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Improving Phenotypic Prediction by Combining
Genetic and Epigenetic Associations

Sonia Shah,1,2,14 Marc J. Bonder,3,14 Riccardo E. Marioni,1,4,5 Zhihong Zhu,1 Allan F. McRae,1,2

Alexandra Zhernakova,3 Sarah E. Harris,4,5 Dave Liewald,4 Anjali K. Henders,6

Michael M. Mendelson,7,8,9 Chunyu Liu,10 Roby Joehanes,11 Liming Liang,12 BIOS Consortium,
Daniel Levy,9 Nicholas G. Martin,6 John M. Starr,4,13 Cisca Wijmenga,3 Naomi R. Wray,1 Jian Yang,1

Grant W. Montgomery,6,14 Lude Franke,3,14 Ian J. Deary,4,13,14 and Peter M. Visscher1,2,4,14,*

We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether

they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the

largest genome-wide association studies on BMI (n ~ 350,000) and height (n ~ 250,000) to date. We derived methylation predictors by

estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in

older individuals from the Lothian Birth Cohorts (LBCs, n ¼ 1,366) explained 4.9% of the variation in BMI in Dutch adults from the

LifeLines DEEP study (n ¼ 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study

(BSGS, n ¼ 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and

BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of

variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respec-

tively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles

represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age

modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a

mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information

might have greater utility for complex-trait prediction.
Introduction

Obesity is a major risk factor for a number of chronic

diseases, including diabetes, cardiovascular diseases, and

cancer.1–4 Once considered a health burden only in

high-income countries, it is a growing epidemic that is

dramatically on the rise in low- and middle-income

countries, particularly in urban settings. Knowledge of

the genetic and environmental contributors to obesity

is necessary for developing effective strategies to

reduce its global burden. Body mass index (BMI) is a

commonly used measure for quantifying obesity.

Although many genetic determinants of BMI have been

identified by large genome-wide association studies

(GWASs),5 only about 10% of the inter-individual varia-

tion in BMI has been explained by genetic factors. With

recent advances in high-throughput genomic technolo-

gies, researchers are now turning to epigenetics as a way

of understanding the interplay between genetics and
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environment and their contribution to complex traits

and diseases.

Epigenetics refers to the regulatory processes that con-

trol gene expression without altering the DNA sequence.

The most studied epigenetic process is DNA methylation,

the reversible addition of a methyl group primarily to a

cytosine residue at a CpG dinucleotide. Because epige-

netic variation reflects both genetic and environmental

exposures, there is potential to identify novel disease-

associated genes and pathways that might not be discov-

ered through genetic studies alone. Methylome-wide

association studies (MWASs), using methylation arrays

such as the Illumina Infinium HumanMethylation450

array, have already begun to identify genomic CpG sites

whose methylation levels are associated with BMI.6

DNA-methylation levels at specific CpG sites have already

shown to be accurate predictors of age and smoking

status,7–9 and such phenotypic prediction could extend

to complex traits and disease and potentially improve
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prediction over genetic information. The ability of DNA-

methylation profiles to predict cross-sectionally complex

traits independently of genotypic information has not

yet been explored. Here, we investigate whether DNA-

methylation profiles associate with BMI and height inde-

pendently of genotypic information. BMI and height

represent two complex traits with different relative contri-

butions of genetics and environment to inter-individual

variance.10–13 Heritability estimates for BMI are high but

vary (0.3–0.8) among twin and family studies. The genetic

contribution appears to vary with age, such that it has a

greater influence during childhood than during adult

life.10 In contrast, height is known to have a mostly ge-

netic contribution; heritability estimates from both twin

and family studies are consistently around 0.8 in nutri-

tionally replete societies.11–13 These findings suggest that

epigenetic contributions might be greater for BMI than

for height.

Therefore, the present study aimed to test the relative

contributions of DNA-methylation status and genetic

variation to inter-individual variation in BMI and height.

We hypothesized a priori that after genetic determinants

of phenotype are accounted for, DNA methylation will

provide a far more substantial contribution to inter-

individual variation in BMI than to variation in height.

To this end, we first performed an MWAS for BMI

and height in two independent datasets; the discovery

sample comprised 1,366 older individuals from two

Scottish birth cohorts (the Lothian Birth Cohorts [LBCs]

of 1921 [n ¼ 446; mean age 79.1 5 0.6 years] and 1936

[n ¼ 920; mean age 69.5 5 0.8 years]), and the validation

sample was the LifeLines DEEP cohort of Dutch adult

individuals (n ¼ 750; mean age 45.5 5 13.3 years).

For each trait, we generated methylation-profile scores

(a weighted sum of the methylation levels at associated

CpG sites) in the validation cohort on the basis of the

observed CpG associations in the discovery cohort, and

we estimated the proportion of height and BMI variance

accounted for by these DNA-methylation profiles. We

also determined whether the methylation-profile scores

were associated with the two traits independently of

genetic-profile scores (weighted sum of associated effect

alleles of associated SNPs) on the basis of results from

the most recent BMI and height meta-GWASs carried

out by the Genetic Investigation of Anthropometric Traits

(GIANT) consortium.14

In adults, the BMI cutoffs that define obesity are not

linked to age and do not differ for men and women,

whereas in children BMI varies with age and sex.15

Therefore, methylation changes associated with BMI in

adults might not necessarily reflect those observed in

children or adolescents. To investigate this further, we

tested whether BMI-associated methylation changes

observed in the adults of the LBCs and LifeLines DEEP

cohort were predictive of BMI in adolescents from the Bris-

bane Systems Genetics Study (BSGS; n ¼ 403; mean age

14.0 5 2.4).
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Material and Methods

Cohorts
LBCs

The LBCs comprise individuals born in 1921 (LBC1921) and 1936

(LBC1936), and most of these individuals were participants in the

Scottish Mental Surveys (SMSs) of 1932 and 1947, respectively,

when nearly all 11-year-old children in Scotland completed an

IQ-type test in school. The LBC studies provide follow up of surviv-

ing SMS participants who are living in the Lothian region (Edin-

burgh city and outskirts) of Scotland.16–18 The LBC studies focus

on the determinants of people’s cognitive aging differences and

collect detailed information on cognitive, biomedical, lifestyle,

socio-demographic, behavioral, physical, and psychological fac-

tors. An overview of the data collected in the LBCs can be found

in the cohorts’ profile article.18 The current study draws upon the

baseline examinations (including blood-sample collection and

phenotypic measurements) of 550 LBC1921 participants recruited

in 1999–2001 (average age of 79 years) and 1,091 LBC1936 partic-

ipants recruited in 2004–2007 (average age of 70 years).

LifeLines DEEP

This is a sub-cohort (n ¼ 752, recruited in 2013) of the LifeLines

study,19 the latter of which is a multi-disciplinary prospective pop-

ulation-based cohort study examining the health and health-

related behaviors of 167,729 persons living in the north of the

Netherlands in a unique three-generation design. It employs a

broad range of investigative procedures in assessing the biomed-

ical, socio-demographic, behavioral, physical, and psychological

factors contributing to the health and disease of the general pop-

ulation and has a special focus on multi-morbidity and complex

genetics. A full description of the LifeLines DEEP study can be

found in the paper describing the cohort and data.19

BSGS

The BSGS is a study on adolescent twins comprising a total of 962

individuals from 314 families of European descent,20 and a subset

of these individuals have DNA-methylation data (614 individuals

from 177 families). Families consist of adolescent monozygotic

(MZ) and dizygotic (DZ) twins, their siblings, and their parents.

The BSGS comprises a sub-sample from a larger and continuing

study on families with adolescent twins. Recruitment commenced

in 1992. A full description of the BSGS cohort has been previously

provided.20,21
Ethics
Ethics permission for LBC1921 was obtained from the Lothian

Research Ethics Committee (wave 1: LREC/1998/4/183). Ethics

permission for LBC1936 was obtained from the Multi-Centre

Research Ethics Committee for Scotland (wave 1: MREC/01/0/

56) and the Lothian Research Ethics Committee (wave 1: LREC/

2003/2/29). The BSGS was approved by the Queensland Institute

for Medical Research Human Research Ethics Committee. The

LifeLines DEEP study was approved by the ethical committee of

the University Medical Centre Groningen (document no. METC

UMCG LLDEEP: M12.113965). For all studies, written consent

was obtained from all participants.
Phenotypic Measurements
LBCs

Weight and height were measured in the LBCs by a trained nurse

according to a standardized protocol. Participants were asked to re-

move their shoes before a seca stadiometer was used to assess



height in centimeters. Weight (after participants removed shoes

and outer clothing) was measured in kilograms by electronic

seca scales, which provided digital readouts.

LifeLines DEEP

Height was measured without shoes by the seca 222 stadiometer.

Weight was measured without shoes and heavy clothing by the

seca 761 scale. All measurements were performed by a trained

research nurse.

BSGS

Height and weight were both measured clinically with a stadiom-

eter and accurate scales, respectively. Anthropometric measure-

ments were only available for the offspring.

Complete blood cell counts (lymphocytes, monocytes, neutro-

phils, eosinophils, and basophils) were measured in the LBCs

and LifeLines cohort.

DNA Methylation
Whole-blood samples were collected at the same time as pheno-

typic measurements in all studies. Extracted DNA was profiled

with the Infinium HumanMethylation450 BeadChip,22 and data

were available on 752 LifeLines DEEP participants, 1,518 LBC par-

ticipants (514 from LBC1921 and 1,004 from LBC1936), and 614

BSGS participants. For each of the LBCs and the LifeLines DEEP

cohort, samples were randomized on 96-well plates, and methyl-

ation arrays were run in a single experiment to minimize batch ef-

fects. Low-quality probes and samples were excluded from further

analysis as described below.

LBC DNA-Methylation Quality Control

Details of DNA extraction and methylation profiling are described

elsewhere.23 Background correction of the raw intensity data and

generation of the methylation beta values were done with the R

minfi package. Quality-control (QC) steps included the removal

of probes with a low (<95%) detection rate at p < 0.01. Array con-

trol probes were inspected manually, and low-quality samples

(e.g., samples with inadequate hybridization, bisulfite conversion,

nucleotide extension, or staining signal) were removed. Samples

with a low call rate according to the Illumina-based threshold

(samples with <450,000 probes detected at p < 0.01) were

removed. LBC samples had been genotyped with the Illumina

610-Quadv1 genotyping platform. Genotype information from

the 65 SNP control CpG probes on the methylation chip were

cross-validated with those from the genotyping chip with the R

wateRmelon package. Where there was low correspondence, sam-

ples were excluded (n ¼ 9). We also excluded eight participants

whose reported sex did not match their predicted sex according

to methylation levels for probes on the X and Y chromosomes.

LifeLines DEEP DNA-Methylation QC

Details of DNA extraction and methylation profiling are described

elsewhere.19 Probe QC, background correction, color correction,

and normalization were performed with a custom pipeline based

on the pipeline by Tost and Touleimat.24 All methylation probes

were re-mapped to the human genome (hg37, UCSC Genome

Browser),25 and both poorly mapping probes and probes with a

SNP in the single-base extension side (according to GoNL26)

were removed in the same step. Data were normalized with

DASEN.27

BSGS DNA-Methylation QC

Details of DNA extraction, methylation profiling, and methyl-

ation QC are provided elsewhere.21

In all cohorts, non-autosomal probes and probes with underly-

ing SNPs at the target CpG site (according to Illumina annotation)

were excluded from further analysis. Methylation levels are pre-
Th
sented as beta values, which range between 0 and 1, where a value

of 0 indicates that all copies of the CpG site in the sample

were completely unmethylated (no methylated molecules were

measured), and a value of 1 indicates that every copy of the site

was methylated. Beta values were then processed as follows in

all cohorts. The beta values were logit transformed: log (beta/

(1 � beta). For removal of variation due to batch effects and cova-

riates, the logit-transformed beta values were regressed onto the

technical variables (plate, array, and array position) and covariates

(sex and age for the main analysis; in addition, cell count was

adjusted in a sensitivity analysis in the LBCs and LifeLines DEEP

cohort). Residuals from this linear regression were inverse-normal

transformed and used in all subsequent analyses.

Genotyping
Genotype data were available for all samples with DNA-methyl-

ation data in the three cohorts. The LBC and BSGS samples

were genotyped with the Illumina Human610-Quad v1.0

genotyping platform, and data were available on all partici-

pants with DNA-methylation data. After QC, genotyped data

were imputed with 1000 Genomes Phase 1 version 328 and

IMPUTE2.29,30 The LifeLines DEEP samples were genotyped with

the HumanCytoSNP-12 BeadChip and the ImmunoChip,31 a

customized Illumina Infinium array. The data were merged and

subsequently imputed with GoNL26,32 and IMPUTE2.29,30 Details

of QC in each cohort are described below.

LBC Genotyping QC

DNA samples from each individual were genotyped with the Illu-

mina Human610-Quad BeadChip. Individuals were excluded on

the basis of unresolved gender discrepancy, relatedness, call rate

(%0.95), and evidence of non-European descent. SNPs were

included in the analyses if they met the following conditions:

call rate R 0.98, minor allele frequency R 0.01, and Hardy-Wein-

berg equilibrium test with p R 0.001.

LifeLines DEEP Genotyping QC

Details of DNA extraction, genotyping, and QC are provided else-

where.19

BSGS Genotyping QC

DNA samples from each individual were genotyped by the Scien-

tific Services Division at deCODE Genetics (Iceland) with the

Illumina Human610-Quad BeadChip. Genotypes were called

with the Illumina BeadStudio software. A detailed description of

genotyping QC can be found elsewhere.20,33

Methylome-wide Association Analysis in the LBCs and

LifeLines DEEP Cohort
The BMI and height phenotypes were adjusted for sex and age and

standardized for the generation of Z scores. Linear regression anal-

ysis was used to test the association between each CpG probe

(independent variable) and the BMI or height Z score phenotype

(dependent variable).

Methylation-Profile Scores for BMI and Height
In the LBCs and LifeLines DEEP cohort, we first selected CpG

probes on the basis of a Bonferroni-corrected association p value

threshold (p < 0.05/[number of probes]). To remove redundant

CpG probes from the methylation-profile score, if multiple probes

passed the p value threshold and had a pairwise correlation greater

than 0.1 within a 500-bp window, we selected only the most sig-

nificant probe for the score. The choice of correlation threshold

and window size was based on previous studies that investigated
e American Journal of Human Genetics 97, 75–85, July 2, 2015 77



Table 1. Summary of MWAS and GWAS Prediction Analyses

Trait

Cohort

Location of ResultsProbe Selection Effect-Size Estimation Prediction

MWAS Prediction

BMI LifeLines DEEP LifeLines DEEP LBC Figure 1

BMI LBC LBC LifeLines DEEP Figure 1

BMI Framingham LifeLines DEEP LBC Figure S4

BMI Framingham LBC LifeLines DEEP Figure S4

BMI LifeLines DEEP LifeLines DEEP BSGS Figure 2

BMI LBC LBC BSGS Figure 2

BMI Framingham LifeLines DEEP BSGS Figure 2

BMI Framingham LBC BSGS Figure 2

Height LifeLines DEEP LifeLines DEEP LBC Figure 1

Height LBC LBC LifeLines DEEP Figure 1

GWAS Prediction

BMI GIANT 2015 GIANT 2015 LBC Figure 1

BMI GIANT 2015 GIANT 2015 LifeLines DEEP Figure 1

BMI GIANT 2015 GIANT 2015 BSGS Figure 2

Height GIANT 2014 GIANT 2014 LBC Figure 1

Height GIANT 2014 GIANT 2014 LifeLines DEEP Figure 1
pairwise probe correlation as a function of the distance between

probes.34,35 BMI and height methylation-profile scores were calcu-

lated as the weighted sum of the selected CpG methylation levels

(the weights for each CpG probe were the effect sizes from the

MWAS). We used selected probes and effect sizes from the LBC

MWAS to generate a methylation-profile score in the LifeLines

DEEP cohort, and vice versa.

For BMI, as a secondary replication cohort, we generated an

additional methylation-profile score, whereby we selected probes

on the basis of results from a larger, independent MWAS on BMI

in the Framingham Heart Study (n ¼ 2,377; mean age 67 5 9

years; age range ¼ 40–93 years; M.M.M., unpublished data). In

this analysis, 78 CpG probes had an association p value <

1.22 3 10�7 (Bonferroni correction for 409,403 probes) and were

selected for generating a BMI methylation-profile score. To

generate a Framingham-based methylation score in the LBCs, we

derived effect sizes for these 78 probes from the LifeLines DEEP

MWAS, whereas we derived effect sizes from the LBC MWAS to

generate the score in the LifeLines DEEP cohort.

Genetic-Profile Score for BMI and Height
We used SNP genotype data to calculate genetic-profile scores for

BMI and height. SNPs andweights (effect sizes) used for generating

the genetic-profile scores (the weighted sum of the effect allele

count) were based on the GIANT meta-GWAS for BMI in

~350,000 individuals14 and for height in ~250,000 individuals.36

It is important to note that none of the LBC, LifeLines DEEP, or

BSGS participants were part of the GIANT meta-GWAS, so discov-

ery bias was not an issue. Prior testing in an independent cohort

indicated that using all HapMap3 SNPs provided the best predictor

for BMI,14 whereas SNPs that had a p value < 5 3 10�5 and that

were selected with the GCTA-COJO (conditional and joint
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genome-wide analysis) function in the GCTA software37 provided

the best predictor for height.14,36
Proportion of Phenotypic Variance Explained in the

LBCs and LifeLines DEEP Cohort
Using linear regression, in each cohort we estimated how much

variance in the sex- and age-adjusted BMI and height phenotypes

(adjusted R2) was explained by the methylation- and genetic-pro-

file scores, both individually and combined. We also looked for

any evidence of interaction between the methylation- and ge-

netic-profile scores. For each trait in each cohort, we ran the

following four regression models and extracted the proportion of

variance explained from each:

Model 1: trait ~ MWAS score

Model 2: trait ~ GWAS score

Model 3: trait ~ MWAS score þ GWAS score

Model 4: trait ~ MWAS score þ GWAS score þ (MWAS score 3

GWAS score)

We used an ANOVA to test whether the interaction model

(model 4) explained significantly more of the variation in the

phenotype than the additive model (model 3). A summary of

the cross-cohort GWAS and MWAS predictions is presented in

Table 1.
Proportion of Variance Explained in BMI of

Adolescent Individuals
We generated five methylation scores in the BSGS individuals and

report how much of the variation in sex- and age-adjusted BMI

was explained by each of the scores: (1) probe selection and



Table 2. Cohort Characteristics of the LBC and LifeLines DEEP
Participants at the Time of DNA-Methylation Assays

Cohort

LBC1936 LBC1921 LifeLines DEEP BSGS

n 920 446 752 403

Age (years) 69.5 5 0.8 79.1 5 0.6 45.5 5 13.3 14.0 5 2.4

Female 49.5% 60.5% 57.8% 48.1%

BMI (kg/m2) 27.8 5 4.4 26.2 5 4.0 25.4 5 4.2 20.4 5 3.7

Height (cm) 166.4 5 8.9 163.1 5 9.3 175.2 5 8.9 159.3 5 11.6
weights derived from the LBCs; (2) probe selection and weights

derived from the LifeLines DEEP cohort (3); probe selection from

the Framingham discovery and weights derived from the LBCs;

(4) probe selection from the Framingham discovery and weights

derived from the LifeLines DEEP cohort; and (5) probe selection

and weights derived from a fixed-effect meta-analysis of the

LBCs and LifeLines DEEP cohort. To estimate the proportion of

variance accounted for by the profile scores in the BSGS cohort,

we corrected the sex- and age-adjusted BMI Z scores (scores stan-

dardized within the cohort) for family structure by using a linear

mixed model (LMM) analysis in GCTA,38 in which we used

SNP genotypes to estimate pedigree relatedness (pairwise related-

ness < 0.05 was set to 0 according to the method in Zaitlen

et al.39). Residuals from this LMM analysis were used as the sex-,

age-, and family-structure-corrected BMI phenotype. The propor-

tion of variance explained in the latter phenotype by each of the

abovementioned methylation-profile scores was estimated by

linear regression.

Correcting for Cell Count
Chronic inflammation is known to be associated with obesity, and

white blood cell counts have been shown to increase with

increasing BMI.40 Although the aim of this study was to investi-

gate howmuch variation in BMI and height is captured by genetic

and methylation differences irrespective of causality, we did

perform the above analyses on cell-count-corrected methylation

data as a sensitivity analysis.
Results

Cohort Characteristics

After sample QC, 1,366 samples from the LBCs (n ¼ 446

from LBC1921 and n ¼ 920 from LBC1936), 752 samples

from the LifeLines DEEP cohort, and 403 samples from

the BSGS cohort (after we removed one individual from

each MZ twin pair) had methylation, phenotype, and ge-

notype data. Cohort characteristics of these samples are

provided in Table 2. The LifeLines DEEP participants

had a much wider age range (18–81 years) and were on

average much younger (mean 45.5 5 13.3 years) than

LBC participants (69.5 5 0.8 years in LBC1936 and

79.1 5 0.6 years in LBC1921). The mean age in the

BSGS cohort was 14 5 2.4 years. BMI and height distribu-

tions for each cohort are shown in Figures S1 and S2. The

BMI and height phenotypes were adjusted for age and sex

in each cohort.
Th
Methylome-wide Association Analysis

To create a multi-probe methylation predictor, we first

conducted a methylome-wide association analysis. A total

of 431,951 and 407,935 CpG probes remained in the

LBC and LifeLines DEEP datasets, respectively, after

QC and probe filtering. Probes with an association

p value < 1.16 3 10�7 in the LBC dataset and a

p value < 1.22 3 10�7 in the LifeLines DEEP dataset

were considered to be significantly associated after Bonfer-

roni correction for the number of probes tested. After

removal of correlated probes, nine CpG probes in the

LBC dataset and five probes in the LifeLines DEEP

dataset were associated with BMI and were used for

generating methylation-profile scores (Table S1). Two

probes (cg06500161 and cg11024682) were significantly

associated with BMI in both cohorts—cg06500161 is

found in an intronic region of ABCG1 (ATP-binding

cassette, sub-family G, member 1 [MIM: 603076]), and

cg11024682 is intronic to one isoform of SREBF1 (sterol

regulatory element binding transcription factor 1 [MIM:

184756]). Both genes are known to be involved in

lipid metabolism, but neither has been identified by

GWASs to harbor genetic variants that are associated

with BMI.

For height, no CpG probes passed the p value threshold

in the LBCs, whereas only a single probe passed the

threshold in the LifeLines DEEP cohort. Therefore, to

generate a height-profile score, we used a less stringent

association p value of <0.001 for probe selection. 507

and 949 CpG probes were selected in the LBCs and

LifeLines DEEP cohort, respectively. Quantile-quantile

plots for each MWAS are shown in Figure S3. We observed

inflation in the lambda values—for BMI, lambdas were

1.53 and 1.17 in the LBCs and LifeLines DEEP cohort,

respectively, whereas for height, lambdas were 1.12 and

1.36, respectively. Lambdas close to 1 (SD ¼ 0.1) were

observed with permutation analysis (performed in both

the LBCs and LifeLines DEEP cohort), which indicates

that the inflation was due to real signal and not an artifact

of our assumption of the null distribution of the test

statistic.

Proportion of BMI and Height Variance Explained by

Profile Scores in the LBCs and LifeLines DEEP Cohort

Consistent with expectation, all methylation- and ge-

netic-profile scores were correlated with their respective

traits in the anticipated direction (Table S2). The methyl-

ation-profile scores explained 6.9% and 4.9% (p value <

1 3 10�15 and 7 3 10�10, respectively) of the variation

in BMI in the LBCs and LifeLines DEEP cohort, respec-

tively, whereas the genetic-profile scores explained 8.0%

and 9.4% (p value < 1 3 10�15), respectively (Figure 1).

When both the methylation- and genetic-profile scores

were included in an additive model for BMI, each re-

mained independently associated with BMI. The propor-

tion of variance explained by the additive model was

14.0% and 13.6% in the LBCs and LifeLines DEEP cohort,
e American Journal of Human Genetics 97, 75–85, July 2, 2015 79



Figure 1. BMI and Height Prediction
The plots depict howmuch of the variance
in the sex- and age-adjusted BMI and
height phenotypes (adjusted R2) was ex-
plained by the methylation-profile score,
the genetic-profile score, an additive
model including both scores (methyla-
tion þ genetic), and an interaction model
(methylation 3 genetic). The methylation
score in the LBCs is based on selected
probes and effects sizes from the LifeLines
DEEP MWAS, and vice versa. The genetic-
profile scores are based on results from
the GIANT meta-GWAS.
respectively, suggesting a mainly additive effect of the two

scores on BMI (Figure 1).

The BMI methylation-profile scores, based on 78 probes

selected from an MWAS in the larger Framingham Heart

Study (M.M.M., unpublished data) but weighted with

effect sizes estimated in the LBCs, explained 7.3% of the

variation in BMI in the LifeLines DEEP cohort, whereas

a profile score based on the effects estimated in the

LifeLines DEEP cohort explained 11% of the variation in

the LBCs. As before, the methylation-profile scores

showed an additive effect with the genetic-profile

scores (Figure S4). Compared to the methylation-profile

scores derived from the MWAS in the LBCs or LifeLines

DEEP cohort, the larger R2 values for the profile scores

based on probes identified in the Framingham cohort

suggest that the larger sample size in the latter study pro-

vided more power to identify additional CpG probes and

hence allowed us to explain a higher proportion of vari-

ance in BMI.

The height methylation-profile scores were associated

with height and explained 0.31% and 0.76% (p value ¼
0.02 and 0.01 of the variation in the LBCs and LifeLines

DEEP cohort, respectively). The height genetic-profile

scores explained 18.5% and 19.8% (p value < 1 3 10�15)

of the inter-individual variation in the height phenotype

in the LBCs and LifeLines DEEP cohort, respectively

(Figure 1). The additive model including both methyl-

ation- and genetic-profile scores explained 18.5% and

20.1% of the variation in the height phenotype in the

LBCs and LifeLines DEEP cohort, respectively. However,

the methylation-profile score showed no independent

association in the LBCs (p ¼ 0.16) and remained only

marginally associated (p ¼ 0.035) with the height pheno-
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type independently of the genetic-

profile score in the LifeLines DEEP

cohort.

For BMI, the interaction model ex-

plained a slightly larger proportion

of variance than did the additive

model in the LBCs (15% versus 14%;

ANOVA p value ¼ 5 3 10�6) but not

in the LifeLines DEEP cohort (Table

S3). There was no significant interac-
tion between the genetic- and methylation-profile scores

for height in either cohort.

Proportion of BMI Variance Explained in BSGS

Adolescent Individuals

The methylation-profile scores derived from the MWAS

analysis in the LBC individuals did not explain any varia-

tion (adjusted R2 ¼ �0.001) in the sex- and age-adjusted

BMI phenotype from the BSGS cohort, whereas that

derived from the mostly middle-aged individuals of the

LifeLines DEEP study explained 3.6% (p value ¼ 8 3

10�5; Figure 2). Methylation scores based on the CpG

probes identified in the larger Framingham MWAS but

weighted with effect sizes from the older LBC individuals

explained 3.0% of the variation in BMI in adolescent indi-

viduals. Based on the same CpG probes but effect sizes

derived from the younger, albeit smaller, LifeLines DEEP

cohort, the methylation-profile scores explained almost

twice (5.4%) the variation in BMI in adolescent individuals

(Figure 2).

Given that the proportion of variance explained in a pre-

diction setting is a function of sample sizes of the discovery

cohorts, the R2 values from different-sized cohorts are not

directly comparable. We therefore compared the ratio of

the methylation score R2 to the genetic score R2 to look

at the relative contribution of the methylation- and ge-

netic-profile scores to variance in BMI in both BSGS adoles-

cents and older cohorts. As shown in Table S4, in all cases,

the methylation-profile scores had a lower contribution to

BMI variance in the BSGS cohort than in the other cohorts.

The methylation predictor derived from older individuals

(probes and weights for the methylation-profile score

derived from the LBC MWAS) performed the worst.



Figure 2. BMI Prediction in BSGS Ado-
lescents
The plots show how much of the variance
in the sex- and age-adjusted BMI pheno-
type (adjusted R2) was explained by the
methylation-profile score, the genetic-pro-
file score, an additive model including
both scores (methylation þ genetic), and
an interaction model (methylation 3 ge-
netic). The GWAS scores are based on
results from the GIANT meta-GWAS.
Methylation scores are based on probe se-
lection and weights derived from the
LBCs MWAS or the LifeLines DEEP
MWAS (upper panel) or probe selection
from the Framingham discovery with
weights derived from the LBCs or LifeLines
DEEP studies (lower panel).
A BMI methylation score based on a fixed-effect meta-

analysis of the LBC and LifeLines DEEP MWAS results,

whereby a Bonferroni correction for 374,629 common

probes in the two cohorts (p value < 1.33 3 10�7) was

used for selecting probes, performed better than the

methylation score based on the LBC MWAS. However,

despite the larger sample size, it performed worse than

the predictor based on the LifeLines DEEP MWAS: its

adjusted R2 was 0.028 (p value ¼ 4.0 3 10�4).

Correcting for Cell Count

In the LBCs, all cell counts except neutrophils were

associated with sex- and age-adjusted BMI (p < 0.05),

but only monocytes were associated with sex- and

age-adjusted height. In contrast, in the LifeLines DEEP

cohort, all cell counts were significantly associated

with BMI, but not with height. Adjusting for cell

count reduced some of the inflation observed in the

uncorrected analysis—for BMI, lambdas were 1.28 and

1.00 in the LBCs and LifeLines DEEP cohort, respectively,

whereas for height, lambdas were 1.00 and 1.15, respec-

tively. The proportion of variance explained by the

methylation scores after cell-count correction is shown

in Figure S5. The cell-count-corrected methylation

scores based on the MWAS discovery in the LBCs and

LifeLines DEEP cohort remained significantly associated

with BMI and showed an additive effect, although the

proportion of variance explained was substantially less

in the LBCs (3.2%). For height, the methylation-profile

score was still marginally associated with the sex- and

age-adjusted height phenotype in the LifeLines DEEP

cohort (adjusted R2 ¼ 0.0041; p value ¼ 0.045), but not

in the LBCs.
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Discussion

We investigated two traits that we

postulated a priori to have varying

contributions of genetic and environ-

mental factors to inter-individual

variability—we hypothesized that
height would have a mostly genetic component, whereas

BMI would have a larger environmental contribution

that increases with age.10 We found that the methyl-

ation-profile scores contributed almost nothing to the

inter-individual variance in height but showed a strong

association with BMI. The BMI methylation-profile score

improved prediction of BMI over and above the genetic-

profile score. The two profile scores acted mostly in an

additive manner, suggesting that methylation-profile

scores capture information that is largely independent of

the genetic determinants of BMI. Our results suggest that

even if there are genetic variants whose effects on BMI

are mediated by methylation, their contribution is small.

Therefore, methylation profiles might have important util-

ity in improving phenotype prediction over and above

genetic data alone.

Furthermore, BMI methylation profiles in older people

(the LBC individuals) did not predict well in adolescents

(BSGS cohort). A methylation predictor based on CpG

probes identified in a larger, independent study (Framing-

ham) explained almost double the proportion of variance

in BMI in BSGS adolescent individuals when the effect

sizes used for generating the methylation-profile score

were derived from the younger LifeLines DEEP cohort

than when they were derived from the older LBC individ-

uals. A methylation predictor based on the meta-analysis

of the LBCs and LifeLines DEEP cohort, despite the larger

sample size, performed worse than a predictor based

on the LifeLines DEEP cohort alone. The relative contri-

bution of the methylation and genetic predictors for

BMI in adolescent individuals was also found to be

much lower. Combined, the results suggest that these

differences might be due to the direct effect of more
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prolonged exposure to environmental factors in older in-

dividuals, or the fact that older individuals are ‘‘exposed’’

to the phenotype for longer, and therefore might show

larger effects on methylation due to reverse causation

(Figure S6).

The effect sizes for individual CpGs are much larger than

effect sizes for individual SNPs, and this is reflected in the

fact that the proportion of variance explained by the CpGs

identified in relatively small sample sizes (<1,500 individ-

uals) is comparable to that explained by SNPs identified

in very large samples used in genetic discovery (over

250,000 individuals). This suggests that bigger studies

might be able to identify epigenetic variation that ac-

counts for a larger proportion of the inter-individual vari-

ance of a complex trait.

A permutation analysis gives an indication of the highly

correlated structure of the methylation probes in the

genome. If lambda is the mean c2 statistic across all

~400,000 probes, then its sampling variance is 2/M, where

M is the effective number of independent probes, i.e., the

number of independent probes that give the same sam-

pling variance as the observed variance. The SD of the

genome-wide lambda from permutations therefore implies

a surprisingly small effective number of independent

methylation probes of only 2/0.12 ¼ 200, consistent

with a complex correlation structure. Such a complex cor-

relation structure or small effective number of probes does

not imply the absence of meaningful and genome-wide

biological inference, as shown, for example, for gene

expression, which is also characterized by a complex corre-

lation structure.41

A limitation of our study was the relatively small sample

size of the LBCs and LifeLines DEEP cohort. We showed

that a methylation-profile score based on a more extensive

CpG probe list identified from the larger Framingham

study performed the best. This suggests that the smaller

sample size of the LBCs and LifeLines DEEP cohort lacked

the power for statistical identification of additional CpGs.

A sensitivity analysis using different p value thresholds to

select CpG probes in the LBCs and LifeLines DEEP cohort

showed that the ability of the methylation score to predict

BMI decreased as the p value threshold was relaxed (Table

S5). Forming large consortia to enable meta-analyses of

multiple studies will overcome power issues and identify

more robust associations, as well as estimate effect sizes

more accurately. However, sample characteristics of the co-

horts would need careful consideration for methylation

analyses.

As more BMI-associated CpG sites are identified, the

interaction between methylation and genetic profiles

might become stronger, because it would be reasonable

to expect that methylation at some of these CpGs might

lie in the causal pathway, downstream of SNP effects.

Further analysis to identify SNPs associated with

both BMI and methylation levels at BMI-associated

CpG sites would be needed to dissect the observed interac-

tion and determine causality. Current work using aMende-
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lian randomization approach to identify a causal SNP

(rs4925108) that is associated with methylation at a CpG

site in SREBF suggests that both the SNP and the methyl-

ation levels at the CpG appear to be associated with BMI

(M.M.M., unpublished data).

Another limitation of our study was the use of methyl-

ation profiles observed in blood. It is well known that tis-

sue-specific DNA-methylation profiles exist; therefore,

methylation profiles in blood might not be entirely repre-

sentative of other tissues. If the primary interest for identi-

fying epigenetic profiles is to determine causality, the tis-

sue under investigation might be of great importance,

and a more relevant tissue, such as adipose tissue, might

be more suitable for a trait such as BMI or obesity. This

might not apply for prediction, and comparing blood-

derived methylation predictors with those derived from

other tissues would be a logical next step if data were

available.

The SNP arrays used in the BMI and height GWASs pro-

vide comprehensive coverage of the genome: 93% of

common SNPs (both coding and non-coding) in the CEU

population (Utah residents with ancestry from northern

and western Europe from the CEPH collection) are tagged

at r2 R 0.8.42 In comparison, although the Infinium

HumanMethylation450 array comprehensively evaluates

promoter regions and CpG islands, as well as other poten-

tially relevant intergenic regions, such as regulatory re-

gions,43 it only interrogates a small subset of the~28million

CpGsites in thehumangenome. Therefore, otherCpG sites

might be missed, potentially giving an incomplete and

biased view of the relative contribution of genetic and

epigenetic factors to phenotypic variation. Despite this,

the array has already proven to be a useful high-throughput

technology for unraveling interesting biology: a number of

studies have successfully identified CpGs in or near likely

candidate genes associated with various phenotypes.

A drawback of using epigenetic disease markers, like any

other molecular biomarker, is that they are vulnerable to

confounding and reverse causation. This also applies to

cell counts as a biomarker. The observed attenuation of

the BMI variance explained by the methylation predictor

when the MWAS was adjusted for cell counts suggests

that both methylation and cell counts are involved in

either the cause or the consequence of BMI differences be-

tween individuals. Distinguishing methylation changes

that lie in the causal pathway from those that are a conse-

quence of disease is an important task for understand-

ing disease etiology and identifying new drug targets.

Combining genetic and epigenetic data in a typical Men-

delian randomization analysis might identify causal

methylation changes due to genetic variation. In the

context of BMI, methylation changes due to obesity would

still be of interest for understanding the etiology of down-

stream disease outcomes, such as cardiovascular disease or

type 2 diabetes. However, neither causality nor functional

knowledge is necessary for prediction and was therefore

not the focus of this study.



In summary, we have shown that inter-individual dif-

ferences in environment or lifestyle are partly reflected

in DNA-methylation data, and therefore DNA-methyl-

ation profiles have the potential to significantly improve

complex-trait prediction over and above that of genetic

predictors. Outside of disease association, applying accu-

rate prediction of complex traits by using genetic and

epigenetic predictors might be useful in forensic inves-

tigations where a biological sample is available but where

there is no profile from the person whose sample is

investigated.
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