fiske and others, 2009) and the 
Pāhala Ash (Easton, 1987)—make it clear that water influences 
the style of eruptions, and the volcanic hazards, at Kīlauea and, 
presumably, at older volcanoes in the chain.

Clague and Dixon (2000) used a model for formation and 
solidification of magma chambers (Clague, 1987a), involving 
hydrothermal cooling of those magma chambers, magmatic 
degassing, and timing of explosive eruptions, to propose that 
Hawaiian volcanoes undergo a number of important changes as 
they grow from the seafloor into tall subaerial mountains. When 
the volcano is submarine, such as Lō‘ihi Seamount, a shallow 
magma reservoir will persist as soon as magma flux is large 
enough that heat input exceeds heat extraction by hydrothermal 
circulation. The hydrothermal fluids are derived from 
seawater and interact with magma in the reservoir, where they 
contaminate resident magma with Cl, Na, and other components 
that are abundant in seawater (see, for example, Kent and 
others, 1999) but of low concentration in magma.

As the summit of the volcano grows into shallow water (as 
deep as 1 km) and then through sea level, significant degassing 
of magmatic volatiles can take place. Loss of these gases, 
especially of water, increases the density of the shallowest 
magma in the reservoir, leading to overturn and magma mixing 
in the reservoir (Dixon and others, 1991; Wallace and Anderson, 
1998). This is also when phreatic and phreatomagmatic 
eruptions start, although lava fountains can occur even deeper, 
driven by magmatic volatile losses (as on Lō‘ihi; Clague and 
others, 2003; Schipper and others, 2010b).

The next transition occurs when the top of the magma 
chamber reaches sea level as the hydrothermal fluids freshen 
and magma contamination by seawater diminishes. The final 
transition takes place when the top of the magma chamber 
rises above the orographic rain belt on the islands, where 
hydrothermal fluids are no longer replenished, and rapid 
cooling of the magma chamber by convection of hydrothermal 
fluids ceases, as also does fumarolic discharge. Mauna Loa 
has grown to this stage, but Kīlauea remains with the top of 
its magma chamber just at, or a little above, sea level, so that 
explosive eruptions remain common (Easton, 1987; Mastin, 
1997; Swanson and others, 2012). All these processes impart 
important characteristics on the erupted lavas and tephra, 
including contamination, degassing, mixing, and fractionation, 
but all also appear to be restricted in time to the late preshield, 
shield, and perhaps the beginning of the postshield stages.



116    Characteristics of Hawaiian Volcanoes

One notable characteristic of Hawaiian volcanoes is 
steeper submarine than subaerial slope. This topographic 
distinction results from the subaqueous chilling of subaerial 
lava flows by seawater, which tends to increase a lava flow’s 
effective viscosity and diminish its effective density because 
rock-water has a lower density contrast than rock-air (Mark 
and Moore, 1987). Fragmentation of lava at the shoreline and 
greater angle of repose in water also contribute to the increase 
in slope offshore. On older volcanoes, this slope change has 
been used to identify shorelines now submerged far below 
sea level around Hawai‘i (Clague and Moore, 1991; Moore 
and Clague, 1992), Maui Nui (Price and Elliot-Fisk, 2004; 
Faichney and others, 2009, 2010), the main Hawaiian Islands 
(Carson and Clague, 1995), and along the entire Hawaiian-
Emperor Seamount chain (Clague, 1996). These shorelines 
define the areas and sizes of former islands and are a key to 
understanding subsidence of the volcanoes (the topic of a 
later section).

Source Components of Shield-Stage 
Lavas

Chemical differences between shield lavas from adjacent 
Hawaiian volcanoes have been recognized for many years 
(see, for example, Tatsumoto, 1978; Frey and Rhodes, 1993). 
These intervolcano chemical differences, especially in isotopic 
systematics, correlate strongly with the geographic locations of 

the volcanoes along two curved subparallel trends, called the Loa 
and the Kea trends (fig. 11), that are defined through at least the 
eastern part of the main islands and are named after the largest 
volcanoes included in each trend—Mauna Kea and Mauna Loa.

Chemical differences in major, trace, and volatile 
elements and in radiogenic and rare-gas isotopic compositions 
of Hawaiian lavas have been used widely to define different 
mantle components involved in partial melting to produce 
the lavas (for example, Hauri, 1996; Dixon and Clague, 
2001; DePaolo and others, 2001; Gaffney and others, 2004; 
Ren and others, 2004, 2006; Abouchami and others, 2005; 
Xu and others, 2005, 2007b; Dixon and others, 2008; Huang 
and others, 2009). A major objective has been to understand 
the chemical structure of the Hawaiian plume. These 
various mantle components are commonly named after the 
volcano whose lavas display the most extreme end-member 
compositions—hence the KEA and KOO components 
are named for Mauna Kea and Ko‘olau volcanoes. Other 
components include a depleted HA component for Hawaiian 
asthenosphere, and FOZO, an entrained lower mantle 
component (fig. 12; Dixon and Clague, 2001). All except the 
depleted upper mantle component are thought to represent 
different parts of ancient lithosphere subducted a billion or 
so years ago and stored in the mantle. Other authors have 
suggested different end-member components, but all models 
include at least four components, one of which is depleted 
upper mantle (Helz and others, this volume, chap. 6). Much 
of the current discussion among scientists is centered on 
defining the full spectrum of chemical characteristics of the 
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end-member components and how these different components 
are arranged in the mantle source region beneath Hawai‘i. Two 
recent papers specifically address the origins of the chemical 
differences between Loa-trend and Kea-trend volcanoes 
(Huang and others 2011; Weis and others 2011) and the role of 
bilaterally zoned plumes. Matzen and others (2011) recently 
suggested that primary Hawaiian tholeiitic melts contain 
19–21 percent MgO, significantly higher than most previous 
estimates. This estimate, if confirmed, implies that Hawaiian 
tholeiitic magmas are generated deeper and at higher potential 
temperatures than are primary melts with lower MgO.

Transition from Shield to Postshield 
Stage

Hawaiian volcanoes lose vigor as they drift away from 
the hot spot. Shallow magma reservoirs that lie only 1–7 km 
deep during main stage activity cannot be sustained as magma 

supply decreases (Clague, 1987a), but reservoirs persist 
between 19-km (Bohrson and Clague, 1988) and 28-km depth 
(Frey and others, 1990), near the base of the downflexed ocean 
crust. This solidification of at least shallow magma reservoirs 
takes place near the end of the shield stage or within the 
postshield stage as magma supply dwindles.

As might be expected, the shift from shield to postshield 
stage is transitional. It is expressed geologically by the increasing 
number of alkalic basalt lava flows found interbedded in the upper 
part of the main stage sequence (table  2). For example, at Kohala 
volcano, strata that were interpreted as shield stage show great 
compositional variation, spanning well into the alkalic range and 
even crossing from basalt into hawaiite (fig. 3, Pololū Volcanics; 
Wolfe and Morris, 1996a,b). It is doubtful that any of the Hawaiian 
volcanoes shift abruptly from shield- to postshield-stage volcanism 
without first sputtering through a period of transition.

Other lithologic and petrographic changes are associated 
with lava flows during the transition. At West Maui, for example, 
the upper 50 m of shield stage strata shows an increase in the 
proportion of ‘a‘ā and an increase in the size and abundance of 
olivine and clinopyroxene phenocrysts (Diller, 1982; Sinton, 
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Table 2. Hawaiian volcanic formations and their approximate place in the scheme of shield-, late shield-, postshield-, and rejuvenated-stage 
volcanism.

[Mauna Loa, Kīlauea, and Lō‘ihi are not listed because they are in the shield stage only]

Volcano Tholeiitic shield exposed Late shield/postshield 
alkali basalt1 Postshield hawaiite-trachyte Rejuvenated stage

Ni‘ihau Pānī‘au Basalt Postshield plug (Ka‘eo),  
dike, and offshore cones

None Ki‘eki‘e Basalt

Kaua‘i Waimea Canyon Basalt,  
Nāpali and Olokele  
Members

Upper part of  Makaweli  
and Olokele Members

Scattered flows in upper part 
of Makaweli and Olokele 
Members

Kōloa Volcanics

Southwest of Ka‘ena  
Ridge(?) (submarine)2

Tholeiite recovered by  
dredge

None None Sparse rejuvenated- 
stage(?) alkalic 
lava

Wai‘anae (O‘ahu) Wai‘anae Volcanics,  
Lualualei Member

Wai‘anae Volcanics,  
Kamaileunu Member

Wai‘anae Volcanics, Pālehua  
and Kolekole Members

None

Ko‘olau (O‘ahu) Ko‘olau Basalt None None Honolulu Volcanics

Penguin Bank(?)  
(submarine)3

Only tholeiitic rocks  
have been sampled

None None None

West Moloka‘i West Moloka‘i Volcanics Spotty Wai‘eli and other late lava 
flows

None

East Moloka‘i Not exposed(?) East Moloka‘i  
Volcanics,  
lower member

East Moloka‘i Volcanics,  
upper member. As much as  
25 percent basanite on basis  
of published analyses

Kalaupapa  
Volcanics

Lāna‘i Lāna‘i Basalt None None None

Kaho‘olawe Kanapou Volcanics, main 
shield and caldera-filling  
strata

Kanapou Volcanics,  
late shield

Some Kanapou Volcanics are 
hawaiite and mugearite

None

West Maui Wailuku Basalt Spotty Honolua Volcanics Lahaina Volcanics

Haleakalā Not exposed(?) Honomanū Basalt Kula and Hāna Volcanics None

Māhukona 
(submarine)

None known

Kohala Pololū Volcanics, lower part(?) Pololū Volcanics Hāwī Volcanics None

Mauna Kea Drill core Hāmākua Volcanics Laupāhoehoe Volcanics None

Hualālai Submarine dredged  
samples; drill core

Hualālai Volcanics (Waawaa 
Trachyte Member at base)

Hualālai Volcanics, Waawaa 
Trachyte Member

None

1It is not our goal to impose a new stage name (late shield), but instead to identify for the reader those stratigraphic units that pose the greatest problem of 
assignment within a rigid scheme of stages. Each Hawaiian volcano brings its own fingerprint to the story, which makes generalizations difficult.
2A topographic prominence southwest of Ka‘ena Ridge was demarcated as a separate volcano by Eakins and others (2003). More commonly, it and Ka‘ena 
Ridge are considered a westerly rift zone of Wai‘anae volcano (O‘ahu). For example, Ka‘ena Ridge was considered part of Wai‘anae for volume calculations of 
individual volcanoes in the Hawaiian chain (Robinson and Eakins, 2006).
3Penguin Bank was proposed as a separate volcano by Carson and Clague (1995). On that basis it was used in calculations that describe the topographic history 
of Maui Nui, the multivolcano complex that encompasses the islands of Moloka‘i, Lāna‘i, Kaho‘olawe, and Maui (Price and Elliot-Fisk, 2004). More common is 
the assignment of Penguin Bank as a rift zone of West Moloka‘i volcano (for example, Robinson and Eakins, 2006).
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discrete geochemical groupings. At Mauna Kea (fig. 13A), 
the trend is toward increasingly silicic lava upward in the 
Laupāhoehoe Volcanics (Wolfe and others, 1997). At Waiʻanae 
volcano (fig. 13B), the trend is opposite, from the hawaiite-
mugearite of the Pālehua Member of the Wai‘anae Volcanics to 
alkali basalt of the overlying Kolekole Member (as defined by 
Presley and others, 1997). The trend at Haleakalā (fig. 13C) is 
less sharp, but the lava is increasingly alkaline upsection from 
the lower to the upper part of the Kula Volcanics. The overlying 
Hāna Volcanics is geochemically similar to the upper part of the 
Kula (Sherrod and others, 2003).

Distribution
Lava of the postshield stage forms thick sequences on 

Wai‘anae (O‘ahu), East Moloka‘i, West Maui, Haleakalā, Kohala, 
Mauna Kea, and Hualālai volcanoes. The postshield stage is 
represented by only a few flows and small volumes on Ni‘ihau, 
Kaua‘i, West Moloka‘i, and Kaho‘olawe volcanoes. Postshield 
stage lava is absent from Ko‘olau and Lāna‘i volcanoes.

Onset
Postshield-stage volcanism follows immediately after 

the shield stage. At some volcanoes, like Kaua‘i, a discrete 
postshield sequence is ill-defined, but alkalic basalt, hawaiite, 
and mugearite—rocks characteristic of postshield strata at other 
volcanoes—are present in the upper part of the shield-stage 
Waimea Canyon Basalt.

No temporal gap between late shield and postshield 
stages is evident at volcanoes that have a distinct, readily 
mapped postshield stratigraphic sequence. If a hiatus exists, 
it is too brief to date by K-Ar or 40Ar/39Ar geochronology. 
This brevity is indicated in the dating archive by an overlap 
of radiometric ages (and their analytical errors), even where 
the field evidence indicates no stratigraphic interfingering. 
In the field the stratigraphic break is sharp but concordant, 
suggesting little erosion during the transition.

On West Maui, for example, ages of the shield-stage 
Wailuku Basalt range from about 2 to 1.35 Ma, and those of 
the postshield Honolua Volcanics range from 1.35 to 1.2  Ma 
(McDougall, 1964; Naughton and others, 1980; Sherrod and 
others, 2007a). The statistical overlap of ages at about 1.3 Ma 
suggests that very little time elapsed during the switchover 
from stage to stage. No field-based evidence of interfingering 
is known, so on West Maui, the terminal period of shield-stage 
volcanism was relatively brief, not protracted across many 
hundreds of thousands of years.

A similarly brief or nonexistent hiatus marks the 
transition from shield to postshield stage on West Moloka‘i. 
There, two dated postshield cones have ages of 1.80 and 
1.73 Ma (Clague, 1987b), whereas fractionated tholeiite 
near the top of the shield sequence has an age of 1.84 Ma 
(McDougall, 1964). The analytical error for these three ages 
permits them to be roughly synchronous.

2005). At both West Maui and Waiʻanae (O‘ahu) volcanoes, 
ash beds and soil horizons are increasingly common upsection, 
the latter indicating a general decrease in eruption frequency 
(Macdonald, 1968; Sinton, 1987). The ash beds indicate a 
landscape increasingly speckled by scoria cones and small 
domes that produced ash and lapilli, in contrast to the spatter-rich 
vents characteristic of shield-stage eruptions. Some interpret this 
change as a general increase in explosivity of eruptions during 
this transitional time. Instead of being more explosive in the 
transitional and postshield phases, however, a Hawaiian volcano 
may produce less lava relative to vent deposits, so we see more 
of the Strombolian products. During this transition, vents also 
become scattered more widely, so the likelihood of widely 
distributed tephra might increase.

Postshield Stage
Lava flows and associated tephra in the stratigraphic 

formations attributed to postshield-stage volcanism are more 
alkalic and commonly more differentiated than the tholeiitic 
lava of the shield stage. Most common are rocks with 
compositions in the range hawaiite to benmoreite; trachyte is 
rare (fig. 13). Alkalic basalt may also be present.

The petrogenetic cause for these changes was stated 
succinctly by Sinton (2005):

A consistent characteristic of lava compositions from 
most postshield formations is evidence for post-melting 
evolution at moderately high pressures (3–7 kb). Thus, 
the mapped shield to postshield transitions primarily 
reflect the disappearance of shallow magma chambers 
(and associated calderas) in Hawaiian volcanoes. . . . 
Petrological signatures of high-pressure evolution are 
high-temperature crystallization of clinopyroxene and 
delayed crystallization of plagioclase, commonly to 
<3 percent MgO.

This description builds on earlier ideas about postshield 
volcanism (Clague, 1987a), such as loss of shallow magma 
chambers, the end of caldera formation, and the predominance 
of magma-storage zones at deep crustal to uppermost mantle 
depths in excess of 15 km. Deep differentiation of magmas by 
crystal fractionation leads to the more fractionated lava flows 
of the postshield stage.

Only two volcanoes among the Hawaiian Islands lack the 
alkalic rocks that characterize postshield volcanism. Ko‘olau 
(O‘ahu) entered the rejuvenated stage following a hiatus of 
1 m.y. after ending the shield stage. Lāna‘i lacks any volcanism 
younger than the shield stage, which ended there about 1.3  Ma. 
Excluded from this count are the three youngest volcanoes 
(Mauna Loa, Kīlauea, and Lō‘ihi), which lack postshield 
volcanism simply because they have yet to progress fully 
through the shield stage. Figure 14 shows the stages and timing 
for volcanoes at each of the main Hawaiian Islands.

At some volcanoes the postshield-stage stratigraphic 
sequence can be subdivided into members that have fairly 
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Figure 14.  Plot of age versus distance from Kīlauea, showing 
the duration of the different developmental stages for each 
volcano in the main Hawaiian Islands. From Clague and 
Dalrymple (1987) but updated according to a Hawaii statewide 
geochronologic GIS database (Sherrod and others, 2007b) and 
additional ages from Kīlauea (Lipman and others, 2006), Kaua‘i 
(Garcia and others, 2010), Kohala (Lipman and Calvert, 2011), 
and Ko‘olau (Yamasaki and others, 2011). Red line, suggesting 
age of volcano birth, has slope of 10 cm/yr (average plate 
motion). Some stratigraphic formations or members are listed for 
Haleakalā and Wai‘anae volcanoes, where the postshield stage 
comprises multiple units.

Duration of Postshield-Stage Volcanism
Once underway, postshield-stage volcanism typically 

persists for 100,000–500,000 years but may continue for as 
long as 1 m.y., as at Haleakalā (table 3; fig. 14). Short-duration 
examples include East Moloka‘i, where lava flows and domes as 
thick as 520 m accrued in the period between 1.49 and 1.35 Ma; 
and West Maui, where postshield strata 120 m thick accumulated 
in the period 1.35–1.2 Ma (Sherrod and others, 2007a). At 
Mauna Kea, postshield-stage volcanism has been ongoing for 

265,000 years (Wolfe and Morris, 1996a). Hualālai, too, is in 
the postshield stage, persisting already for about 115,000 years 
(Cousens and others, 2003). On Wai‘anae volcano, the 
postshield Pālehua Member has a narrow age range from about 
3.06 to 2.98 Ma (fig. 15; Presley and others, 1997), suggesting 
eruption in as little as 100,000 years, and the overlying 
Kolekole Member extends the postshield duration by only 
another 140,000 years. Where transitions mark the beginning 
and end of postshield activity (as is the case at Kaua‘i), the 
duration of the postshield stage has large uncertainty.
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Figure 15.  Plots of sample ages showing the 
lack of a time gap between shield- and postshield-
stage strata at (A) Wai‘anae (O‘ahu) and (B) West 
Maui volcanoes (Maui), which are the two Hawaiian 
volcanoes with deepest exposures into the shield-
stage strata and most extensive dating of shield 
and postshield lava. Ages arranged from oldest to 
youngest within each stratigraphic unit, but precise 
stratigraphic position of a sample relative to others 
in the same formation is rarely known. Gray band 
shows likely range of stratigraphically valid ages 
across each formation, as a guide to recognizing 
ages too old or too young. Specific data sources are 
drawn from a Hawaii statewide geochronologic GIS 
database (Sherrod and others, 2007b). Error bars are 
two standard deviations (2σ). For Wai‘anae volcano, 
stratigraphic members are part of the Wai‘anae 
Volcanics as defined by Sinton (1987) and Presley 
and others (1997).

Ni‘ihau
At Ni‘ihau, the postshield-stage duration is ill-defined, 

owing to large analytical uncertainty in the radiometric 
ages. An alkalic dike and the eroded remnants of two cones 
represent the postshield stage onshore, and a few additional 
postshield cones are located offshore. Four onshore postshield 
samples yielded K-Ar ages ranging from 5.15±0.225 to 
4.67±0.16 Ma (G.B. Dalrymple, data in Sherrod and others, 
2007b), and 40Ar/39Ar isochron ages from two offshore 
postshield cones are 4.93±0.44 and 4.74±0.54 Ma (table 4), 
within the range of the on-land samples. These ages allow that 
postshield activity on Ni‘ihau could be as brief as 100,000–
200,000 years or as lengthy as about 500,000 years.

Kaua‘i
On Kaua‘i, postshield lava flows of hawaiite and 

mugearite with ages in the range 3.84–3.81 Ma occur at the 
top of the Olokele and Makaweli Members of the Waimea 
Canyon Basalt (Clague and Dalrymple, 1988). Clasts of 
other probable postshield-stage alkalic basalts occur in 
conglomerate recovered in water wells from the southeastern 
part of the island (Reiners and others, 1999). The oldest 
dated lava with postshield chemical affinity, an irregular dike 
of alkalic basalt from Kālepa Ridge, has an 40Ar/39Ar plateau 
age of 4.39±0.19 Ma and an isochron age of 4.39±0.07 Ma 
(table 4); the spread of ages from oldest to youngest suggests 
the postshield stage lasted roughly 600,000 years (more than 
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Table 3. Thickness and duration of postshield-stage volcanism at Hawaiian volcanoes with well-defined hawaiite-trachyte suites above shield-stage 
stratigraphic sequences.

[Coverage indicates percent of volcano’s subaerial surface mantled by postshield deposits. Volume not corrected to dense-rock equivalence. Duration of post-
shield activity in millions of years (m.y.); the age of the activity is in millions of years ago (Ma)]

Volcano Postshield occurrence and coverage Thickness Volume, 
in km3 Duration

Ni‘ihau One small intrusion n.a. --
Kaua‘i Scattered lava flows, not mapped separately       -- -- --
Wai‘anae 20% covered ≤180 m 0.22 m.y. (3.06–2.84 Ma)
Ko‘olau None 0 0 0
West Moloka‘i 3 small lava flows, 16% covered n.d. <0.1 m.y. (?)
East Moloka‘i 50% covered ≤520 m n.d. 0.14 m.y. (1.49–1.35 Ma)
Lāna‘i None 0 0 0
Kaho‘olawe Thin extensive cover, 77%
West Maui 18% covered 120 m 0.15 m.y. (1.35–1.2 Ma)
Haleakalā Continuous thick cover, 95% (Kula and Hāna Volcanics) 1 km 3001 0.95 m.y., ongoing
Kohala 44% covered (Hāwī Volcanics) 0.14 m.y.
Mauna Kea 950 m 200–5002 0.25 m.y., ongoing
Hualālai 3003 0.1 m.y., ongoing
1Haleakalā postshield volume from Sherrod and others (2003).
2Mauna Kea postshield volume is crude estimate corresponding to area of Laupāhoehoe Volcanics and upper part of Hāmākua Volcanics multiplied by thickness 
range 50–200 m.
3Hualālai postshield volume is crude estimate corresponding to volume of volcano above sea level.

Table 4. New 40Ar/39Ar incremental heating ages for samples from Ni‘ihau and Kaua‘i.
[Ni‘ihau ages analyzed by W.C. McIntosh, New Mexico Geochronology Research Laboratory, New Mexico Institute of Mining and Technology, Socorro, New 
Mexico. Kaua‘i ages analyzed by John Huard, Noble Gas Mass Spectrometry Lab, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 
Corvallis, Oregon. Irrad. No., irradiation run sequence. The value n shows number of step increments used to determine the plateau age. MSWD, mean square of 
weighted deviates. WGS84, datum of World Geodetic System 1984. Sample altitude relative to mean sea level; negative altitudes are depths below sea level]

Sample Volcano 
stage

Lab 
no.

Irrad. 
no.

Age 
method n % 

39Ar MSWD K/Ca±2σ Age±2σ,  
in Ma

Longitude, 
WGS84

Latitude, 
WGS84

Altitude, 
in meters

Island of Ni‘ihau
T322-R17 Shield 55320-01 NM-185F Plateau 7 90.8 2.6 0.2±0.1 5.42±0.11 –160.2233 22.09420 –1092
T321-R7 Postshield 55336-01 NM-185J Isochron 9 22.2  -- 0.4±0.6 4.93±0.44 –160.3529 21.9463 –821
T321-R6 Postshield 55332-01 NM-185H Isochron 8 22.3  -- 0.3±0.3 4.74±0.54 –160.3521 21.9458 –852
T317-R6 Rejuvenated 55316-02 NM-185F Plateau 2 27.4 4.6 0.1±0 1.37±0.32 -- --     --
T317-R9 Rejuvenated 55318-01 NM-185F Plateau 9 94.1 2.5 0.1±0.2 0.50±0.04 –160.2488 22.1310 –1692
T317-R8 Rejuvenated 55338-01 NM-185J Plateau 8 91.7 3.4 0.1±0.1 0.50±0.10 –160.2489 22.1305 –1700
T322-R6 Rejuvenated 55334-01 NM-185J Plateau 8 89.7 1.6 0.1±0.1 0.39±0.09 –160.2317 22.0913 –1407

Island of Kaua‘i
86KA3 Postshield 05c3516 OSUSF05 Plateau 3 65.1 0.2 0.58±0.19 4.39±0.19 –159.3576 22.0022 183
86KA2 Rejuvenated 05c3492 OSUSF05 Plateau 3 61.2 4.1 0.03±0.08 2.18±0.271 –159.6008 22.0125 451
75K1 Rejuvenated 05c3524 OSUSF05 Plateau 6 97.9 0.8 0.02±0.03 0.68±0.042 –159.5244 21.9153 244
76K1 Rejuvenated 05c3486 OSUSF05 Plateau 5 98.2 1.0 0.02±0.03 0.52±0.033 –159.3583 22.0376 37
For Kaua‘i samples, superscripted ages indicate samples also dated by Clague and Dalrymple (1988), with the following resulting K-Ar ages and ±1σ error:
11.914±0.023 Ma
20.648±0.034 Ma
30.554±0.023 Ma
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shown on fig. 14). Also assigned to the uppermost part of 
the Waimea Canyon Basalt (corresponding to postshield-
stage volcanism) are three basanite samples with K-Ar  ages 
in the range 3.92±0.03 to 3.85±0.06 Ma (Garcia and 
others, 2010). These samples share chemical and isotopic 
characteristics with other younger Kōloa lavas. Their ages 
and isotope chemistry, in conjunction with those of the 
dated hawaiite and mugearite, suggest that the transition 
from postshield to rejuvenated stages may be gradational 
(interbedded stratigraphically) and that an eruptive hiatus 
need not necessarily occur in order to define the onset of the 
rejuvenated stage.

Wai‘anae
The postshield sequence on Wai‘anae volcano (O‘ahu) 

comprises the Pālehua and Kolekole Members of the Wai‘anae 
Volcanics (mapping of J.M. Sinton, plate 3 in Sherrod and 
others, 2007b). The Pālehua, 3.06–2.98 Ma in age, contains 
hawaiite and mugearite, whereas the overlying Kolekole, 
2.98–2.90 Ma, is tholeiitic (Presley and others, 1997). The 
Kolekole Member, which contains the youngest of the 
lava flows on Waiʻanae volcano, was once interpreted as a 
rejuvenated-stage formation, but it has been reclassified as late 
postshield stage, partly because it follows so closely on the 
deposition of the Pālehua Member (Presley and others, 1997). 
Chemically, Kolekole lava flows are distinct from rejuvenated-
stage lavas by virtue of their higher SiO2 (compare figs. 13B 
and 17). They and the underlying Pālehua Member form an 
unusual postshield sequence, however, because the younger 
part (Kolekole) is generally lower in total alkali content than 
the older part (Pālehua; fig. 13B).

Haleakalā
Much longer postshield stages characterize a few 

volcanoes. At Haleakalā volcano, the Kula Volcanics erupted 
from 0.96 Ma until 0.12 Ma, and activity was continuous 
with the overlying Hāna Volcanics (Sherrod and others, 
2003). These two formations form a cap 1 km thick across the 
summit of Haleakalā.

In a matter of clarification, the Hāna Volcanics 
stratigraphic unit was long considered a rejuvenated-stage 
formation on the basis of a presumed depositional hiatus that 
separated it from the Kula Volcanics (Stearns and Macdonald, 
1942). Erosion of large valleys on East Maui, which preceded 
emplacement of the Hāna, was thought to require substantial 
time. Detailed dating at Haleakalā, however, shows that as 
little as 0.03 m.y. may have been required to deeply scallop 
the landscape. The Hāna Volcanics unit is geochemically 
similar to the upper part of Haleakalā’s postshield formation, 
the Kula Volcanics. The lack of any intervening hiatus favors 
an interpretation that the Hāna is merely the waning phase of 
postshield volcanism (Sherrod and others, 2003).

Kaho‘olawe
The Kaho‘olawe volcanic complex exposes the youngest 

part of shield-building strata, including what were described as 
postcaldera strata (Stearns, 1940). More recently, geochemical 
analyses suggest that these postcaldera lava flows, which range 
from tholeiitic basalt to hawaiite, correspond to a transition 
into the postshield volcanic stage (Fodor and others, 1992; 
Leeman and others, 1994). The extent of likely postshield-
stage strata, as shown on the geologic map of Hawai‘i (plate 6 
of Sherrod and others, 2007b), is derived from an unpublished 
compilation by Harold Stearns (courtesy of M.O. Garcia).

Kaho‘olawe’s youngest volcanic products are found 
on the east side of the island. These lava flows and tephra, 
tholeiitic in composition, overlie older strata with pronounced 
discordance, probably owing to a preceding episode of slope 
collapse. In the absence of dating, this discordance was 
taken as evidence that substantial time intervened before 
eruption of the mantling volcanic rocks (Stearns, 1940), 
which were thought to be part of rejuvenated-stage volcanism 
(Langenheim and Clague, 1987). However, new ages of about 
0.98 Ma (Sano and others, 2006) show that the mantling lava 
flows are coeval with Kaho‘olawe’s postshield strata, and their 
chemistry makes them similar to those strata. The structural 
discordance between the two is a rare instance where the age 
of a slope-failure event has been dated directly.

Distribution of Postshield-Stage Cones and 
Eruptive Fissures

Postshield cinder and spatter cones are concentrated 
along preexisting rift zones on West Moloka‘i, Haleakalā, 
and Hualālai, whereas they are more dispersed on Kohala, 
East Moloka‘i, and Wai‘anae. On Mauna Kea, the cones are 
scattered over a large region of the summit and upper slopes.

Xenoliths in Postshield Lava and Tephra
Xenoliths are abundant in postshield lavas and cinder 

on Mauna Kea (Fodor and Vandermeyden, 1988; Fodor and 
Galar, 1997; Fodor, 2001) and Hualālai (Jackson, 1968; 
Jackson and others, 1981; Bohrson and Clague, 1988; Clague 
and Bohrson, 1991; Chen and others, 1992; Shamberger 
and Hammer, 2006). Xenoliths in postshield lavas are also 
present at Kohala, East Moloka‘i, West Maui, and Wai‘anae 
but are much less common and smaller (Jackson and others, 
1982). All xenoliths in postshield eruptive products are mid-
to-deep crustal cumulates, including rare ocean crust gabbro 
(Clague, 1987a). The ultramafic xenoliths are dominated by 
dunite, clinopyroxenite, and wehrlite rather than the mantle 
lithologies lherzolite and pyroxenite (with or without garnet) 
or harzburgite that predominate in rejuvenated-stage tephra 
and lavas and in rare preshield-stage lavas from Lō‘ihi 
Seamount (Clague, 1988).
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Isotopes Indicate Changing Source 
Composition Through Time

Fractionation and changes in source composition 
accompany the development of postshield-stage volcanic 
sequences, although such distinctions are difficult to recognize 
at those Hawaiian volcanoes where the accumulated strata are 
thin or unevenly distributed. Where the postshield sequence 
is thick, however, or where the episode was sufficiently long-
lived, chemical variation through time can commonly be 
documented.

At Haleakalā, the Hawaiian volcano with the greatest 
exposed thickness of postshield strata, strontium isotopic 
ratios diminish upsection, from 0.70355 (in the lower part 
of Kula Volcanics) to as low as 0.70308 (upper part of Kula 
and overlying Hāna Volcanics; fig. 16A; data of West and 
Leeman, 1987, 1994; West, 1988; Chen and others, 1991). An 
even greater span is seen if the stratigraphically transitional 
lava of the Honomanū Basalt is considered (fig. 16A). The 
strontium isotopes indicate that the contribution of various 
source components in the underlying mantle changed during 
the lengthy history of postshield-stage volcanism at Haleakalā 
(Chen and others, 1991). For East Moloka‘i, a similar pattern 
may apply, but there the postshield stratigraphic sequence is too 
thin to define an extensive change (fig. 16B).

Rejuvenated-Stage Volcanism
The rejuvenated stage encompasses those volcanic deposits 

that form the latest stage in a Hawaiian volcano’s history. As 
classically defined, the term “rejuvenated stage” was conceived 
to account for volcanism that resumed following a period of 
quiescence. Indeed, rejuvenated-stage volcanism was first 
recognized because field evidence indicated an intervening 
period of inactivity—for example, weathering contrasts among 
older and younger lava flows, the preservation of primary 
geomorphic features in young lava flows or vents and their 
absence in older ones, or evidence that substantial erosion 
preceded the emplacement of lava flows in canyons or across 
alluvial fans. By these criteria, 5 of the 15 emergent volcanoes 
on the 8 major Hawaiian Islands have rejuvenated-stage 
volcanism: Ni‘ihau, Kaua‘i, Ko‘olau (O‘ahu), East Moloka‘i, 
and West Maui volcanoes. Rejuvenated-stage eruptions include 
the youngest eruptions on the Islands of Ni‘ihau, Kaua‘i, O‘ahu, 
and Moloka‘i. Rejuvenated-stage lavas of West Maui volcano 
are older than postshield-stage eruptions of Haleakalā on the 
same island, and no volcano on the Island of Hawai‘i has 
reached the rejuvenated stage.

Rejuvenated-stage lava flows and vent deposits diminish 
greatly in areal extent southeastward along the island chain. 
About 35 percent of both Ni‘ihau and Kaua‘i are covered 
by rejuvenated-stage products. In contrast, at Ko‘olau 
volcano (O‘ahu) the coverage is only 6 percent. Coverage  of 

East Moloka‘i is only about 2 percent, where this stage is 
represented only by the single Kalaupapa shield (Clague 
and others, 1982) and perhaps two islets off the east end of 
Moloka‘i (Stearns and Macdonald, 1947). On West Maui 
the coverage is a mere 0.6 percent, the consequence of four 
scoria cones and two lava-flow units (Tagami and others, 
2003). This areal comparison, from simple GIS calculations 
(Sherrod and others, 2007b), lacks the significance of volume 
calculations. But volume decreases likely are similar in 
magnitude or even more substantial southeastward, because 
the extensive lava sequences on the northwestern islands 
include more basin-filling, thick deposits. Erosion has 
stripped some products, and substantial areas of rejuvenated-
stage lava flows are flooded in the offshore reaches of the 
islands, which further limits the comparison. The time span of 
emplacement is longer on Ni‘ihau and Kaua‘i (2.5–3.5 m.y) 
than on the other three islands (only the past 1 m.y.). Even 
so, normalization for age will not compensate for these 
differences in areal extent.

Rejuvenated-stage rocks share some similarities with 
postshield-stage rocks. Both are alkalic. Eruptive products 
are scoria, cinder, and ash cones, and lava flows, chiefly ‘a‘ā. 
Vent loci are scattered without regard to the alignment of rift 
zones that were active in shield-stage time.

Does a Time Gap or Chemical Change Define 
Rejuvenated-Stage Volcanism?

Where a time gap occurs between postshield and 
rejuvenated stages, that hiatus in volcanism ranges from 
0.6 m.y (West Maui; Tagami and others, 2003) to ~2 m.y. 
(Ni‘ihau; Clague and Dalrymple, 1987). The hiatus can be 
estimated confidently where rejuvenated-stage eruptive vents 
are few, because the entire rejuvenated-stage sequence can 
be dated. Helpful, too, is adequate dating of the underlying 
late shield or postshield lava flows emplaced before the 
quiescence. It is only in the last decade that these goals have 
been reached for many of the Hawaiian volcanoes.

But is a time gap a requirement to define rejuvenated-
stage volcanism? The past two decades brought an 
onslaught of geochemical analyses and isotopic dating to 
Hawaiian volcano investigations. Discoveries have brought 
surprises, not the least of which is the exceedingly brief 
time gap that separates some volcanic stratigraphic units 
that once were thought divided by substantial interludes. 
Lengthy time gaps simplify the assignment of strata to 
growth stages, whereas transitions during brief interludes 
confound the task. The definition of Hawaiian rejuvenated-
stage volcanism is currently a dilemma. No single chemical 
criterion adequately distinguishes between postshield- and 
rejuvenated-stage volcanism. And if a hiatus is required, 
then what is the definitive duration? Herein we first address 
the general characteristics of rejuvenated-stage volcanism 
and then return to the question of definitions.
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Figure 16.  Graphs showing strontium isotopic ratio (87Sr/86Sr), 
relative to stratigraphic position for strata of late shield, postshield, 
and rejuvenated stages at selected Hawaiian volcanoes. A, Haleakalā 
volcano. Data from West and Leeman (1987) and Chen and others 
(1991). “Stratigraphic position” corresponds to numbering system of West 
and Leeman (1994) for lava flows of Kula Volcanics. Samples plotted in 
stratigraphic positions 0 to –6 are from underlying strata now considered 
part of the Kula (Macdonald and others, 1983), and the top of Honomanū 
Basalt is placed lower. Stratigraphic positions for Hāna Volcanics 
assigned by using location data in West (1988) and mapping and dating 
by Sherrod and McGeehin (1999). Ages, in millions of years ago (Ma), 
from isotopically analyzed samples from Chen and others (1991). 
Generalized, nonlinear time scale relies on magnetic polarity data and the 
few ages available from samples with Sr isotope data (chiefly from Chen 
and others, 1991). B, East Moloka‘i volcano. Isotopic data from Xu and 
others (2005) for samples collected along Kalaupapa Trail traverse along 
the cliffy north flank of Moloka‘i, where lava flows are subhorizontal in 
attitude. Sample altitudes, reported by Sherrod and others (2007b), were 
recalculated to stratigraphic depth by using datum of highest shield-stage 
lava. C, Kaua‘i volcano. Isotopic analyses and ages from Clague and 
Dalrymple (1988) and Garcia and others (2010). D, Ko‘olau volcano. 
Samples analyzed for isotopic ratio lack stratigraphic control aside from 
stratigraphic formation assignment. Not shown are four rejuvenated-stage 
analyses in range 0.7025–0.7027, to conserve space in the presentation. 
Discounted are three rejuvenated-stage analyses (unshaded squares) 
that range from 0.7038 to 0.7045 (Lessing and Catanzaro, 1964), as high 
as any of the shield-stage results. Vague descriptions permit those three 
samples to be stream boulders or accidental lithic inclusions in tuff cones.

Youngest Rejuvenated-Stage Lava Flows 
Along the Island Chain

Sustained, sporadic rejuvenated-stage eruptions have 
continued into relatively recent time on five of the major 
islands, even though the age of the shield stage (and therefore 
of most of the lava volume) decreases from northwest 
(Ni‘ihau) to southeast (Hawai‘i). Indeed, when postshield-stage 
volcanism is added to the mix, every island except Lāna‘i and 
Kaho‘olawe has had an eruption in the past 0.4 m.y.

On Ni‘ihau, rejuvenated-stage volcanic rocks (the Ki‘eki‘e 
Basalt) are as young as 350 ka (fig. 14; G.B. Dalrymple, in 
Sherrod and others, 2007b). Four samples from offshore 
range in age from 1.39 to 0.39 Ma (table 4). On Kaua‘i, 
the rejuvenated-stage Kōloa Volcanics has ages as young 
as 150  ka, with 10 samples younger than 500 ka (Garcia 
and others, 2010). On O‘ahu’s Ko‘olau volcano, subaerial 
deposits of the Honolulu Volcanics generally yield youngest 
ages of about 100 ka (see results and discussion in Ozawa 
and others, 2005); younger ages have been reported but never 
corroborated. Offshore, submarine samples from the Koko Rift, 
also part of the Honolulu Volcanics, yielded youngest ages of 
about 140 ka (Clague and others, 2006). On East Moloka‘i, 
the Kalaupapa Volcanics have an age of about 350 ka (Clague 
and others, 1982). On West Maui, lava flows of the Lahaina 
Volcanics are clustered into two age groups: about 600 ka and 
300 ka (Tagami and others, 2003).

In summary, the youngest rejuvenated-stage lavas 
on Ni‘ihau, Kaua‘i, Ko‘olau (O‘ahu), East Moloka‘i, and 
West Maui are in the age range 350–100 ka. The duration 
of the rejuvenated stage, coupled with youngest ages of 
volcanic rocks, means that future eruptions on these islands 
are conceivable, despite their present distances from the 
Hawaiian hot spot. The infrequency of rejuvenated-stage 
eruptions, however, reduces the risk they pose to society to 
very low levels.

A Volumetrically Insignificant Part of Hawaiian 
Volcanoes

Rejuvenated-stage volcanism has long been known to 
contribute much less than 1 percent to the cumulative volume 
of a Hawaiian shield volcano (Macdonald and others, 1983; 
Clague, 1987a; Clague and Dalrymple, 1987). This estimate 
recently has been quantified for Kaua‘i, which has the most 
extensive rejuvenated-stage products among all the islands. 
About 60 km3 of rejuvenated-stage lava and tephra has 
been emplaced on the island (Garcia and others, 2010). A 
conversion to dense-rock-equivalent magma would reduce that 
volume by about 25 percent, because most of the lava is ‘a‘ā. 
Given Kaua‘i’s total shield volume of 57,600 km3 (Robinson 
and Eakins, 2006), the rejuvenated-stage lava is only about 
0.1 percent of the total (Garcia and others, 2010).

Ni‘ihau is second in the abundance of rejuvenated-
stage products (Holcomb and Robinson, 2004; Dixon and 
others, 2008). At Ni‘ihau, a substantial but poorly assessed 
volume of such products lies offshore (Clague and others, 
2000)—but that is still insufficient to amass even 1 percent of 
the volcano’s volume. Rejuvenated-stage lava flows are also 
widespread offshore around Ka‘ula, an islet 37 km southwest 
of Ni‘ihau (Holcomb and Robinson, 2004; Garcia and others, 
2008). Offshore lava flows and cones are rare around O‘ahu 
(Clague and others, 2006), Moloka‘i (Clague and Moore, 
2002), and Kaua‘i (Holcomb and Robinson, 2004). They are 
unknown offshore near any other Hawaiian islands.

However, volcanism resembling rejuvenated stage has 
occurred on the sea floor at somewhat greater distances from 
the islands themselves. An extensive young lava field (330 km 
along its northeast-trending axis) was emplaced on the deep 
seafloor 100–400 km north of O‘ahu (the North Arch field; 
Clague and others, 1990). These flows cover some 24,000 km2 
and have an estimated volume of 1,000–1,250 km3 (Clague 
and others, 2002), about 20 times the volume of rejuvenated-
stage lava on Kaua‘i. They were erupted from more than 100 
vents, whose form ranges from low shields to steep cones. 
Geochemically the flows are similar to Hawaiian rejuvenated-
stage lavas (Yang and others, 2003; Hanyu and others, 
2007) by virtue of their high abundance of incompatible 
elements, depleted rare gases, higher 143Nd/144Nd, and lower 
87Sr/86Sr relative to shield-stage lava. Other examples are 
seen southwest of O‘ahu and at several places along the 
Hawaiian chain as far west as the Midway Islands (Holcomb 
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and Robinson, 2004). These submarine flows call into question 
the concept of the rejuvenated stage, because they occur at 
locations that lack prior shield-stage activity, yet they have 
geochemical characteristics indicating similar magmatic sources 
and origins as the island-mantling rejuvenated-stage volcanic 
rocks (Yang and others, 2003).

Other submarine alkalic lavas, similar in many, but not all, 
aspects to rejuvenated-stage lavas, occur on the Hawaiian Arch 
south of Hawai‘i (Lipman and others, 1989; Hanyu and others, 
2005). They are richer in H2O and have higher, more primitive 
He isotopic ratios than rejuvenated-stage lavas (Dixon and 
Clague, 2001; Hanyu and others, 2005).

Geochemical Characteristics
The products of some rejuvenated-stage volcanism have 

silica contents that range down to values as low or lower 
than rocks of the shield and postshield stages, in the range 
35–45  percent SiO2. Rejuvenated and shield-stage compositions 
are nearly distinct, but the fields for rejuvenated and postshield 
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Figure 17.  Alkali-silica diagram (Na2O+K2O versus SiO2) for rejuvenated-stage volcanic rocks on Ni‘ihau, Kaua‘i, 
and O‘ahu. Also shown are the fields of the shield and postshield rocks on those volcanoes. Rock classification 
grid from Le Maitre (2002); shown dashed is boundary separating tholeiitic from alkalic basalt (Macdonald and 
Katsura, 1964). Listed in appendix are the specific data sources for these data, on the basis of a published Hawaii-
statewide whole-rock geochemistry GIS database (Sherrod and others, 2007b).

analyses overlap substantially (fig. 17). As another example, at 
high MgO content (10–15 percent), contents of incompatible 
elements, such as Rb (15–40 ppm), are similar to the enriched 
values seen in postshield rocks.

Strontium isotopic ratios for rejuvenated-stage lava are 
lower than those of late-shield rocks, but they overlap with 
those of postshield flows and tephra. On East Moloka‘i, where 
the volcanic stages are clearly demarcated, rejuvenated-stage 
lava (Kalaupapa Volcanics) has 87Sr/86Sr less than 0.7032, 
and underlying postshield and shield-stage lava has ratios 
greater than 0.7033 (fig. 16B). At Ko‘olau volcano (O‘ahu), 
where the postshield stage is lacking, 87Sr/86Sr is in the range 
0.7025–0.7036 for rejuvenated-stage lava (Honolulu Volcanics) 
and 0.7036–0.7045 for shield-stage lava (fig. 16D). On Kaua‘i, 
Sr isotopic ratios of rejuvenated-stage lava (0.7030–0.7033) are 
only slightly lower than those of several of the postshield-stage 
rocks (~0.7033; fig. 16C). Indeed, on Kaua‘i, the notable shift 
toward lower 87Sr/86Sr values occurs in the postshield stage 
before the largest time gap in activity, but with both high and low 
Sr isotopic ratios in samples erupted at nearly the same time.
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Duration of Quiescence
The hiatus in volcanism, where such exists, between 

postshield and rejuvenated stages ranges from 0.6 m.y. (West 
Maui; Tagami and others, 2003) to ~2 m.y. (Ni‘ihau; Clague 
and Dalrymple, 1987). Estimating the hiatus can be done with 
some confidence where rejuvenated-stage eruptive vents are 
few, because the entire rejuvenated-stage sequence can be 
dated, and the youngest underlying late shield or postshield 
lava flows are also well dated. These conditions have been 
reached in the last decade for many of the islands’ volcanoes.

For Kaua‘i, Rejuvenated Stage Is Gradational 
from Postshield Stage

For the Island of Kaua‘i, the age and chemistry of 
earliest rejuvenated-stage volcanism suggests no hiatus in 
eruptive activity in the progression from postshield stage. 
Radiometric dating in the 1980s suggested an odd feature of 
Kauaʻi’s rejuvenated stage compared to that of other Hawaiian 
volcanoes—an exceedingly brief quiescence preceding the 
rejuvenated stage but a lengthy pause from 3.65 to 2.59 Ma 
within rejuvenated time (Clague and Dalrymple, 1988). 
This “start-pause-resume” history may be the result of an 
incompletely sampled sequence of volcanic rocks.

Recently, 40Ar/39Ar ages as old as about 3.4 Ma were 
obtained from drill cuttings from the Hanamā‘ulu well, which 
penetrates a deep basin on the east side of Kaua‘i (Izuka 
and Sherrod, 2011). The ages are 3.11±0.56, 3.22±0.26, and 
3.42±0.24 Ma at downhole depths of 160, 210, and 270 m, 
respectively. All lavas in the Hanamā‘ulu well are geochemically 
similar to rejuvenated-stage lavas (Reiners and others, 1999). 
Thus, even with their large analytical errors, these new ages fill 
much of the gap in the preexisting dating archive of rejuvenated-
stage lava in the range 3.6–3.0 Ma. The hiatus disappears 
completely if three basanite lava flows—described by Garcia 
and others (2010) as postshield with ages of 3.92, 3.85, and 
3.58  Ma—are assigned instead to the Kōloa Volcanics, as 
their low Sr isotopic values suggest (<0.70322 for all three). 
Regardless of how these controversial samples are finally 
assigned across the postshield-rejuvenated-stage boundary, any 
hiatus before rejuvenated-stage activity on Kaua‘i was extremely 
brief, as was any hiatus between shield and postshield activity. 
Plausibly, volcanic activity on Kaua‘i continued uninterrupted 
from shield to postshield to rejuvenated stage, and the change in 
isotopic signature (especially Sr) at about 3.9 – 3.8  Ma marks a 
significant change in the magma source region.

Hypotheses of Rejuvenated-Stage Magma 
Generation

Rejuvenated-stage volcanism probably originates from 
lithospheric sources (Lassiter and others, 2000) that undergo 
decompression melting—for example, as the lithosphere 

rebounds from the zone of depression beneath the largest 
young volcanoes (Jackson and Wright, 1970; Bianco and 
others, 2005) or when hot mantle, dragged initially downward 
in response to plate motion, rises naturally by its lower 
density until pressure and temperature are suitable for melt 
production (Ribe and Christensen, 1999). A low degree of 
melting of recently metasomatized depleted mantle has been 
the general model for the formation of rejuvenated-stage 
magmas for nearly 30 years (Clague and Frey, 1982). As 
modeled by Garcia and others (2010), mantle in the upper 
part of the plume undergoes a low degree of partial melting, 
less than 3 percent. More recent studies have focused on the 
mantle components included in the melting or on the nature 
and amount of carbonatitic and silicate melt metasomatism 
(Dixon and others, 2008).

An alternative explanation for rejuvenated-stage magmas 
invokes lithospheric melting by conductive heating (Gurriet, 
1987), but this is inconsistent with Pb isotopic data from 
Kaua‘i and O‘ahu (Garcia and others, 2010). It appears that 
the mantle plume contributes little or no source material 
(Yang and others, 2003; Hanyu and others, 2005). In any 
model, enhanced crustal fracturing, such as might result from 
the lithospheric rebound, may enable magma to percolate 
upward more easily (Clague and others, 1990).

Degradation and Eventual Submergence 
of Hawaiian Volcanoes

A spectrum of processes work to degrade the volcanoes 
once they have formed. Primary among these are subaerial 
erosion, landslides, and subsidence.

Erosion
Hawaiian volcanoes, especially those that grow high 

above sea level, experience high rainfall, particularly on their 
northeastern sides that face the trade winds. Mean annual 
rainfall amounts locally exceed 9 m (Giambelluca and others, 
1986; Haleakala Climate Network, 2011), leading to rapid 
erosion that carves deep canyons in <1 million years, as 
seen at Kohala on the Island of Hawai‘i. Other features once 
thought to be entirely erosional, such as the pali (cliff) on the 
north side of East Moloka‘i, are now interpreted as landslide 
headwalls (on Moloka‘i, of the Wailau slide) or backstepping 
of those headwalls (Clague and Moore, 2002).

Landslides
Landslides occur at all scales in Hawai‘i, ranging from 

small slides that modify coastal cliffs and canyon walls to 
giant slides that displace large parts of islands (Denlinger 
and Morgan, this volume, chap. 4). The idea that Hawaiian 
volcanoes, particularly Ko‘olau (O‘ahu) and East Moloka‘i, 
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had been modified by giant landslides was first proposed by 
Moore (1964). The enormous scale of the landslides made 
the idea controversial at first, but the evidence became firmly 
established when the U.S. Geological Survey’s Marine 
Geology Program mapped the newly established 370-km 
(200  nautical miles) Exclusive Economic Zone around 
Hawai‘i in the mid to late 1980s, using the GLORIA sidescan 
sonar system. Those surveys showed extensive debris fields 
strewn across the deep sea floor several hundred kilometers 
from the islands, as well as rotational slumps characterized by 
large segmented blocks (Moore and others, 1989). The debris 
fields were proposed to have formed during catastrophic 
debris avalanches spawned on the upper submarine flanks of 
the islands.

Seventeen discrete slides that formed in the past 5 m.y. 
were identified around the main Hawaiian Islands (Moore and 
others, 1989), and fully 70 are known along the Hawaiian 
Ridge between Midway Islands and the Island of Hawai‘i, 
formed during a 30-m.y. period of emplacement (Holcomb 
and Robinson, 2004). The corresponding rates of occurrence— 
one per 300 k.y. and one per 400–450 k.y., respectively—
must be minima, because many slides likely occur along the 
leading (southeast) edge of the chain and are buried by 
growth of subsequent volcanoes. For example, the entire 
summit caldera and north rift of Ni‘ihau are missing, yet no 
corresponding seafloor deposit has been recognized (Moore 
and others, 1989). The growth of the Kaua‘i edifice has 
presumably covered the area northeast of Ni‘ihau where the 
landslide would have gone. Likewise, the summit of West 
Moloka‘i apparently slumped to the east, leaving only some 
small east-facing fault scarps, and was buried by growth of 
East Moloka‘i. The eastern half of the caldera on Kaho‘olawe 
is also missing, now presumably buried beneath Haleakalā 
and, perhaps, Māhukona and Kohala volcanoes.

Are large landslides more likely during particular growth 
stages at a volcano? The large slides seem most likely to 
occur during the most active volcano growth phases—from 
the late preshield to the early postshield stage. A zone of hot, 
deforming olivine cumulate inside the active volcanoes may 
provide some of the force needed to slide a volcano’s flank 
(Clague and Denlinger, 1994), providing a rationale for why 
the slides may occur mainly during the active growth stages 
of the volcano’s lifespan. The relation between the movement 
of Kīlauea’s south flank (and the southeast and west flanks 
of Mauna Loa) and the Hilina Pali slump identified in the 
offshore sonar and bathymetric maps (Morgan and others, 
2003) suggests that tectonics of the active volcanoes may 
trigger the slides. On the other hand, the abundance of the 
slides along the entire chain suggests that they could also 
occur long after the volcanoes become inactive. It remains 
uncertain how, why, and when the slides occur. Would we 
recognize the precursors, if there were any, should one happen 
now? The question of slide timing is not an academic one, 
as slides that could occur at any stage in the life of a volcano 
pose significantly higher risk to the populations of the older 
Hawaiian Islands than would catastrophic slides limited to 

only the active, and sparsely populated, flanks of Kīlauea and 
Mauna Loa volcanoes.

Landslides on the rainy windward sides of the islands are 
associated with deep erosional canyons (Clague and Moore, 
2002). High rainfall may lead to deep erosion, as well as high 
pore pressure on the windward (north and northeast) sides of the 
volcanoes, contributing to flank instability and failures while 
the rift and magma reservoir systems are actively spreading. 
Landslides, however, are equally common on the lee or dry 
sides of the islands. Studies of the submarine slides on the 
west flank of Mauna Loa have shown that the slides may move 
along surfaces that also serve as hot fluid pathways, forming 
greenschist facies metamorphic rocks along those surfaces 
(Morgan and Clague, 2003; Morgan and others, 2007).

Megatsunami
A significant hazard created by giant landslides at the 

Hawaiian Islands is the large displacement of seawater to 
generate catastrophic giant waves (megatsunami). The geologic 
evidence for megatsunami in the Hawaiian Islands was 
recognized first on Lāna‘i and Moloka‘i, where chaotic coral and 
lava-clast breccia is preserved as high as 155 m above sea level 
(J.G. Moore and Moore, 1984; G.W. Moore and Moore, 1988; 
Moore and others, 1994). This interpretation has been debated 
in numerous papers (for example, Grigg and Jones, 1997; Felton 
and others, 2000; Rubin and others, 2000; Keating and Helsey, 
2002), which argue that these high-stand deposits are the result 
of island uplift. No other data suggest that Lāna‘i is, or has been, 
uplifted, however, and evidence to the contrary has been gleaned 
from drowned reefs south of Lāna‘i (Webster and others, 2006, 
2007). McMurtry and others (2004) describe a similar deposit 
near the shoreline on Kohala volcano that is close in age to an 
offshore drowned reef now at nearly 400-m depth, suggesting 
that the megatsunami that produced this deposit washed up the 
slope of Kohala at least 400 m. Roughly one-third of the giant 
landslides from the Hawaiian Islands and the Hawaiian Ridge 
are debris avalanches with the capacity to generate huge tsunami 
that sweep hundreds of meters up the slopes of nearby islands. 
Such tsunami from future, though infrequent, landslides pose a 
large but unquantified risk to the State of Hawaii and possibly to 
coastal lands along the Pacific rim.

Subsidence
Subsidence of Hawaiian volcanoes occurs by two 

processes that overlap in time and space (Moore, 1987). The 
first process occurs as the increasing mass of a growing volcano 
depresses the underlying lithosphere. This rapid phase of 
subsidence, which lasts perhaps 1 m.y., submerges shorelines 
and reef complexes by more than 1 km. The rate of subsidence 
is high beneath young islands: for example, a rate of 2.6 m/k.y. 
was estimated off the northwest coast of the Island of Hawai‘i 
by dating drowned coral reefs (Ludwig and others, 1991). 
Smaller volcanoes may completely submerge during the short 
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period of rapid subsidence, as did, for example, Māhukona 
volcano (Clague and Moore, 1991; Clague and Calvert, 2009) 
and many volcanoes in the northwestern Hawaiian Islands. 
Once a volcano has submerged by more than the glacioeustatic 
variations in sea level (~125 m), it is unlikely to reemerge. 
Drowned coral reefs are the primary evidence for this early 
period of rapid subsidence, and modeling has shown that 
the reefs drown during deglacial periods of rising sea level 
(Webster and others, 2009). Very high rates of sea-level rise 
during meltwater pulses of deglacial periods, coupled with 
rapid subsidence, may be required to rapidly submerge the reef 
(Webster and others, 2004). The drowned reefs surrounding 
each island formed and drowned during the period of rapid 
subsidence caused by lithospheric flexure during the active 
growth of each volcano, so reefs around Lāna‘i, for example, 
are older than reefs around Hawai‘i (Webster and others, 2010).

Concurrently, the lithosphere beneath the islands ages 
and thermally contracts. The rate of this subsidence diminishes 
exponentially as a function of lithospheric age. Along much of 
the Hawaiian Ridge and Emperor Seamounts, this subsidence 
rate is ~0.01 m/k.y. (Clague and others, 2010) and, thus, is 
insignificant for human culture.

The flexural loading of the lithosphere from the weight of 
the growing volcanic edifices causes a small amount of uplift, 
focused at a distance several hundred kilometers out from 
the center of the magma supply zone, to form the Hawaiian 
Arch (Deitz and Menard, 1953). Onshore evidence for a small 
amount of uplift comes from O‘ahu, where coral reef deposits 
of oxygen-isotope substage 5e (133–115 ka; Shackleton and 
others, 2003) are exposed around the entire island (Stearns, 
1974; Muhs and Szabo, 1994) and a ~334-ka coral reef now 
stands 21 m above sea level (McMurtry and others, 2010).

Large Hawaiian volcanoes can persist as islands through 
the rapid subsidence by building upward rapidly enough. But 
in the long run, the inexorable thermal contraction-induced 
subsidence, coupled with surface erosion, erases any volcanic 
remnant above sea level in about 15 m.y. Gardner Pinnacles, 
of that age, is the oldest surviving island in the chain with 
subaerially exposed volcanic rock. Beyond Gardner Pinnacles 
to the northwest are small sand islands and atolls, interspersed 
with smaller volcanoes whose summits submerged soon after 
the volcano formed. Many of the atolls have long and complex 
histories of carbonate deposition; at Kōkō Seamount in the 
southern Emperor Seamounts, deposition lasted from about 
50  Ma to 16 Ma (Clague and others, 2010), when the last deep-
water coralline algae finally submerged below their growth 
limit of –150 m. For the Hawaiian chain, a complex interplay 
of subsidence, northward movement into cooler waters, and 
rapid climate change is required to drown the reefs (Clague 
and others, 2010), because corals can grow faster than the 
slow rates of subsidence caused by thermal contraction of the 
lithosphere. The atolls and sand islands along the Hawaiian 
chain have undergone complicated growth, emergence, and 
subsidence histories related to Pleistocene and earlier sea level 
changes, but only Midway Islands atoll has been sampled 
well enough (Ladd and others, 1970) to perhaps decipher 

this history. In the Hawaiian chain, these changes conspire to 
drown the reefs about 33 m.y. after the underlying volcanoes 
formed, at which time the last of the atolls submerge to become 
guyots. Grigg (1982, 1997) called this time the Darwin Point. 
All the volcanoes west of Midway Islands and Kure Atoll are 
submerged, and most are guyots.

Future Work
In assembling the enormous amount of information about 

the geology of the Hawaiian Islands for this overview, we were 
struck by how much of our understanding of the evolution of 
Hawai‘i is built on three basic building blocks: detailed geologic 
mapping, radiometric dating, and geochemical analyses. Many 
of these framework studies were done decades ago and are 
now in dire need of updating. A fourth building block—that 
of submarine studies of the flanks and submarine rifts of the 
islands—has come into its own mainly during the past 25 years. 
If we expect to continue to develop new ideas and improve 
our knowledge of Hawaiian geology in the coming years, the 
Hawaiian Volcano Observatory should continue to foster broad 
interest and studies in the geology of all the Hawaiian Islands.
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Appendix 
Described here are the myriad source publications used 

to prepare the chemical variation diagrams. All data were 
compiled into a geochemical database, and geographical 
coordinates were assigned successfully to about 70 percent of 
those. The geochemical database originated from a compilation 
by Kevin Johnson while at the Bishop Museum in the mid-
1990s6. Our database was probably current until about 2004, 
with only sparse additions since then. For the Island of Hawai‘i 
we relied almost entirely upon an extant, major-element 
geochemical database of samples analyzed during a Big Island 
mapping project (Wolfe and Morris, 1996b). An electronic 
version of that database, including geographic coordinates, was 
published by Trusdell and others (2006).

Figure 3
Analyses for Kīlauea (456) and Mauna Loa (500) are 

from Wolfe and others (1996b). The total count of published 
analyses from Kīlauea and Mauna Loa is probably threefold 
greater, but the display of points shown is sufficient for the 
descriptive purposes of this chapter.

Late Shield-Stage Sequences (Fields)
[Asterisk indicates analyses provided originally as unpublished data to the 
Bishop Museum database]

Haleakalā, Honomanū Basalt, 41 analyses: West (1988); Chen 
and others (1991); Sherrod and others (2007b).
Mauna Kea, Hāmākua Volcanics, 196 analyses: Wolfe and 
Morris (1996b).
East Moloka‘i, lower member of East Moloka’i Volcanics, 
87  analyses: Beeson (1976); Clague and Beeson (1980); 
Clague and Moore (2002); J.M. Sinton*; Xu and others (2005).
Kohala, Pololū Volcanics, 121 analyses: Wolfe and Morris (1996b).

Postshield-Stage Sequences
[Asterisk indicates analyses provided originally as unpublished data to the 
Bishop Museum database]

Wai‘anae volcano, Pālehua Member of Wai‘anae Volcanics, 
43  analyses: Macdonald and Katsura (1964); Macdonald, 
(1968); Presley and others (1997); T.K. Presley*; J.M. Sinton 
and G.A. Macdonald.*
Kohala, Hāwī Volcanics, 114 analyses: Wolfe and Morris (1996b).
Mauna Kea, Laupāhoehoe Volcanics, 213 analyses: Wolfe and 
Morris (1996b).

Figure 13

Panel A, Mauna Kea Volcano (449 Analyses)
[Outcrops and drill core from depths shallower than 420 m; thus late shield-
stage and postshield-stage strata] 

Rhodes (1996); Wolfe and Morris (1996b)

Panel B, Wai‘anae Volcano (196 Analyses)
[Asterisk indicates analyses provided originally as unpublished data to the 
Bishop Museum database]

J.M. Sinton and G.A. Macdonald*, Macdonald and Katsura 
(1964), T.K. Presley*, Presley and others (1997), Sinton 
(1987), Macdonald (1968), and Bauer and others (1973).

Panel C, Haleakalā Volcano (520 Analyses)
Macdonald and Powers (1946); Macdonald and Katsura 
(1964); Macdonald (1968); Macdonald and Powers (1968); 
Brill (1975); Horton (1977); Chen and others (1990); Chen 
and others (1991); West and Leeman (1994); Bergmanis 
(1998, with many appearing in Bergmanis and others, 2000); 
Sherrod and others (2003); D.R. Sherrod in Sherrod and 
others (2007b).

Figure 17

Shield-Stage Sequences (Fields)
[Asterisk indicates analyses provided originally as unpublished data to the 
Bishop Museum database]

Ni‘ihau, Pānī‘au Basalt, 20 analyses: D.A. Clague*.
Kaua‘i, Nāpali Member of Waimea Canyon Basalt, 8 analyses 
(exclusive of drill cuttings): Cross (1915); Macdonald and 
others (1960); Macdonald and Katsura (1964).
Ko‘olau volcano, Ko‘olau Basalt, 212 analyses: Wentworth 
and Winchell (1947), Yoder and Tilley (1962), Muir and Tilley 
(1963), Macdonald (1968), Jackson and Wright (1970), Frey 
and others (1994), Haskins and Garcia (2004), T.K. Presley*.

Postshield-Stage Sequences (Fields)
[Asterisk indicates analyses provided originally as unpublished data to the 
Bishop Museum database]

Ni‘ihau, Ka‘eo plug, 4 analyses: Washington and Keyes 
(1926); D.A. Clague*.
Kaua‘i, alkalic rocks in Olokele Member and Makaweli Member 
of Waimea Canyon Basalt, 15 analyses: Macdonald and Katsura 
(1964); Feigenson (1984); Clague and Dalrymple (1988).

6Bishop Museum geochemical database current through about 1995. [http://
www.bishopmuseum.org/research/natsci/geology/geochem.html, accessed 
April 2012]
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Rejuvenated-Stage Data
[Asterisk indicates analyses provided originally as unpublished data to the 
Bishop Museum database]

Ni‘ihau volcano, Ki‘ei‘e Basalt, 30 analyses: Washington and Keyes 
(1926); Macdonald (1968); D.A. Clague*.
Kaua‘i volcano, Kōloa Volcanics (exclusive of Palikea Breccia 
Member), 183 analyses: Cross (1915); Washington and Keyes 
(1926); Macdonald and others (1960); Macdonald and Katsura 
(1964); Macdonald (1968); Kay and Gast (1973); Palmiter (1975); 
Feigenson (1984); Clague and Dalrymple (1988); Maaløe and 
others (1992); Reiners and Nelson (1998); Reiners and others 
(1999).
Ko‘olau volcano, Honolulu Volcanics, 142 analyses: Cross 
(1915), Winchell (1947), Tatsumoto (1966), Macdonald (1968), 
Macdonald and Powers (1968), Jackson and Wright (1970), 
Clague and Frey (1982), Wilkinson and Stolz (1983).
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