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1 Introduction

Recently Goldwasser, Micali, and Rackoff in [GoMiRa] have shown that it is possible to prove that some
theorems are true without giving the slightest hint of why this is so. This is rigorously formalized in the
somewhat paradoxical notion of a zero-knowledge proof system (ZKPS).

Zeto-knowledge proofs have proven to be very useful both in Complexity Theory and in Cryptography.
For instance, in Complexity Theory, via results of Fortnow [Fo] and Boppana, Hastad, and Zachos
(BoHaZal, zero-knowledge provides us an avenue to convince ourselves that certain languages are not
NP-complete. In cryptography, zero-knowledge proofs have played a major role in the recently provell
completeness theorem for protocols with honest majority [GoMiWi2I, [ChCrDa], [BeGoWi]. They also
have inspired rigorously-analyzed identification schemes [FeFiSh], [MiSh] that are as efficient as folklore
ones.

Despite its wide applicability, zero-knowledge remains an intriguing notion: What makes zero-knowledge
proofs work?

Three main ingredients differentiate standard zero-knowledge proofs, from more traditional ones:

1. Interaction: The prover and the verifier talk back and forth.

2. Hidden Randomization: The verifier tosses coins that are hidden from the prover and thus unpre-
dictable to him.

3. Computational Difficulty: The prover embeds in his proofs the computational difficulty of some
other problem.

Blum, Feldman, and Micali [BIFeMi] were the first to conceive that the above ingredients may not be
necessary. They proposed the following scenario as one in which zero-knowledge proofs may be achieved.

A Conceptual Scenario: Think of A and B as two mathematicians. After having played "heads and
tails" for a while, or having both witnessed the same random event, A leaves for a long trip along the
world, during which he continues his mathematical investigations. Whenever he discovers the proof of a
new theorem, he writes a postcard to B proving the validity of his assertion in zero-knowledge. Notice
that this is necessarily a non-interactive process; better said, it is a mono-directional interaction: from A
to B only. In fact, even if B would like to answer or talk to A, he couldn't: A has no fixed (or predictable)
address and will move away before any mail can reach him.
Notice that sharing a random string a is a weaker requirement than being able to interact. In fact, if A
and B could interact they would be able to construct a common random string. For instance, by coin
tossing over the phone [BI1]; the converse, however, is not true.

Public Randomnes. Sharing a common random string is a requirement weaker than having both parties
access a random beacon in the Rabin's sense (e.g., the same geiger c-unter). In this latter case, in fact,
all made coin tosses would be seen by the prover, but the futur- o-n would still be unpredictable to
him. By contrast, our model allows the prover to see in advance t'. utcome of all the coin tosses the
verifier will ever make. That is, the zero-knowledgeness of our proofs does not depend on the secrecy or
unpredictability of a but on the "well mixedness" of its bits!1

Arthur-Merlin Games and Interactive Proof Systems. The question of the power of hidden randomness
versus public randomness has already been discussed in Complexity Theory in the context of proof

'This curious propety makes our result potentially applicable. For instance, all libraries in the country possess identical
copies of the random tables prepased by the Rand Corporation. Thus, we may think of ourselves as being already in the
scenario needed for non-interactive sero-knowledge proob.
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systems. Goldwasser, Micali, and Rackoff [GoMiRa] and Babai and Moran [Ba, BaMo] consider proofs
as games played between two players, Prover and Verifier, who can talk back and forth. In [GoMiRa],
the Verifier is allowed to flip fair coins and hide their outcomes from the Prover. In [Ba, BaMo], all coin
tosses made by the verifier are seen by the Prover (called respectively Arthur and Merlin in proof systems
of this type). For a while it seemed that interactive proof systems might be more powerful (i.e. capable
of proving more languages) than Arthur-Merlin ones. Quite surprisingly, Goldwasser and Sipser [GoSi]
showed that the two models are equally powerful.

Proving the existence of non-interactive zero-knowledge proofs can be thought as proving that Arthur-
Merlin proof systems are as powerful as interactive ones also with respect to knowledge complexity. We
make this explicit in Section 5.5.

Protocols for non-interactive zero-knowledge were presented in [BlFeMi] and [DeMiPel]. These protocols
though had some very subtle bug, pointed out to us by Mihir Bellare.2 This problem is taken care of
here by adopting a different approach.

Organization. The next section is devoted to seting up our notation, recalling some elementary facts
from Number Theory and stating the complexity assumption which suffices to show the existence of
Non-Interactive ZKPS.

In section 3 we define the notion of bounded non-interactive zero knowledge; that is, the "single
theorem" case.

In section 4 we show that a special number theoretic language L possesses a bounded non-interactive
zero-knowledge proof. That is, if Prover and Verifier share a random string, then it is possible to prove,
non-interactively and in zero knowledge, that any single, sufficiently shorter Z E L.

In Section 5, under the quadratic residuosity assumption, we prove that the "more general" language
of 3SAT is in bounded non-interactive zero-knowledge.

Only in Section 6 we show that, if deciding quadratic residuogity is hard, the prover can show in
zero-knowledge membership in NP languages for any number of strings each of arbitrary size, using the
same randomly chosen string.

In section 7 we will discuss some related work.
In section 8 we will state some open problems that we would love to see solved.

2 Preliminaries

2.1 Basic definitions.

Notations. We denote by NA the set of natural numbers. If n E N, by I' we denote the concatenation of
n l's. We identify a binary string a with the integer x whose binary representation (with possible leading
zeroes) is a.
By the expression 1:1 we denote the length of x if : is a string, the length of the binary str'ng representing
x if x is an integer, the absolute value of : if : is a real number, or the cardinality of : if z is a set.
If a and r are binary strings, we denote their concatenation by either a o r or or.
A language is a subset of {0, 1}*. If L is a language and k > 0, we set Lk = { E L: I:I < k}. For variety
of discourse, we may call "theorem" a string belonging to the language at hand. (A "false theorem" is a 3
string outside L.) 0:1

$The mentioned problem occurred only in the "many-theorems" part. That is, when the basic protocols for proving a
single theorem in non-interactive zero knowledge were extended to proving an unbounded number of theorems using the
same random string.
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Models of computation. An algorithm is a Turing machine. An efficient algorithm is i probabilistic
Turing machine running in expected polynomial time.
We emphasize the number of input received by an algorithm as follows. If algorithm A receives only one
input we write "A(.)", if it receives two inputs we write "A(., .)" and so on.
A sequence of probabilistic Turing machines {T3 ).,_ is an efficient non-uniform algorithm if there eXit
a positive constant c such that, for all sufficiently large n, T halts in expected nc steps and the size of
its program is < n'. We use efficient non-uniform algorithms to gain the power of using different Turing
machines for different input lengths. For instance, T, can be used for inputs of length n. The power
of non-uniformity lies in the fact that each Turing machine in the sequence may have "wired-in" (i.e.
properly encoded in its program) a small amount of special information about its own input length. I

A random selector is a special (random) oracle. The oracle query consists of a pair of strings (a,S), where
the second strings encodes a finite set. Such a query is answered by the oracle with a randomly chosen
element is set S. If the oracle is asked twice the same query, it will return the same element. The role
of the first entry in the query is to allow, if so wanted, to "make random and independent selections in
a set S. That is, if S is the same, and a, A 82, then, in response to queries a1,S) and (s2,), the oracle
will return two elements from S, each randomly and independently selected.

A random selecting algorithm is a Turing machine with access to a random selector. Notice that a
random selecting algorithm is strictly more powerful than one with access to a coin or a random oracle.
For instance, a random selecting algorithm can select with uniform probability one out of 3 elements. On
the other hand, simulating independent coin flips is easy with a random selector: If Select is a random
selector, to ensure the independence of k-, the i-th coin flip, from all the other coin flips in a computation
on input x, one can set b, = Select(x o i, {O, 1]).

Random selectors wiL simplify the description of our algorithms. In fact, we desire a Prover in a
non-interactive proof-system to be "memoryless." That is, it needs not to remember which theorems it
proved in the past for finding and proving the next theorem. However, for zero knowledge purposes, it
will be much handier to keep track of some history, the history, that is, of previously made coin tosses.
This will be crucial in section 6. A random selector will in fact accomplish this record keeping without
having to consider provers "with history." As we shall point out, random selectors can be efficiently
approximated, and thus only represent a conceptual tool.

Algorithms and probabilit$ spaces. If A(.) is a probabilistic algorithm, then for any input z, the notation
A(z) refers to the probability space that assigns to the string a the probability that A, on input z, outputs
9.
Following the notation of (GoMiRi], if S is a probability space, then "x 4 S" denotes the algorithm
which assigns to z an element randomly selected according to S. If F is a finite set, then the notation

A+- F" denotes the algorithm which assigns to z an element selected according to the probability space
whose sample space is F and uniform probability distribution on the sample points.
If p(.,.,...) is a predicate, the notation Pr(z 4 S; # 4T; ...: p(z, y,...)) denotes the probability that
p(z, 1,...) will be tru after the ordered execution of the algorithms wS, y #-- T,....
The notation {z A S; I T; ... : (x,V,.. .)} denotes the probability space over {(z, y,.- .-)} generated

" by the ordered execution of the algorithms x A S, T,....

2.2 Number Theory

.... Quadratic Residuosity. For each integer z > 0, the set of integers less than z and relatively prime to x

' s ddaitela caam be im equivuleat to the ae of a poly-iase combinatorial circuit and to the one [K&Li] of poly-time
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form a group under multiplication modulo z denoted by Z;. We say that y E Z; is a quadratic residue
moduio z iff there is a to E Z, such that w2 = y mod x. If this is not the case we call y a quadratic non
residue modulo x. For compactness, we define the quadratic residuosity predicate as follows

( 0 if y is a quadratic residue modulo x and

1 otherwise.

Fact 2.1 (see for istance [NiZu]) If yi, Y2 E Z,, then

1. Q.(y1) = Q.(Y2) = 0 =* Q.(yIy2) = 0.

2. Q.(yi) 4 Q.(y2) == .(l2 = 1.

The quadratic residuosity predicate defines the following equivalence relation in Z*: t ", Y2 if and only
if Qx(yly2) = 0. Thus, the quadratic residues modulo x form a ,, equivalence class. More generally, it
is immediately seen that

Fact 2.2 For any fixed y E Z., the elements {yq mod x I q is a quadratic residue modulo 4) constitute
a ., equivalence class that has the same cardinality as the class of quadratic residues.

The problem of deciding quadratic residuosity consists of evaluating the predicate Q,. As we now see,
this is easy when the modulus x is prime and appears to be hard when is composite.

Prime moduli. Primes are easy to recognize.

Fact 2.3 ([AdHu] extending [GoKi]) There exists an efficient algorithm that, on input z, outputs YES
if and only if x is prime.

For p prime, the problem of deciding quadratic residuosity coincides with the problem of computing
the Legendre symbol. In fact, for p prime and y E Z;,, the Legendre symbol (ylp) of y modulo p is defined
as

a+1 if y is a quadratic residue modulo x and
(yp)= -1 otherwise;

and can be computed in polynomial time by using Euler's criterion. Namely,

(yIp) = y (p-1)/2 mod p.

Composites are easy to recognize. It is easy to test composit~mess. In fact,

Fact 2.4 (IRal], [SoSt]) There exists a polynomial time algorithm TEST(., .) such that

1. if x is composite, TEST(z, r) =COMPOSITE for at least 3/8 of the strings r such that ITI = jxj.

2. if x is prime, TEST(z, r) =PRIME for all r's.

We say that the sequence (pi, hi),... , (p, h) is the factorization of z if the pi's are distinct primes, the
h's are positive integers and z = fl!'= pi •*
While it is easy to test compositeness, no efficient algorithm is known for computing the factorization of
a composite integer. In fact the following assumption is consistent with our state of knowledge.
Factoring Assumption: For each efficient non-uniform algorithm C,},,,Ac, all positive constants d, and
all sufficiently large n,

Pr(x A {0, 1)n; f R Cn(x): f is the factorization of z) < n-d.

Often computational problems relative to composite moduli are easy if their factorization is known. For
example, this is the case for the problem of computing square roots modulo x. In fact,

5



Fact 2.5 (see for instance [An]) There exists an efficient algorithm that given as inputs z, its prime
factorization, and V, a quadratic residue modulo _, outputs a random square root of y modulo z.

Fact 2.6 ([Ra2]) The problem of factoring composite integers is probabilistic polynomial time reducible
to the problem of extracting square roots modulo composite integers.

Another computational problem modulo z that is easy given the factorization of z is deciding quadratic
residuosity. In fact,

Fact 2.7 (see for instance [NiZu]) V is a quadratic residue modulo z if and only if y is a quadratic residue
modulo each of the prime divisors of z.

However, no efficient algorithm is known for deciding quadratic residuosity modulo composite numbers
whose factorization is not given. Some help is provided by the Jacobi symbol which extends the Legendre
symbol to composite integers as follows. Let (p1,h 1),...,(p.,h.) be the prime factorization of x, and
y E Z.*. Then4

t

Define J+1 and J;1 to be, respectively, the subsets of Z, whose Jacobi symbol is +1 and -1. It can be
immediately seen that if Y E J;1 , then it is not a quadratic residue modulo z, as it is not a quadratic
residue modulo some prime pi dividing z. However, if p E J 1 , no efficient algorithm is known to compute
Q.(y). Actually, the fastest way known consists of first factoring z and then compute Q,(y). This fact
has been first used in cryptography by Goldwasser and Micali [GoMi]. We will use it in this paper with
respect to the following special moduli.

Blum integers. For n E X, we define the set of Blum integers of size n, BL(n), as follows: z E BL(n) if
and only if z = pq, where p and q are primes of length n both e 3 mod 4. These integers were first used
for cryptographic purposes by (B11].
Blum integers are easy to generate. By Fact 2.3 and the density of the primes a 3 mod 4 (de la, Vallee
Poussin's extension of the prime number theorem [Sh]), it is easy to prove the following

Fact 2.8 There exists an efficient algorithm that, on input 1", outputs the factorization of a randomly
selected z E BL(n).

This class of integers constitutes the hardest input for any known efficient factoring algorithm. Thus no
efficient algorithm is known for deciding quadratic residuosity modulo Blum integers, which justifies the
following
Quadratic Reeiduosit/ Assumption (QRA): For each efficient non-uniform algorithm {C }J,,e', all positive
constants d, and all sufficiently large n,

Pr(Z . BL(n); 4. J+': C.(zy) = Q.(y)) < 1/2 + n- d .

That is, no efficient non-uniform algorithm can guess the value of the quadratic residuosity predicate
substantially better than by random guessing.

It follows from Fact 2.7 and Euler's criterion, that, if z is a Blum integer, -1 mod z is a quadratic
non residue with Jacobi symbol +1.

4Despite the fact that the Jacobi symbol is defined in terms of the factorisation of the modulus it can be computed in
polynomial time. (This can be derived by a time analysi of the dasical algorithm presented in (NiZu]; see also [An].)
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Fact 2.9 On input a Blum integer x, it is easy to generate a random quadratic non residue in J+1 :
randomly select r E Z. and output -r 2 mod x.

Regular integers. A Blum integer enjoys an elegant structural property. Namely, IJ+1t = IJ;1 [. More
generally, we define an integer z to be regular if it enjoys the above property. We define Regular(s) to
be the set of regular integers with s, distinct, prime divisors. By the definition of Jacobi symbol, it is
straightforward that

Fact 2.10 An odd integer z belongs to Regular(s) if and only if it has s distinct prime factors and is
not a perfect square.

Equivalently, by Fact 2.2,

Fact 2.11 An odd integer z belongs to Regular(a) if and only if it is regular and Z* is partitioned by ~.
into 2" equally numerous equivalence classes. (Equivalently, J+' is partitioned by ,,- into 2 1 equally
numerous equivalence classes.)

3 Bounded Non-Interactive Zero-Knowledge Proofs

A Bounded Non-Interactive Zero-Knowledge Proof System is a special algorithm. Given as input a
random string a and a single, sufficiently shorter theorem T, it outputs a second string that will convince
(non-interactively and) in zero-knowledge that T is true any verifier who has access to the same a. It
is important in this process that a "brand new" random string is employed for each theorem. The word
"bounded" refers to the fact that if the same a is used over and over again for convincing the verifier of
the validity of many theorems, the produced non-interactive proofs may no longer be zero-knowledge.

Definition 3.1 Let A, and A 2 be Turing Machines. We say that (A,, A2) is a sender-receiver pair if
their computation on a common input z works as follows. First, algorithm Al, on input x, outputs a
string m,. Then, algorithm A2, computes on inputs z and m. and outputs ACCEPT or REJECT. If
(A,, A2) is a sender-receiver pair, A, is called the sender and A2 the receiver. The running time of both
machines is calculated only in terms of the common input.

Thus, m, can be interpreted as a message sent by A, to A2.

Notation. In our sender-receiver pairs, the output of the sender is described in terms of s "send in-

structions," where a solely depends on the input length. If "send v" is the i-th such instruction, this
is shorthand for "output (i, v)." Without explicitly saying it, the receiver always checks that for each
i = 1, ... , s, exactly one pair with first entry i is received. If this is not the case, or if the second component
of a pair is not of the right form (i.e. is not of the proper length, is a string rather than a set, etc.), the
receiver immediately halts outputting REJECT. Thus if "send v" is the i-th instruction of the sender,
"check that v ..." means "check that the second component of the pair whose first entry is i ..." That is,
the receiver parses without ambiguity the sender's output.

Definition 3.2 Let (Prover, Verifier) be a sender-receiver pair, where Prover(., .) is random selecting

and Verifier(.,.,-) is polynomial-time. We say that (Prover, Verifier), is a Bounded Non-Interactive Zero-
Knowledge Proof System (Bounded Non-Interactive ZKPS) for the language L if there exists a positive

constant c such that:
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1. Completeness. Vz E L. and for all sufficiently large n,

Pr(Q, 4 (0, 1 In% Proo Prover(az): Veifer(o,z, Proof) = 1)> 2/3.

2. Soundness. Vz V L., for all Turing machines Prover'(., .), and for all sufficiently large n,

Pr(a +A {0, 1)"'; Proof +. Prover'(a, z) : Verifier(a, z, Proof) = 1) < 1/3.

3. Zero-Knowledge. There exists an efficient algorithm $ such that Vz E L., for all efficient non-
uniform (distinguishing) algorithms D, Vd > 0, and all sufficiently large n,

Pr(e 4 View(n,z): D.(8) = 1)- Pr(s 4 S(1",z) : D.(s) = 1)1 <n -d,

where
View(n,x) = + {0,1 ; Proof 4 Prover(ox): (aProof)}.

We call Simulator the algorithm S.

We define the class of languages Bounded-NIZK as follows:

Bounded-NIZK= {L: L has a Bounded Non-Interactive ZKPS}.

A sender-receiver pair (Prover, Verifier) is a Bounded Non-Interactive Proof System for the language L
if there exists a positive constant c such that completeness and soundness hold (such a c will be referred
as the constant of (Prover, Verifier)). We let Bounded Non-Interactive P be the class of languages L
having a Bounded Non-Interactive Proof System.
We call the "common" random string a, input to both Prover and Verifier, the reference string. (Above
the common input is a and z.)

Discussion.

Proving and Verifying. As usual, we do not care of what amount of resources are necessary for proving a
true theorem, but we do insist that verifying is always easy. Thus, we have chosen our prover as powerful
as possible, though it cannot use its power to find "long" proofs, since the verifier is polynomial-time (in
the common input).

Arthur-Merlin Games. It is immediately seen that the notion of a Bounded Non-Interactive Proof System
is equivalent to that of a two-move Arthur-Merlin Proof System [Ba, BaMo. Thus, letting AM 2 denote
the class of languages accepted by a two-move Arthur-Merlin Proof System, we have Bounded-NIZK
g AM 2 . Actually, as we shall prove in Section 5.5, this containment is an equality under a proper
complexity assumption.

Probability Enhancement. As for the case of BPP algorithms and interactive proofs, the definition of
completeness and soundness is independent of the constants 2/3 and 1/3. In fact, these (or other "bounded
away") probabilities can be pumped up (and down) easily by repeating the proving process sufficently
many times, each using a distinct segment of a sufficiently longer reference string. This process is called
"parallel composition." However, as noted by Micali for the case of interactive zero-knowledge proofs,
parallel composition may also enhance the amount of knowledge released! Indeed, zero-knowledge proofs
do not appear to be closed under parallel composition. The reason for which straightforward parallel
composition fails in the case of interactive zero-knowledge proofs is precisely that interaction may be
exploited in subtle ways by a "cheating verifier." 5 One advantage of non-interactive zero knowledge is

"Elaborating on this subtle point is not in the scope of this paper. For an explanation of it (and pointers to related

results) see IeMiIsI.
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precisely the fact that one does not have to worry about "cheating" verifiers: as it is immediately seen,
bounded non-interactive zero knowledge is closed under parallel composition.

Completeness means that (after a sufficient enhancement) the probability of succeeding in proving a true
theorem T is overwhelming. This is so even if T is selected after the string a has been chosen. More
precisely, a simple counting argument shows that Completeness is equivalent to the following

1'. Strong Completeness. For all probabilistic algorithms Choose-in-L(.) that, on input a nc-bit string,
return elements in L,, and all sufficiently large n,

Pr(O R {0, 1}nc;z A Choose-in-L(a); Proof + Prover(a,x): Verifier(a, x, Proof) = 1) > 1 - 2-".

That strong completeness holds can be seen by first using parallel composition so to replace the probability
2/3 of Completeness with 1 - 2- 2n, and then noticing that there are at most 2n theorems of length n.

Actually, Completeness can be replaced by a simpler yet property. Namely,

1". Perfect Completeness. Vx E Ln,

Pr(a A {0, 1}nc; Proof A Prover(a,z): Verifier(a,x, Proof) = 1) = 1.

In fact,

Theorem 3.3 Let L E Bounded-NIZK. Then L has a Bounded Non-Interactive ZKPS with perfect
completeness.

Proof: Furer, Goldreich, Mansour, Sipser, and Zachos [FuGoMaSiZa] have proved that any AM 2 lan-
guage has an interactive -roof system with perfect completeness. Let now (PV) be a Bounded Non-
Interactive ZKPS for L for which Completeness holds with overwhelming probability. Then modify P
as follows. Whenever the proof generated by P is not accepted by the verifier (something that can be
easily computed), as Bounded Non-Interactive P= AM 2, the new prover interprets the reference string
as an Arthur move, and responds with a Merlin move so to achieve perfect completeness. This extra step
guarantees that the verifier will always be convinced (of a true theorem), and thus Perfect Completeness
holds. It is immediately seen that Soundness keeps on holding. Also Zero Knowledge keeps on holding:
the extra step may be "dangerous," but it is performed only too rarely.

Soundness means that the probability of succeeding in proving a false theorem T is negligible. This still
holds if T is chosen after a has been selected. More precisely, a simple counting argument shows that
Soundness is equivalent to

2'. Strong Soundness. For all probabilistic algorithms Adversary outputting pairs (z, Proof), where
x Ln, and all sufficiently large n,

Pr(a A {0,1 n; (Z, Proof) A Adversary(a): Verifier(a,z, Proof)= 1) < 2 - n.

Zero-Knowledge guarantees that the proof gives no knowledge, but the validity of the theorem. All the
verifier may see in our scenario, a and Proof, can be efficiently computed with essentially the same odds
without "knowing how to prove T".
Notice that in our scenario, the definition of Zero-Knowledge is simpler than the one in [GoMiRa]. As
there is no interaction between Verifier and Prover, we do not have to worry about possible cheating by
the verifier to obtain a "more interesting view". That is, we can eliminate the quantification "V Verifier'"
from the original definition of [GoMiRa].
Analogously to [GoMiRa], we may define a bounded non-interactive proof system (Prover, Verifier) to be
Perfect Zero-Knowledge if the following more stringent condition holds:
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3'. Perfect Zero-Knowledge. There exists an efficient algorithm S such that Vx E L, and all sufficiently
large n,

View(n, x) = $(1n ,

where
Vww(n,x) = {o +- {0, 1})'; Proof . Prover(,x): (a,Proof)).

Thus the notion of perfect ZK is independent of the computing power of "the observer/distinguisher."
While for Completeness and Soundness it is not important whether the true/false theorem is chosen before
or after the reference string, this needs not to be the case for Zero-Knowledge. It is actually important
that the prover chooses the true theorem T he wants to prove independently of a. This in practice is not
a restriction, since a does not have any special meaning. The sole purpose for a is to provide a common
source of randomness, and thus can be accessed only after the prover has chosen which theorem to prove,
in which case the "independence" condition is automatically satisfied. Should the prover want to prove a
statement "about" the reference string there is no guarantee that no knowledge would be revealed, while
there is still guarantee that the statement cannot be false.

4 A Bounded Non-Interactive ZKPS for a special language.

Definition 4.1 Set Q1R = U, Q'(n) and NQ*R = UArQ(n), where

QX(n) = {(,y) Ix E Reular(2), jxj _< n, and Q,(y) = 0)

and
ArQ1(n) = {(zy) I - E Regu/ar(2), jx: < n, y E J+1 , and Qz(#) = 1).

If one restricts the modulus x in the definition of Q1Z and A/Q1X to be a Blum integer, then the quadratic
residuosity assumption states that it is hard to distinguish the languages QP. and ArQ.
For : E Regular(2), QR. denotes the set {V I (x, y) E Q7R} and NQR. the set {y I (z, y) E A/QR}.

Definition 4.2 If (x,y) E A Q1 and z J 1 , we say that a E Z* is an (z,p)-root of z if z = s2 mod z
or z = s2 mod x. (Notice that only one of the two cases may apply.) If a is an (z, y)-root of z, we write

In this section we prove that ArQ has a bounded non-interactive proof system that is perfect zero-
knowledge. The proof system below is based on an earlier protocol of Goldwasser and Micali [GoMi2].

The Sender-Receiver Pair (A,B)

Input to A and B:

" (z,* ) E .(M )

* A n3-bit random string p.

(Set p = pp 2 . . p 2 , where each pi has length n.)

Instructions for A.

* For i = 1,...,n 2 , if pi E J+V then randomly choose and send - .
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Instructions for B.

B.O If pi E Jj+l for less than 3n of the indices i, then stop and ACCEPT. Else,

B.1 Verify that x is odd and that y E JP1 . If not, stop and REJECT. Else,

B.2 Verify that x is not a perfect square. If not, stop and REJECT. Else,

B.3 If x is a prime power, stop and REJECT. Else,

B.4 For each Pi E J+I verify that si - (".-i. If not, stop and REJECT. Else ACCEPT.

Theorem 4.3 (A, B) is a Bounded Non-Interactive ZKPS for AKQ.

Proof: First, (A, B) is a sender-receiver pair. Second, B runs in polynomial time. In fact, the Jacobi
symbol can be computed in polynomial time, steps B.2 and B.4 are trivial, and step B.3 can be performed
as follows:

B.3.1 Compute the largest integer a for which x = w" for some w E N. (Only values 1,.-. , 1zI should
be tried for a and a binary search can be performed for finding w, if it exists.)

B.3.2 Compute z such that z* = x.

B.3.3 If for all 1 < i < n2 , TEST(z,pi) =PRIME, stop and REJECT.

Third, properties 1-3 of a Bounded Non-Interactive ZKPS also hold.

Completeness. We actually prove that strong completeness holds. This implies that the weaker property
1 also holds. If (z,y) E KQR(n), then steps B.1 is trivially passed. Step B.2 is passed because of
Fact 2.10. B.3 is passed with probability greater than 1 - 2- n . This can be argued as follows. For any
fixed 7 E Regular(2), the probability that TEST outputs PRIME on a single pi is at most 5/8, and thus
(since the pi's are independent) the probability that B.3 is not successfully passed is at most (5/8)n2.
Since there are at most 2" z's such that (z, z) E NAQ*R(n) for some z, the probability that step B.3 is not
successfully passed is at most 2n(5/8)n2 < 2-n. Finally, step B.4 is passed with probability 1. In fact,
as x E Regular(2), by Fact 2.11, there are exactly 2 -, equivalence classes in J+'. That is either pi is a
quadratic residue modulo x or pi is in the same equivalence class as y, in which case ypi is a quadratic
residue.

Soundness. As done for the completeness property, we actually prove that strong soundness holds.
First, observe that B stops at step B.0 only with negligible probability. Indeed, for a fixed T, the
probability that pi E J4+1 is greater than 1/8. By the Chernoff bound (see [AnVa], [ErSp]), the probability
that pi E J+1 for less than 3n of the indices is (for large n) less than 2- 2n. Thus, the probability that
there is a z for which B stops at step B.0 is at most 2n2- 2n = 2- n .

Assume that (x,y) V A(QR. Then, either (a) x E Regular(2) but Q,(y) = 0, or (b) x 0 Regular(2). For
any fixed input (7,y) for which case (a) occurs, the probability that B.4 is successfully passed is at most
2- 3n. (In fact, B.4 is passed if and only if all pi's are quadratic residues modulo z.) Thus, the probability
that step B.4 is passed, for any input for which case (a) occurs, is at most 2'2-an = 2-2n.
Consider now the case that (x,y) PAQZ because of reason (b). Then either (b.1) z is not regular, or
(b.2) X E Regular(1), or (b.3) x E Regular(s) for s > 3. In case (b.1), due to Fact 2.10, an odd z must be
a perfect square which would be detected in step B.2. In case (b.2), x is a prime power which would be
detected by step B.3. Let as now argue case (b.3). For any fixed (7,Y) with Y E Regular(s), s > 3. the
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probability that step B.4 is successfully passed is at most 2- 1. (In fact this would happen only if, for each
pi E J+1, either pi or pjV is a quadratic residue modulo T. This happens with probability < 1/2 since,
because of Fact 2.11, there are at least 4 -,. equivalence classes in 41.) Thus the probability that, for
any input outside A'7R because of reason (b.3), step B.4 is successfully passed is at most 2 2n2 -3n = 2-n.

Zem-Knowledge. Let us specify a (simulating) efficient algorithm M that, on input (z,y) E IsIQ1Z,
generates a random variable which no algorithm can distinguish from B's view on input (z, y) E NAQRZ.

M's program

Input: (z, V) E A(QT(n).

1. Set Proof = empty string.

2. For i = 1 to n 2

Randomly select an n-bit integer sa, with possible leading O's.

If si 0 J. 1 then set pi = ai.

else

Tos a fair coin.

If HEAD set pi = 2 mod z and append s, to Proof.

If TAIL set pi = -jr mod z and append si to Proof.

3. Set p = p... p2.

Output: (p, Proof).

Now, let us prove that M is a good simulator for the view of B when interacting with prover A on
input (z, y) E .rQR. Actually, in the language of [GoMlRaj, (A, B) is Perfect Zero-Knowledge. That
is, the random variable output by M is the very same random variable seen by B (and thus the two
random variables cannot be distinguished by any non-uniform algorithm, efficient or not). In fact, it can
be easily seen that p is randomly distributed among the n3-bit long strings. Moreover, if pi E J+1 , the
corresponding ai is a random (z, y)-root of pi. Thus si has the same probability of belonging to M's
output as it has to be sent from prover A to verifier B on inputs (z, y) and p. I

Notice that the proof system (A, B) does not have Perfect Completeness; that is, there is a negligible
probability that the prover, following the protocol, may not succeed in proving a true theorem. We
can achieve Perfect Completeness and still retain Perfect Zero-Knowledge at the expense of further
complications which are not necessary in our context.

Robustness Of The Result. The above proof system is zero-knowledge if the reference string p is truly
random. We may rightly ask what would happen if p is not truly randomly selected. Fortunately, we
shall see that the poor randomness of p may perhaps weaken the zero-knowledgeness of our proof system,
but not its completeness and soundness. In fact, all we require from p is that it contains a not too low
percentage of quadratic residue and non residues modulo any integer in Regular(2) of a given length.
The same remark applies to all proof systems of this paper. This robustness property is important as we
can never be sure of the quality of our natural sources of randomness.
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5 A Bounded Non-Interactive ZKPS for 3SAT

In this section we exhibit a Bounded Non-Interactive ZKPS for 3SAT. A boolean formula f = 0b1 A 02 A
• A On in conjunctive normal form over the variables ul, ... , Uk, where each clause O, has 3 literals, is in
the language 3SAT if it has a satisfying truth assignment t: {u1 , ... , Uk- {0, 1} (see [GaJo] for a more
complete treatment). If A' E 3SAT we say that 4b is 3-satisfiable.

The following definition was informally introduced in [BlFeMi], but used in a quite different way.

Definition 5.1 For any positive integer x, define the relation t,, on J.+' x x J+1 as follows:

(al,,a2, a3) ; z (bi, b2, b3) 4-= ai -.x bi for i = 1, 2,3.

Let (al,a 2 , a3 ) (bl, b2 , b3 ). An (al,a 2 ,a 3 )-root modulo x (more simply an (ai,a 2 ,a 3 )-root, when the
modulus x is clear from the context) of (bl,b 2 ,b3 ) is a triplet (31,82,83) such that (82 mod z, s2 mod x,
s3 mod x) = (albi mod x, a2b2 mod x, a3b3 mod x). If Q.(b) = Q.(b 2) = Q,(b3) = 0, a square root
modulo x (more simply a square root, when the modulus x is clear from the context) of (b1 ,b 2 ,b3) is a
triplet (S1,S2,33) such that (s2 mod z,s2 mod x,s 2 mod x) = (bl,b 2 ,b3 ).

From Fact 2.11, one can prove the following:

Fact 5.1 For each integer x E Regular(s), -. is an equivalence relation on J+1 x J+ x J,+' and there
are 23(s - 1) equally numerous ;-, equivalence classes.

We write (al,a 2 , a 3 ) 9, (blb 2, b3) when (al,a 2 ,a 3 ) is not _, equivalent to (b1,b 2 , b3).

We now proceed as follows. In Section 5.1, we describe a sender-receiver pair (P, V). In Sections 5.2,
5.3, and 5.4 we will prove that (P, V) is a Bounded Non-Interactive ZKPS for 3SAT.

5.1 The Sender-Receiver Pair (P,V)

Input to P and V:

* a random string p o r, where IJP = 8n 3 and Ir = 2n 4;

* -b = obl A02 A ... A On a 3-satisfiable formula with n clauses over the variables u1 , U2, ..., uk, k < 3n.

Instructions for P.

P.1 Randomly select x E BL(n) and y E NQR,.

P.2 "Prove that (x,y) E ArQ1X(2n)."

Send the auxiliary pair (x, y) and run algorithm A of Section 4 on inputs (x, y) and p.(Call Proof1
the output.)

P.3 "Prove that 4 E 3SAT."

Let t: {u 1, ... ,uk)} - {0, 1} be the lexicographically smallest satisfying assignment for f.

Execute procedure Prove(, t, x, y, ) (see below). (Call Proof2 the output.)
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Procedure Prove(*, t, x, y, r)

"It = 4)1 A 102 A -.- A 4,, is a 3-satisfiable formula with n clauses over the variables u1 ,u 2 , ... ,Uk, k < 3n.
t: {u1, ... ,uk} - {0, 1} is a truth assignment satisfying . (x, y) E AKQR(2n) and, moreover, z E BL(n).
r is a 2n 4-bit long string."

begin{Prove}

1. "Break r into members of j+.,

Consider r as the concatenation of n3 2n-bit integers. If there are less than 33n 2 integers in +1

then stop. Else, let r1 ,..., r3,2 be the first 33n 2 integers belonging to j4.

2. "Assign triplets of elements with Jacobi symbol +1 to clauses."

Group the ri's in 11n 2 triplets (r1 ,r 2 ,T 3 ),(T",TsT 6 ). The first 11n triplets are signed to 01,
the second 11n triplets are assigned to 0)2, and so on.

3. "Label the formula @."

For each variable uj, randomly select rj E Z, and compute the pairs (ui, wi) and (Vi, ywi mod z),
where

wj= frmodx ift(uj)=.and
lyTj2mod x iftf(u,) =1.

We refer to these pairs as the labeling of 1 and to wi (ywi mod x) as the label of the literal uj (9j).

"Since y is a quadratic non residue, by Fact 2.1, yr2 is a quadratic non residue. Therefore the label
of a literal is a quadratic non residue iff the literal is true under t."

Send the labeling of 4'.

4. "Prove that 4' is satisfiable."

For each clause 4 of t do:

" "Randomly select the verifying triplets."
Let (ai,O13,7i) be the labels of the three literals of 0).
Choose at random 7 triplets (a2,102,72),..., (as,/3s, ts) in J,+ x j+' x J+1 such that

(a) (ai, Pi,-ti) 96 (ai,/3 ,,yi) for 1 < i < j 8, and

(b) Q.(02) = Q-(32) = Q.(72) = 0.

Send (al,1, 71),...,(as, N, ys).
The triplets (a1, A,71), ... , (Os,ys) are the verifying triplets of 46.

"We omit writing (a,1# 1~ 7), -. , (a4, 108, -t.0) not to overburden our notation, hoping that
clarity is maintained."

" "Prove that (a,2, 72) is made of quadratic residues."
Randomly choose and send (81, S2, 3), a square root of (02 , 2 , 72 ).

" For each of the assigned triplets (zi,z 2 ,z3 ) of 4, choose i, 1 < i < 8, so that (z,z2,z3) ;Z

(ai, i, -yi). Randomly choose and send a (ai, Oi, 7i)-root of (zl, z 2 , z3 ).

end{Prove)

Instructions for V.

"V receives from P the auxiliary pair (z, y) and two strings Proof, and Proof2 ."
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V.0 Compute n from por and verify that 0 has at most n clauses and each of them has three literals.
If not, stop and REJECT. Else,

V.1 Run algorithm B of Section 4 on inputs p, (x,y), and Proof,.
If B stops and rejects, stop and REJECT. Else,

V.2 If CheckProve(§, x, y, r, Proof2)=ACCEPT then ACCEPT, else REJECT.

Procedure Check.Prove(4 , x, y, r, Proof2 )

"4 = 41 A 02 A... A o, is a formula with n clauses over the variables u1 , U2 , ..., u,. z, y are 2n-bit integers.
r is a 2n'-bit long string. Proof2 is a string."

begin{CheckProve}

1. "Verify that the assigned triplets are proper."

Consider r as the concatenation of n3 2n-bit integers. If there are less than 33n 2 integers in J+1

stop and ACCEPT. "This happens with very low probability." Else, let r1 ,..., ?32 be the first33n 2 integers belonging to j+l.

Group the ri's in 11n 2 triplets (r,,r 2 , r3),(r,r, r,) .... The first l1n triplets are assigned to 01, the
second 11n triplets are assigned to 4,2, and so on. Verify that they have been properly computed
by P.

2. "Verify that $@ has a proper labeling."
For each variable uj, verify that the label of the literal Ii is equal to the label of the literal u,
multiplied by y modulo z.

3. For each clause 4, of t do:

3.1 Let (ai, 3,yi), i = 1, ...,8, be the verifying triplets of 4 sent by P.
3.2 Verify that (cl, 0, -yi) is formed by the labels of the three literals of 4,.
3.3 Verify that (81,82, 83) is a square root of (o2,/0,72).
3.4 Verify that for each assigned triplet (zl, z 2 , z3) of 4, you received a (ai,#i, i7,)-root of (z1 , z 2 , z 3 ),

for some i, 1 < i < 8.

4. If all the above verifications have been successfully made, return ACCEPT otherwise return RE-
JECT.

end{Check-Prove}

5.2 (P,V) is a Bounded Non-Interactive Proof System for 3SAT
First, notice that (P, V) is a sender-receiver pair. Further, all checks of V can be performed in polynomial
time, since only simple algebraic computations modulo z and a scanning of the strings p and r are needed.

Completeness. The same reasoning done in Theorem 4.3 shows that the probability that V does not
REJECT at step V.1 is overwhelming. Let us now consider step V.2. The verification of the proper
labeling of 0 is always passed. Since t is a satisfying truth assignment for 4, each clause 4 has at least
one literal true under t. This implies that the label of 4 contains at least one quadratic non residue.
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Because of this, and because there are 8 ;; equivalence classes, P can compute 8 verifying triplets
satisfying properties (a) and (b). Moreover, since each equivalent class contains a verifying triplet,
each assigned triplet is equivalent to some (ai,/3, ,y) and thus possesses an (ac, O3, 7i)-root. Therefore,
if check V.1 is passed, so is check V.2.

Soundness. A honest prover chooses the pair (z, y) randomly. A cheating one, though, may choose this
pair as function of the reference string. All arguments below have thus the following form. First, we
compute the probability that the verifier can be mislead with a fixed pair, and show that this probability
is suitably small. Then, we prove that, even summing up over all possible choices of pairs, we still obtain
a small probability.

Assume that, in a computation with a cheating prover Prover', V accepts a formula 4 0 3SAT. Then,
one of the following 3 events must happen: (a) the pair (x, y) chosen by Prover' is not in A(QIZ(2n), (b)
(x,y) E AiQTZ(2n), but Verifier accepts at step 1 of Check-Prove, and (c) (z,y) E /QR(2n), Prover'
does not stop at step P.1 in Prove, but $ is not 3-satisfiable. We shall prove that each of these events is
very improbable. The probability that (a) occurs has already been computed in Theorem 4.3) and shown
to be exponentially vanishing in n. Now, consider event (b). For each fixed 7 E Regular(2), 1: <Tn, since
each 1i has probability _ 1/8 to be in J', we expect n3 /8 such elements in J.,. By the Chernoff bound
(see [AnVa], [ErSp]), the probability that no more than 33n 2 belong to j4 is, for large n, at most e -

n
2 .

Thus, the probability that there is an integer x such that case (b) occurs is, for large n, at most 22ne- n2.
Let us now consider event (c). If (c) occurs, then the following event (d) must also occur: at least 11n
consecutive assigned triplets (ri, T.+1, ";+2) must belong to the union of 7 -, equivalence classes. In fact,
if $ is not satisfiable, for every labeling of 1, one of its clauses is labeled with a triplet of quadratic
residues. (Else, all clauses would be satisfiable.) Let .0 be such a clause. Since verification step 3.3 must
be passed, Prover' must exhibit a square root of (a 2, /2, 72), and thus this triplet is z, equivalent to O's
label, (a1 , /3 ,-1'). Thus, all verifying triplets of .0 are contained in the union of at most 7 equivalence
classes. Since each (ri, T'i+, -ri+2 ) is proved in step 3.4 to be equivalent to one verifying triplet, then
event (d) must be true. The probability of event (d) is at most 8n(O.93) n . (Indeed, for each fixed 7 the
probability that at least 11n assigned triplets belong to the union of 7 y equivalence classes is less than
8n(7/8)" ; this can be explained as follows: 7/8 is the probability that each triplet belongs to the union
of 7 fixed equivalence classes, there are 11n triplets, there are at most (s) = 8 ways to choose 7 classes
out of 8, and there are n clauses altogether. Therefore, the probability that there exists an integer z such
that case (d) occurs is at most 2 2'8n(7/8) 11n < 8n(O.93)n.) This concludes the proof of soundness.

Remark: (P,V) can also be modified in the same way as (A, B) can be modified so to achieve perfect
completeness. This is the reason why the verifier in step 1 of Check.Prove accepts if there are less 33n2

integers in J+1 . Notice also that the prover need not have infinite computing power. In fact, an efficient
algorithm can perform all required computations provided that it has as an additional input the satisfying
assignment for 4.

We show now that the Proof System (PV) is also Zero-Knowledge over 3SAT. We first exhibit a
simulator for V's view and then prove that it works.

5.3 The Simulator

The following algorithm S, on input a formula 4 E 3SAT (but not a satisfying assignment for t) generates
a family of random variables that, under the QRA, no efficient non-uniform algorithm can distinguish
from the view of V. Notice that the view of V consists of a quadruple (po r, (z, y), Proof,, Proof2 ); thus,
the task of the simulator is to produce a quadruple that cannot be distinguished, under the QRA, from
a correct quadruple. Looking ahead, the two crucial points in the strategy of the simulator are:

16



1. To choose the auxiliary pair (x,y) so that x E BL(n) but y is a quadratic residue modulo z.

2. To choose a portion of the reference string not at random. Rather, select it among the strings that
do not contain any quadratic non residue modulo x in J~1 .

This strategy is viable because the simulator can choose the reference string (which is instead fixed for
the prover) and because it is hard to distinguish between random members of J.+ and random quadratic
residues modulo x.

For a clearer presentation S's program has been broken down into procedures. To give an informal help in
reading these procedures, we write z' for a value computed by the simulator, when we want to emphasize
that this value is "fundamentally different" from the "corresponding" value z computed by the prover P,
though an exponentially long computation may be required to determine this fact.

S's program

Input: a 3-satisfiable formula f = 461 A 02 A-.- A 0,, over the variables u1 ,u 2 ,... ,Uk, k < 3n.

1. Randomly select two n-bit primes p, q - 3 mod 4 and set x = pq.

Randomly select r E Z. and set y' = r2 mod x. "Call (z, y) the auxiliary pair."

2. Execute procedure Gen..pand.Proofl(x, y') obtaining the strings p' and Proof1 .

3. Generate a random 2n0.bit string r.

4. Execute procedure Gen-Proof2(f , Z, y, p, q, r) obtaining the string Proof2 .

Output: (p' o r,(z, I), Proof,, Proof2)

Procedure Gen..p.and..Proof I(x, y)
"This procedure is used both by the simulator S and, later on, by some probabilistic algorithm. In any
call, x E BL(n) and y E Jj+1. When the procedure is called by the simulator S, y is a quadratic residue
modulo x."
begin{Gen-p-and.Proof 1)

1. Set Proof1 = empty string.

2. For i = 1 to 4n2

Randomly select a 2n-bit integer si, with possible leading Os.

If si V J,+' then set pi = si.

else

Toss a fair coin.

If HEAD then set pi = s? mod x and append s, to Proofl.

If TAIL then set pi = y-1j? mod x and append si mod x to Proof1 .

3. Set p = P1 ... P4 .

4. Return(p, Proof1 )
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end{Gen.p-and-Proof 1 }

Let us now see that sometimes Gen-p-and.Proof 1 "generates what the legitimate prover would gen-
erate".

Lemma 5.1 Define Spacel(z, y) as the probability space generated by the output of Gen.p-andProof I
on input x,y. Then, for all x E BL(n) and y E NQRX

Spacel(x,y) = {p R {0,1}8"3; Proofi + PJProofl(x,y,p): (p, Proof)}

where PJProofl is P's procedure to compute Proof, (i.e. step P.2).

Proof. Fix x E BL(n) and y E NQRZ. It can be easily seen that the first component of Gen.p.and-Proof l's
output is randomly distributed among the 8n 3-bit long strings. Moreover, if pi E J.+, the corresponding
s, is a random (z,y)-root of pi. Thus s, has the same probability of belonging to Genp..and.Proof l's
output as it has to be sent, at step P.2, from prover P to verifier V on inputs (z, y) and p. I

Procedure GenPoof2(,Xy ', p, q, r)
"This procedure is used both by the simulator S and, later on, by some probabilistic algorithm. In any
call, z E BL(n), x = pq, and y' E QR,. It returns a string Proof2 that "proves" that the formula
0 = 4,1 A 02 A ... A 4, is 3-satisfiable using the string r and the pair (z, y') even without knowing any
satisfying assignment for 0."
begin{Gen.Proof2}

0. Set Proof2 = empty string.

1. Consider r as the concatenation of n3 2n-bit integers. If there are less than 33n 2 integers in J.l,
stop. Else, let r1,..., rT32 be the first 33n 2 integers belonging to J+1 .

Group the ri's in 11n2 triplets (,r,,r2, , 3 ),(r,, 5,r 6 ),  The first 1ln triplets are assigned to 4,
the second 11n triplets are assigned to 02, and so on.

2. For each variable ui, randomly select wi E NQRZ and label the literal uj with wj and the literal
Vj with y'wj mod z.

"Since y' is a quadratic residue, all labels are quadratic non residues."

Append the labeling of f to Proof2 .

3. For each clause .0 of $ do:

* Let cx,431, and 7y be the labels of the three literals of 0. Thus, ai,l,y 1 E NQI4.
Choose at random 7triplets (02 2,020 2),..., (as,#s, ys) in J+1 x J+ x J+' such that (aj,Oj,,Y7) 9,
(at,/3l,,T,), for I < i < j < 8 and Q,(a 2 ) = Q,(02) = Q (72) = 0.
Append the triplets (o, ,I), ... , (as,3 s, -s) as the verifying triplets of 0 to Proof2.

9 Randomly choose and append a square root of (a2, 0 2,72) to Proof2.
e For each of the assigned triplets (zI,z 2 , 3 ) of 0, choose i, 1 < i < 8, so that (zI,z2,z 3 ) -

(ai, O, 7y)- Randomly choose and append an (ai,/i, -yi)-root of (zi, z2 , z3) to Proof2 .

4. Return(Proo .?)
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end{G .n-Proof2}

Lemma 5.2 Algorithm S is efficient.

Proof: The main body and procedure Genp-and..Proof 1 are computationally trivial. The first two steps
of procedure Gen-Proof 2 are also quite easy as, due to Fact 2.9, generating a random quadratic non
residue in J+1 is easy when x E BL. Let us now see that also step 3 can always be completed, and
efficiently as well. Given that the first verifying triplet has been chosen to be composed by quadratic
non residues in Jj+ and the second by quadratic residues, it is certainly possible to choose the other 6
verifying triplets so that all of them belong to 8 distinct -, equivalence classes. Moreover, given that
the factorization of x is an available input, the remaining part of step 3 can be efficiently executed. I

5.4 (P,V) is Zero-Knowledge
Theorem 5.2 Under the QRA, (P,V) is a Bounded Non-Interactive ZKPS for 3SAT.

Proof. All that is left to prove is that (PV) satisfies the Zero-Knowledge condition. We do this by
showing that algorithm S of the previous section simulates the view of the verifier V.

We proceed by contradiction. Assume that there exists a positive constant d, an infinite subset 7 C Ar,
a set {@njnZ such that each On is a 3-satisfiable formula with n clauses, and an efficient non-uniform
"distinguishing" algorithm {Dr}nz such that for all nel

jPs(n) - P(n)l ?_ n- ,

where Ps(n) = Pr(s A S On,,,): Dn(9) = 1) and Pv(n) = Pr(s + View(n,$O): Dn(s) = 1).

We derive a contradiction by showing an efficient non-uniform algorithm {Cn},X violating the QRA. On
input randomly chosen x E BL(n) and Y E JV1 , Cr constructs a string SAMPLE which is distributed
according to S(1", $,r) if y E QRr, and according to View(fn) if y E NQRZ. Thus, as the non-uniform
algorithm {Dn}nz is assumed to distinguish the two probability spaces, this is a violation of QRA.

The Algorithm Cr
"Cn has "wired-in" a formula 4. along with t, the lexicographically smallest satisfying truth assignment
for Onr, a description of Dn, and the probabilities Ps(n) and Pv(n)."

Input: (x, V) such that x E BL(n) and V E J+4.

1. Execute procedure Gon.,oand.Proofl(z, y), thus obtaining p and Proof1 .

2. Execute procedure Samploer.and.Proof2(4'n, t, z, y), thus obtaining r and Proof2.

3. Set SAMPLE = (p o r, (z, y), Proof,, Proof2).

4. If Dn(SAMPLE) = 1 then set b = 1 else b = 0.

5. If Ps(n) > Pv(n) then Output(b) else Output(1 - b).

Pme.dure Sampler-and.Proof2(f, t, z, y)
"t = 40 A 02 A ... A On is a 3-satisfiable formula with n clauses over the variables u1 , U2, . Uk, k < 3n.
t : {U1,tU2,... ,u } -- {0,1} is a satisfying truth assignment for$. z E BL(n) and Y E J,+,'

begin {Sampleor-and.Proof 2}
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1. For i = 1to n3 do:

randomly select a 2n-bit integer ri (with possible leading O's)

if ri J 2+ then set si = ri

else toss a fair coin: if HEAD then set si = r? mod x; if TAIL then set si = -r? mod x.

2. Set Proof2= empty string.

3. Let jl,...,ja3n2 be the indices of the first 33n 2 si's belonging to J~1 .

If there are less than 33n 2 such integers set r = 1 ... s,n3 and stop.

Else, set ri =si for all indices i not in {j,...,js3, 2}.

4. Group the ji's in 11n 2 triplets (jl,j2,j3),(j 4 ,js,j6),.... Assign the 11n 2 triplets to the clauses in
the following way: the first 11n triplets are assigned to the first clause, 42i, the second 11n triplets
are assigned to the second clause, 402, and so on.

5. For each variable uj, randomly select vj E Z and assign the label wj to the literal ui and the label
ywi mod x to the literal ;j, where

-vomod x if t(uj) = 1 and
w Y V2 mod x if t(uj)=0.

Call 41 the labeling of 4. Append 4' to Proof2 .

6. For each clause 0 of 4 do:

" Let -ya 2 mod x,-yb2 mod X,-C 2 mod x be the label of the three literals of 0, and a,b,c
previously computed values in Z.

"We consider only one case, not to overburden our notation. The other cases are treated
similarly."

* Randomly choose 21 elements aj,b,cj,...,aT,br, cr E Z*, and construct the following 8
triplets

(-ya2 mod x, -yb 2 mod x, -c 2 mod :)
(a 2 mod x, b m mod X, c2 mod x)

(a mod x, -bmod 2, mod :)
(a mod x, -b2 mod X,-c mod x)
(-a2 mod X, b2 mod X, c2 mod x)

(-a mod Xb 2mod ,-C2 mod )
(-a, mod x, -b2 mod x, c62 mod x)

(ya2 mod x,yb mod X,-C mod x).

* Construct the 8 verifying triplets of 0 as

(al,/3#,71) = (-ya2 mod X,-y6b2 mod X,-c 2 mod x)(02, 02, 72s) = (a2 roo zb ro , C2 odz
(o243 ,'y , = amod :, bmod 1 cmod x)

Randomly permute the remaining 6 triplets and assign them to (a3, 03, 73), ... , (as, 3 s, 7s).

Append (al,(3,71),..., (as,3,ts) to Proof2 .

" Append the triplet (al,bl,cl) to Proof2 as a square root of (a2 ,0 2,7 2 ).
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" For each of the assigned indices (11,12,13) of 4,

Randomly choose one of the 8 verifying triplets, say (ak,/ 3 ,7).
Randomly choose vl,v2,v3 E Z. and set ri, = v2ck mod 2, t2 = v kmodz,and
713 = v27Yk mod x.
Compute and append to Proof2 (v1 ak mod X, V20k mod X, v37k mod ) as an (ak,13 k,yk)-
root of (ri , 12, rT).

" Set r = r ..- rn3.

7. Return(r, Proof2).

end {Sample-r-and..Proof 2}

There is no question that (C111,, is an efficient non-uniform algorithm. Let now Space2(4',,,t, x, y) be
the probability space generated by the output of Sample_r -and.Proof2 on input 4§,, t, x, y. Then, for all
n E I and for all x E BL(n), Space2(4n,,9t,x,y) is equal to

f {T A {0, }2,';Proof 2 A Prove(tn, t, x, y,r): (r, Proof2)} if Y E NQR and
{r A {0,l }2n4;Proof, A Genyroof2(4',,,,P,q,r): (r,Proof2 )} if Y E QR:

where p, q are the prime factors of x.
To see (*), notice that if y E NQR then the label wi assigned to each literal uj by Cn is a random
element selected from either NQR or QR. depending on whether t'uj) is true or false, respectively (this
is the same computation performed by Prove). If y E QR, then the label wj of literal ut is always a
random element selected from NQR., (in the same way as Gen.Proof 2 computes it). In both cases the
label of Wj is ywj mod x.
Regardless of the quadratic residuosity of y modulo z, for each clause 0 of t, the 8 verifying triplets of
computed by C,, are always selected at random among the triplets of elements in J+1 that are pairwise
not _, equivalent, the first triplet consists of the labels of the three literals of 0, and the second triplet
is made of three quadratic residues.
The string r output by Cn is truly random (regardless of the quadratic residuosity of y modulo x). Indeed,
each ri is randomly selected from the 2n-bit long strings, and independently of the remaining ri's.
Finally, for each clause and each of its assigned triplets (rT1 , r 2 , r) the corresponding (viak mod x,
v2O3 k mod X, V37k mod x) is a random (ak,1 Ok,7-)-root of (rm ,n2,' 3). This completes the proof of (*).
Since SAMPLE = (po r, (x, y), Proof,, Proof2), because of (*) and because of Lemma 5.1, for randomly
selected : E BL(n) and Y E JV, SAMPLE is distributed as View(4,,) if Y E NQR and as S(1 ' , t,)
if Y E QR,. Given our assumption about the efficient non-uniform algorithm {D,,},,,I, it ib immediately
seen that, for all n E 1, Pr(x A BL(n); y J+' : C,,(z,y) = Q,(y)) 2! 1/2+ 1/(2n d) which contradicts
the QRA. I

Remark: the reader is encouraged to verify that if the same reference string o and the same (x, y) are
used by the prover to prove that two formulae 4' and 4 are 3-satisfiable then "extra knowledge may leak".
For instance, that there exist a satisfying assignment for I and and a satisfying assignment for $ for
which the literal ul in t and the literal f2 in 4 have the same truth value.

The moral is that one must be careful when using the same set-up, i.e. common reference string and
the same pair (x, y), to prove an "unlimited" number of formulae to be satisfiable. This is indeed the
goal of Section 6.
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5.5 Arthur-Merlin Games and Bounded Non-Interactive Zero Knowledge

Theorem 5.3 If 3SAT E Bounded-NIZK, then Bounded-NIZK = AM 2.

Proof. Since Bounded-N!ZK C Bounded Non-Interactive P = AM 2, it only remains to show that AM 2 C

Bounded-NIZK. For L E AM 2 define the language L' = uL'(n), where

L(n) = {(r,x): Irl = nc , x E Ln, and 3w, wI _ n' such that Verifier(r,x,w) = 11

and (Prover, Verifier) is a Bounded Non-Interactive Proof System for L with constant c. Then x E Ln

iff (r,x) E L'(n) for most nc-bit strings r. Moreover L' E NP, thus there is a fixed polynomial-time

computable reduction R such that

(r,x) E L'(n) 4=' I0 = R(r,x) E 3SATb

where b > 0 is a fixed constant depending only on the reduction R.

We now describe a Bounded Non-Interactive ZKPS (P, V) for L. On input x E Ln and the reference

string r r o or, where IrI = nc and a has the proper length, P constructs the formula IF = R(r, x) and,

if it is 3-satisfiable then proves in bounded non-interactive zero knowledge, with input T and o, that

indeed % E 3SATb. I

Theorem 5.4 Under the QRA, Bounded-NIZK = AM 2.

6 Non-Interactive Zero Knowledge

We now want to capture the ability of giving non-interactive and zero-knowledge proofs of "many"

theorems, using the same common reference string, in an "on-line manner". That is, each theorem can

be proven independently of all previous and future theorems.

We will present our formal definition when the theorems to be proven are statements about 3-

satisfiability.

Definition 6.1 Let (Prover, Verifier) be a sender-receiver pair, where Prover(., .) is random selecting

and Verifier(.,., .) is polynomial-time. We say that (Prover, Verifier) is a Non-Interactive Zero-Knowledge

Proof System (Non-Interactive ZKPS) if the following 3 conditions hold.

1. Completeness. V- E 3SAT and all n,

Pr(a R {0, 1)"; Proof +R Prover(a, ): Verifer(o, , Proof) = = 1.

2. Soundness. There exists a constant cl > 0 such that, for all probabilistic algorithms Adversary

outputting pairs (',Proof'), where 0' V 3SAT, Vd > 0, and Vn > cl,

Pr(a 4R (0,1}R; (4", Proof') R Adversary(a): Verifler(a, V, Proof') = 1) < n-d.

3. Zero-Knowledge. There exist constant c2 > 0 and an efficient algorithm S such that V41, f2, ... E

3SAT, for all efficient non-uniform algorithms D, Vd > 0, and all n > c2,

Pr(a +1 View(n, 0,,...): Dn(s) = 1) - Pr(s + S(1",41,42,...): Dn(s) = 1)1 < n- d
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where
View(n,, 41, 2 ,...) = { {0, 1}n; Proof, 4 Prover(a, Z1);

Prooh A Prover(a,$02);

:(o', Proof, Proof2 ,...)}.

A sender-receiver pair (Prover, Verifier) is a Non-Interactive Proof System for 3SAT if Completeness and
Soundness hold.

Discussion. First, notice that we have set the probability of acceptance of true theorems to be 1 since
3SAT E NP. Notice also, the generality of our definition as it handles any number of formulae of
arbitrary size in Completeness, Soundness, and Zero-Knowledge. That is, every true theorem can be
proven, no matter how long. Of course longer theorems will have longer proofs. Since the verifier is
polynomial-time in the length of the common input, it will have more time to verify that a longer formula
is 3-satisfiable. Every false theorem, no matter how long, has negligible probability of being "successfully
proved"; however, though the length of the proof grows with the length of the theorem, "negligible" is
defined only as a function of the length of the reference stringe . Finally, every theorem, no matter how
long, possess a Zero-Knowledge proof. Of course, a longer theorem will have a longer proof and thus
the polynomial-time simulator will have longer time to simulate the proofs. The zero-knowledgeness of
the simulator's proofs only holds for a non-uniform "observer" bounded by the length of the reference
string.

7

The definition of Non-Interactive ZKPS might be more general if perfect completeness is relaxed to
completeness as in Section 3. In this case the adversarial choosing algorithm Choose-in-L should be given
a and access to Prover's random selector.

6.1 The Sender-Receiver Pair (P,V)

In this subsection we describe a sender-receiver pair (P, V). P can prove in zero-knowledge the 3-
satisfiability of any number of 3-satisfiable formulae with n clauses each. Later, we shall show how to use
the same protocol to prove any number of formulae, each of arbitrary size.

Before going into a formal description of the proof system, we give an informal view of the protocol.

An informal look at (P,V).

Observation: A crucial observation that will be (implicitly) proved in this section is the following. If
many certified auxiliary pairs (z, y) (z E BL and y E NQRZ) are available, one can use each (z, y) to
prove in zero-knowledge that any single formula 4(z.) E 3SAT with n clauses is 3-satisfiable using the
same random string r. For what we remarked in Section 5, the same r and the same auxiliary pair should
not be used to prove the 3-satisfiability of two different formulae.

In the light of the above observation, we want to construct a mechanism to achieve the following two
goals:

(1) Associating to each formula 4 an auxiliary pair (zo, y*), of "bounded" size, so that, with over-
whelming probability, different formulae are associated to different pairs.

(2) Certifying (z*,y*), i.e. proving that zx E BL and Y* E NQR...

'Which de facto is a security parameter.
7In particular, if a theorem and its proof are exponentially long (with respect to the reference string) the distinguishing

algorithm can compare the actual "view" and the output of the simulator only for a polynomially long prefix.
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The first goal could be achieved by using the random selector, but the problem of the certification
remains. The current mechanism for certifying in Zero-Knowledge a single auxiliary pair (x, y) using p
can be extended to handle "a few" more pairs, but not arbitrarily many.8 Instead, we use a mechanism
of recursive nature to simultaneously achieve (1) and (2).

Let us first describe this recursive mechanism for a prover "with memory." Such a prover can construct
and store a binary tree of depth n. The left child of each node will also be denoted as the 0-child, and
the right one as the 1-child. Thus each node in the tree is labeled with a binary string of length at most
n + 1. The root is labeled 0, and each other node is labeled with the string describing the unique path
from the root to it. Thus, for instance, the left child of the root has label 00, and the rightmost leaf
of the tree has label 01n . With each node (labeled) i, the prover stores a randomly selected auxiliary
pair (xi,yi). The prover uses (xi,y) for certifying the auxiliary pairs of the children of node i, that is,
(zio, yil). The first auxiliary pair (z, yo) is certified using string p as in Section 4. For each i, the two
Pairs (XOb,...biO, 0/06...biO),(-Ob,...b,1, Yobi...b,1), are certified together as in Section 5, using the same string
r1. That is, consider the language L = UJL(n), where

L(n) = {((u 0,vo),(ul,v1)) : u0,ul E BL(n), v, E NQRu., v1 E NQPIJ}.

Then L E NP. Thus, there exists a fixed polynomial-time computable function CR such that

((U,,v), (ul, vi)) E L(n) 4==:, T = CR(u,vo, ul, v1) E 3SAT,,,

where e is a fixed constant depending only on the reduction CR. More precisely, let T be a polynomial-
time Turing machine such that x E L iff there is a "witness" (string) w such that [w[ _< Jxie and
T(x, w) = 1. Then, the formula T is obtained by encoding the computation of T as in Cook's Theorem,
and then reducing it to a 3-satisfiable formula, as Cook suggested [Co]. A well known property of this
reduction is that to each "witness" w one can associate in polynomial-time a satisfying assignment for
4I. In our case the witness consists of the primes in the factorizations of u0 and u, and their proof of
primality. The proof (witness) of the primality of a prime p is probabilistically constructed in a standard
way: by running algorithm [AdHul on input p flipping coins as needed.

We wifl thus certify (zob1 ...bo, YObl...biO), (XObx...bs1, Y0b.-.b,1) by showing that the so constructed

'@0b,..b = CR((zob...bo,YOb...biO),(XObl...bi1, obl ...b,1)) E 3SATne.

For each T0b,.-b,, this is done using the proof system of Section 5, and the same string r, which in fact
has length 2n", with a = 4e.

What have we gained by this? Essentially that we have transformed the problem of certifying (xob, ...b.O,

Y0b 1--.b.), (xO~b...b,1, ybo...b~l) into the problem of proving TOb,...bi E 3SATn., and we have observed
(but not yet proved) that one can prove in zero knowledge arbitrarily many theorems of size n given
arbitrarily many, independent, certified pairs (x, y)'s. Since these pairs are randomly and independently
selected, with overwhelming probability, each pair (zTb ... b,,yob...,) is used only once with r, to prove
Tb,.bi E 3SAT,..

In sum, this mechanism provides each formula 9 with a certified auxiliary pair (zO, yO) that is uniquely
determined from 9 and the reference string, though still random.

The prover we just described needs not to remember the labeled full binary tree; it can in fact,
(re)grow its branches as needed. It must, though, remember which auxiliary pairs he had associated with

'Recall the way p is used. If pi E QR, a square root of pi mod z is given, if pi E NQR= a square root of pp. mod X is

given. In our simulation, however, all p, will be chosen in QR.. Thus, if we want to carry on the simulation for many pairs
(z,, pi) we need to construct a p solely consisting of quadratic residues modulo Z1, 2, ... which appears very hard to do when
the number of z, 's grows large.
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the nodes of the tree. In fact, if it does not keep track of these pairs, it may use the same auxiliary pair
and the same reference string to prove different theorems, which may not be zero-knowledge. To avoid
this, and to avoid "memory," the prover uses the random selector to associate a random pair with the
node of the tree. Namely, on input a formula 40, the prover chooses n bits b1b2 ... bn by querying the
random selector with a pair whose first entry is 4' and the reference string a = p o r, o r2, and whose
second entry is (a description of) the set {O, 1}'. This way, if the same formula is considered twice, the
same random n-bit string would be selected. Then the prover computes a random, first auxiliary pair
(x0 , y0 ) (again using the random selector so that it could recompute the same pair any time he wanted it).
Then, for i = 0, ..., n, the auxiliary pairs (x0 b " bo, Yb ... b,O), (z06b.---.b,1 ?Y0b-.-4i1) are chosen by the random
selector on input 0bi ... bjO and 0bi ... bi1, respectively. The pair associated to - is (xobl ... , Yob...b,).

We now proceed more formally.

Description of (P,V).
"a = 4e, where e is the constant of reduction CR. Select is P's random selector. PAIR(n) is the set of
pairs (x, y) such that x E BL(n) and y E NQR."

Input to P and V:

e A random string a, a = p o 1 o r, where IpI = 8n3 , I - 2na and Ir2 = 2n4

* A formula t E 3SAT with n clauses.

Instructions for P.

P.1 "Choose and certify the first auxiliary pair."

Compute auxiliary pair (x,, y,) = Select(a, PAIR(n)).

Send (x0,y) and run algorithm A of Section 4 on input (z.,yo) and p. "Call Proof. the output."

P.2 "Choose and certify other auxiliary pairs."

Set b0 = 0. Compute and send boblb 2 . . b,, =Select(*, {0, 1}n).

For i =0,..., n do:

Set s= b...bi.

Compute and send (xzo, yo) = Select(jO, PAIR(n)) and (z.1, y1.) = Select(s1, PAIR(n)).

Compute *P, = CR(x.o, yAo, XMI, y81) and t., a satisfying assignment for It,.

Execute Prove(*., t,, z, y., r, ). "Call Proof'I. the output."

P.3 "Prove f E 3SAT."

Set s = b. ... bn. Let to be the lexicographically smallest satisfying assignment for 4'.

Execute Prove(O, to, z., y, r2 ). "Call Proof 4' the output."

Instructions for V.

"V receives from P the bits b0,b,...,bn, (xbb), (Zob0 yo), (Z60,Y) ... , (Xbb ... 10%. b_ 1 0),

('6b .. 1' Yo - -1 )' the formulae 'Pbo, ..., ' o.. P n' and the strings Proof0 , Proof fbo, ..., ProofIFo *,,
Proc f4'."
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V.1 "Verify first auxiliary pair."

Run algorithm B of Section 4 on input p, (x,, y0), and Proof,.

If B stops and rejects, stop and REJECT. Else,

V.2 "Verify other auxiliary pairs."

For i = 0,..., n do:

Set s = bo.. bi.

Compute 41, = CR(xo, y.o, x,,, y.O)
If Check-Prove('P', z,, y,, r,, Proof @,)=REJECT then stop and REJECT. Else,

V.3 "Verify Proof t."

Compute n from p or, o r, and verify that -t has at most n clauses, and each of them has three
literals. If not, stop and REJECT. Else,

Sets = b0 ..- bn.

If CheckProve($, z., y,, r2 , Proof $)=REJECT then stop and REJECT. Else ACCEPT.

6.2 (P,V) is a Non-Interactive Proof System for 3SAT

The Proof System (P, V) of Section 5 constitutes the main building block of the just described sender-
receiver pair (P, V). Therefore, the completeness of (P, V) can be easily derived from the analysis of
completeness in Section 5.2.

Let us now focus our attention on the soundness. We shall show that, if the formula 0 is not 3-
satisfiable, then for any Turing machine Adversary (even a "cheating" one that chooses 4 after seeing the
reference string), V will accept the proof provided by Adversary with sufficiently low probability. The
proof closely follows the reasoning done in Section 5.2 to prove the soundness of the proof system (P, V)
described in 5.1. We distinguish two cases:

1. For some w, (z,, yw) V NQR(2n).

2. All the pairs (Zw,lyw) belong to A'QIZ(2n) but $ 3SAT.

If (z0, yi) .A/QT(2n), we are in the very same situation analyzed in case (a) in the proof of soundness of
Section 5.2. By the same reasoning, we conclude that the verification of step 1 is passed with sufficiently
low probability. Suppose that for w = sb, where b E {0,1}, (zw, y,) V A'VQ(2n) and (xw,y, ) E
A/ QI(2n). Then, IV,. V 3SAT and therefore the procedure Check-Prove invoked for '1', returns REJECT
with sufficiently high probability.

Now, suppose that all pairs (z., y.) belong to ANQPZ(2n) but t 3SAT. Since (x,, y.) E AT'QTZ(2n),
s = bobl ... b,, following the reasoning done for cases (b) and (c) in the proof of soundness in Section 5.2,
we conclude that verification step V.3 is passed with very low probability.

Now, we show that the Proof System (P, V) is also Zero-Knowledge over 3SAT.

6.3 The Simulator

In this section, we describe an efficient algorithm S; in the next section we will prove that, on input a
sequence of 3-satisfiable formulae, S's output cannot, under the QRA, be distinguished from V's view by
any efficient non-uniform algorithm.
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S's Program

Input: An integer n > 0. A sequence $1, 02 ... of 3-satisfiable formulae with n clauses each.

0. Set Sim-Output = empty string and Tree = empty set.

1. "Choose p' and choose and certify first auxiliary pair."

Randomly select two n-bit primes p,,q0 - 3 mod 4 and set x, = pq.. Randomly select Yo' E QR,,.

Execute procedure Genpoand.Proof 1(x,, y ), thus obtaining the strings p' and Proof".

2. "Chooser, and r2."

Randomly select two strings r, and r so that jr" I = 2n* and Itr1 = 2n 4 .

3. For each input formula 4 do:

3.1 "Choose and certify other auxiliary pairs"

Set b0 - 0 and randomly select b, ... bn. Append (xe, y,,), ProofS, and bob 1 .. , b" to Sim.Ouptput.

For i =0,..., n do:

Let s = bobi .. .b,.

If s Tree then

Add s to Tree.
Randomly select 4 n-bit primes po,qo,pi,q.i - 3 mod 4.

Set xzo = paoqao and x.1 = psq, j.

Randomly select y* E QR,.o and Y', E QR ,1 .

Compute IF. = CR(xzo, y' o, x.1, Y11)"

Execute procedure Gen..Proof2(*., x., y, p., q.,, "), thus obtaining Proof T'.

Append (x.o, y',o), (x.1, y'*), and Proof V to Sim.Output.

3.2 "Prove 4 E 3SAT."

Set s = bob, ... b,. Execute Gen-Proof2(t, ., y',,p., q., r2 ) obtaining Proof '.

Append Proof ,' to Sim-Output.

Output: (p' o T o r,SimOutput)

Lemma 6.1 Algorithm S is efficient.

Proof: The running time of S is proportional to the number of input formulae. For each single input

formula, all operations can be efficiently computed. Thus, S is efficient. (Notice, again, that the running

time is polynomial with respect to the input size, though it may be exponential in the parameter n.) I

The random variable output by S is certainly different from View and, before proceeding any further, let

us compare them. In View the string p is truly random, while the corresponding string p' constructed

by S does not contain any element in NQR.• In View, each y, is a quadratic non residue modulo the

corresponding x., whereas in S, y' is chosen among the quadratic residues modulo x,. Because of the

different quadratic residuosity of the yo's, the two distributions differ also in the 'F,'s and in the strings

Proof %, and Prooff. In fact, the formula it, is satisfiable iff both (xao, yo) and (xa,,yai) are of the

prescribed form. This is certainly the case in View. But in S, as all y.'s are quadratic residues, none of

the pairs (x., y.) is of the prescribed form and therefore none of the 9k,'s is satisfiable. Moreover, the y,'s
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are also used to compute the labeling of the literals in the strings Proof 'I,'s and ProofO's and thus in
S all literals are labeled with quadratic non residues.

In the next section, we shall prove, using a reasoning similar to the one in Section 5.3 that, despite
of the differences described above, the two families of random variables cannot be distinguished by any
efficient non-uniform algorithm, under the QRA.

6.4 (P,V) is Zero-Knowledge

Theorem 6.2 Under the QRA, the sender-receiver pair (P, V) of Section 6.1 is a Non-Interactive ZKPS.

Proof. All that is left to prove is that (P,V) satisfies the Zero-Knowledge condition. We do this by
zhowing that the output of algorithm S of the previous section cannot be distinguished from the view of
the verifier V by any efficient non-uniform algorithm.

We proceed by contradiction. Assume that there exists a constant d > 0, an infinite subset 17 C V',
a set {(, 4,...)},1I of sequences of 3-satisfiable formulae, where t! has n clauses, and an efficient
non-uniform algorithm D = {Dn},,e such that for all n E I

IPv(n) - Ps(n)l > n-

where Pv(n) = Pr(a + View(In,In,...):Dn(s) = 1) and Ps(n) = Pr(s + S(1n,tn, t,...): D,(s) =
1).

Let R(n) be a polynomial such that the running time and the size of the program of each algorithm
Dn is bounded by R(n). Without loss of generality we can consider R(n)-tuples of 3-satisfiable formulae
$ ',(), instead of arbitrary sequences of 3-satisfiable formulae ,I..

As we have seen in the last section, a main difference between S's output and the view of the verifier is
in the y,'s: they are all quadratic residues modulo the corresponding x.'s in S's output, while they are all
quadratic non residues in View. We will now describe an efficient non-uniform algorithm C = IC,},,.

Each C, takes two input: j _! 0 and (z,y) E PAIR(n) = {(u,v) : u E BL(n),v E Ju+}; and has
"wired-in" the formulae on, ..., eIn( along with their lexicographically smallest satisfying assignments.
Roughly speaking, C, produces as output a "random" string and "proofs" for all formulae C"s. C,,
selects the input pair (z, y) as the j-th auxiliary pair. All prior pairs are selected as simulator S does
and all subsequent pairs as prover P does. Thus, C, "knows" the factorization of the Blum modulus for
all auxiliary pairs except (x,y). None-the-less, algorithm Cn will use (x,y) as S would if y E QR_, and
as P would if y E NQR,. More formally, Cn is designed so to enjoy the following properties. Set

Space(n,j,QR) ={z A BL(n); y A QR.; s ' C,(j, z, y) :s}

Space(n,j, NQR) = {* A BL(n); Y A NQR.; 8 A C,,(j,X,y) : }.

Then,
Property (1) Space(n, 0, NQR) = View(n, , I..., (,))

Property (2) Space(n, nR(n) + 1,QR) = {s A- S(1n, In,..., $(n)):4
Property (3) Space(n,j, QR) = Space(n,j + 1, NQR)

From these properties we will conclude that the existence of D violates the QRA. We now formally
describe the algorithm, and then prove all the stated properties.

The Algorithm C,
"C, has "wired-in" the R(n)-tuple (.,7, ..., .@n(,)) ad, for each $ E {$7, ..., $}(n)1, the lexicographically

smallest satisfying assignment t#."

Input: An integer j E [0,nR(n) + 11. A pair (z,y) E PAIR(n)."
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1. "Choose p and choose and certify first auxiliary pair."

Ifj=0thensetx 0 =x and yo = y .

Else randomly select 2 n-bit primes p,q 0 = 3 mod 4, set z o = p0qO, and select Yo E QR o .

Execute procedure Gen.,p-and.Proof l(x0, y0 ), thus obtaining p and Proof.

2. "Choose other auxiliary pairs."

"Tree contains the indices of auxiliary pairs that are used to certify two others auxiliary pairs.
Count contains the number of all selected auxiliary pairs."

Set Tree = empty set and Count = 1.

For each formula I E {I, ... , ,(n)} do:

Set bo = 0 and randomly select n bits bo,-. ,b .

For i = 0, ..., n do:

Set s - b0# . . .b'

If s . Tree then

Add s to Tree. Randomly select 4 n-bit primes pso,qso,psi,qsi S 3 mod 4.

"Choose 0-child."

If Count = j then set zxo = x, yso = y.

If Count < j then set x.0 = psoqso and randomly select yPo E QR..

If Count > j then set x.0 = poq~o and randomly select PYo E NQR,,.

Count = Count + I

"Choose 1-child."

If Count = j then set zx1 = X, Yi = Y.

If Count < j then set x,1 = p.lq, 1 and randomly select P.1 E QPr.1 .

If Count > j then set z 1 = ps q.,1 and randomly select Y.1 E NQZo1.

Count = Count + 1

3. "Chooser, and r.."

Let w be the index of (z, y), that is (xu,, y,) = (z, y). If there is no such w, set w = empty string.9

If w E Tree then

Compute 'Iu, = CR(zxo, yo, xua, yu,) and a satisfying assignment tu, for 1 w

Execute procedure Sample.r.and.Proof2(fl,, t.,, y.) obtaining r, and Proof 1P.

Randomly select a 2n-bit string r 2 .

Else, if w = bo . . . bt, for 4 E { then

Execute procedure Saaple.-Tand-Proof 2(1, to, z, y) obtaining ;. and Proof$.

Randomly select a 2na-bit string r1 .

Else, randomly select a 2n*-bit string r, and a 2n 4 -bit string r.

'It may happen that less than j (different) auxiliary pairs will be chosen. To give an extreme example, it may happen
that, for all 0, the bits 01 ... b,* are always the same.
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4. "Choose proofs with respect to r1 and T2 ."

Set PROOF= empty string and Tree = {w}.
For each formula 0 E {', ..., ' do:

4.1 "Certify auxiliary pairs."
Append (xo,y.), Proof0 , and b? ... b! to PROOF.
For i = O,..., n do:

Set s = b* ... bi.

If s V Tree then

Add s to Tree.
it Y. E NQRZ., then

Compute If = CR(xao, ylo, xai, ya) and a satisfying assignment t, for T..
Execute procedure Prove(*,, t,, 28, y8, rT ) obtaining Proof Ta.

If y. E QR.. then execute Gen..Proof2(I, x., y., p, q.,,, 1 ) obtaining Proof r.
Append (xo, yo), (x, 1,y . 1 ), and Proof*. to PROOF.

4.2 "Prove 0."
Sets = boo... b .
If s 0 w then

If Y, E NQR, then execute procedure Prove(@, t4, x., y,,r,) obtaining Prooft.
If y. E QR.. then execute GenProof2(, z, y,p,,q., "2) obtaining Proof$.

Append Prooft to PROOF.

Output:(por, o r2, PROOF).

First notice that {C,},,,r is an efficient non-uniform algorithm. All z8 's (but the j-th) are selected
along with their prime factors and thus all related computations can be performed in expected polynomial-
time. All operations concerning z and y are simple multiplications and testing of membership in J~1 .
The size of the set Tree is never bigger than nR(n), and thus membership and add operations are easily
performed.

The strings r, and r2 constructed by Cn are random. Indeed, either they are randomly selected or
they are generated by Samplo.e-r"Proof2. The analysis in Section 5.4 shows that in the latter case the
resulting string r is random.

Proof of Property (1). Assume j = 0 and y E NQR.. All y.'s are quadratic non residues in C,'s output.
(z,y) is set equal to (z 0, y.) and used twice: at step 1 to produce p and Proofo, and at step 3 to construct
Proof'To. Both the strings Proof. and Prooft o have the same probability of being chosen as in View
when the first pair is (z 0, y.). From Lemma 5.1, each string p is equally likely to be constructed at step
1. Thus, Space(n,0, NQR) = View(n,@', ,')

Proof of Property (2). Suppose j = nR(n) + 1. To prove R(n) formulae, at most nR(n) auxiliary pairs
are needed. Thus, each p, constructed by C, belongs to QRr,. All the strings Proof f.'s and Proof$'s
are constructed in exactly the same way both by S and by C,. Hence, Space(n, nR(n) + 1,QR) = {s +.

Proof of Property (3). Consider now the two probability spaces Space(nj, QR) and Space(n,j + 1, NQR).
In both spaces the auxiliary pairs are randomly chosen so that the first j y,'s are quadratic residues
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modulo the corresponding z,'s and, from the (j + 1)-st on, all the y.'s are quadratic nori residues. All
computations concerning pairs (x.,y,) different from (.r,y) are performed in the same way. The pair
(x,y) is used to construct either a proof Proof'I. for a formula %, derived from a reductio?, or a proof
Proof9 for one of the formulae C, or is never used. In the former two cases the proof is generated
using the procedure Sampler.-and-Proof 2. When y E NQR (Y E QR,), this procedure returns a string
Proof that has the same distribution as if it where generated by the procedure Prove (Gen.Proof2).
Thus, Space(n,j, QR) = Space(n, j + 1, NQR).

We now conclude the proof of Theorem 6.2. We have assumed that D distinguishes between S(1n, n,...,

*R(n))'s output and View(n, 1', ... , 4(,)). From properties (1) and (2) then this is tantamount to say
that D distinguishes between Space(n,O, NQR) and Space(n, nR(n) + 1,QR). By the pigeon principle,
and because of Property (3), for all n E I 3j = j(n), 0 < j < nR(n) + 1, such that D distinguishes
between Space(n,j, QR) and Space(n,j, NQR). That is, for all n E 1,

IPi(n, QR) - Pi(n, NQR)j > 1/((nR(n) + 2)nd)

where P,(n, QR) = Pr(s A Space(n,j,QR) : D,(s) = 1) and P(n,NQR) = Pr(s A Space(n,j,NQR):
D,(s) = 1). Thus, composing each C,(j(n),.,.) with D, one obtains an efficient non-uniform algorithm
that violates the QRA. I

6.5 Proving theorems of arbitrary size

Given a reference string of 8n 3 + 2n2 + 2n bit, the proof system (P, V) of Section 6.1 can be used to
prove in zero-knowledge the 3-satisfiability of an arbitrary number of 3-satisfiable formulae, but each of
them must have at most n clauses.

Now, we show how to use the same proof system to prove 3-satisfiable formulae with any number of
clauses. Given a formula 0 with k clauses, the prover computes a certified auxiliary pair (zx, Y4) and the
lexicographically smallest satisfying assignment t for -. To label each literal ui of f the prover randomly
selects ri E Z,# and, if t(uj) = 1 he associates to uj the label wj = r~y* mod x*, otherwise the label
wv = r. mod x4. The label associated to Vj is wjypmod z. Essentially, a literal has an element in
NQRr, as label iff it is made true by t. To prove that 0 E 3SAT, the prover proves that each clause
has at least an element of NQR,* among the labels of its three literals. That is, consider the language
L = {(yp, y2, ,3 x): at least one of yl, y2, 3 belongs to NQRZ}. Then L E NP and therefore there exists
a fixed polynomial-time computable reduction RED such that

9V = RED(yi,y 2 , 3,z) E 3SAT,,, 1= (Y1,Y2, 3 ,X) E L,

where f is a fixed constant depending only on RED. Therefore to prove that the i-th clause is satisfied,
the prover computes the formula 9i using the reduction RED and proves that 9i E 3SAT. By the
property of the reduction the length of the formula is upper bounded by n! and can thus be proved 3-
satisfiable using the previously described proof system (P, V) with a reference string of 8n3f + 2n' ! + 2n 4

f

bits. Therefore, we have reduced the problem of proving the 3-satisfiability of one formula with many
clauses to that of proving the 3-satisfiability of many formulae each with at most nf clauses.

6.6 Efficient Provers

In the proof system of subsection 6.1, for convenience of presentation, the prover P was made quite
powerful. For instance, P needs to find the lexicographically first satisfying assignment of a formula
for proving that it is in 3SAT. This, however, is not necessary. It is easily seen that, under the QRA,
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the verifier would obtain an indistinguishable view [GoMiRa], no matter which satisfying assignment
the prover may use. Also, it is possible for the prover to have access to a random oracle instead of a
random selector and still generate essentially the same view to a polynomial-time verifier. In fact, by
well known techniques, a random oracle can be transformed to a random function associating to each
string a a "polynomially longer" random string. This random string may be used to select the necessary
primes and quadratic residues and non-residues with essentially the same odds as for a random selector.
Actually, if one replaces a random oracle with a poly-random function as in Goldreich, Goldwasser, and
Micali [GoGoMi], the view of the verifier would still be undistinguishable from the one it obtains from P.
These functions exist under the QRA 10 and the replacement only entails that the same, short, randomly
selected string should be remembered throuout the proving process.

In sum, the prover may very well be polynomial-time, as long as it is given satisfying assignments for
the formulae that need to be proved satisfiable in non-interactive Zero Knowledge.

7 Related Work Improvements

We had posed two main open problems:

1. whether many provers could share the same random string 1 and

2. whether it is possible to implement non-interactive zero-knowledge with a general complexoty as-
sumption, rather than our specific number theoretic one.

Recently, both our questions have been solved in a beautiful paper by by Feige, Lapidot, and Shamir
[FeSh]. They show that any number of provers can share the same random string and that any trap-door
permutation can be used instead of quadratic residuosity. They also show that one-way permutation are
sufficient for Bounded non-interactive zero knowledge, but the prover needs to have exponential computing
power. Our first question alone was also independently solved by De Santis and Yung [DeYu].

Non-interactive zero-knowledge has been shown to yield a new paradigm for digital signature schemes
by Bellare and Goldwasser (BeGo].

De Santis, Micali, and Persiano [DeMiPe2] show that, if any one-way function exists, after an inter-
active preprocessing stage, any "sufficiently short" theorem can be proven non-interactively and in zero
knowledge. A simpler method can be found in [FeSh].

Kilian, Micali, and Ostrovsky [KiMiOsi have shown that, if any one-way function exists, after a
preprocessing stage consisting of a "few" executions of an oblivious transfer protocol, any theorem can
be proven in zero knowledge and non-interactively. (Namely, after executing 0(k) oblivious transfers,
the probability of accepting a false theorem is 1 in 2k.) Bellare and Micali [BeMi] show that, based on
a complexity assumption, it is possible to build public-key cryptosystems in which oblivious transfer is
itself implementable without any interaction.

8 An Important Open Problem

Introducing new cryptographic primitives is crucial, but would be essentially impossible without first re-
lying on some special, though hopefully well studied, complexity assumptions. It is as important, though,

'1n fact Blumr, Blum, Shub [BIBISh) show that the QRA implies the existence of a poly-random generator in the sense
of Blum and Micali [BIMi] and Yao [Ya], and (GoGoMi] show that any poly-random generator can be used to construct a
poly-random function

lIndeed, if this was done in our protocol, completeness and soundness would still hold. However it is not clear whether
zero-knowledge would be preserved. Without changing our proof systems, we can handle only a moderate number of provers.
This number is limited for the same reasons outlined in footnote 6.
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later finding the minimal assumptions for implementing these primitives. In fact, "extra structure" may
make easier proving that the desired property holds, but may also force the underlying complexity as-
sumption to be false. Personally, the third author finds a dramatic difference between one-way functions
and one-way permutations. (Breaking a glass is quite easy. Putting it back together is certainly harder,
but what if we were guaranteed that there is a unique way to do so?)

We believe non-interactive zero knowledge to be a fundamental primitive, one deserving the effort to
establish what are the minimal complexity assumptions needed for it to be securely implemented. We
thus hope the following question will be settled:

If one-way functions exist, does 3SAT have non-iteractive zero-knowledge proof systems
whose prover, given the proper witness, needs only to work in polynomial time?
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