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The majority of scholars believe that Shor’s algorithm is a unique and powerful quantum
algorithm for RSA cryptanalysis, so current postquantum cryptography research has
largely considered only the potential threats of Shor’s algorithm. This paper verifies the
feasibility of deciphering RSA public key cryptography based on D-Wave, which is the
second most effective RSA attack method after Shor’s algorithm. This paper proposes the
influence of different column methods on the final integer factorization, puts forward a new
dimension reduction formula, simplifies the integer factorization model based on quantum
annealing, simulates it with the qbsolv quantum computing software environment provided
by D-Wave, and factors the integer 1630729 (an 11-bit prime factor multiplied by an 11-bit
prime factor). The research results show that choosing an appropriate number of columns
and column width in the binary integer factorization multiplication table is very important for
studying the optimization ability of the quantum annealing algorithm. In fact, Science,
Nature, IEEE Spectrum, and the National Academies of Sciences (NAS) are consistent in
asserting that the practical application of general-purpose quantum computers is far in the
future. Therefore, although D-Wave computers were initially mainly purchased by
Lockheed Martin, Google, etc., for purposes such as image processing, machine
learning, combinatorial optimization, and software verification, post quantum
cryptography research should further consider the potential of the D-Wave quantum
computer in deciphering RSA cryptosystems in the future, and a discussion of this
potential is one of the contributions of this paper.
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INTRODUCTION

Quantum computers are mainly of two types: general-purpose quantum computers invented by
Google, IBM and other institutions and dedicated D-Wave quantum computers. Since Peter Shor [1]
proposed the prime factorization algorithm for large numbers in 1994, the development of quantum
computing has posed a severe challenge to existing public key cryptosystems. The degree of difficulty
in factoring large integers is the basis for the security of RSA public key cryptography. The core
foundation of RSA security lies in the factorization of large numbers, in which a large integer N is
factored as N � p × q. Under the conditions of quantum computing, the problem of the prime
factorization of large numbers can be solved in polynomial time. This poses a potential threat to the
security of the RSA public key cryptosystem widely used in governmental, financial and other
important institutions.
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Researchers have completed theoretical verification
experiments on Shor’s algorithm based on various methods,
such as nuclear magnetic resonance, optical quantum
computing, and Josephson charges [2–5]. At present, the
universal quantum Shor’s algorithm that can be realized in
physics can only factor large numbers up to the integer 85
(combined with the properties of Fermat numbers). Shor’s
algorithm can complete theoretical decoding through the
quantum Fourier transform, which cannot be achieved by
traditional methods and requires high-precision physical
devices; the construction of general physical devices develops
slowly. Classical computing simulation of Shor’s algorithm can
simulate the matrix product state of Shor’s algorithm for up to 60
qubits by using supercomputing resources, but it is also limited by
classical computing resources [6].

It is worth noting that, due to the current quantum computer
qubit scale, error correction ability, control precision, anti-
interference and other problems, the development of hardware
is slow, and the practical general-purpose quantum computer still
needs time to develop. In fact, Science [7, 8], Nature [9], IEEE
Spectrum [10], and the National Academies of Sciences (NAS)
are consistent in asserting that the practical application of
general-purpose quantum computers is far in the future. For
example, Google’s 72-qubit chip Bristlecone (Bristlecone),
launched in 2018, could not achieve actual computing power
due to problems such as Surface Code, and in 2019, Google’s
quantum hegemony chip (Sycamore) could not be used for
cryptographic deciphering [11].

In 2018, engineering and physical sciences, the National
Academies of Science, the Academy of Medicine, and the
Academy of Engineering jointly issued a report entitled
“Quantum Computing: Progress and Prospects” [12]. This
report clearly pointed out that making a quantum computer
with practical capabilities that is capable of deciphering 2048-bit
RSA or similar public key cryptosystems based on discrete
logarithms is very unlikely within the next 10 years. As Shor’s
algorithm has difficulty reducing the device requirements of
qubits, Shor’s algorithm based on general quantum circuits is
still in the theoretical stage for deciphering public key
cryptography. Therefore, it is urgent to explore new quantum
computing algorithms and computing architectures (dedicated
quantum computers) in addition to Shor’s algorithm.

On the other hand, Canada’s D-Wave quantum computer has
cooperated with many world-class companies and universities
and is widely used in materials science, finance, biology,
medicine, artificial intelligence, machine learning and other
fields. It is expected to become a breakthrough point for the
commercialization of dedicated quantum computing. The core
principle of the D-Wave quantum computer is the quantum
annealing algorithm. With its unique quantum tunnelling effect,
the quantum annealing algorithm avoids being trapped in local
extrema and thus approximates or achieves the global optimum
in exponential solution search problems.

In addition to integer factorization based on Shor’s algorithm,
there are two types of integer factorization methods based on the
quantum adiabatic algorithm. One is the integer factorization
method based on a nuclear magnetic resonance (NMR) quantum

processor, which is used to realize small quantum computer
technology. Due to the limitation of the number of qubits of
the NMR platform, integer factorization based on NMR is not
scalable, and the method is not universal [13, 14]. The other
method is integer factorization based on the principle of the
D-Wave quantum computer—the quantum annealing algorithm.
The integer factorization method based on the D-Wave quantum
annealing principle has more realistic attack power, and this
method has versatility and scalability.

Lockheed Martin researcher Warren RH proposed a general
framework for factoring all integers up to 1000. The largest
integer factored by the D-Wave 2000 qubit processor is 7781
[15]. This model uses a large number of logical qubits, has a large
parameter range, and requires high accuracy. Moreover, the
constructed model has qubit redundancy. It is difficult for an
actual quantum computer to meet these requirements. Riccardo
et al. chose the block multiplication table method to test the
performance and limitations of the low-noise D-Wave 2000Q
quantum annealing machine. The low-noise D-Wave 2000Q can
correctly factor all integers below 103459 [16]. Mashiyat et al.
proposed PyQUBO to construct quadratic unconstrained binary
optimization (QUBO) problems based on objective functions and
constraints. These researchers introduced the characteristics of
PyQUBO and its applications in integer factorization using
binary multipliers [17]. Researchers at Shanghai University
[18, 19] proposed using the target value information, structure
information, carry information and an optimized dimensionality
reduction formula in the columns of the binary multiplication
table to reduce the number of required carry variables and the
number of representation variables to reduce the number and
parameter range of the auxiliary variables required for integer
factorization problems. However, this does not take into account
the influence of the column division of the binary integer
factorization multiplication table on the accuracy of integer
factorization.

Based on themethod of Jiang et al. [20] at Purdue University, this
paper will analyse the influence of different column methods on the
final integer factorization. Based on the qbsolv quantum computing
software environment provided by D-Wave, the experiment is
carried out and compared with the method of Jiang et al. The
feasibility of D-Wave in factoring large numbers and the potential of
its deciphering RSA are verified, and D-Wave is found to have more
realistic attack power than Shor’s algorithm.

BACKGROUND

Quantum Annealing
Quantum annealing (QA) is the principle of the D-Wave
quantum computer. Its unique quantum tunnelling effect can
overcome the defect of the traditional search algorithm that it is
easily trapped in local minima. In flight control software testing,
image recognition, protein folding, financial analysis, quantum
biochemistry, transportation, and inversion problems in Earth
science and other fields, it has achieved good results. Further
expansion of evolutionary cryptography has also been achieved in
the field of cryptographic design and analysis [21].
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In 1998, H. Nishimori and T. Kadowaki [22] proposed that by
introducing a transverse magnetic field to construct quantum
fluctuations, particles could achieve a quantum tunnelling effect
and thus have the ability to penetrate a high and narrow potential
barrier to overcome the defect that simulated annealing can only
cross a low potential barrier.

As shown in Figure 1, simulated annealing can only reach the
global minimum from a local minimum by crossing a barrier,
while the quantum annealing algorithm can directly reach it from
a local minimumwith its quantum tunnelling effect. It is precisely
because of the quantum tunnelling effect that the quantum
annealing algorithm has better performance than the
simulated annealing algorithm in some problems.

This simulation is based on the quantum computing software
environment qbsolv. qbsolv is a metaheuristic or partition solver. It
solves a potentially large QUBO problem by dividing it into blocks
that are solved on D-Wave systems or by classical tabu solvers. For
more information on the qbsolv software (provided by D-Wave),
please refer to (http://github.com/dwavesystems/qbsolv).

Related Works
Quantum annealing uses the quantum effect produced by quantum
fluctuations to determine the global optimal solution of an objective
function. The integer factorization problem is converted into a

combinatorial optimization problem that can be processed by the
quantum annealing algorithm, and the minimum energy value is
output through the quantum annealing algorithm. The minimum
value is then the successful solution of integer factorization.

As the core algorithm of the D-Wave quantum computer,
quantum annealing shows the potential to approach or even
reach the global optimum in the exponential solution space,
corresponding to the quantum evolution of the ground state
of the Hamiltonian of the problem. Table 1 takes the binary
multiplication table of the integer 143 as an example. The integer
143 is factored into three columns, the width of each column is 2,
and the column method is expressed as [2, 4, 6]. The objective
function of each column is expressed as the following equation:

(p2 + p1q1 + q2 − (c2 × 4 + c1 × 2)) × 2 + (p1 + q1) � (11)2 � 3.

(1)
(q1 + p2q2 + p1 + c2 − (c4 × 4 + c3 × 2)) × 2 + (1 + p2q1 + p1q2+1 + c1)

� (01)2 � 1.

(2)
(1 + c4) × 2 + (q2 + p2 + c3) � (100)2 � 4. (3)

The objective function is defined as the sum of the squares of
all columns:

f � (2p2 + 2p1q1 + 2q2 − 8c2 − 4c1 + p1 + q1 − 3)2
+ (2q1 + 2p2q2 + 2p1 + 2c2 − 8c4 − 4c3 + p2q1 + p1q2 + c1+1)2
+ (q2 + p2 + c3 + 2c4 − 2)2.

(4)
As can be seen from the above objective function, the

minimum energy value of the final system after annealing
should be 0. After expanding Formula 4, the energy of the
objective function includes the observation energy value and
constant term of quantum annealing. Since the sum of the two
is 0, the absolute value of the observed quantum annealing energy
can be regarded as the Hamiltonian energy of integer
factorization.

FIGURE 1 | Comparison of the working principle of the simulated annealing algorithm and quantum annealing algorithm [23].

TABLE 1 | Column binary multiplication table of 143 = 11 × 13 [20].

27 26 25 24 23 22 21 20

p 1 p2 p1 1
q 1 q2 q1 1

carries 1 p2 p1 1
q1 p2q1 p1q1 q1

q2 p2q2 p1q2 q2

1 p2 p1 1
c4 c3 c2 c1

143 � p × q 1 0 0 0 1 1 1 1
column 4 column 3 column 2 column 1
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The simulation steps for D-Wave to decipher RSA public key
cryptography based on quantum annealing are as follows:

Step 1. Divide the binary multiplication table of any integer
into columns (usually divided by column widths of 1, 2, 3, 4 or
5) and determine the carry variable.
Step 2. Construct the objective function of the integer binary
multiplication table after column division and simplify the
objective function with different column division methods
according to the squared item attributes p2

i � pi, q2i � qi, and
c2i � ci and the dimension reduction formula.
Step 3. Perform variable substitution on the objective function
of each column with xi � (1 − si)/2, i = 1, 2, 3, · · ·, so that the
value range is changed from {0, 1} to {−1, 1}. Single-term
quadratic coefficients and quadratic-term quadratic
coefficients of each column objective function are extracted
as a local field coefficient matrix h and a coupled term
coefficient matrix J to transform the integer factorization
problem into an Ising model that can be handled by the
qbsolv software environment.
Step 4. Input the final local field coefficient matrix h and
coupling term coefficient matrix J of each column of the
objective function into the quantum computing qbsolv
software environment to perform the quantum annealing
process. After sufficient slow adiabatic evolution, the final
Hamiltonian of the system will be the ground state of the
Ising model, namely, the factors produced by integer
factorization.

In this paper, we propose two optimization methods (Method
1 and Method 2) to analyze the impact of different partition
designs and new dimensionality reduction methods on integer
factorization (including the number of qubits, parameter
coefficients, success rate, and running time).

METHODS

Method 1
Table 2 shows a parameter comparison of the factorization of 143
in different column methods adopted by Method 1.

Table 1 shows that different column methods will affect the
number of qubits required to factor the integer 143 and the range
of the model parameters. When column splitting is performed [3,

6], we find that the number of qubits needed is reduced, but the
corresponding parameter range is increased. The column
partitioning methods [2–4, 6] and [2–6] have the same
parameter range for the final model coefficient, but the
number of qubits needed to factor the integer is different. The
more columns there are, the more qubits are needed. As seen
from Table 2, the greater the number of columns is, the smaller
the minimum energy value of integer factorization. In a real
D-wave quantum environment, the parameter range and energy
value will affect the stability and accuracy of annealing.

The more columns there are, the greater the number of bits
required to factor an integer because more columns are used,
which leads to more objective functions for the entire binary
multiplication table (each column corresponds to an objective
function); the final integer factorization represents the sum of
the squares of the objective functions of all columns. After the
model is simplified, there will be more polynomials larger than
the second degree (cubic terms or quartic terms). Since
D-Wave quantum annealing can only handle the interaction
of two variables at most, it is necessary to reduce the dimension
of polynomials larger than the second degree, which requires
the introduction of new variables, eventually leading to an
increase in the number of qubits. Therefore, within the
corresponding control range, we can choose fewer columns
to reduce the quantum hardware requirements of the
final model.

Table 3 shows the quantum simulation of factoring the integer
59989 based on different columnmethods. We find that the fewer
columns are used, the fewer qubits are needed, but this does not
mean that the fewer the number of columns, the better. For
example, when the column is [6, 12], the model coefficients are
already as high as [−84628, 98345.5] and [−90640, 44824], and
the minimum energy is 1541132. The coupling strength between
the quantum spin Ising models in D-Wave quantum computer
topology is limited. When the parameter range of the Ising model
is too large, the stability of some physical qubit chains may not be
guaranteed, and the chains may appear to “break,” which will
eventually lead to the inconsistency of physical qubits flipping,
which will affect the stability of the annealing process and directly
affect the accuracy of the quantum hardware in solving the actual
combinatorial optimization problem. Comparing [3, 8, 12] and
[4, 8, 12], the width of the second column of [3, 8, 12] is 5, and the
width of the second column of [4, 8, 12] is 4. The width of the
middle column ([4, 8, 12]) is smaller, which can greatly reduce the

TABLE 2 | Different ways of dividing the integer 143.

Integers Column methods Qubits hT ranges J ranges The minimum
energy

Jiang et al. [20] [2, 4, 6] 12 [-137, 130.5] [-148.79] 829

Method 1 [3, 6] 11 [-368, 350] [-448, 252] 2257.5
[2, 3, 4, 6] 15 [-117, 94.5] [-132.68] 501.5

[2, 3, 4, 5, 6] 17 [-117, 94.5] [-132.68] 490.5

The data of Jiang et al.’s algorithm shown in this paper are obtained by our simulation, and the data obtained are only for reference.
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parameter range of the model, but the column width is not as
small as possible.

For example, comparing [3, 5, 7, 9, 12] and [4, 5, 7, 9, 12], it is
found that the width of the second column of [3, 5, 7, 9, 12] is 2,
and the width of the second column of [4, 5, 7, 9, 12] is 1, but the
parameter coefficient range and minimum energy value for the
column width of 1 are larger. Similarly, compared with [3, 5–9,
12] and [4–9, 12], when the second column width of [3, 5–9, 12] is
2 and the second column width of [4–9, 12] is 1, the range of the
coefficient and the minimum energy value of 1 are higher.
Therefore, choosing an appropriate column width is crucial to
the stability of quantum annealing. Based on the above
discussion, it is found that the column width value 3 for the
low column and the high column is the most appropriate, and the
column width of the middle column is 2 or 3. Table 4 shows the
quantum simulation of factoring the integer 376289 based on
different column methods. The number of qubits increases as the
number of columns increases.

1) When the column method uses [6, 10, 16], the number of
qubits required to factor the integer 376289 is 89, and the
number of qubits required to factor the integer 376289 by the
method of Jiang et al. is 94; the columnmethod uses five fewer
qubits than Jiang et al., which can reduce hardware
requirements.

2) When the column method uses [3, 6, 8, 10, 12, 14, 16],
compared with the algorithm of Jiang et al., the number of
columns increases, and although the number of qubits
increases, the model coefficient can be greatly reduced.

This is helpful in improving the stability of the
factorization model of large numbers and improving the
accuracy of the integer factorization problem. Therefore,
the number of columns can be appropriately increased
within a certain controllable range.

In summary, the selection of the number of columns and the
width of the columns has a certain impact on the number of
qubits required for factoring integers and the range of the model
parameters. Values that are too large or too small will affect the
final result. Too many columns can reduce the range of the model
coefficients but increase the number of qubits needed. Too small
or too large a number of columns will also affect the range of the
model parameters. Therefore, seeking the appropriate number of
columns and the appropriate column width to balance the
number of qubits and the model parameters required for
integer factorization has important research significance in
studying the accuracy of quantum annealing in the D-Wave
system.

Method 2
Although Jiang et al. introduced a method to simplify 3 local
terms into 2 local terms in Ref. [20], the parameter value and
coupling strength of the local field coefficient increased due to the
coefficient “2,” especially for large integers. In the integer
factorization problem based on quantum annealing, the
reduction of model parameters is helpful for reducing the
hardware requirements and precision of quantum annealing.
To further simplify 3 local terms into 2 local terms, inspired

TABLE 3 | Different column methods for the integer 59989.

Integers Column methods Qubits hT ranges J ranges The minimum
energy

Jiang et al. [20] [3,6,9,12] 59 [-1842, 2947] [-1832, 921] 47966

Method 1 [2,6,9,12] 59 [-6653, 7001.5] [-6756, 3348] 104955.5
[3,5,7,9,12] 62 [-937, 1425] [-1108, 556] 21135
[4,5,7,9,12] 63 [-4358, 4407] [-4116, 2050] 54257.5

[3,5,6,7,8.9,12] 68 [-957, 1150] [-1124, 564] 15225
[4,5,6,7,8.9,12] 69 [-4351, 4174.5] [-4096, 2048] 48092.5

[4,8,12] 56 [-5793, 9351.5] [-6068, 3194] 151035
[3,8,12] 55 [-22372, 24518.5] [-23632, 12169] 408197.5
[6,12] 53 [-84628, 98345.5] [-90640, 44824] 1541132

TABLE 4 | Different column methods for the integer 376289.

Integers Column methods Qubits hT ranges J ranges The minimum
energy

Jiang et al. [20] [4,7,10,13.16] 94 [-4268, 7505] [-4848, 2500] 145808

Method 1 [3,6,8,10,12,14,16] 101 [-1172, 2564] [-1152, 580] 54971.5
[5,8,11,16] 93 [-13977, 22814] [-16916, 8434] 404304
[6,10,16] 89 [-60753, 99965.5] [-71540, 35022] 1808085
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by Ref. [19] and Ref. [15], a new dimension reductionmethod was
proposed on the basis of further column optimization, as shown
in the formula

⎧⎪⎨
⎪⎩

x1x2x3 � min
x4

(x4x3 + x1x2 − x1x4 − x2x4 + x4)
−x1x2x3 � −min

x4
(x4x3 + x1x2 − 2x1x4 − 2x2x4 + 3x4) (5)

By using the dimensionality reduction method, the minimum
solution problem for quartic and cubic local terms can be
transformed into a problem of quadratic local terms that the
Ising model can handle. Compared with the methods of Ref. [19]
and Ref. [20], this method can further reduce the coupling
strength, local field coefficient and minimum energy so that
the theoretical model can describe the original problem more

TABLE 5 | Comparison of different methods of factoring the integer 143.

Integers Column methods Qubits hT ranges J ranges The minimum
energy

Jiang et al.[20] [2, 4, 6] 12 [-137, 130.5] [-148.79] 829

Method 2 [2, 4, 6] 12 [-82, 50.5] [-61, 42] 423
[3, 6] 11 [-116, 110] [-208, 140] 1088.5

[2, 3, 4, 6] 15 [-79, 42.5] [-57, 35] 295.5
[2, 3, 4,5, 6] 17 [-79, 42.5] [-57, 35] 284.5

TABLE 6 | Different methods of factoring the integer 59989.

Integers Column methods Qubits hT ranges J ranges The minimum
energy

Jiang et al.[20] [3,6,9,12] 59 [-1842, 2947] [-1832, 921] 47966

Method 2 [3,6,9,12] 59 [-892, 977] [-682, 520] 19394
[2,6,9,12] 59 [-2204, 2079.5] [-2585, 2056] 41730.5
[3,5,7,9,12] 62 [-860, 467.5] [-501, 520] 9123
[4,5,7,9,12] 63 [-4358, 1607.5] [-1925, 2050] 25487.5

[3,5,6,7,8.9,12] 68 [-764, 375.5] [-505, 520] 6853
[4,5,6,7,8.9,12] 69 [-4351, 1530.5] [-1920, 2048] 23162.5

[4,8,12] 56 [-4380, 2789.5] [-2413, 2056] 59959
[3,8,12] 55 [-5908, 6278.5] [-9492, 8200] 150910.5
[6,12] 53 [-37980, 29257.5] [-36996, 32776] 600950

FIGURE 2 | Comparison of running time of two optimization algorithms for factoring integer 376289.
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accurately. This is of great significance for solving integer
factorization problems by quantum annealing in real D-wave
systems. The following gives a comparison of Method 1, Method
2, and the work of Jiang et al.

It can be seen from Table 5 that, compared with Jiang et al.’s
method, Method 2 can further reduce the coupling strength, local
field coefficient and minimum energy when the same column
method is selected when the integer 143 is factored. Compared
with Method 1, the new dimension reduction method can further
improve the operational stability of D-Wave quantum annealing
and thus improve the quantum annealing accuracy.

It can be seen from Table 6 that compared with Jiang et al.’s
method, Method 2 can further reduce the coupling strength, local
field coefficient and minimum energy when the same column
method is selected to factor 59989. Compared with that of
Method 1, the dimension reduction method of Method 2 can
further reduce the weight of the qubit and the range of the
strength of the coupler involved in integer factorization. The
reduction of the parameter value range can reduce the precision

required to control the hardware bits, which is beneficial to the
stability of the operation of a real D-Wave quantum computer to
a certain extent, and it improves the integer factorization of large-
scale cases in a real D-Wave computer.

Figure 2 shows the comparison of the running time of the
integer 376289 factored by the two optimization algorithms in
different column ways (3000 experimental runs). As can be seen
from the figure, both optimization methods show that the more
columns there are, the longer the operation time will be. This also
shows from the side, the more columns, the more quantum bits
needed, the more difficult the factorization, so the running time is
longer. Method 2 has a slight advantage over method 1 in running
time in the same column, but the difference is not significant.
From the perspective of running time, the impact of column on
running time is far more than that of dimension reduction.

Table 7 shows the factorization of 1630729 = 1277 × 1277. The
running time of factorizing 1630729 is 7359 s, and the experiment
is run 7000 times. Figure 3 shows the energy distribution of the
factored integer 1630729 (1277 × 1277). The minimum energy

TABLE 7 | Factorization of 1630729 = 1277 × 1277.

Integers Bits of
factors

Bits of
factors

Qubits hT ranges J ranges The minimum
energy

Method 2 11 11 125 [-3554, 1983] [-2262, 2048] 39881

FIGURE 3 | Observed energies for the integer 1630729 after quantum annealing.
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value after quantum annealing is 39881 (the red part in the
figure), and the minimum energy corresponds to the solution of
the integer factorization.

In addition, we analysed the accuracy of medium-scale integer
factorization (493 = 17 × 29, 1649 = 17 × 97, 9409 = 97 × 97,
12319 = 97 × 127). Figure 4 shows a comparison of the number of
bits required by different integer factorization methods, the
accuracy of quantum annealing and the running time (run
1000 times).

As shown in Figure 4, the number of bits, parameter range and
running time required for factorization gradually increase with
the increasing scale of integer factorization. The success rate of

integer factorization decreases with the increase in the scale of
integer factorization. This illustrates that as the scale of integer
factorization increases, the difficulty of integer factorization also
increases, and the model of the integer factorization problem
represented by quantum annealing becomes more complicated.

Figure 5 shows the energy distribution of the factorization
12319 = 97 × 127. The experiment was run 1000 times, the
minimum energy value was 4703, and the number of successful
factorizations was 362. In this paper, the integer factorization
problem is transformed into a combinatorial optimization
problem that can be handled by a quantum annealing
algorithm. Here, the minimum energy (the red part in the

FIGURE 4 | Comparison of medium-scale integer factorization cases.

FIGURE 5 | Observed energies of 12319 = 97 × 127 after quantum annealing.
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figure) output by the quantum annealing algorithm corresponds
to a successful integer factorization solution.

DISCUSSION AND FUTURE WORK

Based on the algorithm of Jiang et al., this paper proposes two
optimization algorithms to analyse the influence of different
column methods of different integer multiplication tables on
the final integer factorization model based on quantum
annealing; that is, we propose a deeper exploration of the
effect of different column methods on the number of qubits
andmodel coefficients. The simulation results show that choosing
the appropriate number of columns and the appropriate column
width is essential for balancing the number of qubits and model
coefficients. Finding a way to balance the column splitting
method, the number of qubits, and the model coefficients to
give full play to the optimization ability of the quantum annealing
algorithm is very meaningful work.

Due to the slow development of universal quantum devices,
the decomposable integer scale of Shor’s algorithm (based on the
universal quantum circuit mode) is limited. The NMR platform
based on quantum adiabatic annealing has no expansibility, and
the method is not universal, as shown in Figure 5 for the energy
distribution of the integer 12319 = 97 × 127 after the quantum
annealing limitation of the qubit number of the platform. Existing
D-Wave work is limited, so a general and extensible structure
based on D-Wave is essential.

It has long been believed that Shor’s algorithm is the only
effective quantum computing algorithm for attacking RSA and
that Shor’s algorithm requires the support of high-precision
quantum equipment. In fact, quantum annealing machines
such as D-Wave are more likely to be able to decode RSA
than Shor’s algorithm. According to a paper published by
Google in January 2018, Shor’s algorithm needs 2n qubits to
factor n -bit large integers [24]. The algorithm in this paper
requiresΟ(log2(N)) quantum bits in total, andN is an integer to
be factored. Although the complexity of the algorithm in this
paper is not as good as Shor’s algorithm, Shor’s algorithm is
highly dependent on hardware devices.

To realize the factorization of the maximum factored integer
1630729 (21-bit integer) in this paper, Shor’s algorithm needs at least
42more quantum bits, and to factor the actual 1024 bits of public key
password RSA. More than 2000 logical quantum bits are required,
and the required physical quantity bits and quantum bit precision are
far beyond the current hardware level. Therefore, the theoretical
research proposed in this study that the factorization scale of large
numbers can be achieved by sacrificing part of the physical qubit
resources, which ismore than several orders ofmagnitude larger than
the general quantum computer is of great exploration value. In the
future, anti-quantum cryptography needs to consider not only the
potential threats from Shor’s general-purpose quantum computers,
but also the potential threats of dedicated quantum computers.

It should be clarified that the current D-Wave computer is far
from being able to decipher the 1024-bit RSA, nor can it achieve
quantum supremacy. It makes sense to achieve large number
factorization that is several orders of magnitude higher than that

in general use with slightly more qubit resource consumption.
Compared with the general Shor’s algorithm, D-Wave can be
mixed and enhanced with classics, and it has the potential to
achieve the modular distributed decryption of large numbers. It
can be combined with classic computers in limited equipment to
yield a large-scale distributed large number factorization framework.

Purdue University researchers used the D-Wave 2000Q (2000
qubits) real quantum computer to map the Hamiltonian to a
hardware graph [20]. The implementation resolves the maximum
integer 376289 by 1070 physical qubits representing 94 logical qubits
(multiple physical qubits representing one logical bit). Due to the
extreme topological connection limitation of D-Wave quantum
hardware interconnection diagram, the Hamiltonian of larger
integer problem cannot be mapped directly, and this integer is
also the limit of D-Wave 2000Q factorization. The current D-Wave
quantum computing platform uses the new Pegasus™ topology
technology to improve the interconnection performance of qubits
over 5000 qubits. When the scale of factorized integers increases
further, two situations will occur: 1) Chimera graph cannot be
mapped effectively, that is, the built-in algorithm cannot find an
effective mapping method; 2) In the case that the quantum Chimera
graph can be mapped effectively, the floating range of the coupling
strength between the quantum bits (that is, the coefficient in the
model) is very large, which will also increase the difficulty of the
successful quantum annealing experiment, and the optimal solution
may not be found. If the integer 1630729 is to be factored in a real
quantum computer, the above two challenges need to be further
solved, which is also the future research direction of this study.

The feasible directions of research on general frameworks for
large number factorization in the future are as follows:

1) Construct a new objective function by using the target value
restriction information in the column multiplication table
(such as the relationship between p and q).

2) Research the structure information and carry information of
the multiplication table to further reduce the number of carry
variables needed.

3) Construct a general multiplication table specifically for large
numbers, such as a general multiplication table specifically for
11 × 11, aiming to factor larger-scale integers.

There are three main types of mathematical problems in
constructing public key cryptography: prime factorization
problems based on large integers, discrete logarithm problems on
multiplicative groups of finite fields, and discrete logarithmproblems
on elliptic curves (ELGamal algorithm). General-purpose quantum
computers have not yet provided effective attacks on the latter two
types of public key cryptography. Therefore, it is necessary to further
explore the feasibility of D-Wave quantum computer attacks on
discrete logarithms and elliptic curve discrete logarithms.
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