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The Human Phenotype Ontology (HPO) is widely used in the rare disease community for differential diagnostics, phenotype-driven
analysis of next-generation sequence-variation data, and translational research, but a comparable resource has not been available for
common disease. Here, we have developed a concept-recognition procedure that analyzes the frequencies of HPO disease annotations
as identified in over five million PubMed abstracts by employing an iterative procedure to optimize precision and recall of the identified
terms. We derived disease models for 3,145 common human diseases comprising a total of 132,006 HPO annotations. The HPO now
comprises over 250,000 phenotypic annotations for over 10,000 rare and common diseases and can be used for examining the pheno-
typic overlap among common diseases that share risk alleles, as well as between Mendelian diseases and common diseases linked by
genomic location. The annotations, as well as the HPO itself, are freely available.

Introduction

The Human Phenotype Ontology (HPO) provides a
structured, comprehensive, and well-defined set of over
11,000 classes (terms) that describe phenotypic abnormal-
ities seen in human disease."” The HPO has been used for
developing algorithms and computational tools for clinical
differential diagnostics,” for the prioritization of candi-
date disease-associated genes,®'! in exome sequencing
studies,'? and for diagnostics in clinical exome
sequencing.'' In addition, the HPO has been used for
translational research, including inferring novel drug
indications,'” characterizing the proteome of the human
postsynaptic density,’® analyzing Neandertal exomes,"*
and other topics.'>~%?

The HPO project provides not only a standard pheno-
type terminology but also a collection of disease-pheno-
type annotations, i.e., computational assertions that a

The HPO currently provides over 116,000 annotations to
over 7,000 rare diseases; for instance, the disease Marfan
syndrome (MIM: 154700) is annotated with the HPO
terms “arachnodactyly” (HP: 0001166), “ectopia lentis”
(HP: 0001083), and 46 others. The patterns and specificity
of the annotations allow the information content (IC) of
each term to be calculated; the IC reflects the clinical spec-
ificity of the term and represents a key component of most
of the aforementioned algorithms.?* Additionally, compu-
tational logical definitions are provided for HPO terms. For
instance, the HPO term “hypoglycemia” is defined on
the basis of “decreased concentration” (PATO: 0001163)
in “blood” (UBERON: 0000178) with respect to “glucose”
(CHEBI: 17234); this definition uses terms from the
ontologies PATO?** for describing qualities, UBERON for
describing anatomy,?>?® and ChEBI for describing small
biological molecules.?” These definitions are useful for a
number of applications, including cross-species phenotype

disease is associated with a given phenotypic abnormality. comparisons®***’ and computational quality control.””
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The focus of the HPO has, to date, been on rare disease, and
correspondingly, it has primarily been adopted by groups
from various fields in human genetics, including the Sanger
Institute’s Deciphering Developmental Disorders database””
and DECIPHER,”' the European Cytogeneticists Association
Register of Unbalanced Chromosome Aberrations,*” the
NIH Undiagnosed Diseases Program and Network, the rare-
disease section of the UK'’s 100,000 Genomes Project, and
Genome Canada’s CARE for RARE program, but also by data-
bases for genome-wide association studies (GWASs).**°
Along with rapid technological advances in the field of
next-generation sequencing (NGS), personalized medicine
is quickly becoming reality,*® and initial attempts to use
genome sequencing to predict phenotypic abnormalities
in common, complex diseases are beginning to show prom-
ising results.*” In this work, we have extended the range of
the HPO from rare to common human disease in order to
provide a computational foundation for phenotype-driven
analysis of genomes and other translational research in the
field of genetics of complex human disease. We have gener-
ated over 132,000 phenotypic annotations from the HPO for
3,145 common diseases by using a text-mining approach
and have made them freely available to the community.
Finally, we demonstrate the uses to which this resource can
be put and set out a framework for the future development
of the HPO as a community-driven resource for phenotypic
analysis of rare and common disease.

Material and Methods

Extraction of HPO Terms By Automatic Concept
Recognition

Concept recognition (CR) extracts ontology terms from text with
the aim of leveraging structured knowledge from unstructured
data. For example, CR might be able to identify the term “macro-
cephaly” (HP: 0000256) within an abstract that contains the
phrase “large head” because the latter is listed as a synonym in
the entry HP: 0000256. Published CR approaches rely on direct
dictionary lookup combined with stemming and word-permuta-
tion algorithms®® or use natural-language-processing pipelines
with techniques such as sentence splitting, tokenization, and
part-of-speech tagging.®” In our experiments we used a CR tool
specifically tailored to address the challenges of extracting pheno-
type concepts—the Bio-LarK Concept Recognizer.*” Bio-LarK uses
a two-step approach to index and retrieve ontology terms in com-
bination with a series of language techniques to enable term
normalization. In addition to providing standard CR, the system
is able to decompose and align conjunctive terms (e.g., “short
and broad fingers” aligns to “short finger” [HP: 0009381] and
“broad finger” [HP: 0001500]), as well as recognize and process
non-canonical phenotypes, such as “fingers are short and broad,”
which would be aligned to the same terms as in the previous
example. Our current CR approach does not attempt to detect
negation, which might represent a cause of false-positive results.
However, because of the post-processing steps used to generate
the final annotations on the basis of threshold values for annota-
tion frequency and IC (see below), our procedure will not, in gen-
eral, be sensitive to isolated negative assertions.

PubMed-MEDLINE 2014 Corpus

The CR process was performed on the 2014 release of the
PubMed-MEDLINE corpus. The corpus contains 22,376,811 arti-
cles, of which 13,262,617 have a valid title and abstract (most
of the missing entries represent articles in languages other
than English and only their titles are listed). MEDLINE abstracts
are associated with a series of medical subject headings (MeSHs);
the main headings (descriptors) provide a schematic descrip-
tion of the topic of the article. The descriptors are divided into
16 categories, including category C, “diseases.” Category C con-
tains 4,620 unique entries, and we refer to it here as “MeSH
diseases.”

We note that although MeSH category C is described as
comprising diseases, many of the terms in the complete tree C
(4,620 entries) do not refer to specific diseases. For instance,
many of the terms describe general categories, such as “brain dis-
eases” (MeSH: D001927), veterinary diseases (e.g., “brucellosis,
bovine” [MeSH: D002007]), and various other entities, such as
“cadaver” (MeSH: D002102). Others represent phenotypic features
of diseases rather than actual disease entities; one example
is “Cheyne-Stokes respiration” (MeSH: D002639), which is an
abnormal breathing pattern that can be observed in diseases
such as central sleep apnea syndrome. We excluded such MeSH
entries by careful manual curation, leaving a total of 3,145
MeSH category C descriptors that we judged to actually represent
specific disease entries. Only these entries were used for the
analysis described in this manuscript.

We filtered the 13,262,617 abstracts on the basis of the MeSH
terms to retain only those abstracts that included at least one of
the 3,145 disease entries from the MeSH disease list and then pro-
cessed them with the Bio-LarK Concept Recognizer. In some cases,
a single abstract was annotated with multiple MeSH disease terms,
some of which were also featured as major topics for the article
under scrutiny. For the purpose of this analysis, we included all
abstracts independently of the number of associated MeSH terms
or their major topic feature.

Filtering HPO Annotations

Many abstracts that describe a given disease also mention a certain
HPO term. Consequently, that disease is more likely to be character-
ized by the corresponding phenotypic abnormality. For instance,
the PubMed abstract with the PubMed identifier PMID: 23886833
is indexed with the MeSH term “encephalitis, herpes simplex,”
and parsing the record with Bio-LarK reveals a number of HPO
terms, including “headache” (HP: 0002315). Therefore, one might
be tempted to conclude that this type of encephalitis can be charac-
terized by headaches, but from this single observation it cannot be
guaranteed that the abstract is indeed making this assertion. The
abstract could, for instance, be describing an adverse effect of a
medication, a differential diagnosis, or one of a number of other
things. We reasoned that if an HPO term were identified in multiple
abstracts associated with a given disease from the MeSH disease list,
then it would be more likely to represent a genuine phenotypic
abnormality associated with the disease.

However, frequency alone is not a strong enough indicator of a
correct association between a phenotype and a disease. Ideally, the
phenotype should also be specific to (i.e., present only in a limited
number of) certain diseases. Given this required balance, we devel-
oped a procedure that aims to distinguish the true annotations
on the basis of three metrics: (1) the balance between frequency
and specificity; (2) the IC of the term—i.e., the overall degree of
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specificity of the term in our corpus of diseases; and (3) the disease-
category-driven density of a subset of terms, based on the shortest
path between them in the HPO. The balance between frequency
and specificity is measured with a standard information-retrieval
technique: term frequency, inverse document frequency (TFIDF).
The TFIDF weighs HPO terms highly if they occur with high fre-
quency among abstracts annotated to a disease but down-weighs
terms that are common within the entire corpus (see the following
section).

Figure 1 summarizes the algorithm we have developed. It takes
as input the initial set of HPO terms and, using three tuning
parameters, produces a final set of candidates. The three tuning
parameters control term cutoffs at different stages: (1) n, which de-
fines the initial TFIDF threshold used for creating the clustering
seeds; (2) m, which defines a second specificity threshold (over
TFIDF'®; see following section) used for pruning terms left over
from the first threshold; and (3) e, which defines the density
margin that dictates the inclusion or exclusion of a term in a
cluster.

The algorithm consists of three steps. First, the initial set of
terms is filtered with TFIDF for the creation of clustering seeds
(lines 1-3). Second, these clustering seeds are grouped according
to their common top-level HPO ancestor —i.e., the top-level
HPO abnormality (e.g., blood or skeletal system; line 4). The intu-
ition here is that most diseases affect, in principle, a very limited
number of major organs, and hence, most true positives will be
grouped according to these major organs (corresponding to the
top-level HPO phenotypic abnormality terms). Once the clus-
tering seeds are grouped, we look for the group-based subset of
terms that form the single shortest ontological path among
them (i.e., the sub-group with the minimum density; lines 5-7).
This can be seen as an inverse analogy to the traveling salesman
problem, where the shortest path between two terms (i.e., the
number of edges required to connect them in the HPO) denotes
the cost, and the goal is to minimize the SD of the array of shortest
paths. We adapted the Hungarian algorithm to solve this problem.
The resulting subset is added to the final list of candidates (line 8).

Initial set of HPO terms associated with a disease (resulting from the concept

find O = {t1,t2,...,tx},04 # @, t € Seedsypo, A € Ancestor(t), such that O4 is the subset that

Figure 1. Algorithm 1

Summary of the algorithm used to identify
aset of HPO term annotated to diseases. See
Material and Methods for explanations.

Group terms in according to their associated top-level HPO ancestor A — i.e., the most generic type of

Finally, the list of terms initially filtered
out with TFIDF is pruned with TFIDF©
(lines 9 and 10), and the terms are grouped
according to the top-level HPO abnormal-
ities in the same manner as the clustering
seeds (line 11). Incrementally, using the
group-based density and set of seeds
computed in the previous step, we append
each leftover term to the seed subset and
compute an aggregated density. If the
new density is within the limits estab-
lished by the density margin error param-
eter (¢) with respect to the seed density,
then the term is added to the final candi-
dates (lines 12-15).

Given a gold-standard corpus, one of the
main advantages of this algorithm is the
opportunity for learning diverse values
for the three parameters, subject to a particular goal. For example,
the above-mentioned assumption (i.e., diseases affect a very
limited set of major organs) can be transformed into a learning
task based on disease categories. We experimented with the 41
manually curated diseases, split into 13 categories dictated by
the top-level terms (e.g., cardiovascular diseases, integumentary
system diseases, etc.) in the Disease Ontology (DO), and aimed
to maximize the category-based true-positive rate. This can be real-
ized by learning sets of parameters corresponding to each disease
category. The experimental results showed an overall resulting pre-
cision of 66.8%, including highlights such as over 70% precision
for diseases by infectious agents (73.0%), diseases of the nervous
system (77.8%), or immune system diseases (82.8%). Similarly,
we experimented with targeting a maximized overall F-score
(i.e., the harmonic mean of precision and recall—a balance be-
tween coverage and true-positive rate) and achieved a value of
45.1%. This value is equivalent to an average precision of around
60% associated with a recall of around 40%.

Information Theoretic Measures for HPO Annotations
The algorithm in Figure 1 uses several information theoretic mea-
sures, discussed below.

TFIDF is a standard information-retrieval metric for ranking
terms on the basis of their co-occurrence and specificity in the
context of a given set of documents. In our case, the goal is to
rank HPO terms according to their frequency and specificity in
the context of a particular disorder. TFIDF is adapted below (to
take into account the disorder-specific context), where t denotes
an HPO term, D denotes the disease under scrutiny, and T), repre-
sents the total number of disorders (i.e., 3,145).

TFIDF(t, D) = TE(t, D) x IDF(t, D)

TE(t,D), the term frequency of HPO term f for disease D, is
defined as the number of D-associated abstracts in which a term
t appears at least once (regardless of the number of mentions in
a particular abstract), and the inverse document frequency,
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IDE(t, D), is defined as the logarithm of the quotient of the total
number of diseases (Tp) divided by the number of diseases for
which the HPO term in question is mentioned in at least one
abstract.

Tp

IDF(t,D) = logm

The IC of an individual HPO term within the MEDLINE corpus
can be estimated with its frequency among annotations of the
entire corpus. Intuitively, the IC of a term such as “fever” (HP:
0001945) is less than that of a term such as “aortic arch calcifica-
tion” (HP: 0005303) because fewer diseases are characterized by
the latter abnormality, and so knowing that an individual has
aortic arch calcification narrows down the differential diagnosis
much more than knowing that an individual has fever. For each
term t of the HPO, the IC is quantified as the negative logarithm
of its frequency: IC(t) = —log p(t). If a disease is annotated with
any term t in the HPO, it must also be annotated with all the an-
cestors of t. Therefore, the IC of terms is calculated on the basis of
annotations with the term or any of its descendants in the HPO.*!
For instance, if seven of 1,000 abstracts are annotated with a
certain HPO term t', and three more abstracts are annotated with
descendants of /, then the frequency of the term would be calcu-
lated as p(t') = 10 / 1,000, and the IC of the term would be calcu-
lated as IC(t)/ = —log p(0.01). The higher (i.e., closer to the root) in
the ontology a term is located, the lower its IC. We use this as an
additional term to define TFIDF® for HPO term t and disease D as

TFIDF“(t, D) = TFIDF(t, D) X IC(t).

Calculation of Phenotypic Overlap with an Extended
Jaccard Index

The Jaccard index is a standard measure of similarity between two
sample sets, A and B, and is defined as the size of the intersection
divided by the size of the union of the sample sets:

_|ANB|
J(A,B) = TAUB[

The value of the Jaccard index ranges from O for complete
dissimilarity to 1 for identity. In a typical set-based context, the
Jaccard index is computed on the strict intersection and union
of the elements. However, in our context these elements represent
ontology terms, structured in a logical hierarchy. And, as such, we
can rely on the subsumption relation between terms when
computing intersection and union. We exploited this aspect in
the computation of the Jaccard index. A match between two terms
was recorded not only when the two terms matched exactly (i.e.,
“cranial hyperostosis” is the same as “cranial hyperostosis”) but
also when the subsumption relation was present (i.e., “cranial hy-
perostosis” is a parent of “calvarial hyperostosis” and an ancestor
of “mandibular hyperostosis”; Figure S1).

Validation of HPO Annotations for Common
Disorders

We chose three to five common diseases from each of the 13 DO
upper-level categories used in our common-disease network
(CDN; see below) for a total of 41 diseases. We used a Perl script
to choose diseases at random from among all diseases in the cate-
gories. We examined the diseases manually by assessing each HPO
term mentioned at least once in any abstract describing the disease
in question (thus, we evaluated substantially more HPO terms

than merely the set of terms chosen by our annotation pipeline
on the basis of frequency and specificity of the term). Biocuration
was performed by N.V., G.B., D.V,, A.Z.,, M.H., and P.N.R,, and all
annotations were validated by P.N.R., who is both a computer
scientist and a medical doctor. This allowed us to assess the true-
positive, false-positive, and false-negative rates as shown in Tables
S1-S41.

CDN

In order to validate and visualize the phenotype annotations ob-
tained for common disease, we constructed a CDN by computing
the pairwise similarity of a total of 1,678 diseases (i.e., annotated
MeSH entries) belonging to 13 DO categories such as “nervous
system disease” (DOID: 863) or “respiratory system disease”
(DOID: 1579) (Figure S2). Note that some diseases belong to mul-
tiple DO classes (Figure S3).

For each disease, we obtained all the HPO annotations that our
CR algorithm had associated with the disease. The annotation fre-
quency of a term was defined as the proportion of diseases that
were annotated by the term or any of its descendent terms. In
order to calculate similarity between two terms (t;,t;), we used
the IC of their most informative common ancestor (MICA),’
denoted as MICA(ty, t2).

We used the above-mentioned term-similarity measures to
calculate a semantic-similarity score for two diseases (D1,D-). In
our case, for each of the terms of D, the “best match” among
the terms annotated D, was found, and the average overall query
terms was calculated. This was defined as the similarity:

sim(D; —D,) = avg[z:maxtgu2 IC(MICA(s, 1)) |,

seDy

where the average was taken over all terms s to which disease D; is
annotated. Note that this score is asymmetric, i.e., it is not neces-
sarily the case that sim(D; — D) = sim(D, — D;). Therefore, for
the analysis described here, we used a symmetric similarity score:

sim(D,D,) = %sim(Dl —D;) + %sim(Dz —Dy).

The CDN consists of nodes that represent common diseases and
edges that indicate that two diseases are phenotypically similar. In
order to create the CDN, we calculated the symmetric similarity
score for all pairs of diseases. The network was visualized with
the force-directed layout algorithm of Cytoscape,** whereby an
edge between nodes was drawn if the similarity between two cor-
responding diseases exceeded 2.0 (simulation cutoff [simcut]). The
final CDN (CDN-o0) consisted of 1,148 diseases and 4,059 edges.

Statistical Significance of the CDN

In order to test the statistical significance of the distribution of
phenotypic similarity among diseases within the same disease cate-
gory or between different categories, we introduced the concept of
the gray-edge fraction (GEF). That is, we visualized edges between
nodes (diseases) that do not belong to one of the same 13 general
disease categories as gray edges. The GEF was defined as the propor-
tion of gray edges among all edges in the CDN. The lower the GEE,
the better the phenotypic clustering of diseases agrees with the
classification of the diseases into the 13 categories. The original
CDN (CDN-0) comprised 3,547 edges, 998 of which were gray
edges, corresponding to a GEF of 0.246 (red arrow in Figure S4A).
We tested two randomization procedures, edge randomization
(er) and annotation randomization (ar).
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The edge-permutation procedure retains the number of edges
and the degree distribution of the network.*> Two edges, A-B
and X-Y, are chosen at random and reshuffled to create the edges
A-Y and X-B. Reshuffling is skipped if the edges A-Y and X-B
already exist. Reshuffling is performed 10,000 times, resulting
is an edge-randomized version of CDN-o, which we call CDN-er
and for which we can again compute the GEE. We constructed
1,000 versions of CDN-er and plotted the distribution of the
resulting GEF values in Figure S4A. As one can see, the p value
of the CDN is less than 0.001 because none of the edge-
randomized CDNs achieved the same or a smaller GEF than the
original CDN.

We additionally performed a test in which we randomized
the HPO terms associated with each disease (ar). For this, we
randomly selected 50% of the terms associated with each disease
and replaced them with randomly selected HPO terms. We
computed the randomized CDN (called CDN-ar) by using the
above procedures used to construct the CDN-o. We repeated
this procedure 100 times and computed the GEF for each CDN-
ar. Note that each CDN-ar might not have the same amount of
nodes and edges as the CDN-o. When using the same simcut
(2.0) used for constructing the CDN-o, we obtained much smaller
networks (fewer than 100 nodes). The distribution of GEF values
of CDN-ar with simcut 2.0 is shown in Figure S4B. No CDN-ar
achieved a GEF less than or equal to the CDN-o GEF, which cor-
responds to a p value of less than 0.01. We modified the simcut to
1.4 because it leads to CDN-ar versions with approximately the
same amount of nodes as CDN-o. The distribution of the result-
ing GEF values is shown in Figure S4C. Again, not a single
CDN-ar constructed with a simcut of 1.4 achieved a GEF less
than or equal to the CDN-o GEF, which corresponds to a p value
of less than 0.01.

GWAS Data

GWAS Central provides a comprehensive collection of summary-
level genetic-association data and advanced visualization tools to
allow comparison and discovery of datasets from the perspective
of genes, genome regions, phenotypes, or traits.>* The project col-
lates association data and study metadata from many disparate
sources, including the National Human Genome Research Insti-
tute GWAS Catalog,®>® and receives frequent data submissions
from researchers who wish to make their research findings pub-
licly available. All gathered and submitted data are extensively
curated by a team of post-doctoral genetics researchers who
manually evaluate each study for its range of phenotype content
and apply appropriately chosen MeSH terms. As of December
2014, the resource contained 69 million p values for over 1,800
studies.

Data and metadata for up to 1,000 associations can be freely
downloaded from the BioMart-based system (GWAS Mart), and
larger custom data dumps (up to and including the complete data-
base) are available via contacting the GWAS Central development
team and agreeing with a data-sharing statement. Thus, to provide
data for the present study, we generated a tab-separated file repre-
senting 1,574 studies and 34,252 unique SNPs (annotated to 675
unique MeSH terms) and containing the GWAS Central study
identifier, PubMed identifier, dbSNP “rs” identifier, p value, and
MeSH identifier for all associations with p < 1 x 107°. We
compiled the list of genes considered for our experiments by
retrieving the “mapped genes” column from the database SCAN
and identifying those genes corresponding to the GWAS Central

SNPs. Where no mapped genes were reported, we used the up-
stream, as well as downstream, genes listed by SCAN.**

Results

Generation of Phenotype Annotations for Common
Disease by CR

We applied a phenotype-aware CR system (the Bio-LarK
Concept Recognizer*’) to all available abstracts in PubMed
in order to extract phenotypic annotations for common
diseases. We first retrieved the MeSH terms associated
with PubMed abstracts and used them to retain only those
abstracts focused on diseases. 5,136,645 of 22,376,811 arti-
cles listed in PubMed had an abstract and could be assigned
to such a MeSH disease term (see Material and Methods for
a description of our inclusion criteria for MeSH disease
entries; a total of 3,145 diseases were included). Second,
we applied CR on the resulting set, after which a total of
930,805 HPO annotations were assigned to 3,145 common
diseases. Finally, we filtered this initial set of HPO terms, by
using a ranking-and-clustering method with the aim of
maximizing the F-score computed on a manually curated
gold-standard set of 41 common diseases (see Material
and Methods). This approach aims to maximize the text-
mining accuracy, defined as the harmonic mean of the
precision and recall of the derived annotations. This final
set comprised 132,006 HPO annotations covering 4,459
unique HPO terms. The mean number of annotations per
disease was 41.97 (range, 1-271; median, 32) and consisted
of terms belonging to all of the top-level HPO categories
(Figure S5). Figure 2 provides an overview of the analysis
procedures used to generate and validate the common-
disease annotations.

As an example, Table S1 lists the annotations produced
for “giant cell arteritis” (MeSH: D013700), which includes
terms such as “vasculitis” (HP: 0002633), “granulomatosis”
(HP: 0002955), and “amaurosis fugax” (HP: 0100576). The
annotations are highly accurate, although some nuances
are not detected by the CR process. For instance, “facial
palsy” (HP: 0010628) and “renal amyloidosis” (HP:
0001917) are classic manifestations of giant cell arteritis.
The list of phenotypic manifestations is by no means com-
plete, given that it failed to identify manifestations such
as “dysphagia” (HP: 0002015), “trismus” (HP: 0000211),
and “encephalopathy” (HP: 0001298). Nonetheless, the
CR process was able to capture a largely accurate subset
of phenotypic abnormalities for giant cell arteritis, such
that 64% of the annotations were true positives.

We estimated the overall quality of the HPO annotations
by inspecting the automatically extracted annotations for a
set of 41 common diseases randomly chosen from 13 upper-
level DO* categories that had a MeSH disease identifier
and thus could be analyzed analogously to the common
MeSH diseases. The process involved manually validating
of all HPO annotations extracted by the CR process and
comparing them to the results of detailed manual curation
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Figure 2. Overview of CR and Bioinformatic Analysis

The analysis was performed in several major steps. (1) Bio-LarK was used to analyze the PubMed-MEDLINE 2014 corpus, which resulted
in a total of 5,136,645 abstracts annotated with MeSH terms and phenotypic features. (2) For each of 3,145 resulting diseases, the fre-
quency and specificity of HPO terms found in the abstract were used for inferring phenotypic annotations. (3) These annotations were
used for producing disease models for each of the diseases. (4) Medical validation of the annotations was performed on the basis of
disease, phenotype, and SNP annotations in GWAS Central for phenotype sharing in common disease. (5) Validation with OMIM,
Orphanet, and DO was used for assessing phenotype sharing between rare and common diseases linked to the same locus.

for the estimation of the true- and false-positive and the
false-negative rates. We note that it is not informative to
calculate a true-negative rate across the entire HPO because
even if the CR process flags several hundred terms, the great
majority of the over 10,000 HPO terms will be true nega-
tives. We found that maximizing the overall F-score (i.e.,
the harmonic mean of precision and recall) led to a mean
F-score of 45.1% (i.e., a mean precision of around 60%
accompanied by a mean recall of around 40%). In separate
experiments, we found that a CR run with parameters de-
signed to maximize the precision in each of the 13 categories
achieved a mean precision of 66.8% (data not shown). How-
ever, we chose to use the annotations derived from the
F-score procedure for the remainder of the analysis. The
complete set of annotations associated with the 41 common
diseases, including flags for true positives, false positives,
and false negatives, can be found in Tables S1-541.

A Common-Disease Phenotypic Network

As a first test of the medical validity of the HPO annota-
tions for common-disease phenotypes, we visualized the
network of phenotypic similarity of a subset of 1,678 dis-
eases, such as “nervous system disease” (DOID: 863) or
“respiratory system disease” (DOID: 1579), belonging to
13 DO categories. 1,148 of the 1,678 diseases showed at
least one connection to another disease (phenotypic simi-
larity score above a threshold of 2.0), and thus the final
CDN comprised 1,148 diseases. Phenotypic relationships

between these diseases are shown by the linking of all
pairs of diseases exceeding the threshold similarity score
(Figure 3). Although generated independently of the disor-
der classes, the resulting phenotypic network clearly dis-
plays clusters corresponding to the disease categories.

We then constructed randomized phenotypic networks
as described in the Material and Methods and calculated
the number of links between diseases from the same dis-
ease category. We found that the observed correlation
between network connections and disease class is highly
significant (Figure S4). Thus, the phenotypic network of
common diseases, as defined by the HPO, is made up of
dense clusters of shared phenotypic features that show
characteristic patterns of interconnections between
selected areas of the phenotypic continuum, just as we
had previously observed for Mendelian diseases.” The
high correlation between the computationally created
network clusters and the manually curated disease classifi-
cations provides further evidence that the automatically
created annotations are clinically meaningful and provide
a largely correct description of the disease in question.

Phenotypic and Genetic Overlap across Complex
Diseases

GWASs have been performed for a wide range of common
diseases and traits, and over 6,000 strong SNP associations
(p < 107®) have been identified.>® Variation at multiple
genetic loci collectively influences the likelihood of
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Figure 3. Phenotypic Network of Common Disease
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A total of 1,678 common diseases could be mapped to at least one of 13 top-level DO categories (Figures S5 and S6). 1,148 of these dis-
eases displayed a connection to another disease with a phenotypic similarity score of at least 2.0. They are shown as a node in the graph
and are colored according to membership in the upper-level disease categories. The thickness of the connections between the nodes

reflects the degree of phenotypic similarity

developing many common and complex diseases; for
instance, it is estimated that that about 8,300 independent
and predominantly common SNPs contribute to risk for
schizophrenia®® (MIM: 181500). Although the genetic archi-
tecture is likely to differ for different diseases, often the trait
architecture consists of a few loci of relatively large effect and
many additional loci that have a very small effect on pheno-
type.*” To understand the genetics of complex disease, it is

important to consider the phenotypic and genetic overlap
among diseases. For instance, susceptibility loci that are
common to both multiple ulcerative colitis and Crohn dis-
ease have been identified by GWASs, and some of these
loci are even shared with several other autoimmune disor-
ders.*® Similarly, several psychiatric disorders share risk
loci.*” The study of the distribution of overlapping loci
within a group of diseases might suggest shared pathways
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For constructing this network, individual HPO terms were connected to SNPs if the SNP was significantly associated with a disease char-
acterized by the HPO term in question. For instance, the SNP rs5029939 is significantly associated with both Sjégren syndrome®' and
systemic lupus erythematosus.’” The diseases also share a number of phenotypic features, including “antinuclear antibody positivity”
(HP: 0003493) and “xerostomia” (HP: 0000217). A small and particularly dense subset of the network was manually chosen. The network
is centered on ten HPO terms representing clinical features that are common in autoimmune diseases.

and common pathogenetic features.”*> On the other hand,
the lack of overlap of other loci could help to identify path-
ogenic mechanisms that are unique to specific diseases and
could help to explain phenotypic diversity across the spec-
trum of diseases in fields such as autoimmunity or psychia-
try.”” The computational resources presented here offer a
tool for comprehensively measuring the phenotypic overlap
of a wide range of common diseases that share risk loci.

From the total of 16,152 unique SNPs, 863 were associated
with more than one disorder, and the total number of
unique disorders was 300. 673 SNPs were associated with
two disorders, 130 were associated with three, and 60 were
associated with more than four (Figure S6). 577 of these
SNPs were associated with a total of 79 unique diseases in
our corpus and were used for the following analysis.

The mean Jaccard index for the pairwise comparison on
the 577 SNPs was 0.251+0.132. That is, for each pair of
SNPs, the phenotypic annotations of the corresponding
diseases were compared to each other with the extended
Jaccard index (Figure S1). Randomly chosen disease com-
parisons from the existing pool of MeSH diseases displayed
a significantly lower overlap of 0.130 = 0.094 ( p=
2.29%107%, paired t test). Our results show a pervasive
phenotypic sharing among complex diseases that are also
associated with the same SNP. As an example, we show an
excerpt of the phenotype-SNP network centered on autoim-

mune phenotypes. Ten phenotypic abnormalities observed
in persons with these diseases are shown together with SNPs
associated with one or more diseases displaying these fea-
tures, such as Sjogren syndrome (MIM: 270150) and sys-
temic lupus erythematosus (MIM: 152700). It can be seen
that there is a dense interconnected network of phenotypes
and SNPs (Figure 4). These results extend recent findings
concerning a human disease-symptom network based on
322 individual symptoms extracted from MeSH.>* We pro-
vide a CDN browser that allows users to navigate through
the network of common diseases that are interconnected
by phenotypic similarity (Figure S7).

Phenotypic and Genetic Overlap across Complex and
Mendelian Diseases

Numerous, highly penetrant mutations in individual
genes have been identified in thousands of Mendelian dis-
eases. Common variants associated with complex diseases
are enriched in genes mutated in Mendelian diseases.”* For
instance, certain mutations in presenilin 1 (PSENI) cose-
gregate with early-onset familial Alzheimer disease’”
(MIM: 607822), whereas variants in the PSEN1 promoter
are associated with increased risk for complex (non-Men-
delian) Alzheimer disease.*® Similarly, common polymor-
phisms associated with blood lipoprotein concentrations
are often located in the genomic vicinity of genes
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Table 1.

Phenotypic Overlap between Rare and Complex Disorders

Gene: Associated Rare Disease

Reference SNP: Complex Di C

1 HPO Terms

CD247: immunodeficiency due to defect in CD3-{
(MIM: 610163)

FSHR: ovarian hyperstimulation syndrome (MIM: 608115)

and ovarian dysgenesis 1 (MIM: 233300)

PPARG: lipodystrophy, familial partial, type 3 (MIM: 604367)

LPL: type I hyperlipoproteinemia (MIM: 238600)

LRRK2: Parkinson disease 8 (MIM: 607060)

HCN4: sick sinus syndrome 2 (MIM: 163800)

HYDIN: ciliary dyskinesia, primary, 5 (MIM: 608647)

rs840016: rheumatoid arthritis®’

rs13081389: type 2 diabetes mellitus®"

15295: metabolic syndrome X°?

1s34778348: Parkinson disease®’

157164883: atrial fibrillation

1512149070: COPD®*

edema (HP: 0000969),
arthralgia (HP: 0002829),
arthritis (HP: 0001369),
autoimmunity (HP: 0002960)

1s2268361: polycystic ovary syndrome®  abnormality of the ovary (HP: 0000137),

decreased fertility (HP: 0000144),
primary amenorrhea (HP: 0000786)

hyperglycemia (HP: 0003074),
hyperinsulinemia (HP: 0000842),
hypertension (HP: 0000822)

hypercholesterolemia (HP: 0003124),
hyperlipoproteinemia (HP: 0010980),
coronary artery disease (HP: 0001677),
pancreatitis (HP: 0001733)

rigidity (HP: 0002063),
bradykinesia (HP: 0002067),
dementia (HP: 0000726),
resting tremor (HP: 0002322)

arrhythmia (HP: 0011675),
tachycardia (HP: 0001649),
sinus brachycardia (HP: 0001688)

respiratory tract infection (HP: 0011947),
respiratory insufficiency (HP: 0002093),
bronchiectasis (HP: 0011947)

GWAS hits localized in the vicinity of Mendelian-disease-associated genes could be associated with common diseases that have phenotypic overlaps with the
corresponding Mendelian diseases. Seven examples in which common and rare diseases linked to neighboring loci and showed substantial phenotypic overlap
were manually chosen. The protein-coding gene associated with the rare disease, as well as the accession number of the polymorphism located in non-coding
sequence near the gene, is shown. The following abbreviation is used: COPD, chronic obstructive pulmonary disease.

associated with Mendelian disorders of lipoprotein meta-
bolism, such as ABCGS8, LCAT, APOB, LDLR, PCSK9,
CETP, LPL, LIPC, and ABCA1.%”°® We therefore reasoned
that the phenotypic-genetic overlap might be a general
tendency for rare and common diseases located at the
same genetic locus. As per the method described above,
we examined 485 genes shared between the complex-
(GWAYS) and rare-disease datasets. GWAS SNPs were previ-
ously mapped to genes with SCAN.** In a manner similar
to that used in the common-disease-phenotype experi-
ment, we then measured the phenotypic overlap between
the complex diseases from GWAS Central®** and rare, Men-
delian diseases associated with the genes in question. The
overlap measure used in the experiments was the Jaccard
index and was computed in the same manner as in the
case of the complex-disease overlap. This resulted in a
mean value of 0.027 +0.032, which was higher than the
corresponding value for randomized pairs of common
and rare disease (same procedure as above), 0.021 =*
0.023 (p = 1.6x1077, paired t test). Table 1 shows some ex-
amples of GWAS hits that are linked to genes in which mu-
tations cause Mendelian diseases with phenotypic overlap.

Discussion

Translational research in Mendelian diseases has benefited
enormously from databases of the phenotypic features

associated with individual diseases, such as OMIM,®®
Orphanet,® and more recently the HPO."” Analysis of
such data has led to the idea that diseases that display
similar phenotypic features are caused by mutations in
functionally related genes. For instance, genetically hetero-
geneous diseases such as Fanconi anemia, Bardet-BiedI syn-
drome, or Usher syndrome are related to mutations in
genes of a single biological module. Such modules can be
a multiprotein complex, a pathway, or a single cellular or
subcellular organelle.®”~’” To date, however, it has been
difficult to perform analogous research on complex-disease
phenotypes because resources to carry out comparable an-
alyses have been lacking.

GWASs emerged in the first decade of the new
millennium as a powerful tool for elucidating the genetic
architecture of common disease.”*** The advent of clinical
whole-genome sequencing’' (WGS) is promising to lead to
personalized genomic medicine. It is becoming apparent
that precise phenotype analysis can substantially improve
the ability to interpret the results of NGS. In rare diseases,
for instance, diagnostic NGS yields plausible candidate var-
iants in several genes, and making diagnoses will require
that the consequences of these variants be analyzed and
integrated with clinical findings.”” In fact, using the HPO
to analyze phenotypic data has been shown by multiple
groups to improve the ability of NGS-based methods to
identify candidate disease-associated genes and make clin-
ical diagnoses.”'"*! These methods have been tested on
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exomes and large NGS gene panels. In contrast, WGS pro-
vides a nearly comprehensive view on non-coding varia-
tions, a class of variation that makes up the majority of
known risk factors for common disease.”> WGS currently
cannot be used reliably for the prediction of common
disease in a clinical diagnostic setting.”* However, this
is increasingly becoming a topic of bioinformatics
research®”’*7 and is likely to increase in importance as
large-scale efforts such as the UK’s 100,000 Genomes Proj-
ect begin to produce and interpret data. We speculate that
phenotype analysis will be just as beneficial to WGS-based
diagnostics of common disease as it has been shown to
be for rare disease.”"”®’7 One area of particular interest
stems from the observation that genes harboring common
variants associated with a common disease might also carry
large-effect mutations in a subset of individuals at the ex-
tremes of the trait. For instance, the polymorphism
156817105, which is located about 167,000 nt upstream of
PITX2, was found to be associated with atrial fibrilla-
tion.”® More recently, a de novo nucleotide substitution
in the promoter region of PITX2 (319 nucleotides upstream
of the transcription start site) was identified in an individual
with severe atrial fibrillation.”” Observations such as this
and those summarized in Table 1 suggest that rare-disease
phenotypes will be extremely useful in evaluating the
findings of WGS performed on individuals with common,
complex diseases and underline the utility of annotating
rare and common diseases with a common phenotype
ontology.

To generate the resource, we developed a statistical
framework to evaluate the pattern of co-occurrences of
HPO terms (phenotypic features) and diseases in PubMed
abstracts. Previous efforts in the field of clinical text min-
ing have shown the enormous promise of data extraction
from articles or electronic health records (EHRs) for trans-
lational research; one of the keys to tapping this resource
lies in the ability to reliably extract clinical information
from the EHRs by text mining and other methods.*
For instance, phenome-wide association scans (PheWASs)
search EHRs for disease-gene associations by using the In-
ternational Classification of Disease (ICD9) billing codes,
which are available in most EHR systems, and have
been shown to be able to replicate findings of traditional
GWASs and identify novel associations.®''®** Other groups
have used EHR data to detect adverse medication interac-
tions.®* The project presented here had different goals, in
that we developed a statistical model to infer the spectrum
of phenotypic abnormalities that characterize diseases
rather than to classify individuals’ records according to
whether a certain disease was present or not (as has been
the case for the majority of the PheWASs and similar
studies published to date; we note that many of these
studies utilized the word “phenotype” to refer to a disease
entity, whereas our study has examined the individual
phenotypic features of diseases).

The algorithms we developed to derive disease models
from the annotation patterns of PubMed abstracts com-

bined a number of components, including (1) semantic
CR (Bio-LarK*%); (2) an adaptation of the TFIDF method,
whereby diseases take the place of documents, and the
“document frequency” of individual HPO terms is calcu-
lated from the number of abstracts containing the term;
(3) an evaluation of the IC of individual HPO terms for
calculating the semantic similarity®*®° between terms;
and (4) a heuristic graph clustering method that attempts
to extend seed terms with particularly high TFIDF values
to create a dense phenotypic network. This allowed us to
develop annotations for over 3,000 common, complex dis-
eases, and we demonstrated the potential utility of the
resource by an analysis of phenotypic overlap between
common and rare disease, as well as between complex dis-
eases that share one or more genetic associations. The plat-
form we have made available, together with the data, is in
itself a valuable resource for the community. In addition to
providing a way to download the data in a tab-separated
form, or to access it programmatically via application pro-
gramming interfaces, the website also enables a pheno-
type- and disorder-centric browsing of MEDLINE abstracts
and browsing within the CDN (Figure S7). This resource
could be useful for physicians who are caring for persons
with a given disease and who present with a particular
manifestation or complication of that disease (denoted
by an HPO term). The browser will present all PubMed ab-
stracts that were identified in our study and that describe
both the disease and the phenotypic manifestation, which
might provide information that could be helpful in clinical
management.

There are several limitations of the common-disease an-
notations that we have presented here. First and foremost,
the annotations were derived by a computational CR (text-
mining) process and contain both false-positive and false-
negative annotations. The HPO project, which is being
developed as a part of the Monarch Initiative, will be
actively revising and expanding the annotations and
developing new areas of the ontology itself as needed for
the analysis of common disease, much as it has been doing
in the field of rare diseases since 2007."” Several character-
istics of particular importance to common diseases, such as
the past medical history and the time course of disease, are
not currently well captured by the computational data
structures and algorithms that have been developed for
rare disease and will need to be established in future
work. The results of the analysis of phenotypic overlaps
are highly statistically significant but do not provide proof
of a common pathophysiological basis of the diseases
involved. However, we contend that the results we have
presented in this manuscript demonstrate that the com-
mon-disease HPO annotations can be used for the compu-
tational analysis of phenotypic abnormalities across a pre-
viously unheard-of range of rare and common diseases,
including over 7,000 rare diseases and 3,145 common dis-
eases. To the best of our knowledge, there is no comparable
computational resource that provides both an extensive
phenotype ontology and annotations to over 10,000
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diseases, as well as an algorithmic basis for calculating the
similarity between arbitrary sets of phenotypic abnormal-
ities and specific diseases® and a foundation for transla-
tional research on topics such as cross-species phenotype
mapping.®*’

The HPO project has been under development since
2007 and has mainly focused on rare and primarily Mende-
lian diseases."” The work presented here provides users
with over 132,000 phenotypic annotations for 3,145 com-
mon diseases derived via text mining. It is hoped that these
annotations, as well as the underlying HPO terms, will be
useful for both clinicians and researchers. Future work
will include biocuration efforts to validate and extend
the current set of annotations, to add metadata such as
the age of onset, severity, clinical course, and response to
treatments, and to extend the HPO to provide an even
broader range of terms for the manifestations of complex
disease, with the intention of providing a comprehensive
resource for translational bioinformatics across the entire
spectrum of human disease.

Supplemental Data

Supplemental Data include 7 figures and 41 tables and can be
found with this article online at http://dx.doi.org/10.1016/j.
ajhg.2015.05.020.
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The URLSs for data presented herein are as follows:

Bio-LarK, http://bio-lark.org/

Common Disease Phenotype Browser, http://pubmed-browser.
human-phenotype-ontology.org/

GWAS Central, http://help.gwascentral.org/info/data/data-sharing-
statement/

Human Phenotype Ontology, http://www.human-phenotype-
ontology.org/

Monarch Initiative, http://monarchinitiative.org

OMIM, http://omim.org/

References

1. Kohler, S., Doelken, S.C., Mungall, C.J., Bauer, S., Firth, H.V.,
Bailleul-Forestier, 1., Black, G.C., Brown, D.L., Brudno, M.,
Campbell, J., et al. (2014). The Human Phenotype Ontology
project: linking molecular biology and disease through pheno-
type data. Nucleic Acids Res. 42, D966-D974.

2. Robinson, P.N., Kohler, S., Bauer, S., Seelow, D., Horn, D., and
Mundlos, S. (2008). The Human Phenotype Ontology: a tool
for annotating and analyzing human hereditary disease. Am.
J. Hum. Genet. 83, 610-615.

3. Kohler, S., Schulz, M.H., Krawitz, P., Bauer, S., Dolken, S., Ott,
C.E., Mundlos, C., Horn, D., Mundlos, S., and Robinson, P.N.
(2009). Clinical diagnostics in human genetics with semantic
similarity searches in ontologies. Am. ]J. Hum. Genet. 85,
457-464.

4. Bauer, S., Kohler, S., Schulz, M.H., and Robinson, P.N. (2012).
Bayesian ontology querying for accurate and noise-tolerant
semantic searches. Bioinformatics 28, 2502-2508.

5. Soden, S.E., Saunders, C.J., Willig, L.K., Farrow, E.G., Smith,
L.D., Petrikin, J.E., LePichon, J.B., Miller, N.A., Thiffault, 1.,
Dinwiddie, D.L., et al. (2014). Effectiveness of exome and
genome sequencing guided by acuity of illness for diagnosis
of neurodevelopmental disorders. Sci Transl Med. 6, 265ral6.

6. Robinson, P.N., Kohler, S., Oellrich, A., Wang, K., Mungall,
C.J., Lewis, S.E., Washington, N., Bauer, S., Seelow, D., Krawitz,
P, et al.; Sanger Mouse Genetics Project (2014). Improved
exome prioritization of disease genes through cross-species
phenotype comparison. Genome Res. 24, 340-348.

7. Masino, A]J., Dechene, E.T., Dulik, M.C., Wilkens, A., Spinner,
N.B., Krantz, 1.D., Pennington, J.W., Robinson, P.N., and
White, P.S. (2014). Clinical phenotype-based gene prioritiza-
tion: an initial study using semantic similarity and the human
phenotype ontology. BMC Bioinformatics 15, 248.

8. Sifrim, A., Popovic, D., Tranchevent, L.C., Ardeshirdavani, A.,
Sakai, R., Konings, P., Vermeesch, J.R., Aerts, J., De Moor, B.,
and Moreau, Y. (2013). eXtasy: variant prioritization by
genomic data fusion. Nat. Methods 10, 1083-1084.

9. Javed, A., Agrawal, S., and Ng, P.C. (2014). Phen-Gen:
combining phenotype and genotype to analyze rare disorders.
Nat. Methods 11, 935-937.

10. Singleton, M.V., Guthery, S.L., Voelkerding, K.V., Chen, K.,
Kennedy, B., Margraf, R.L., Durtschi, J., Eilbeck, K., Reese,
M.G., Jorde, L.B., et al. (2014). Phevor combines multiple
biomedical ontologies for accurate identification of disease-
causing alleles in single individuals and small nuclear families.
Am. J. Hum. Genet. 94, 599-610.

11. Zemoijtel, T., Kohler, S., Mackenroth, L., Jager, M., Hecht, ]J.,
Krawitz, P., Graul-Neumann, L., Doelken, S., Ehmke, N.,

The American Journal of Human Genetics 97, 111-124, July 2, 2015 121


http://dx.doi.org/10.1016/j.ajhg.2015.05.020
http://dx.doi.org/10.1016/j.ajhg.2015.05.020
http://bio-lark.org/
http://pubmed-browser.human-phenotype-ontology.org/
http://pubmed-browser.human-phenotype-ontology.org/
http://help.gwascentral.org/info/data/data-sharing-statement/
http://help.gwascentral.org/info/data/data-sharing-statement/
http://www.human-phenotype-ontology.org/
http://www.human-phenotype-ontology.org/
http://monarchinitiative.org
http://omim.org/
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref1
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref2
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref3
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref4
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref5
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref6
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref7
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref8
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref9
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref10
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Spielmann, M., et al. (2014). Effective diagnosis of genetic dis-
ease by computational phenotype analysis of the disease-asso-
ciated genome. Sci Transl Med. 6, 252ra123.

Gottlieb, A., Stein, G.Y., Ruppin, E., and Sharan, R. (2011).
PREDICT: a method for inferring novel drug indications with
application to personalized medicine. Mol. Syst. Biol. 7, 496.
Bayés, A., van de Lagemaat, L.N., Collins, M.O., Croning,
M.D., Whittle, L.R., Choudhary, J.S., and Grant, S.G. (2011).
Characterization of the proteome, diseases and evolution of
the human postsynaptic density. Nat. Neurosci. 14, 19-21.
Castellano, S., Parra, G., Sanchez-Quinto, FA., Racimo, E,
Kuhlwilm, M., Kircher, M., Sawyer, S., Fu, Q., Heinze, A.,
Nickel, B., et al. (2014). Patterns of coding variation in the
complete exomes of three Neandertals. Proc. Natl. Acad. Sci.
USA 111, 6666-6671.

Pinto, D., Delaby, E., Merico, D., Barbosa, M., Merikangas, A.,
Klei, L., Thiruvahindrapuram, B., Xu, X., Ziman, R., Wang, Z.,
et al. (2014). Convergence of genes and cellular pathways dys-
regulated in autism spectrum disorders. Am. J. Hum. Genet.
94, 677-694.

Liakath-Ali, K., Vancollie, V.E., Heath, E., Smedley, D.P., Esta-
bel, J., Sunter, D., Ditommaso, T., White, J.K., Ramirez-Solis,
R., Smyth, I., et al. (2014). Novel skin phenotypes revealed
by a genome-wide mouse reverse genetic screen. Nat. Com-
mun. 5, 3540.

Renkema, K.Y., Stokman, M.F,, Giles, R.H., and Knoers, N.V.
(2014). Next-generation sequencing for research and diagnos-
tics in kidney disease. Nat. Rev. Nephrol. 10, 433-444.

Sana, M.E., Spitaleri, A., Spiliotopoulos, D., Pezzoli, L., Preda,
L., Musco, G., Ferrazzi, P., and Iascone, M. (2014). Identifica-
tion of a novel de novo deletion in RAF1 associated with bi-
ventricular hypertrophy in Noonan syndrome. Am. J. Med.
Genet. A. 1644, 2069-2073.

Amberger, ].S., Bocchini, C.A., Schiettecatte, F.,, Scott, A.F., and
Hamosh, A. (2015). OMIM.org: Online Mendelian Inheri-
tance in Man (OMIM®), an online catalog of human genes
and genetic disorders. Nucleic Acids Res. 43, 789-798.

Kibbe, W.A., Arze, C., Felix, V., Mitraka, E., Bolton, E., Fu, G.,
Mungall, CJ., Binder, J.X., Malone, J., Vasant, D., et al.
(2015). Disease Ontology 2015 update: an expanded and up-
dated database of human diseases for linking biomedical
knowledge through disease data. Nucleic Acids Res. 43,
D1071-D1078.

Petrovski, S., and Goldstein, D.B. (2014). Phenomics and
the interpretation of personal genomes. Sci Transl Med. 6,
254fs35.

Wright, C.E, Fitzgerald, T.W., Jones, W.D., Clayton, S., McRae,
J.E, van Kogelenberg, M., King, D.A., Ambridge, K., Barrett,
D.M., Bayzetinova, T., et al.; DDD study (2015). Genetic diag-
nosis of developmental disorders in the DDD study: a scalable
analysis of genome-wide research data. Lancet 385, 1305-
1314.

Robinson, P.N., and Webber, C. (2014). Phenotype ontologies
and cross-species analysis for translational research. PLoS
Genet. 10, e1004268.

Washington, N.L., Haendel, M.A., Mungall, C.J., Ashburner,
M., Westerfield, M., and Lewis, S.E. (2009). Linking human
diseases to animal models using ontology-based phenotype
annotation. PLoS Biol. 7, e1000247.

Mungall, CJ., Gkoutos, G.V,, Smith, C.L., Haendel, M.A.,
Lewis, S.E., and Ashburner, M. (2010). Integrating phenotype
ontologies across multiple species. Genome Biol. 11, R2.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Haendel, M.A., Balhoff, J.P., Bastian, EB., Blackburn, D.C.,
Blake, J.A., Bradford, Y., Comte, A., Dahdul, W.M., Dececchi,
T.A., Druzinsky, R.E., et al. (2014). Unification of multi-species
vertebrate anatomy ontologies for comparative biology in
Uberon. ] Biomed Semantics 5, 21.

Hastings, J., de Matos, P., Dekker, A., Ennis, M., Harsha, B.,
Kale, N., Muthukrishnan, V., Owen, G., Turner, S., Williams,
M., and Steinbeck, C. (2013). The ChEBI reference database
and ontology for biologically relevant chemistry: enhance-
ments for 2013. Nucleic Acids Res. 41, D456-D463.

Smedley, D., Oellrich, A., Kohler, S., Ruef, B., Westerfield, M.,
Robinson, P., Lewis, S., and Mungall, C.; Sanger Mouse
Genetics Project (2013). PhenoDigm: analyzing curated anno-
tations to associate animal models with human diseases. Data-
base (Oxford) 2013, bat025.

Kohler, S., Doelken, S.C., Ruef, B.J., Bauer, S., Washington, N.,
Westerfield, M., Gkoutos, G., Schofield, P., Smedley, D., Lewis,
S.E., et al. (2013). Construction and accessibility of a cross-
species phenotype ontology along with gene annotations
for biomedical research. F1000Res. 2, 30.

Kohler, S., Bauer, S., Mungall, CJ., Carletti, G., Smith, C.L.,
Schofield, P.,, Gkoutos, G.V., and Robinson, P.N. (2011).
Improving ontologies by automatic reasoning and evaluation
of logical definitions. BMC Bioinformatics 12, 418.

Bragin, E., Chatzimichali, E.A., Wright, C.E,, Hurles, M.E.,
Firth, H.V,, Bevan, A.P.,, and Swaminathan, G.J. (2014).
DECIPHER: database for the interpretation of phenotype-
linked plausibly pathogenic sequence and copy-number vari-
ation. Nucleic Acids Res. 42, D993-D1000.

Vulto-van Silthout, A.T., van Ravenswaaij, C.M., Hehir-Kwa, J.Y.,
Verwiel, E.T., Dirks, R., van Vooren, S., Schinzel, A., de Vries, B.B.,
and de Leeuw, N. (2013). An update on ECARUCA, the European
Cytogeneticists Association Register of Unbalanced Chromo-
some Aberrations. Eur. J. Med. Genet. 56, 471-474.

Beck, T., Hastings, R.K., Gollapudi, S., Free, R.C., and Brookes,
AJ. (2014). GWAS Central: a comprehensive resource for the
comparison and interrogation of genome-wide association
studies. Eur. J. Hum. Genet. 22, 949-952.

Li, M.J., Wang, P, Liu, X., Lim, E.L., Wang, Z., Yeager, M.,
Wong, M.P.,, Sham, P.C., Chanock, S.J., and Wang, J. (2012).
GWASdb: a database for human genetic variants identified
by genome-wide association studies. Nucleic Acids Res. 40,
D1047-D1054.

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P,
Junkins, H., Klemm, A., Flicek, P., Manolio, T., Hindorff, L.,
and Parkinson, H. (2014). The NHGRI GWAS Catalog, a
curated resource of SNP-trait associations. Nucleic Acids Res.
42, D1001-D1006.

Biesecker, L.G., and Green, R.C. (2014). Diagnostic clinical
genome and exome sequencing. N. Engl. . Med. 370, 2418-
2425.

Chen, Y.C., Douville, C., Wang, C., Niknafs, N., Yeo, G.,
Beleva-Guthrie, V., Carter, H., Stenson, P.D., Cooper, D.N.,
Li, B., et al. (2014). A probabilistic model to predict clinical
phenotypic traits from genome sequencing. PLoS Comput.
Biol. 10, e1003825.

Jonquet, C., Shah, N.H., and Musen, M.A. (2009). The open
biomedical annotator. Summit on Translat Bioinforma 2009,
56-60.

Campos, D., Matos, S., and Oliveira, J.L. (2013). A modular
framework for biomedical concept recognition. BMC Bioin-
formatics 14, 281.

122 The American Journal of Human Genetics 97, 111-124, July 2, 2015


http://refhub.elsevier.com/S0002-9297(15)00234-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref11
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref12
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref13
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref14
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref15
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref16
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref17
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref18
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref19
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref19
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref19
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref19
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref20
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref21
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref22
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref23
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref23
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref23
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref24
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref24
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref24
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref24
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref25
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref25
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref25
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref26
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref27
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref28
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref29
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref29
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref29
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref29
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref29
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref30
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref30
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref30
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref30
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref31
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref31
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref31
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref31
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref31
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref32
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref32
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref32
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref32
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref32
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref33
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref33
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref33
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref33
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref34
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref34
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref34
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref34
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref34
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref35
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref35
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref35
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref35
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref35
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref36
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref36
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref36
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref37
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref37
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref37
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref37
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref37
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref38
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref38
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref38
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref39
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref39
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref39

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

5S.

Groza, T., Kohler, S., Doelken, S., Collier, N., Oellrich, A.,
Smedley, D., Couto, EM., Baynam, G., Zankl, A., and Robin-
son, PN. (2015). Automatic concept recognition using the
human phenotype ontology reference and test suite corpora.
Database (Oxford), 2015.

Robinson, P.N., and Bauer, S. (2011). Introduction to Biol.-
Ontologies (Baton Rouge: CRC Press Inc.).

Demchak, B., Hull, T., Reich, M., Liefeld, T., Smoot, M., Ideker,
T., and Mesirov, J.P. (2014). Cytoscape: the network visualiza-
tion tool for GenomeSpace workflows. F1000Res. 3, 151.
Maslov, S., and Sneppen, K. (2002). Specificity and stability in
topology of protein networks. Science 296, 910-913.

Zhang, W., Gamazon, E.R., Zhang, X., Konkashbaev, A., Liu,
C., Szilagyi, K.L., Dolan, M.E., and Cox, N.J. (2015). SCAN
database: facilitating integrative analyses of cytosine modifi-
cation and expression QTL. Database (Oxford), 2015.
Schriml, L.M., Arze, C., Nadendla, S., Chang, Y.W., Mazaitis,
M., Felix, V., Feng, G., and Kibbe, W.A. (2012). Disease
Ontology: a backbone for disease semantic integration.
Nucleic Acids Res. 40, D940-D946.

Ripke, S., O’'Dushlaine, C., Chambert, K., Moran, ].L., Kdhler,
AK., Akterin, S., Bergen, S.E., Collins, A.L., Crowley, JJ.,
Fromer, M., et al.; Multicenter Genetic Studies of Schizo-
phrenia Consortium; Psychosis Endophenotypes Interna-
tional Consortium; Wellcome Trust Case Control Consortium
2 (2013). Genome-wide association analysis identifies 13 new
risk loci for schizophrenia. Nat. Genet. 45, 1150-1159.
Stranger, B.E., Stahl, E.A., and Raj, T. (2011). Progress and
promise of genome-wide association studies for human com-
plex trait genetics. Genetics 187, 367-383.

Doecke, J.D., Simms, L.A., Zhao, Z.Z., Huang, N., Hanigan, K.,
Krishnaprasad, K., Roberts, R.L., Andrews, J.M., Mahy, G.,
Bampton, P, et al. (2013). Genetic susceptibility in IBD: over-
lap between ulcerative colitis and Crohn’s disease. Inflamm.
Bowel Dis. 19, 240-245.

Cross-Disorder Group of the Psychiatric Genomics Con-
sortium (2013). Identification of risk loci with shared effects
on five major psychiatric disorders: a genome-wide analysis.
Lancet 381, 1371-1379.

Richard-Miceli, C., and Criswell, L.A. (2012). Emerging
patterns of genetic overlap across autoimmune disorders.
Genome Med. 4, 6.

Li, Y., Zhang, K., Chen, H., Sun, E, Xu, J., Wu, Z,, Li, P, Zhang, L.,
Du, Y., Luan, H., etal. (2013). A genome-wide association study
in Han Chinese identifies a susceptibility locus for primary Sjog-
ren’s syndrome at 7q11.23. Nat. Genet. 45, 1361-1365.
Graham, R.R., Cotsapas, C., Davies, L., Hackett, R., Lessard,
C.J., Leon, J.M., Burtt, N.P.,, Guiducci, C., Parkin, M., Gates,
C., et al. (2008). Genetic variants near TNFAIP3 on 6q23 are
associated with systemic lupus erythematosus. Nat. Genet.
40, 1059-1061.

Zhou, X., Menche, J., Barabasi, A.L., and Sharma, A. (2014).
Human symptoms-disease network. Nat. Commun. 5, 4212.
Blair, D.R., Lyttle, C.S., Mortensen, ].M., Bearden, C.E, Jensen,
A.B., Khiabanian, H., Melamed, R., Rabadan, R., Bernstam,
E.V.,, Brunak, S., et al. (2013). A nondegenerate code of delete-
rious variants in Mendelian loci contributes to complex dis-
ease risk. Cell 155, 70-80.

Alzheimer’s Disease Collaborative Group (1995). The structure
of the presenilin 1 (S182) gene and identification of six
novel mutations in early onset AD families. Nat. Genet. 11,
219-222.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Lambert, J.C., Mann, D.M., Harris, J.M., Chartier-Harlin, M.C.,
Cumming, A., Coates, J., Lemmon, H., StClair, D., Iwatsubo,
T., and Lendon, C. (2001). The -48 C/T polymorphism in
the presenilin 1 promoter is associated with an increased
risk of developing Alzheimer’s disease and an increased Abeta
load in brain. J. Med. Genet. 38, 353-355.

Kathiresan, S., Willer, C.]., Peloso, G.M., Demissie, S., Musu-
nuru, K., Schadt, E.E., Kaplan, L., Bennett, D., Li, Y., Tanaka,
T., et al. (2009). Common variants at 30 loci contribute to
polygenic dyslipidemia. Nat. Genet. 41, 56-65.

Lusis, AJ., and Pajukanta, P. (2008). A treasure trove for lipo-
protein biology. Nat. Genet. 40, 129-130.

Stahl, E.A., Raychaudhuri, S., Remmers, E.E, Xie, G., Eyre, S.,
Thomson, B.P,, Li, Y., Kurreeman, F.A., Zhernakova, A., Hinks,
A., et al.; BIRAC Consortium; YEAR Consortium (2010).
Genome-wide association study meta-analysis identifies seven
new rheumatoid arthritis risk loci. Nat. Genet. 42, 508-514.
Shi, Y., Zhao, H., Shi, Y., Cao, Y., Yang, D., Li, Z., Zhang, B.,
Liang, X., Li, T., Chen, J., et al. (2012). Genome-wide associa-
tion study identifies eight new risk loci for polycystic ovary
syndrome. Nat. Genet. 44, 1020-1025.

Voight, B.E, Scott, L.J., Steinthorsdottir, V., Morris, A.P., Dina, C.,
Welch, R.P,, Zeggini, E., Huth, C., Aulchenko, Y.S., Thorleifsson,
G., et al.; MAGIC investigators; GIANT Consortium (2010).
Twelve type 2 diabetes susceptibility loci identified through
large-scale association analysis. Nat. Genet. 42, 579-589.
Kraja, A.T., Vaidya, D., Pankow, ].S., Goodarzi, M.O., Assimes,
T.L., Kullo, LJ., Sovio, U., Mathias, R.A., Sun, Y.V., France-
schini, N., et al. (2011). A bivariate genome-wide approach
to metabolic syndrome: STAMPEED consortium. Diabetes
60, 1329-13309.

Lill, C.M., Roehr, J.T., McQueen, M.B., Kavvoura, FK., Bagade,
S., Schjeide, B.M., Schjeide, L.M., Meissner, E., Zauft, U., Allen,
N.C., et al.; 23andMe Genetic Epidemiology of Parkinson’s
Disease Consortium; International Parkinson’s Disease Geno-
mics Consortium; Parkinson’s Disease GWAS Consortium;
Wellcome Trust Case Control Consortium 2) (2012). Compre-
hensive research synopsis and systematic meta-analyses
in Parkinson'’s disease genetics: The PDGene database. PLoS
Genet. 8, €1002548.

Kim, D.K., Cho, M.H., Hersh, C.P., Lomas, D.A., Miller, B.E.,
Kong, X., Bakke, P., Gulsvik, A., Agusti, A., Wouters, E.,
et al.; ECLIPSE, ICGN, and COPDGene Investigators (2012).
Genome-wide association analysis of blood biomarkers in
chronic obstructive pulmonary disease. Am. J. Respir. Crit.
Care Med. 186, 1238-1247.

Amberger, J., Bocchini, C., and Hamosh, A. (2011). A new face
and new challenges for Online Mendelian Inheritance in Man
(OMIM®). Hum. Mutat. 32, 564-567.

Rath, A., Olry, A., Dhombres, E.,, Brandt, M.M., Urbero, B., and
Ayme, S. (2012). Representation of rare diseases in health
information systems: the Orphanet approach to serve a wide
range of end users. Hum. Mutat. 33, 803-808.

Oti, M., and Brunner, H.G. (2007). The modular nature of
genetic diseases. Clin. Genet. 71, 1-11.

Barabasi, A.L. (2007). Network medicine—from obesity to the
“diseasome”. N. Engl. J. Med. 357, 404-407.

Feldman, I., Rzhetsky, A., and Vitkup, D. (2008). Network
properties of genes harboring inherited disease mutations.
Proc. Natl. Acad. Sci. USA 105, 4323-4328.

Vidal, M., Cusick, M.E., and Barabasi, A.L. (2011). Interactome
networks and human disease. Cell 144, 986-998.

The American Journal of Human Genetics 97, 111-124, July 2, 2015

123


http://refhub.elsevier.com/S0002-9297(15)00234-7/sref40
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref40
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref40
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref40
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref40
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref41
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref41
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref42
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref42
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref42
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref43
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref43
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref44
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref44
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref44
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref44
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref45
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref45
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref45
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref45
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref46
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref47
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref47
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref47
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref48
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref48
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref48
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref48
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref48
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref49
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref49
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref49
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref49
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref50
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref50
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref50
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref51
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref51
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref51
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref51
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref52
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref52
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref52
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref52
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref52
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref53
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref53
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref54
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref54
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref54
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref54
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref54
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref55
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref55
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref55
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref55
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref56
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref56
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref56
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref56
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref56
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref56
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref57
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref57
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref57
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref57
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref58
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref58
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref59
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref59
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref59
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref59
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref59
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref60
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref60
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref60
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref60
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref61
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref61
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref61
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref61
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref61
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref62
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref62
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref62
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref62
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref62
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref63
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref64
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref64
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref64
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref64
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref64
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref64
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref65
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref65
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref65
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref66
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref66
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref66
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref66
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref67
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref67
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref68
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref68
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref68
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref68
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref69
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref69
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref69
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref70
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref70

71.

72.

73.

74.

75.

76.

77.

78.

Dewey, EE., Grove, M.E., Pan, C., Goldstein, B.A., Bernstein,
J.A., Chaib, H., Merker, ]J.D., Goldfeder, R.L., Enns, G.M.,
David, S.P,, et al. (2014). Clinical interpretation and implica-
tions of whole-genome sequencing. JAMA 311, 1035-1045.
Hennekam, R.C., and Biesecker, L.G. (2012). Next-generation
sequencing demands next-generation phenotyping. Hum.
Mutat. 33, 884-886.

Esplin, E.D., Oei, L., and Snyder, M.P. (2014). Personalized
sequencing and the future of medicine: discovery, diagnosis
and defeat of disease. Pharmacogenomics 15, 1771-1790.
Voros, S., Maurovich-Horvat, P., Marvasty, I.B., Bansal, A.T,,
Barnes, M.R., Vazquez, G., Murray, S.S., Voros, V., Merkely, B.,
Brown, B.O., and Warnick, G.R. (2014). Precision phenotyp-
ing, panomics, and system-level bioinformatics to delineate
complex biologies of atherosclerosis: rationale and design of
the “Genetic Loci and the Burden of Atherosclerotic Lesions”
study. J. Cardiovasc. Comput. Tomogr. 8, 442-451.

Ball, M.P,, Thakuria, J.V., Zaranek, A.W., Clegg, T., Rosenbaum,
AM., Wu, X., Angrist, M., Bhak, J., Bobe, J., Callow, M.]., et al.
(2012). A public resource facilitating clinical use of genomes.
Proc. Natl. Acad. Sci. USA 109, 11920-11927.

Saunders, C.J., Miller, N.A., Soden, S.E., Dinwiddie, D.L., Noll,
A., Alnadi, N.A., Andraws, N., Patterson, M.L., Krivohlavek,
L.A.,, Fellis, J., et al. (2012). Rapid whole-genome sequencing
for genetic disease diagnosis in neonatal intensive care units.
Sci Transl Med. 4, 154ral135.

Bell, CJ., Dinwiddie, D.L., Miller, N.A., Hateley, S.L., Ganu-
sova, E.E., Mudge, J., Langley, RJ., Zhang, L., Lee, C.C., Schil-
key, ED., et al. (2011). Carrier testing for severe childhood
recessive diseases by next-generation sequencing. Sci. Transl.
Med. 3, ra4.

Ellinor, P.T., Lunetta, K.L., Albert, C.M., Glazer, N.L., Ritchie,
M.D., Smith, A.V,, Arking, D.E., Miiller-Nurasyid, M., Krijthe,

79.

80.

81.

82.

83.

84.

85.

B.P, Lubitz, S.A., et al. (2012). Meta-analysis identifies six
new susceptibility loci for atrial fibrillation. Nat. Genet. 44,
670-675.

Tsai, C.T., Hsieh, C.S., Chang, S.N., Chuang, E.Y., Juang, ].M.,
Lin, LY., Lai, L.P, Hwang, ]J.J., Chiang, ET., and Lin, J.L.
(2015). Next-generation sequencing of nine atrial fibrillation
candidate genes identified novel de novo mutations in
patients with extreme trait of atrial fibrillation. J. Med. Genet.
52, 28-36.

Kohane, L.S. (2011). Using electronic health records to drive
discovery in disease genomics. Nat. Rev. Genet. 12, 417-428.
Denny, ].C., Bastarache, L., Ritchie, M.D., Carroll, R J., Zink, R.,
Mosley, J.D., Field, J.R., Pulley, ].M., Ramirez, A.H., Bowton, E.,
et al. (2013). Systematic comparison of phenome-wide associ-
ation study of electronic medical record data and genome-
wide association study data. Nat. Biotechnol. 31, 1102-1110.
Denny, J.C., Ritchie, M.D., Basford, M.A., Pulley, ].M., Bastar-
ache, L., Brown-Gentry, K., Wang, D., Masys, D.R., Roden,
D.M., and Crawford, D.C. (2010). PheWAS: demonstrating
the feasibility of a phenome-wide scan to discover gene-dis-
ease associations. Bioinformatics 26, 1205-1210.

Tatonetti, N.P., Denny, J.C., Murphy, S.N., Fernald, G.H.,
Krishnan, G., Castro, V., Yue, P, Tsao, P.S., Kohane, 1., Roden,
D.M., and Altman, R.B. (2011). Detecting drug interactions
from adverse-event reports: interaction between paroxetine
and pravastatin increases blood glucose levels. Clin. Pharma-
col. Ther. 90, 133-142.

Batet, M., Sanchez, D., and Valls, A. (2011). An ontology-based
measure to compute semantic similarity in biomedicine.
J. Biomed. Inform. 44, 118-125.

Pesquita, C., Faria, D., Falcdo, A.O., Lord, P., and Couto, EM.
(2009). Semantic similarity in biomedical ontologies. PLoS
Comput. Biol. 5, e1000443.

124 The American Journal of Human Genetics 97, 111-124, July 2, 2015


http://refhub.elsevier.com/S0002-9297(15)00234-7/sref71
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref71
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref71
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref71
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref72
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref72
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref72
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref73
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref73
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref73
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref74
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref75
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref75
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref75
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref75
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref76
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref76
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref76
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref76
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref76
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref77
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref77
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref77
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref77
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref77
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref78
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref78
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref78
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref78
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref78
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref79
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref79
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref79
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref79
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref79
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref79
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref80
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref80
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref81
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref81
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref81
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref81
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref81
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref82
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref82
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref82
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref82
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref82
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref83
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref83
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref83
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref83
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref83
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref83
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref84
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref84
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref84
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref85
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref85
http://refhub.elsevier.com/S0002-9297(15)00234-7/sref85

	The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease
	Introduction
	Material and Methods
	Extraction of HPO Terms By Automatic Concept Recognition
	PubMed-MEDLINE 2014 Corpus
	Filtering HPO Annotations
	Information Theoretic Measures for HPO Annotations
	Calculation of Phenotypic Overlap with an Extended Jaccard Index
	Validation of HPO Annotations for Common Disorders
	CDN
	Statistical Significance of the CDN
	GWAS Data

	Results
	Generation of Phenotype Annotations for Common Disease by CR
	A Common-Disease Phenotypic Network
	Phenotypic and Genetic Overlap across Complex Diseases
	Phenotypic and Genetic Overlap across Complex and Mendelian Diseases

	Discussion
	Supplemental Data
	Acknowledgments
	Web Resources
	References


