Rising temperatures erode human sleep globally

      Highlights

      • Warmer temperatures reduce sleep globally, amplifying the risk of insufficient sleep
      • The elderly, women, and residents of lower-income countries are impacted most
      • Those living in warmer climates lose more sleep per degree of temperature rise
      • Climate change is projected to unequally erode sleep, widening global inequalities

      Summary

      Ambient temperatures are rising worldwide, with the greatest increases recorded at night. Concurrently, the prevalence of insufficient sleep is rising in many populations. Yet it remains unclear whether warmer-than-average temperatures causally impact objective measures of sleep globally. Here, we link billions of repeated sleep measurements from sleep-tracking wristbands comprising over 7 million sleep records (n = 47,628) across 68 countries to local daily meteorological data. Controlling for individual, seasonal, and time-varying confounds, increased temperature shortens sleep primarily through delayed onset, increasing the probability of insufficient sleep. The temperature effect on sleep loss is substantially larger for residents from lower-income countries and older adults, and females are affected more than males. Those in hotter regions experience comparably more sleep loss per degree of warming, suggesting limited adaptation. By 2099, suboptimal temperatures may erode 50–58 h of sleep per person-year, with climate change producing geographic inequalities that scale with future emissions.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D; use, select 'Corporate R&D; Professionals'

      Subscribe:

      Subscribe to One Earth
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Berry H.L.
        • Waite T.D.
        • Dear K.B.G.
        • Capon A.G.
        • Murray V.
        The case for systems thinking about climate change and mental health.
        Nat. Clim. Change. 2018; 8: 282-290https://doi.org/10.1038/s41558-018-0102-4
        • Manning C.
        • Clayton S.
        Threats to mental health and wellbeing associated with climate change.
        in: Clayton S. Manning C. Psychology and Climate Change. Academic Press, 2018: 217-244
        • Clayton S.
        • Devine-Wright P.
        • Stern P.C.
        • Whitmarsh L.
        • Carrico A.
        • Steg L.
        • Swim J.
        • Bonnes M.
        Psychological research and global climate change.
        Nat. Clim. Change. 2015; 5: 640-646https://doi.org/10.1038/nclimate2622
        • Evans G.W.
        Projected behavioral impacts of global climate change.
        Annu. Rev. Psychol. 2019; 70: 449-474https://doi.org/10.1146/annurev-psych-010418-103023
        • Park R.J.
        • Goodman J.
        • Behrer A.P.
        Learning is inhibited by heat exposure, both internationally and within the United States.
        Nat. Hum. Behav. 2020; 5: 19-27https://doi.org/10.1038/s41562-020-00959-9
        • Burke M.
        • González F.
        • Baylis P.
        • Heft-Neal S.
        • Baysan C.
        • Basu S.
        • Hsiang S.
        Higher temperatures increase suicide rates in the United States and Mexico.
        Nat. Clim. Change. 2018; 8: 723-729https://doi.org/10.1038/s41558-018-0222-x
        • Romanello M.
        • McGushin A.
        • Di Napoli C.
        • Drummond P.
        • Hughes N.
        • Jamart L.
        • Kennard H.
        • Lampard P.
        • Solano Rodriguez B.
        • Arnell N.
        • et al.
        The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future.
        Lancet. 2021; 398: 1619-1662https://doi.org/10.1016/S0140-6736(21)01787-6
        • Nori-Sarma A.
        • Sun S.
        • Sun Y.
        • Spangler K.R.
        • Oblath R.
        • Galea S.
        • Gradus J.L.
        • Wellenius G.A.
        Association between ambient heat and risk of emergency department visits for mental health among US adults, 2010 to 2019.
        JAMA Psychiatry. 2022; 79: 341-349https://doi.org/10.1001/jamapsychiatry.2021.4369
        • Obradovich N.
        • Minor K.
        Identifying and preparing for the mental health burden of climate change.
        JAMA Psychiatry. 2022; 79: 285-286https://doi.org/10.1001/jamapsychiatry.2021.4280
        • Hwong A.R.
        • Wang M.
        • Khan H.
        • Chagwedera D.N.
        • Grzenda A.
        • Doty B.
        • Benton T.
        • Alpert J.
        • Clarke D.
        • Compton W.M.
        Climate change and mental health research methods, gaps, and priorities: a scoping review.
        Lancet Planet. Health. 2022; 6: e281-e291https://doi.org/10.1016/s2542-5196(22)00012-2
        • Obradovich N.
        • Migliorini R.
        • Mednick S.C.
        • Fowler J.H.
        Nighttime temperature and human sleep loss in a changing climate.
        Sci. Adv. 2017; 3: e1601555https://doi.org/10.1126/sciadv.1601555
        • Rifkin D.I.
        • Long M.W.
        • Perry M.J.
        Climate change and sleep: a systematic review of the literature and conceptual framework.
        Sleep Med. Rev. 2018; 42: 3-9https://doi.org/10.1016/j.smrv.2018.07.007
        • Mullins J.T.
        • White C.
        Temperature and mental health: evidence from the spectrum of mental health outcomes.
        J. Health Econ. 2019; 68: 102240https://doi.org/10.1016/j.jhealeco.2019.102240
        • Hirshkowitz M.
        • Whiton K.
        • Albert S.M.
        • Alessi C.
        • Bruni O.
        • DonCarlos L.
        • Hazen N.
        • Herman J.
        • Katz E.S.
        • Kheirandish-Gozal L.
        • et al.
        National Sleep Foundation’s sleep time duration recommendations: methodology and results summary.
        Sleep Health. 2015; 1: 40-43https://doi.org/10.1016/j.sleh.2014.12.010
        • Killgore W.D.S.
        Effects of sleep deprivation on cognition.
        Prog. Brain Res. 2010; 185: 105-129
        • Krause A.J.
        • Simon E.B.
        • Mander B.A.
        • Greer S.M.
        • Saletin J.M.
        • Goldstein-Piekarski A.N.
        • Walker M.P.
        The sleep-deprived human brain.
        Nat. Rev. Neurosci. 2017; 18: 404-418https://doi.org/10.1038/nrn.2017.55
        • Hafner M.
        • Stepanek M.
        • Taylor J.
        • Troxel W.M.
        • van Stolk C.
        Why Sleep Matters—The Economic Costs of Insufficient Sleep.
        RAND Corporation, 2016
        • Barnes C.M.
        • Watson N.F.
        Why healthy sleep is good for business.
        Sleep Med. Rev. 2019; 47: 112-118https://doi.org/10.1016/j.smrv.2019.07.005
        • Irwin M.R.
        Why sleep is important for health: a psychoneuroimmunology perspective.
        Annu. Rev. Psychol. 2015; 66: 143-172https://doi.org/10.1146/annurev-psych-010213-115205
        • Cappuccio F.P.
        • Cooper D.
        • D’Elia L.
        • Strazzullo P.
        • Miller M.A.
        Sleep duration predicts cardiovascular outcomes: a systematic review and meta-analysis of prospective studies.
        Eur. Heart J. 2011; 32: 1484-1492https://doi.org/10.1093/eurheartj/ehr007
        • Jackson C.L.
        • Redline S.
        • Emmons K.M.
        Sleep as a potential fundamental contributor to disparities in cardiovascular health.
        Annu. Rev. Public Health. 2015; 36: 417-440https://doi.org/10.1146/annurev-publhealth-031914-122838
        • Cappuccio F.P.
        • D’Elia L.
        • Strazzullo P.
        • Miller M.A.
        Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies.
        Sleep. 2010; 33: 585-592https://doi.org/10.1093/sleep/33.5.585
        • Goldstein A.N.
        • Walker M.P.
        The role of sleep in emotional brain function.
        Annu. Rev. Clin. Psychol. 2014; 10: 679-708https://doi.org/10.1146/annurev-clinpsy-032813-153716
        • Bernert R.A.
        • Kim J.S.
        • Iwata N.G.
        • Perlis M.L.
        Sleep disturbances as an evidence-based suicide risk factor.
        Curr. Psychiatry Rep. 2015; 17: 15https://doi.org/10.1007/s11920-015-0554-4
        • Czeisler C.A.
        • Wickwire E.M.
        • Barger L.K.
        • Dement W.C.
        • Gamble K.
        • Hartenbaum N.
        • Ohayon M.M.
        • Pelayo R.
        • Phillips B.
        • Strohl K.
        • et al.
        Sleep-deprived motor vehicle operators are unfit to drive: a multidisciplinary expert consensus statement on drowsy driving.
        Sleep Health. 2016; 2: 94-99https://doi.org/10.1016/j.sleh.2016.04.003
        • Yoo S.S.
        • Hu P.T.
        • Gujar N.
        • Jolesz F.A.
        • Walker M.P.
        A deficit in the ability to form new human memories without sleep.
        Nat. Neurosci. 2007; 10: 385-392https://doi.org/10.1038/nn1851
        • Fultz N.E.
        • Bonmassar G.
        • Setsompop K.
        • Stickgold R.A.
        • Rosen B.R.
        • Polimeni J.R.
        • Lewis L.D.
        Coupled electrophysiological, hemodynamic, and cerebrospinal fluid oscillations in human sleep.
        Science. 2019; 366: 628-631https://doi.org/10.1126/science.aax5440
        • Khubchandani J.
        • Price J.H.
        Short sleep duration in working American adults, 2010–2018.
        J. Community Health. 2019; 45: 219-227https://doi.org/10.1007/s10900-019-00731-9
        • Ford E.S.
        • Cunningham T.J.
        • Croft J.B.
        Trends in self-reported sleep duration among US adults from 1985 to 2012.
        Sleep. 2015; 38: 829-832https://doi.org/10.5665/sleep.4684
        • Donat M.G.
        • Alexander L.V.
        • Yang H.
        • Durre I.
        • Vose R.
        • Dunn R.J.H.
        • Willett K.M.
        • Aguilar E.
        • Brunet M.
        • Caesar J.
        • et al.
        Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset.
        J. Geophys. Res. Atmos. 2013; 118: 2098-2118https://doi.org/10.1002/jgrd.50150
        • Salamanca F.
        • Georgescu M.
        • Mahalov A.
        • Moustaoui M.
        • Wang M.
        Anthropogenic heating of the urban environment due to air conditioning.
        J. Geophys. Res. Atmos. 2014; 119: 5949-5965https://doi.org/10.1002/2013jd021225
        • Obradovich N.
        • Migliorini R.
        Sleep and the human impacts of climate change.
        Sleep Med. Rev. 2018; 42: 1-2https://doi.org/10.1016/j.smrv.2018.09.002
        • Schmidt M.H.
        The energy allocation function of sleep: a unifying theory of sleep, torpor, and continuous wakefulness.
        Neurosci. Biobehav Rev. 2014; 47: 122-153https://doi.org/10.1016/j.neubiorev.2014.08.001
        • Harding E.C.
        • Franks N.P.
        • Wisden W.
        The temperature dependence of sleep.
        Front. Neurosci. 2019; 13: 336https://doi.org/10.3389/fnins.2019.00336
        • Yetish G.
        • Kaplan H.
        • Gurven M.
        • Wood B.
        • Pontzer H.
        • Manger P.R.
        • Wilson C.
        • McGregor R.
        • Siegel J.M.
        Natural sleep and its seasonal variations in three pre-industrial societies.
        Curr. Biol. 2015; 25: 2862-2868https://doi.org/10.1016/j.cub.2015.09.046
        • Kräuchi K.
        The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment.
        Sleep Med. Rev. 2007; 11: 439-451https://doi.org/10.1016/j.smrv.2007.07.001
        • Buguet A.
        Sleep under extreme environments: effects of heat and cold exposure, altitude, hyperbaric pressure and microgravity in space.
        J. Neurol. Sci. 2007; 262: 145-152https://doi.org/10.1016/j.jns.2007.06.040
        • Näyhä S.
        • Rintamäki H.
        • Donaldson G.
        • Hassi J.
        • Jousilahti P.
        • Laatikainen T.
        • Jaakkola J.J.K.
        • Ikaheimo T.M.
        Heat-related thermal sensation, comfort and symptoms in a northern population: the National FINRISK 2007 study.
        Eur. J. Public Health. 2014; 24: 620-626https://doi.org/10.1093/eurpub/ckt159
        • van Loenhout J.A.F.
        • le Grand A.
        • Duijm F.
        • Greven F.
        • Vink N.M.
        • Hoek G.
        • Zuurbier M.
        The effect of high indoor temperatures on self-perceived health of elderly persons.
        Environ. Res. 2016; 146: 27-34https://doi.org/10.1016/j.envres.2015.12.012
        • Lauderdale D.S.
        • Knutson K.L.
        • Yan L.L.
        • Liu K.
        • Rathouz P.J.
        Self-reported and measured sleep duration: how similar are they?.
        Epidemiology. 2008; 19: 838-845https://doi.org/10.1097/ede.0b013e318187a7b0
        • Miller C.B.
        • Gordon C.J.
        • Toubia L.
        • Bartlett D.J.
        • Grunstein R.R.
        • D’Rozario A.L.
        • Marshall N.S.
        Agreement between simple questions about sleep duration and sleep diaries in a large online survey.
        Sleep Health. 2015; 1: 133-137https://doi.org/10.1016/j.sleh.2015.02.007
        • Banks M.A.
        Tech giants, armed with wearables data, are entrenching in health research.
        Nat. Med. 2020; 26: 4-5https://doi.org/10.1038/s41591-019-0701-2
        • McNeish D.
        • Kelley K.
        Fixed effects models versus mixed effects models for clustered data: reviewing the approaches, disentangling the differences, and making recommendations.
        Psychol. Methods. 2019; 24: 20-35https://doi.org/10.1037/met0000182
        • Hsiang S.
        Climate econometrics.
        Annu. Rev. Resour. Econ. 2016; 8: 43-75https://doi.org/10.3386/w22181
        • Carleton T.A.
        • Hsiang S.M.
        Social and economic impacts of climate.
        Science. 2016; 353: aad9837https://doi.org/10.1126/science.aad9837
        • Monsivais D.
        • Bhattacharya K.
        • Ghosh A.
        • Dunbar R.I.M.
        • Kaski K.
        Seasonal and geographical impact on human resting periods.
        Sci. Rep. 2017; 7: 10717https://doi.org/10.1038/s41598-017-11125-z
        • Lee W.
        • Kim Y.
        • Sera F.
        • Gasparrini A.
        • Park R.
        • Michelle Choi H.
        • Prifti K.
        • Bell M.L.
        • Abrutzky R.
        • Guo Y.
        • et al.
        Projections of excess mortality related to diurnal temperature range under climate change scenarios: a multi-country modelling study.
        Lancet Planet. Health. 2020; 4: e512-e521https://doi.org/10.1016/S2542-5196(20)30222-9
        • Lindvall J.
        • Svensson G.
        The diurnal temperature range in the CMIP5 models.
        Clim. Dyn. 2015; 44: 405-421https://doi.org/10.1007/s00382-014-2144-2
        • Li J.
        • Vitiello M.V.
        • Gooneratne N.S.
        Sleep in normal aging.
        Sleep Med. Clin. 2018; 13: 1-11https://doi.org/10.1016/j.jsmc.2017.09.001
        • Weinreich G.
        • Wessendorf T.E.
        • Pundt N.
        • Weinmayr G.
        • Hennig F.
        • Moebus S.
        • Mohlenkamp S.
        • Erbel R.
        • Jockel K.H.
        • Teschler H.
        • Hoffmann B.
        Association of short-term ozone and temperature with sleep disordered breathing.
        Eur. Respir. J. 2015; 46: 1361-1369https://doi.org/10.1183/13993003.02255-2014
        • Baker F.C.
        • Waner J.I.
        • Vieira E.F.
        • Taylor S.R.
        • Driver H.S.
        • Mitchell D.
        Sleep and 24 hour body temperatures: a comparison in young men, naturally cycling women and women taking hormonal contraceptives.
        J. Physiol. 2001; 530: 565-574https://doi.org/10.1111/j.1469-7793.2001.0565k.x
        • Sorensen C.
        • Murray V.
        • Lemery J.
        • Balbus J.
        Climate change and women’s health: impacts and policy directions.
        PLoS Med. 2018; 15: e1002603https://doi.org/10.1371/journal.pmed.1002603
        • Obradovich N.
        • Migliorini R.
        • Paulus M.P.
        • Rahwan I.
        Empirical evidence of mental health risks posed by climate change.
        Proc. Natl. Acad. Sci. U S A. 2018; 115: 10953-10958https://doi.org/10.1073/pnas.1801528115
        • Carleton T.A.
        • Jina A.
        • Delgado M.T.
        • Greenstone M.
        • Houser T.
        • Hsiang S.M.
        • Hultgren A.
        • Kopp R.E.
        • McCusker K.E.
        • Nath I.B.
        • et al.
        Valuing the Global Mortality Consequences of Climate Change Accounting for Adaptation Costs and Benefits, Report No. 27599.
        2020
        • Graff Zivin J.
        • Neidell M.
        Temperature and the allocation of time: implications for climate change.
        J. Labor Econ. 2014; 32: 1-26https://doi.org/10.1086/671766
        • Eban-Rothschild A.
        • Appelbaum L.
        • de Lecea L.
        Neuronal mechanisms for sleep/wake regulation and modulatory drive.
        Neuropsychopharmacology. 2018; 43: 937-952https://doi.org/10.1038/npp.2017.294
        • Hajat S.
        • O’Connor M.
        • Kosatsky T.
        Health effects of hot weather: from awareness of risk factors to effective health protection.
        Lancet. 2010; 375: 856-863https://doi.org/10.1016/s0140-6736(09)61711-6
        • Patz J.A.
        • Frumkin H.
        • Holloway T.
        • Vimont D.J.
        • Haines A.
        Climate change.
        JAMA. 2014; 312: 1565-1580https://doi.org/10.1001/jama.2014.13186
        • Watts N.
        • Amann M.
        • Arnell N.
        • Ayeb-Karlsson S.
        • Belesova K.
        • Boykoff M.
        • Byass P.
        • Cai W.
        • Campbell-Lendrum D.
        • Capstick S.
        • et al.
        The 2019 report of the Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate.
        Lancet. 2019; 394: 1836-1878https://doi.org/10.1016/S0140-6736(19)32596-6
        • Vergunst F.
        • Berry H.L.
        Climate change and children’s mental health: a developmental perspective.
        Clin. Psychol. Sci. 2021; (21677026211040787)https://doi.org/10.1177/21677026211040787
        • Liu J.
        • Varghese B.M.
        • Hansen A.
        • Xiang J.
        • Zhang Y.
        • Dear K.
        • Gourley M.
        • Driscoll T.
        • Morgan G.
        • Capon A.
        • Bi P.
        Is there an association between hot weather and poor mental health outcomes? A systematic review and meta-analysis.
        Environ. Int. 2021; 153: 106533https://doi.org/10.1016/j.envint.2021.106533
        • Vicedo-Cabrera A.M.
        • Scovronick N.
        • Sera F.
        • Royé D.
        • Schneider R.
        • Tobias A.
        • Astrom C.
        • Guo Y.
        • Honda Y.
        • Hondula D.M.
        • et al.
        The burden of heat-related mortality attributable to recent human-induced climate change.
        Nat. Clim. Change. 2021; 11: 492-500https://doi.org/10.1038/s41558-021-01058-x
        • Ebi K.L.
        • Vanos J.
        • Baldwin J.W.
        • Bell J.E.
        • Hondula D.M.
        • Errett N.A.
        • Hayes K.
        • Reid C.E.
        • Saha S.
        • Spector J.
        • Berry P.
        Extreme weather and climate change: population health and health system implications.
        Annu. Rev. Public Health. 2021; 42: 293-315https://doi.org/10.1146/annurev-publhealth-012420-105026
        • Middleton J.
        • Cunsolo A.
        • Jones-Bitton A.
        • Wright C.J.
        • Harper S.L.
        Indigenous mental health in a changing climate: a systematic scoping review of the global literature.
        Environ. Res. Lett. 2020; 15: 053001https://doi.org/10.1088/1748-9326/ab68a9
        • Baylis P.
        • Obradovich N.
        • Kryvasheyeu Y.
        • Chen H.
        • Coviello L.
        • Moro E.
        • Cebrian M.
        • Fowler J.H.
        Weather impacts expressed sentiment.
        PLoS One. 2018; 13: e0195750https://doi.org/10.1371/journal.pone.0195750
        • Parks R.M.
        • Bennett J.E.
        • Tamura-Wicks H.
        • Kontis V.
        • Toumi R.
        • Danaei G.
        • Ezzati M.
        Anomalously warm temperatures are associated with increased injury deaths.
        Nat. Med. 2020; 26: 65-70https://doi.org/10.1289/isee.2020.virtual.p-0410
        • Zhang P.
        • Deschenes O.
        • Meng K.
        • Zhang J.
        Temperature effects on productivity and factor reallocation: evidence from a half million Chinese manufacturing plants.
        J. Environ. Econ. Manag. 2018; 88: 1-17https://doi.org/10.1016/j.jeem.2017.11.001
        • Dasgupta S.
        • van Maanen N.
        • Gosling S.N.
        • Piontek F.
        • Otto C.
        • Schleussner C.F.
        Effects of climate change on combined labour productivity and supply: an empirical, multi-model study.
        Lancet Planet. Health. 2021; 5: e455-e465https://doi.org/10.1016/s2542-5196(21)00170-4
        • Park R.J.
        • Goodman J.
        • Hurwitz M.
        • Smith J.
        Heat and learning.
        Am. Econ. J. Econ. Policy. 2020; 12: 306-339https://doi.org/10.1257/pol.20180612
        • Lu P.
        • Zhao Q.
        • Xia G.
        • Xu R.
        • Hanna L.
        • Jiang J.
        • Li S.
        • Guo Y.
        Temporal trends of the association between ambient temperature and cardiovascular mortality: a 17-year case-crossover study.
        Environ. Res. Lett. 2021; 16: 045004https://doi.org/10.1088/1748-9326/abab33
        • Wang J.
        • Obradovich N.
        • Zheng S.
        A 43-million-person investigation into weather and expressed sentiment in a changing climate.
        One Earth. 2020; 2: 568-577https://doi.org/10.1016/j.oneear.2020.05.016
        • Baylis P.
        Temperature and temperament: evidence from twitter.
        J. Public Econ. 2020; 184: 104161https://doi.org/10.1016/j.jpubeco.2020.104161
        • Garg T.
        • Jagnani M.
        • Taraz V.
        Temperature and human capital in India.
        J. Assoc. Environ. Resour. Econ. 2020; 7: 1113-1150https://doi.org/10.1086/710066
        • Minkel J.D.
        • Banks S.
        • Htaik O.
        • Moreta M.C.
        • Jones C.W.
        • McGlinchey E.L.
        • Simpson N.S.
        • Dinges D.F.
        Sleep deprivation and stressors: evidence for elevated negative affect in response to mild stressors when sleep deprived.
        Emotion. 2012; 12: 1015-1020https://doi.org/10.1037/a0026871
        • Biardeau L.T.
        • Davis L.W.
        • Gertler P.
        • Wolfram C.
        Heat exposure and global air conditioning.
        Nat. Sustain. 2020; 3: 25-28https://doi.org/10.1038/s41893-019-0441-9
        • Davis L.W.
        • Gertler P.J.
        Contribution of air conditioning adoption to future energy use under global warming.
        Proc. Natl. Acad. Sci. U S A. 2015; 112: 5962-5967https://doi.org/10.1073/pnas.1423558112
        • Tuholske C.
        • Caylor K.
        • Funk C.
        • Verdin A.
        • Sweeney S.
        • Grace K.
        • Peterson P.
        • Evans T.
        Global urban population exposure to extreme heat.
        Proc. Natl. Acad. Sci. U S A. 2021; 118 (e2024792118)https://doi.org/10.1073/pnas.2024792118
        • Wang J.
        • Chen Y.
        • Liao W.
        • He G.
        • Tett S.F.B.
        • Yan Z.
        • Zhai P.
        • Feng J.
        • Ma W.
        • Huang C.
        • Hu Y.
        Anthropogenic emissions and urbanization increase risk of compound hot extremes in cities.
        Nat. Clim. Change. 2021; 11: 1084-1089https://doi.org/10.1038/s41558-021-01196-2
        • Hoffman J.S.
        • Shandas V.
        • Pendleton N.
        The effects of historical housing policies on resident exposure to intra-urban heat: a study of 108 US urban areas.
        Climate. 2020; 8: 12https://doi.org/10.3390/cli8010012
        • Schell C.J.
        • Dyson K.
        • Fuentes T.L.
        • Des Roches S.
        • Harris N.C.
        • Miller D.S.
        • Woelfle-Erskine C.A.
        • Lambert M.R.
        The ecological and evolutionary consequences of systemic racism in urban environments.
        Science. 2020; 369: 6510https://doi.org/10.1126/science.aay4497
        • Nardone A.
        • Rudolph K.E.
        • Morello-Frosch R.
        • Casey J.A.
        • Casey Joan A.
        Redlines and greenspace: the relationship between historical redlining and 2010 greenspace across the United States.
        Environ. Health Perspect. 2021; 129: 017006https://doi.org/10.1289/ehp7495
        • Blanc E.
        • Schlenker W.
        The use of panel models in assessments of climate impacts on agriculture.
        Rev. Environ. Econ. Pol. 2017; 11: 258-279https://doi.org/10.1093/reep/rex016
        • Hausman J.
        Mismeasured variables in econometric analysis: problems from the right and problems from the left.
        J. Econ. Perspect. 2001; 15: 57-67https://doi.org/10.1257/jep.15.4.57
        • Obradovich N.
        • Fowler J.H.
        Climate change may alter human physical activity patterns.
        Nat. Hum. Behav. 2017; 1: 1-7https://doi.org/10.1038/s41562-017-0097
        • Heaney A.K.
        • Carrión D.
        • Burkart K.
        • Lesk C.
        • Jack D.
        Climate change and physical activity: estimated impacts of ambient temperatures on bikeshare usage in New York city.
        Environ. Health Perspect. 2019; 127: 037002https://doi.org/10.1289/ehp4039
        • Chan N.W.
        • Wichman C.J.
        Climate change and recreation: evidence from North American cycling.
        Environ. Resour. Econ. 2020; 76: 119-151https://doi.org/10.1007/s10640-020-00420-5
        • Bernard P.
        • Chevance G.
        • Kingsbury C.
        • Baillot A.
        • Romain A.J.
        • Molinier V.
        • Gadais T.
        • Dancause K.N.
        Climate change, physical activity and sport: a systematic review.
        Sports Med. 2021; 51: 1041-1059https://doi.org/10.1007/s40279-021-01439-4
        • Min K b
        • Lee S.
        • Min J.Y.
        High and low ambient temperature at night and the prescription of hypnotics.
        Sleep. 2020; 44: zssa262https://doi.org/10.1093/sleep/zsaa262
        • Vicedo-Cabrera A.M.
        • Sera F.
        • Guo Y.
        • Chung Y.
        • Arbuthnott K.
        • Tong S.
        • Tobias A.
        • Lavigne E.
        • de Sousa Zanotti Stagliorio Coelho M.
        • Hilario Nascimento Saldiva P.
        • et al.
        A multi-country analysis on potential adaptive mechanisms to cold and heat in a changing climate.
        Environ. Int. 2018; 111: 239-246https://doi.org/10.1016/j.envint.2017.11.006
        • Nicol F.
        Temperature and sleep.
        Energy Build. 2019; 204: 109516https://doi.org/10.1016/j.enbuild.2019.109516
        • Rafaeli A.
        • Ashtar S.
        • Altman D.
        Digital traces: new data, resources, and tools for psychological-science research.
        Curr. Dir. Psychol. Sci. 2019; 28: 560-566https://doi.org/10.1177/0963721419861410
        • Ford J.D.
        • Tilleard S.E.
        • Berrang-Ford L.
        • Araos M.
        • Biesbroek R.
        • Lesnikowski A.C.
        • MacDonald G.K.
        • Hsu A.
        • Chen C.
        • Bizikova L.
        Big data has big potential for applications to climate change adaptation.
        Proc. Natl. Acad. Sci. U S A. 2016; 113: 10729-10732https://doi.org/10.1073/pnas.1614023113
        • Lu X.
        • Wrathall D.J.
        • Sundsøy P.R.
        • Nadiruzzaman M.D.
        • Wetter E.
        • Iqbal A.
        • Qureshi T.
        • Tatem A.
        • Canright G.
        • Engo-Monsen K.
        • Bengtsson L.
        Unveiling hidden migration and mobility patterns in climate stressed regions: a longitudinal study of six million anonymous mobile phone users in Bangladesh.
        Glob. Environ. Change. 2016; 38: 1-7https://doi.org/10.1016/j.gloenvcha.2016.02.002
        • Kanamitsu M.
        • Ebisuzaki W.
        • Woollen J.
        • Yang S.K.
        • Hnilo J.J.
        • Fiorino M.
        • Potter G.L.
        NCEP–DOE AMIP-II reanalysis (R-2).
        Bull. Am. Meteorol. Soc. 2002; 83: 1631-1643https://doi.org/10.1175/bams-83-11-1631(2002)083<1631:nar>2.3.co;2
        • Menne M.J.
        • Durre I.
        • Vose R.S.
        • Gleason B.E.
        • Houston T.G.
        An overview of the global historical climatology network-daily database.
        J. Atmos. Ocean Technol. 2012; 29: 897-910https://doi.org/10.1175/jtech-d-11-00103.1
        • Walch O.J.
        • Cochran A.
        • Forger D.B.
        A global quantification of “normal” sleep schedules using smartphone data.
        Sci. Adv. 2016; 2: e1501705https://doi.org/10.1126/sciadv.1501705
        • Althoff T.
        • Horvitz E.
        • White R.W.
        • Zeitzer J.
        Harnessing the web for population-scale physiological sensing: a case study of sleep and performance.
        in: WWW ’17: Proceedings of the 26th International Conference on World Wide Web. ACM Press, 2017: 113-122
        • Cuttone A.
        • Bækgaard P.
        • Sekara V.
        • Jonsson H.
        • Larsen J.E.
        • Lehmann S.
        SensibleSleep: a bayesian model for learning sleep patterns from smartphone events.
        PLoS One. 2017; 12: e0169901https://doi.org/10.1371/journal.pone.0169901
        • Jonasdottir S.S.
        • Minor K.
        • Lehmann S.
        Gender differences in nighttime sleep patterns and variability across the adult lifespan: a global-scale wearables study.
        Sleep. 2020; 44: zsaa169https://doi.org/10.1093/sleep/zsaa169
        • Roenneberg T.
        • Allebrandt K.V.
        • Merrow M.
        • Vetter C.
        Social jetlag and obesity.
        Curr. Biol. 2012; 22: 939-943https://doi.org/10.1016/j.cub.2012.03.038
        • Ong J.L.
        • Tandi J.
        • Patanaik A.
        • Lo J.C.
        • Chee M.W.L.
        Large-scale data from wearables reveal regional disparities in sleep patterns that persist across age and sex.
        Sci. Rep. 2019; 9: 3415https://doi.org/10.1038/s41598-019-40156-x
        • Lo J.C.
        • Leong R.L.F.
        • Loh K.K.
        • Dijk D.J.
        • Chee M.W.L.
        Young Adults’ sleep duration on work days: differences between East and west.
        Front. Neurol. 2014; 5: 81https://doi.org/10.3389/fneur.2014.00081
        • Hsiang S.
        • Kopp R.
        • Jina A.
        • Rising J.
        • Delgado M.
        • Mohan S.
        • Rasmussen D.J.
        • Muir-Wood R.
        • Wilson P.
        • Oppenheimer M.
        • et al.
        Estimating economic damage from climate change in the United States.
        Science. 2017; 356: 1362-1369https://doi.org/10.1126/science.aal4369
        • Obradovich N.
        • Tingley D.
        • Rahwan I.
        Effects of environmental stressors on daily governance.
        Proc. Natl. Acad. Sci. U S A. 2018; 115: 8710-8715https://doi.org/10.1073/pnas.1803765115
        • Burke M.
        • Hsiang S.M.
        • Miguel E.
        Global non-linear effect of temperature on economic production.
        Nature. 2015; 527: 235-239https://doi.org/10.1038/nature15725
        • Hsiang S.M.
        • Burke M.
        • Miguel E.
        Quantifying the influence of climate on human conflict.
        Science. 2013; 341: 6151https://doi.org/10.1126/science.1235367
        • Acharya A.
        • Blackwell M.
        • Sen M.
        Explaining causal findings without bias: detecting and assessing direct effects.
        Am. Polit. Sci. Rev. 2016; 110: 512-529https://doi.org/10.1017/s0003055416000216
        • Buzan J.R.
        • Oleson K.
        • Huber M.
        Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5.
        Geosci. Model Dev. 2015; 8: 151-170https://doi.org/10.5194/gmd-8-151-2015
        • Obradovich N.
        • Rahwan I.
        Risk of a feedback loop between climatic warming and human mobility.
        J. R. Soc. Interface. 2019; 16: 20190058https://doi.org/10.1098/rsif.2019.0058
        • Taylor K.E.
        • Stouffer R.J.
        • Meehl G.A.
        An overview of CMIP5 and the experiment design.
        Bull. Am. Meteorol. Soc. 2012; 93: 485-498https://doi.org/10.1175/bams-d-11-00094.1
        • Riahi K.
        • Rao S.
        • Krey V.
        • Cho C.
        • Chirkov V.
        • Fischer G.
        • Kindermann G.
        • Nakicenovic N.
        • Rafaj P.
        RCP 8.5—a scenario of comparatively high greenhouse gas emissions.
        Clim. Change. 2011; 109: 33-57https://doi.org/10.1007/s10584-011-0149-y
        • Thrasher B.
        • Maurer E.P.
        • McKellar C.
        • Duffy P.B.
        Technical Note: bias correcting climate model simulated daily temperature extremes with quantile mapping.
        Hydrol. Earth Syst. Sci. 2012; 16: 3309-3314https://doi.org/10.5194/hess-16-3309-2012
        • Moore F.C.
        • Lacasse K.
        • Mach K.J.
        • Shin Y.A.
        • Gross L.J.
        • Beckage B.
        Determinants of emissions pathways in the coupled climate–social system.
        Nature. 2022; 603: 103-111https://doi.org/10.1038/s41586-022-04423-8
        • Pielke Jr R.
        • Burgess M.G.
        • Ritchie J.
        Plausible 2005–2050 emissions scenarios project between 2 °C and 3 °C of warming by 2100.
        Environ. Res. Lett. 2022; 17: 024027https://doi.org/10.1088/1748-9326/ac4ebf
        • Hausfather Z.
        • Moore F.C.
        Net-zero commitments could limit warming to below 2 °C.
        Nature. 2022; 604: 247-248https://doi.org/10.1038/d41586-022-00874-1
        • Meinshausen M.
        • Lewis J.
        • McGlade C.
        • Gütschow J.
        • Nicholls Z.
        • Burdon R.
        • Cozzi L.
        • Hackmann B.
        Realization of Paris Agreement pledges may limit warming just below 2 °C.
        Nature. 2022; 604: 304-309https://doi.org/10.1038/s41586-022-04553-z
        • Doxsey-Whitfield E.
        • MacManus K.
        • Adamo S.B.
        • Pistolesi L.
        • Squires J.
        • Borkovska O.
        • Baptista S.R.
        Taking advantage of the improved availability of census data: a first look at the gridded population of the world, version 4.
        Pap. Appl. Geogr. 2015; 1: 226-234https://doi.org/10.1080/23754931.2015.1014272
      Advertisement
      One Earth
      This journal offers authors two options (open access or subscription) to publish research