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Nonlinear realizations of Lie superalgebras

Jakob Palmkvist

School of Science and Technology, €Orebro University, €Orebro, Sweden

ABSTRACT
For any decomposition of a Lie superalgebra G into a direct sum G ¼
H� E of a subalgebra H and a subspace E, without any further resctric-
tions on H and E, we construct a nonlinear realization of G on E: The
result generalizes a theorem by Kantor from Lie algebras to Lie superalge-
bras. When G is a differential graded Lie algebra, we show that it gives a
construction of an associated L1-algebra.
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1. Introduction

Representations of Lie algebras can be generalized to nonlinear realizations. This means that the ele-
ments in the Lie algebra are mapped to operators that are not necessarily linear, but constant, quad-
ratic or of higher order. In many important applications, the operators act on a vector space which
can be identified with a subspace of the Lie algebra itself, complementary to a subalgebra. One
example is the conformal realization of the Lie algebra soð2,DÞ on a D-dimensional vector space,
based on the decomposition of soð2,DÞ as a 3-graded Lie algebra G ¼ G�1 � G0 � G1, where G0 ¼
soð1,D� 1Þ and G61 are D-dimensional subspaces. In this realization, the subalgebra soð1,D� 1Þ
acts linearly, whereas the two D-dimensional subspaces can be considered as consisting of constant
and quadratic operators, respectively. In other examples, the linearly realized subalgebra is not the
degree-zero subalgebra in a Z-grading, but defined by being pointwise invariant under an involution.

For any decomposition of a Lie algebra G into a direct sum G ¼ H � E of a subalgebra H and a
complementary subspace E, there is formula for a nonlinear realization of G on E given by Kantor
[10]. The conformal realization of a semisimple Lie algebra with a 3-grading G ¼ G�1 � G0 � G1

is obtained from this formula in the special case where H ¼ G0 � G1 and E ¼ G�1: The corre-
sponding application to a semisimple Lie algebra with a 5-grading G ¼ G�2 � G�1 � G0 � G1 �
G2 leads to a quasiconformal realization if the subspaces G62 are one-dimensional [7, 17]. In these
cases the subspace E is actually also a subalgebra, but this need not be the case in the general
formula. There are no restrictions on ½E, E�, nor on ½H, E�; the only requirement is ½H,H� � H:
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In this paper, we generalize Kantor’s formula from Lie algebras to Lie superalgebras. Also in
the restriction to Lie algebras, our proof is very different from Kantor’s, being purely algebraic,
without references to homogeneous spaces for Lie groups.

We expect our generalization to be useful in applications to physics, in particular to models where
a Lie superalgebra can be used to organize the field content or to encode the gauge structure. In such
cases it might be interesting to investigate whether the Lie superalgebra also can be realized as a sym-
metry. We also expect the result to be relevant for applications of other related structures, such as
Leibniz algebras, differential graded Lie algebras and L1-algebras, for which a renewed interest has
appeared recently in the context of gauge theories, see for example Refs. [2–4, 11, 14–16]. In fact,
our framework illuminates the relations between these structures. In particular, our main result leads
to the construction of an L1-algebra associated to any differential graded Lie algebra.

The paper is organized as follows.

� We start in Section 2 with an arbitrary vector space U1. We associate a Z-graded Lie algebra
U to it, from which we in turn construct the Lie algebra S of symmetric operators on U1. The
Z-graded Lie algebra U associated to a vector space U1 was introduced in Ref. [9], but here
we use a different recursive approach, following Refs. [17, 18].

� In Section 3, we modify the construction: we then start with a vector space U1 that is
equipped with a Z2-grading, to which we associate a Z-graded Lie superalgebra U [18]. From
U we construct the Lie superalgebra S of symmetric operators on U1 (where the symmetry is
now actually a Z2-graded symmetry).

� In Section 4, we furthermore assume that the vector space U1 itself is a Lie superalgebra G:
This means that it is equipped with a Lie superbracket, consistent with the Z2-grading already
present in Section 3. We show that it extends to a Lie superbracket on S (different from the
one defined in Section 3).

� In Section 5, we still assume U1 ¼ G but also that this Lie superalgebra decomposes into a dir-
ect sum G ¼ H� E, where H is a subalgebra. We show that it extends to a corresponding
direct sum S ¼ SH � SE : As our main result, Theorem 5.4, we show that there is a Lie super-
algebra homomorphism from G to SE : This result generalizes the main theorem in Ref. [10]
from Lie algebras to Lie superalgebras.

� In Section 6, we assume that U1 ¼ G itself has a Z-grading consistent with the Z2-grading,
and is equipped with a differential, turning it into a differential graded Lie algebra. As an
example of an application of our main result, we use it in order to construct an L1-algebra
from G, and show that the brackets agree with those given explictly in Ref. [6].

2. The Z-graded Lie algebra associated to a vector space

We start with an arbitrary vector space U1 over some field of characteristic zero, from which we
define vector spaces U0,U�1,U�2, : : : recursively by

U�pþ1 ¼ HomðU1,U�pþ2Þ (2.1)

for p ¼ 1, 2, : : :: Thus U�pþ1 consists of all linear maps from U1 to U�pþ2, and in particu-
lar U0 ¼ End U1:

Let Ap 2 U�pþ1, for some p ¼ 1, 2, : : :, and let x1, x2, : : : 2 U1: Then Apðx1Þ 2 U�pþ2 and if
pP 2, this means that Apðx1Þðx2Þ ¼ ðApðx1ÞÞðx2Þ is an element in U�pþ3: Continuing in this
way, we finally find that Aðx1Þðx2Þ � � � ðxpÞ is an element in U1, which we may also write as
Aðx1, x2, : : :, xpÞ: Thus we have a vector space isomorphism

U�pþ1 ¼ HomðU1,U�pþ2Þ ’ HomððU1Þp,U1Þ (2.2)

and we may consider elements in U�pþ1 not only as linear maps from U1 to U�pþ2 but also as
linear maps from ðU1Þp to U1, or as p-linear operators on U1. We will refer to elements in U�pþ1
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simply as operators of order p, even for p¼ 0, so that the elements in U1 are considered as opera-
tors of order zero.

2.1. The Lie algebra U02

Next we let U0� be the direct sum of the vector spaces defined in the previous section, U0� ¼
U0 � U�1 � U�2 � � � � : For any Ap 2 U�pþ1 (where p ¼ 1, 2, : : :) and any x 2 U1, we write

Ap � x ¼ ApðxÞ, x � Ap ¼ 0: (2.3)

We then define a map

� : U�pþ1 	 U�qþ1 ! U�ðpþq�1Þþ1, ðAp,BqÞ 7! Ap � Bq (2.4)

for any p, q ¼ 1, 2, : : : recursively by

ðA � BÞðxÞ ¼ A � BðxÞ þ AðxÞ � B (2.5)

and extend it to a bilinear operation on U0� by linearity. For p ¼ q ¼ 1 this is the usual compos-
ition of (linear) maps,

ðA1 � B1ÞðxÞ ¼ A1 � B1ðxÞ þ A1ðxÞ � B1 ¼ A1ðB1ðxÞÞ, (2.6)

where the last equality follows from (2.3) since B1ðxÞ and A1ðxÞ are elements in U1. We give two
more examples,

ðA2 � B1Þðx1, x2Þ ¼ ðA2 � B1Þðx1Þðx2Þ
¼ ðA2 � B1ðx1Þ þ A2ðx1Þ � B1Þðx2Þ
¼ ðA2 � B1ðx1ÞÞðx2Þ þ A2ðx1Þ � B1ðx2Þ þ A2ðx1Þðx2Þ � B1

¼ A2ðB1ðx1ÞÞðx2Þ þ A2ðx1ÞðB1ðx2ÞÞ
¼ A2ðB1ðx1Þ, x2Þ þ A2ðx1,B1ðx2ÞÞ,

(2.7)

ðB1 � A2Þðx1, x2Þ ¼ ðB1 � A2Þðx1Þðx2Þ
¼ ðB1 � A2ðx1Þ þ B1ðx1Þ � A2Þðx2Þ
¼ ðB1 � A2ðx1ÞÞðx2Þ
¼ B1 � A2ðx1Þðx2Þ þ B1ðx2Þ � A2ðx1Þ
¼ B1 � A2ðx1, x2Þ ¼ B1ðA2ðx1, x2ÞÞ,

(2.8)

which are easily generalized to

ðAp � B1Þðx1, x2, : : :, xpÞ ¼ ApðB1ðx1Þ, x2, : : :, xpÞÞ
þ Apðx1,B1ðx2Þ, : : :, xpÞÞ
þ � � � þ Apðx1, x2, : : :,B1ðxpÞÞÞ,

(2.9)

ðB1 � ApÞðx1, x2, : : :, xpÞ ¼ B1ðApðx1, x2, : : :, xpÞÞ: (2.10)

In these examples, the subscripts of the operators indicate their orders (whereas the subscripts on
elements x in U1 are just labels used to distinguish them from each other).

The property U�pþ1 � U�qþ1 � U�ðpþq�1Þþ1 means that U0� is a Z-graded algebra with respect
to � (with vanishing subspaces corresponding to positive integers). The following proposition
says that this algebra furthermore is associative.

Proposition 2.1. The vector space U0� together with the bilinear operation � is an associa-
tive algebra.
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Proof. We will show that

ððAp � BqÞ � CrÞðxÞ ¼ ðAp � ðBq � CrÞÞðxÞ (2.11)

for any triple of operators Ap,Bq,Cr of order p, q, rP 1, respectively, and any x 2 U1: We do this
by induction over pþ qþ rP 3: When pþ qþ r ¼ 3, we have p ¼ q ¼ r ¼ 1, and the assertion
follows by (2.6). Suppose now that it holds when pþ qþ r ¼ s for some sP 3, and set pþ qþ
r ¼ sþ 1: We then have (omitting the subscripts)

ðA � ðB � CÞÞðxÞ ¼ A � ðB � CÞðxÞ þ AðxÞ � ðB � CÞ
¼ A � ðB � CðxÞÞ þ A � ðBðxÞ � CÞ þ AðxÞ � ðB � CÞ
¼ ðA � BÞ � CðxÞ þ ðA � BðxÞÞ � C þ ðAðxÞ � BÞ � CÞ
¼ ðA � BÞ � CðxÞ þ ðA � BÞðxÞ � C
¼ ððA � BÞ � CÞðxÞ,

(2.12)

using the induction hypothesis in the third step, and the proposition follows by the principle of
induction. w

Note that the identity (2.11) is not satisfied when r¼ 0 and p, q 6¼ 0: Then (omitting the sub-
scripts and setting C0 ¼ x) we instead have the (right) Leibniz identity

ðA � BÞ � x ¼ A � ðB � xÞ þ ðA � xÞ � B: (2.13)

For any A,B 2 U0�, we now set

vA,Bb ¼ A � B� B � A (2.14)

and we have the following obvious consequence of Proposition 2.1.

Corollary 2.2. The vector space U0� together with the bracket v � , � b is a Lie algebra.

2.2. Extending U02 to U

Let Uþ ¼ U1 � U2 � � � � be the free Lie algebra generated by the vector space U1 (with the natural
Zþ-grading) and set

U ¼ U0� � Uþ ¼ � � � � U�1 � U0 � U1 � U2 � � � � : (2.15)

We will use the notation

Uiþ ¼ �
jP i

Uj, Ui� ¼�
j6 i

Uj (2.16)

for any i 2 Z:
We use the same notation v � , � b for the two Lie brackets on U0� and Uþ, respectively, and

we will now unify them into one Lie bracket on the whole of U, the direct sum of these two vec-
tor spaces. We thus have to define brackets vA, ub ¼ �vu,Ab for any A 2 U0� and u 2 Uþ: For
u ¼ x 2 U1 we set

vA, xb ¼ AðxÞ: (2.17)

If u 2 U2þ, then we may assume that u ¼ vv,wb for some v,w 2 Uþ: We then define recursively

vA, vv,wbb ¼ vvA, vb,wb� vvA,wb, vb (2.18)

and extend the bracket by linearity to the case when u is a sum of such terms vv,wb: In order to
ensure that the definition is meaningful, we have to show that it respects the Jacobi identity in
the sense that

vA, vvu, vb,wbb ¼ vA, vu, vv,wbbb� vA, vv, vu,wbbb (2.19)
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for any A 2 U0� and u, v,w 2 Uþ: Indeed, we get

vA, vvu, vb,wbb ¼ vvA, vu, vbb,wb� vvA,wb, vu, vbb
¼ vvvA, ub, vb,wb� vvvA, vb, ub,wb� vvvA,wb, ub, vbbþ vvvA,wb, vb, ubb
¼ vvvA, ub,wb, vb� vvvA, vb,wb, ub� vvvA,wb, ub, vbbþ vvvA,wb, vb, ubb

þ vvA, ub, vv,wbb� vvA, vb, vu,wbb
¼ vvA, vu,wbb, vb� vvA, vv,wbb, ub

þ vvA, u, bvv,wbb� vvA, vb, vu,wbb
¼ vA, vu, vv,wbbb� vA, vv, vu,wbbb

(2.20)

using Jacobi identities like

vvA,wb, vu, vbb ¼ vvvA,wb, ub, vbb� vvvA,wb, vb, ubb: (2.21)

Such Jacobi identities follow either (if vA,wb 2 Uþ) by the fact that Uþ is a Lie algebra or (if
vA,wb 2 U0�) by the definition (2.18).

Proposition 2.3. The vector space U ¼ U0� � Uþ together with the bracket v � , � b is a Lie algebra.

Proof. The Jacobi identities with either all three elements in U0� or all three elements in Uþ are
satisfied, by Corollary 2.2 and by the construction of Uþ as a free Lie algebra. Also the Jacobi
identities with one element in U0� and two elements in Uþ are satisfied, by the definition (2.18).
It only remains to check the Jacobi identities with two elements A,B 2 U0� and one element u 2
Uþ: Assuming that u is homogeneous with respect to the Z-grading, u 2 Uk, this can be done by
induction over kP 1: For k¼ 1, we have

vvA,Bb, ub ¼ vA,BbðuÞ ¼ ðA � B� B � AÞðuÞ
¼ A � BðuÞ þ AðuÞ � B� B � AðuÞ � BðuÞ � A
¼ vA,BðuÞb� vB,AðuÞb ¼ vA, vB, ubb� vB, vA, ubb:

(2.22)

For kP 2, we may (as above), assume that u ¼ vv,wb, where v,w 2 U1þ: Assuming furthermore
(as the induction hypothesis) that

vvA,Bb, vb ¼ vA, vB, vbb� vB, vA, vbb,
vvA,Bb,wb ¼ vA, vB,wbb� vB, vA,wbb,

(2.23)

we get

vvA,Bb, ub ¼ vvA,Bb, vv,wbb
¼ vvvA,Bb, vb,wb� vvvA,Bb,wb, vb
¼ vvA, vB, vbb,wb� vvB, vA, vbb,wb� vvA, vB,wbb, vbþ vvB, vA,wbb, vb
¼ vA, vvB, vb,wbb� vB, vvA, vb,wbb� vA, vvB,wb, vbbþ vvB, vvA,wb, vbb

� vvB, vb, vA,wbbþ vvA, vb, vB,wbbþ vvB,wb, vA, vbb� vvA,wb, vB, vbb
¼ vA, vB, vv,wbbb� vB, vA, vv,wbbb
¼ vA, vB, ubb� vB, vA, ubb,

(2.24)

and it follows by induction that also these Jacobi identities are satisfied. w

2.3. The Lie algebra S of symmetric operators

For pP 0, let S�pþ1 be the subspace of U�pþ1 consisting of elements Ap 2 U�pþ1 such that
vAp, ub � U2þ for all u 2 U2þ, and set
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S ¼ �
pP 0

S�pþ1: (2.25)

Because of the Z-grading, if pP 2 then S�pþ1 consists of all operators Ap such that vA, ub ¼ 0 for
all u 2 U2þ, whereas S0 ¼ U0 and S1 ¼ U1. Furthermore, S� U2þ is the idealizer (or normaliser)
of U2þ in U, and S can be identified with the quotient space obtained by factoring out U2þ from
its idealizer in U.

We will refer to elements in S�pþ1 as symmetric operators of order p, and a linear combination
of symmetric operators will also be called a symmetric operator, even if it is not homogenous
with respect to the Z-grading. Note that we consider all elements in U0 as symmetric operators
of order one, and even all elements in U1 as symmetric operators of order zero.

It follows easily by the Jacobi identity that if A is a symmetric operator of order one or higher,
then A � x is a symmetric operator as well, for any x 2 U1:

The operators in U of order two or higher included in S are indeed precisely those that are
symmetric in the following sense. If A2 2 S�1 and x, y 2 U1 (so that vx, yb 2 U2), then

0 ¼ vA2, vx, ybb ¼ vvA2, xb, yb� vvA2, yb, xb
¼ A2ðxÞðyÞ � A2ðyÞðxÞ ¼ A2ðx, yÞ � A2ðy, xÞ,

(2.26)

so that A2ðx, yÞ ¼ A2ðy, xÞ: It is straightforward to show that generally, the condition vAp, ub ¼ 0
for all u 2 U2þ is equivalent to the condition that

Apðx1, : : :, xpÞ ¼ Apðy1, : : :, ypÞ, (2.27)

where ðy1, : : :, ypÞ is any permutation of ðx1, : : :, xpÞ: We write this (as usual) as

Apðx1, : : :, xpÞ ¼ Apðxð1, : : :, xpÞÞ, (2.28)

where the right hand side denotes 1=p! times the sum of Aðy1, : : :, ypÞ over all permutations
ðy1, : : :, ypÞ of ðx1, : : :, xpÞ:

For any symmetric operator Ap there is a unique corresponding map U1 ! U1 (non-linear if
p 6¼ 1) given by x 7! Aðx, x, : : :, xÞ: In order to characterize a symmetric operator Ap it is thus
sufficient to set x1 ¼ x2 ¼ � � � ¼ xp in Aðx1, : : :, xpÞ:

In particular for symmetric operators, it is convenient to replace the bilinear operation � on
U0� by another one, which differs from � by normalization. We define a bilinear operation � on
U0� by

Ap � Bq ¼ p! q!
ðpþ q� 1Þ!Ap � Bq (2.29)

for Ap 2 U�pþ1 and Bq 2 U�qþ1: If Ap and Bq are symmetric operators, we then get

ðAp � BqÞðx, x, : : :, xÞ ¼ pApðBqðx, x, : : :, xÞ, x, : : :, xÞ: (2.30)

Since Ap � Bq is an operator of order pþ q� 1, the linear map / : U0� ! U0� given by

/ðApÞ ¼ 1
p!
Ap (2.31)

satisfies

/ðAÞ � /ðBÞ ¼ /ðA � BÞ (2.32)

for any two operators A and B and thus the two algebras obtained by equipping the vector space
U0� with � and �, respectively, are isomorphic to each other.

We now extend the bilinear operation � from U0� to U1�: First we set

Ap � x ¼ pðAp � xÞ ¼ pApðxÞ, x � Ap ¼ 0 (2.33)
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for Ap 2 U�pþ1 (where p ¼ 1, 2, : : :Þ and x 2 U1: Thus the definition (2.29) is still valid if we
allow one of Ap and Bq to be an operator of order zero, that is, an element in U1. For example,
we have

ðAp � yÞðx1, : : :, xp�1Þ ¼ pApðy, x1, : : :, xp�1Þ, (2.34)

whereas

ðAp � yÞðx1, : : :, xp�1Þ ¼ Apðy, x1, : : :, xp�1Þ: (2.35)

Second, we set

x � y ¼ 0 (2.36)

for x, y 2 U1 in order to close U1� under �: This makes the operation � really different from �
(not only up to normalization), since we kept x � y undefined.

For any A,B 2 S, we set

vA,Bb ¼ A � B� B � A: (2.37)

It follows that the vector space S equipped with this bracket is a Lie algebra isomorphic to the
quotient algebra obtained by factoring out U2þ from the idealizer of U2þ in U. Moreover, if U1 is
n-dimensional, it is straightforward to show that S is isomorphic to the Lie algebra Wn of formal
vector fields

Pn
i¼1 fi

@
@xi

, where fi are formal power series in n variables x1, : : :, xn:

3. Generalization from Lie algebras to Lie superalgebras

We will now repeat the steps in the preceding section in a more general case. Instead of starting
with an arbitrary vector space U1 we now start with an arbitrary Z2-graded vector space U1:
Thus U1 can be decomposed into a direct sum U1 ¼ U1

ð0Þ � U1
ð1Þ of two subspaces U1

ð0Þ and
U1

ð1Þ: Like for any Z2-graded vector space, these subspaces (and their elements) are said to be
even and odd, respectively. This leads to a corresponding decomposition

Upþ1 ¼ Upþ1
ð0Þ � Upþ1

ð1Þ (3.1)

of each vector space Upþ1, by refining (2.1) to

Upþ1
ð0Þ ¼ Hom ðU1

ð0Þ,U�pþ2
ð0ÞÞ �Hom ðU1

ð1Þ,U�pþ2
ð1ÞÞ,

Upþ1
ð1Þ ¼ Hom ðU1

ð0Þ,U�pþ2
ð1ÞÞ �Hom ðU1

ð1Þ,U�pþ2
ð0ÞÞ:

(3.2)

Now, let Uþ ¼ U1 � U2 � � � � be the free Lie superalgebra generated by U1 (with the natural
Z-grading) and set

U ¼ U0� � Uþ ¼ � � � � U�1 � U0 � U1 � U2 � � � � : (3.3)

We thus have a Z2-graded vector space U ¼ Uð0Þ � Uð1Þ: If u 2 U0�ðiÞ for i¼ 0, 1, we use the
notation juj ¼ i for the Z2-degree of u.

We can now repeat the steps in the preceding section, carrying over notation and terminology
in a straightforward way. The formulas will however differ from those in the preceding section by
factors of powers of ð�1Þ, where we (without loss of generality) have to assume that the elements
in U that appear are homogeneous with respect to the Z2-grading.

Thus, we equip U0� with an associative bilinear operation �, from which we define a Lie
superbracket v � , � b on U0�: In these definitions, we modify (2.5) to

ðA � BÞðxÞ ¼ A � BðxÞ þ ð�1ÞjBjjxjAðxÞ � B (3.4)

and (2.14) to
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vA,Bb ¼ A � B� ð�1ÞjAjjBjB � A: (3.5)

When we then unify the brackets on U0� and Uþ to one on the whole of U , we keep the defin-
ition vA, xb ¼ AðxÞ in (2.17), but modify (2.18) to

vA, vv,wbb ¼ vvA, vb,wb� ð�1ÞjvjjwjvvA,wb, vb: (3.6)

We do not give the proofs here, since they differ from those given in the preceding section only
by factors of powers of ð�1Þ:

In fact, the modifications made here are actually generalizations, since the Lie superalgebra U
reduces to the original Lie algebra U in the special case where U1 has a trivial odd subspace, U1

ð1Þ ¼
0: Thus, starting with a vector space U1, we can decompose it in different ways into a direct sum of
an even and an odd subspace, which lead to different associated Z-graded Lie superalgebras U: The
decomposition where U1 is considered as an even vector space (coinciding with its even subspace)
leads to the associated Z-graded Lie algebra described in the preceding section. But we can also con-
sider it as an odd vector space. Only in this case the Z-grading of the Lie superalgebra is consistent,
which means that U i � Uð0Þ if i is even and U i � Uð1Þ if i is odd.

The Lie superalgebra S, constructed from U in the same way as S is constructed from U, now
consists of operators with a Z2-graded symmetry, rather than purely symmetric ones. However,
for simplicity we will still refer to them as symmetric operators. Generalizing the notation (2.28),
we denote Z2-graded symmetry with angle brackets rather than ordinary parentheses, so that

Apðx1, : : :, xpÞ ¼ Apðxh1, : : :, xpiÞ (3.7)

if Ap 2 S, where the right hand side denotes 1=p! times the sum of ð�1ÞeAðy1, : : :, ypÞ over all per-
mutations ðy1, : : :, ypÞ of ðx1, : : :, xpÞ, where e is the number of transpositions of two odd elements.

3.1. Leibniz algebras

In the next section we will assume that the Z2-graded vector space U1 is a Lie superalgebra. Before
that, we will briefly give another example of a case where U1 is an algebra. In many such cases, iden-
tities for elements in this algebra can be reformulated as identities for elements in the associated
Z-graded Lie superalgebra U , including the bilinear operation of the algebra as an element in U�1:

A (left) Leibniz algebra is an algebra U1 where the bilinear operation 
 satisfies the (left)
Leibniz identity

x
 ðy
 zÞ ¼ ðx
 yÞ 
 z þ y
 ðx
 zÞ: (3.8)

If we now consider U1 as a Z2-graded vector space with trivial even subspace and let H be the
element in U�1 associated to 
 by

x
 y ¼ Hðx, yÞ ¼ HðxÞðyÞ ¼ vvH, xb, yb (3.9)

then the Leibniz identity (3.9) is equivalent to the condition

vH,Hb ¼ 0: (3.10)

(Since U1 is odd, U�1 is odd as well, and the condition vH,Hb ¼ 0 is not trivially satisfied, but
equivalent to H �H ¼ 0). Indeed, by the Jacobi identity (keeping in mind that H, x, y, z are all odd),

vH,Hbðx, y, zÞ ¼ vvvvH,Hb, xb, yb, zb
¼ 2vvvH, vH, xbb, yb, zb
¼ 2vvH, vvH, xb, ybb, zbþ 2vvvH, yb, vH, xbb, zb
¼ 2vvH, vvH, xb, ybb, zbþ 2vvH, yb, vvH, xb, zbb� 2vvH, xb, vvH, yb, zbb
¼ 2ðx
 yÞ 
 z þ 2y
 ðx
 zÞ � 2x
 ðy
 zÞ:

(3.11)
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Now let hHi be the one-dimensional subspace of U�1 spanned by H. Since vH,Hb ¼ 0, the sub-
space hHi � U0þ of U is a subalgebra. This Lie superalgebra can also be considered as a differ-
ential graded Lie algebra U0þ with a differential vH, � b: Thus any Leibniz algebra gives rise to a
differential graded Lie algebra [2, 11, 14]. In Section 6 we will see how in turn any differential
graded Lie algebra gives rise to an L1-algebra.

4. The case when U1 is a Lie superalgebra G
We now assume not only that U1 is a Z2-graded vector space, but furthermore that U1 is a Lie
superalgebra G with a bracket ½�, ��: We extend the bracket to the whole of U1� recursively by

A,B½ � � x ¼ A,B � x½ � þ ð�1ÞjxjjBj A � x,B½ �: (4.1)

We recall that any operator Ap of order p is defined by its action on U1, and that Ap � x ¼
pApðxÞ: If B¼ y is an element in U0, that is, an operator of order zero, then y � x ¼ 0, so that

A, y½ � � x ¼ A, y � x½ � þ ð�1Þjxjjyj A � x, y½ � ¼ ð�1Þjxjjyj A � x, y½ �: (4.2)

Proposition 4.1. The Z2-graded vector space U1� together with the bracket ½�, �� is a Lie
superalgebra.

Proof. We will show that the Jacobi identity

A,B½ �,C½ � ¼ A, B,C½ �½ � þ ð�1ÞjBjjCj A,C½ �,B½ � (4.3)

is satisfied for any triple of operators A, B, C of order p, q, r, respectively, by induction over pþ
qþ rP 0: When pþ qþ r ¼ 0, we have p ¼ q ¼ r ¼ 0 and the Jacobi identity is satisfied since
G is a Lie superalgebra. If we assume that it is satisfied when pþ qþ r ¼ s for some sP 0 and
set pþ qþ r ¼ sþ 1 we then get

A,B½ �,C½ � � x ¼ A,B½ �,C � x½ � þ ð�1ÞjCjjxj A,B½ � � x,C½ �
¼ A, B,C � x½ �½ � þ ð�1ÞjBjðjCjþjxjÞ A,C � x½ �,B½ �

þ ð�1ÞjCjjxj A,B � x½ �,C½ � þ ð�1ÞjBjjxjþjCjjxj A � x,B½ �,C½ �
¼ A, B,C � x½ �½ � þ ð�1ÞjBjðjCjþjxjÞ A,C � x½ �,B½ �

þ ð�1ÞjCjjxj A, B � x,C½ �½ � þ ð�1ÞjBjjxjþjCjjxj A � x, B,C½ �½ �
þ ð�1ÞjBjjCj A,C½ �,B � x½ � þ ð�1ÞjBjjCjþjBjjxjþjCjjxj A � x,C½ �,B½ �

¼ A, B,C½ � � x½ � þ ð�1ÞjBjðjCjþjxjÞ A,C½ � � x,B½ �
þ ð�1ÞjBjjxjþjCjjxj A � x, B,C½ �½ �
þ ð�1ÞjBjjCj A,C½ �,B � x½ �

¼ A, B,C½ �½ � � xþ ð�1ÞjBjjCj A,C½ �,B½ � � x

(4.4)

using the induction hypothesis in the second and third steps, and the proposition follows by the
principle of induction. w

It is furthermore easy to see that this Lie algebra is Z-graded, but the Z-grading is different
from the one that is respected by v � , � b (on the subspace U0�). We have

U�pþ1,U�qþ1
� � � U�ðpþqÞþ1 (4.5)

so the relevant Z-degree of an operator is just (the negative of) its order.
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We will now show that the subspace S of the Lie superalgebra U closes under the bracket
(4.1) and thus form a subalgebra.

Proposition 4.2. If A,B 2 S, then ½A,B� 2 S as well.

Proof. Since all operators of order zero or one are included in S, and because of the Z-grading
(4.5), we can assume that both A and B are of order one or higher, so that ½A,B� is of order two
or higher.

We have to show that vvA,Bb, ub ¼ 0 for any u 2 U2þ: We first show this for u 2 U2þ, and in
particular when u ¼ vx, yb for x, y 2 U1: Thus we have to show that

ð A,B½ � � xÞ � y� ð�1Þjxjjyjð A,B½ � � yÞ � x ¼ 0 (4.6)

under the assumption that

ðA � xÞ � y� ð�1ÞjxjjyjðA � yÞ � x ¼ 0 (4.7)

and

ðB � xÞ � y� ð�1ÞjxjjyjðB � yÞ � x ¼ 0: (4.8)

The first term in (4.6) is equal to

A,B � x½ � � yþ ð�1ÞjBjjxj A � x,B½ � � y ¼ A, ðB � xÞ � y� �
þ ð�1ÞjyjðjBjþjxjÞ A � y,B � x½ �
þ ð�1ÞjBjjxj A � x,B � y½ �
ð�1ÞjBjjxjþjBjjyj ðA � xÞ � y,B� �

:

(4.9)

Now the second and third term on the right hand side cancel the corresponding contributions
from the second term in (4.6). Furthermore, the first and fourth term cancel the corresponding
contributions from the second term in (4.6) by (4.7) and (4.8). When u 2 Uk for kP 3, we can
assume u ¼ vx, vb, where v 2 U2þ: If we then assume that v½A,B�, vb ¼ 0 (as induction hypoth-
esis), we get

v A,B½ �, vx, vbb ¼ vv A,B½ �, xb, vb ¼ v A,B½ � � x, vb, (4.10)

which is proportional to

v A,B½ � � x, vb ¼ v A,B � x½ �, vbþ ð�1ÞjBjjxjv A � x,B½ �, vb: (4.11)

Now, since A and B are symmetric, A � x and B � x are symmetric as well, and the proposition
can be proven by induction. w

For Ap 2 S�pþ1 and Bq 2 S�qþ1, considering the operator ½Ap,Bq� as a linear map ðU1Þpþq !
U1, we have

Ap,Bq½ �ðx1, : : :, xpþqÞ ¼ Apðxh1, : : :, xpÞ,Bqðxpþ1, : : :, xqiÞ
� �

: (4.12)

The next proposition says that the identity (4.1) can be generalized in the sense that x 2 U1

can be replaced by any C 2 U1�: We omit the proof since the steps are the same as in
Proposition 4.1.

Proposition 4.3. For any A,B,C 2 U1�, we have

A,B½ � � C ¼ A,B � C½ � þ ð�1ÞjBjjCj A � C,B½ �: (4.13)
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4.1. Multiple brackets involving the identity map

The identity map on U1 is an even symmetric operator of order one. We denote it simply by 1,
so that 1 � x ¼ 1ðxÞ ¼ x and

A, 1½ � � x ¼ A, 1 � x½ � þ A � x, 1½ � ¼ A, x½ � þ A � x, 1½ �: (4.14)

We now generalize this notation and, for any integer kP 1 write

A, k½ � ¼ � � � A, 1½ �, 1½ �, : : :, 1½ � (4.15)

where the identity map 1 appears k times on the right hand side. We will furthermore from now
on use multibrackets to denote nested brackets (for any elements in any Lie superalgebra) and
write (4.15) as

A, k½ � ¼ A, 1, 1: : :, 1½ �: (4.16)

Note that ½A, i, j� ¼ ½A, iþ j�:
Proposition 4.4. If A 2 S, then ½A, k� 2 S as well.

Proof. By induction, using that ½A, k, 1� ¼ ½A, kþ 1�, it suffices to show this in the case when
k¼ 1, which is a special case of Proposition 4.2. w

For Ap 2 S�pþ1, considering ½Ap, q� as linear map U1
pþq ! U1, we have

Ap, q½ �ðx1, : : :, xpþqÞ ¼ Apðxhx1 , : : :, xpÞ, xpþ1, : : :, xpþqi
� �

: (4.17)

In calculations with multiple brackets involving the identity map, we will need the rules in the
next proposition. They are more or less obvious when reformulated in the notation (4.17) and
also straightforward to prove rigorously in the more compact notation that we have demonstrated
here. However, since the calculations are rather lengthy, and we have already given similar proofs,
we omit this one.

Proposition 4.5. Let A and B be operators and nP 1 an integer. Then we have

A,B, n½ � ¼
Xn
k¼0

n
k

� �
A, k, B, n� k½ �½ � (4.18)

and

A, n½ � � B ¼
X

iþj¼n�1

A, i,B, j½ � þ A � B, n½ �

¼
X

iþj¼n�1

n

jþ 1

 !
A, i, B, j½ �½ � þ A � B, n½ �:

(4.19)

In the summations in (4.19), the summation variables i and j take all non-negative integer values
(such that iþ j ¼ n� 1), and we set ½A, 0� ¼ A for any operator A. Also in all summations below,
the summation variables are allowed to be zero, unless otherwise stated.

5. Main theorem

Suppose that the Lie superalgebra U1 ¼ G decomposes into a direct sum G ¼ H� E of a subalge-
bra H and a subspace E: For any x 2 G, we write x ¼ xH þ xE , where xH 2 H and xE 2 E: Since
H is a subalgebra, we thus have

aH, bH½ � ¼ aH , bH½ �H (5.1)
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and ½aH , bH�E ¼ 0 for any a, b 2 G: Then this decomposition of U1 ¼ G extends to a decompos-
ition of the Lie superalgebra S into a corresponding direct sum S ¼ SH � SE , where SH is a
subalgebra. For any A 2 U1�, we define AH and AE recursively by

AH � x ¼ ðA � xÞH, AE � x ¼ ðA � xÞE (5.2)

for any x 2 G: It follows immediately that A ¼ AH þ AE , and also that if A 2 S, then AH 2 S
and AE 2 S as well. We let SH and SE be the subspaces spanned by all AH and AE , respectively,
such that A 2 S: We then have the following proposition, which can be proven in the same way
as Proposition 4.1, by induction over the sum of the orders of A and B.

Proposition 5.1. For any A,B 2 S, we have
AH,BH½ � ¼ AH ,BH½ �H: (5.3)

Thus the subspace SH of the Lie superalgebra S is a subalgebra.
The next proposition says that the identity (5.2) can be generalized in the sense that x 2 U1

can be replaced by any B 2 S: Again, it can be proven in the same way as Proposition 4.1, by
induction over the order of B.

Proposition 5.2. For any A,B 2 S we have

AH � B ¼ ðA � BÞH, AE � B ¼ ðA � BÞE (5.4)

We thus obtain the following generalization of Proposition 4.5 by projecting all outermost brack-
ets on E:

Proposition 5.3. Let A and B be operators and nP 1 an integer. Then we have

A,B, n½ �E ¼
Xn
k¼0

n
k

� �
A, k, B, n� k½ �½ �E (5.5)

and

Ap , n½ �E � Bq ¼
X

iþj¼n�1

Ap, i,Bq, j½ �E þ Ap � Bq , n½ �E

¼
X

iþj¼n�1

n

jþ 1

 !
Ap , i, Bq, j½ �� �

E þ Ap � Bq, n½ �E :
(5.6)

Proof. This follows directly from Propositions 4.5 and 5.2. w

In particular, when n¼ 1 we have the identity

A, 1½ �E � B ¼ A,B½ �E þ A � B, 1½ �E , (5.7)

which we will use below (in the case where A and B are operators of order zero, so that the
second term vanishes).

For any a 2 G and any integer pP 0, we define aðpÞ 2 S1�p recursively by

að0Þ ¼ aE (5.8)

and

aðpÞ ¼ 1
p!

a, p½ �E �
X

qþr¼p�1

1
ðr þ 2Þ! aðqÞ, r þ 1

� �
E (5.9)

for pP 1: In particular, we have
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að1Þ ¼ a, 1½ �E �
1
2
aE , 1½ �E , (5.10)

and thus

að1Þ � x ¼ a, x½ �E �
1
2
aE , x½ �E : (5.11)

For example,

að2Þðx1, x2Þ ¼ 1
2!

a, xh1, x2i½ �E �
1
2!

a, xh1½ �E , x2i
� �

E

� 1
3!

aE , xh1, x2i½ �E þ
1

2!2!
aE , xh1½ �E , x2i
� �

E :
(5.12)

For any a 2 G we also define

~aðpÞ ¼ 1
p!

a, p½ � �
X
qþr¼p

1
ðr þ 1Þ! aðqÞ, r� �

: (5.13)

This is however not a recursive definition, since it is a(q), not ~aðqÞ, that appears in the second
term, and r þ 1P 1 is replaced by rP 0: Note also that the bracket is not projected on E: In
fact, ~aðpÞ is projected on H, since

~að0Þ ¼ a, 0½ � � að0Þ, 0½ � ¼ a� að0Þ ¼ a� aE ¼ aH (5.14)

and

~aðpÞ ¼ 1
p!

a, p½ � �
X

qþs¼p�1

1
ðsþ 2Þ! aðqÞ, sþ 1

� �� aðpÞ

¼ 1
p!

a, p½ � �
X

qþs¼p�1

1
ðsþ 2Þ! aðqÞ, sþ 1

� �

� 1
p!

a, p½ �E þ
X

qþr¼p�1

1
ðr þ 2Þ! aðqÞ, r þ 1

� �
E

¼ 1
p!

a, p½ �H �
X

qþr¼p�1

1
ðr þ 2Þ! aðqÞ, r þ 1

� �
H

(5.15)

for pP 1: It follows that

~aðpÞ, ~bðqÞ
h i

E ¼ 0 (5.16)

for any a, b and p, qP 0:
We are now ready to formulate and prove our main theorem.

Theorem 5.4. The map

G ! SE , a 7!
X1
p¼0

aðpÞ (5.17)

is a Lie superalgebra homomorphism.

Proof. We will show that

v
X1
p¼0

aðpÞ,
X1
q¼0

bðqÞb ¼
X1
r¼0

a, b½ �ðrÞ (5.18)

for any a, b 2 G: The left hand side is equal to
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X1
p¼0

X1
q¼0

vaðpÞ, bðqÞb ¼
X1
r¼0

X
pþq¼rþ1

vaðpÞ, bðqÞb: (5.19)

Thus it suffices to show that X
pþq¼rþ1

vaðpÞ, bðqÞb ¼ a, b½ �ðrÞ (5.20)

for r ¼ 0, 1, 2, : : :: We will do this by induction. When r¼ 0, the left hand side in (5.20) equalsX
pþq¼1

vaðpÞ, bðqÞb ¼ vað0Þ, bð1Þbþ vað1Þ, bð0Þb

¼ vaE , b, 1½ �Eb�
1
2
vaE , bE , 1½ �Eb

þ v a, 1½ �E , bEb�
1
2
v aE , 1½ �E , bEb

¼ �ð�1Þjajjbj b, 1½ � � aE þ 1
2
ð�1Þjajjbj bE , 1½ �E � aE

þ a, 1½ �E � bE �
1
2
aE , 1½ �E � bE

¼ �ð�1Þjajjbj b, aE½ � þ 1
2
ð�1Þjajjbj bE , aE½ �E

þ a, bE½ �E �
1
2
aE , bE½ �E

¼ a, bE½ �E þ aE , b½ �E � aE , bE½ �E ,

(5.21)

where we have used (5.7) and (5.10), whereas the right hand side equals ½a, b�E : Thus the right
hand side minus the left hand side equals

a, b½ �E � a, bE½ �E � aE , b½ �E þ aE , bE½ �E ¼ a� aE , b� bE½ �E ¼ aH , bH½ �E ¼ 0: (5.22)

In the induction step, we need to studyX
mþn¼k

vaðmÞ, bðnÞb ¼
X

mþn¼k

�
aðmÞ � bðnÞ � ð�1ÞjajjbjbðnÞ � aðmÞ

�
(5.23)

for some kP 2 and show that this the expression equals

a, b½ �ðk� 1Þ (5.24)

under the assumption that X
mþn¼s

vaðmÞ, bðnÞb ¼ a, b½ �ðs� 1Þ (5.25)

for s ¼ 1, : : :, k� 1:
We will first study the first term in the summand on the right hand side of (5.23), and a par-

ticular part of it. Its counterpart, the corresponding part of the second term in the summand, is
then obtained by interchanging a and b, and multiplying with ð�1Þjajjbj: In the summations in
(5.26) and (5.27) below where the summation variables add up to m� 1, the sum should be read
as zero if m¼ 0.
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We have

aðmÞ � bðnÞ ¼ 1
m!

a,m½ �E �
X

pþq¼m�1

1
ðqþ 2Þ! aðpÞ, qþ 1

� �
E

 !
� bðnÞ

¼ 1
m!

a,m½ �E � bðnÞ �
X

pþq¼m�1

1
ðqþ 2Þ! aðpÞ, qþ 1

� �
E � bðnÞ

¼ 1
m!

a � bðnÞ,m½ �E þ
1
m!

X
pþq¼m�1

m

qþ 1

 !
a, p½ �, bðnÞ, q� �h i

E

�
X

pþq¼m�1

1
ðqþ 2Þ! aðpÞ � bðnÞ, qþ 1

� �
E

�
X

pþq¼m�1

1
ðqþ 2Þ!

X
rþs¼q

qþ 1

sþ 1

 !
aðpÞ, r� �

, bðnÞ, s½ �� �
E

¼
X

pþq¼m�1

1
p!ðqþ 1Þ! a, p½ �, bðnÞ, q� �h i

E

�
X

pþq¼m�1

1
ðqþ 2Þ! aðpÞ � bðnÞ, qþ 1

� �
E

�
X

pþrþs¼m�1

1
ðr þ sþ 2Þ!

r þ sþ 1

sþ 1

 !
aðpÞ, r� �

, bðnÞ, s½ �� �
E :

(5.26)

The contribution to the sum (5.23) from the last term in (5.26), and its counterpart, is

X
mþn¼k

 
�

X
pþrþs¼m�1

1
ðr þ sþ 2Þ!

r þ sþ 1

sþ 1

 !
aðpÞ, r� �

, bðnÞ, s½ �� �
E

þ ð�1Þjajjbj
X

qþrþs¼n�1

1
ðr þ sþ 2Þ!

r þ sþ 1

r þ 1

 !
bðqÞ, s� �

, aðmÞ, r½ �� �
E

!

¼
X

pþqþrþs¼k�1

 
� 1
ðr þ sþ 2Þ!

r þ sþ 1

sþ 1

 !
aðpÞ, r� �

, bðqÞ, s� �� �
E

þ ð�1Þjajjbj 1
ðr þ sþ 2Þ!

r þ sþ 1

r þ 1

 !
bðqÞ, s� �

, aðpÞ, r� �� �
E

!

¼ �
X

pþqþrþs¼k�1

1
ðr þ sþ 2Þ!

 
r þ sþ 1

sþ 1

 !
þ r þ sþ 1

r þ 1

 !!
aðpÞ, r� �

, bðqÞ, s� �� �
E

¼ �
X

pþqþrþs¼k�1

1
ðr þ sþ 2Þ!

r þ sþ 2

r þ 1

 !
aðpÞ, r� �

, bðqÞ, s� �� �
E

¼ �
X

pþqþrþs¼k�1

1
ðr þ 1Þ!

1
ðsþ 1Þ! aðpÞ, r� �

, bðqÞ, s� �� �
E :

(5.27)

Taking all terms into account, we get
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X
mþn¼k

vaðmÞ, bðnÞb ¼
X

mþn¼k

ðaðmÞ � bðnÞ � ð�1ÞabbðnÞ � aðmÞÞ

¼
X

qþrþs¼k�1

1
r!ðsþ 1Þ! a, r½ �, bðqÞ, s� �� �

E ðaÞ

�
X

pþqþr¼k�1

1
ðr þ 2Þ! aðpÞ � bðqÞ, r þ 1

� �
E

�
X

pþqþrþs¼k�1

1
ðr þ sþ 2Þ!

r þ sþ 1

sþ 1

 !
aðpÞ, r� �

, bðqÞ, s� �� �
E

� ð�1Þab
X

pþrþs¼k�1

1
s!ðr þ 1Þ! b, s½ �, aðpÞ, r� �� �

E

þ ð�1Þab
X

pþqþr¼k�1

1
ðr þ 2Þ! bðqÞ � aðpÞ, r þ 1

� �
E

þ ð�1Þab
X

pþqþrþs¼k�1

1
ðr þ sþ 2Þ!

r þ sþ 1

r þ 1

 !
bðqÞ, s� �

, aðpÞ, r� �� �
E

¼
X

qþrþs¼k�1

1
r!ðsþ 1Þ! a, r½ �, bðqÞ, s� �� �

E ðbÞ

þ
X

pþrþs¼k�1

1
s!ðr þ 1Þ! aðpÞ, r� �

, b, s½ �� �
E

�
X

pþqþr¼k�1

1
ðr þ 2Þ! vaðpÞ, bðqÞb, r þ 1

� �
E

�
X

pþqþrþs¼k�1

1
ðr þ 1Þ!

1
ðsþ 1Þ! aðpÞ, r� �

, bðqÞ, s� �� �
E

¼ �
X

pþq¼k�1

~aðpÞ, ~bðqÞ
h i

E þ
X

pþq¼k�1

1
p! q!

a, p½ �, b, q½ �� �
E ðcÞ

�
X

pþq¼k�2

1
ðqþ 2Þ! a, b½ �ðpÞ, qþ 1

� �
E

¼ 1
ðk� 1Þ!

X
pþq¼k�1

k� 1

q

 !
a, p½ �, b, q½ �� �

E ðdÞ

�
X

pþq¼k�2

1
ðqþ 2Þ! a, b½ �ðpÞ, qþ 1

� �
E

¼ 1
ðk� 1Þ! a, b½ �, k� 1½ �E �

X
pþq¼k�2

1
ðqþ 2Þ! a, b½ �ðpÞ, qþ 1

� �
E ðeÞ

¼ a, b½ �ðk� 1Þ:

(5.28)

Here we have used (5.26) in (a). In (b) we have used the definition of v � , � b and (5.27). The
second and the fifth term on the right hand side of (a) go into the third term of the right hand
side of (b), whereas the third and sixth term of (a) go into the fourth term of the right hand side
of (b), by (5.27). In (c) we have used the definition (5.13) of ~aðpÞ and ~bðqÞ, and the induction
hypothesis. In (d) we have used (5.16) and in (e) we have used Proposition 5.3. The theorem
now follows by the principle of induction. w
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Considering aðpÞ ¼ ap as a linear map Gp ! E, we have

apðx1, : : :, xpÞ ¼
Xp
k¼0

X 1
m1!

ð�1Þ
ðm2 �m1 þ 1Þ! � � �

ð�1Þ
ðp�mk þ 1Þ!

	 ½½� � � ½½a, xh1, : : :, xm1 �E , xm1þ1, : : :, xm2 �E , xm2þ1, : : :

: : :, xmk �E , xmkþ1: : :, xpi�E ,

(5.29)

where the inner sum goes over all k-tuples of integers ðm1, : : :,mkÞ such that

06m1 < m2 < � � � < mk < p: (5.30)

If m1 ¼ 0 (and k> 0), the factor in the second and third line should be read as

	 ½½� � � ½aE , xh1, : : :, xm2 �E , xm2þ1, : : :

: : :, xmk �E , xmkþ1: : :, xpi�E :
(5.31)

If k¼ 0, the inner sum in (5.29) should be read as

1
p!

a, xh1, : : :, xpi½ �E : (5.32)

Here x1, : : :, xp 2 G, but since E is a subspace of G, we can as well assume x1, : : :, xp 2 E and con-
sider aðpÞ ¼ ap as a linear map Ep ! E:

6. Getzler’s theorem

As an example of an application, we end this paper by proving a theorem which says that any
differential graded Lie algebra (a Lie superalgebra with a consistent Z-grading and a differential)
gives rise to an L1-algebra (a generalization of a differential graded Lie algebra including also
higher brackets [12, 13]). Combined with the result described in Section 3.1 that any Leibniz alge-
bra gives rise to a differential graded Lie algebra, it leads to the conclusion that any Leibniz alge-
bra gives rise to an L1-algebra [11, 15, 16]. The theorem has already been proven in at least two
different ways in the literature. It follows from the results in Ref. [8] by Fiorenza and Manetti,
and has been proven more directly in Ref. [6] by Getzler. Here we follow Getzler’s formulation of
the it, and prove it using our main result, Theorem 5.4.

Suppose that the Lie superalgebra G has a consistent Z-grading, G ¼ �i2Z GðiÞ: Then this
Z-grading induces a Z-grading on each subspace Si of S, and thus a Z-grading of S, different
from the one that S comes with by construction,

Si ¼�
j2Z

Si
ðjÞ, SðjÞ ¼ �

i2Z
Si

ðjÞ: (6.1)

The two Z-gradings form together a ðZ	ZÞ-grading,
S ¼ �

ði, jÞ2Z	Z
Si

ðjÞ ¼ �
i2Z

Si ¼�
j2Z

SðjÞ: (6.2)

If there is an element Q 2 S0�ð�1Þ such that vQ,Qb ¼ 0, then G together with Q constitutes an
L1-algebra. The element Q can then be decomposed as a sum of elements Qp 2 S�pþ1, for p ¼
1, 2, : : :, each of which can be considered as a linear map Gp ! G, called a p- bracket. Following
Ref. [6], we use curly brackets for the p-brackets, Qpðx1, : : :, xpÞ ¼ fx1, : : :, xpg: The condition
vQ,Qb ¼ 0 decomposes into infinitely many identities for these p-brackets, similar to the usual
Jacobi identity.
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We note that there are different conventions for L1-algebras. The fact that we consider the p-
brackets as elements Qp 2 S�pþ1

ð�1Þ means that we use the convention where they are graded
symmetric and have degree �1.

Theorem 6.1. [6] Let L ¼ �i2Z Li be a differential graded Lie algebra with differential d of degree
–1 and bracket ½�, ��. Let D be the linear operator on L which equals d on L1 but vanishes on Li for
i 6¼ 1. Then the subspace �iP 1 Li is an L1-algebra with p-brackets given by

fxg ¼ dx� Dx (6.3)

for p¼ 1 and

fx1, x2, : : :, xpg ¼ � 1
ðp� 1Þ!Bp�1

� Dxh1, x2, : : :, xpi
� �

(6.4)

for p ¼ 2, 3, : : : where Bn
� are the Bernoulli numbers (Bn

� ¼ � 1
2 ,

1
6 , 0, � 1

30 , 0, : : : for
n ¼ 1, 2, 3, 4, 5, : : :Þ:

In Ref. [6] there appears to be a sign error that we have here corrected by inserting a minus
sign on the right hand side of (6.4) [15]. The occurrence of Bernoulli numbers in this context
was observed in Ref. [1], and it was also shown in Ref. [5] that they similarly show up in
extended geometry, encoding the gauge structure of generalized diffeomorphisms.

Proof. Let G�1 be a one-dimensional vector space spanned by an element H and set Gi ¼ Li for
i ¼ 0, 1, 2, : : :: Then

G ¼ G�1 � G0 � G1 � � � � (6.5)

is a consistently Z-graded Lie superalgebra, where the bracket in the subalgebra �iP 0 Li of L is
extended by ½H,H� ¼ 0 and ½H, x� ¼ dx for x 2 G0,G1, : : :: Furthermore, set H ¼ G�1 � G0 and
E ¼ G1 � G2 � � � � : Then H is a subalgebra of G and G ¼ H� E: We can thus use Theorem 5.4,
which in particular says that the element Q ¼P1

p¼0 HðpÞ in S satisfies vQ,Qb ¼ 0, since
½H,H� ¼ 0 in G: Also, it follows by the construction of HðpÞ and the Z-grading that HðpÞ 2
Sð�1Þ, since H 2 Sð�1Þ and the identity map 1 2 Sð0Þ: If we write HðpÞ ¼ Qp, it thus follows that
E together with the element Q ¼P1

p¼1 Qp in S (note that Q0 ¼ Hð0Þ ¼ HE ¼ 0) is an
L1-algebra, with the p-brackets

fx1, : : :, xpg ¼ Qpðx1, : : :, xpÞ: (6.6)

The right hand side here is given by (5.29) with a ¼ H, that is

Qpðx1, : : :, xpÞ ¼
Xp
k¼0

X 1
m1!

ð�1Þ
ðm2 �m1 þ 1Þ! � � �

ð�1Þ
ðp�mk þ 1Þ!

	 ½½� � � ½½H, xh1, : : :, xm1 �E , xm1þ1, : : :, xm2 �E , xm2þ1, : : :

: : :, xmk �E , xmkþ1: : :, xpi�E ,

(6.7)

where the inner sum goes over all k-tuples of integers ðm1, : : :,mkÞ such that

06m1 < m2 < � � � < mk < p: (6.8)

It remains to show that (6.7) equals the expressions on the right hand side of (6.3) and (6.4)
when p¼ 1 and pP 2, respectively. When p¼ 1, we indeed get

HðxÞ ¼ H, x½ �E �
1
2
HE , x½ �E ¼ H, x½ �E ¼ ðdxÞE ¼ dx� Dx: (6.9)

When pP 2, all terms in (6.7) with m1 ¼ 0 are zero, since HE ¼ 0: Furthermore, all the sub-
scripts E but the first one can be removed, since E is a subalgebra in this case. Also, when
m1 P 2 even the first subscript E can be removed. Thus, for pP 2 we have
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Qpðx1, : : :, xpÞ ¼
Xp
k¼0

X 1
1!
ð�1Þ
n1!

ð�1Þ
ðn2 � n1 þ 1Þ! � � �

ð�1Þ
ðp� nk þ 1Þ!

	 ½½� � � ½½H, xh1�E , x2, : : :, xn1 �, xn1þ1, : : :, xn2 �, xn2þ1, : : :

: : :, xnk �, xnkþ1: : :, xpi�

þ
Xp
k¼0

X 1
n1!

ð�1Þ
ðn2 � n1 þ 1Þ! � � �

ð�1Þ
ðp� nk þ 1Þ!

	 ½½� � � ½½H, xh1, : : :, xn1 �, xn1þ1, : : :, xn2 �, xn2þ1, : : :

: : :, xnk �, xnkþ1: : :, xpi�

(6.10)

where the inner sums go over all k-tuples of integers ðn1, : : :, nkÞ such that

1 < n1 < n2 < � � � < nk < p: (6.11)

Since we have removed the subscripts E , the factor in the second and third line of each term
above is actually independent of the choice of n1, n2, : : :, nk, and also of the integer k. Setting

Cp ¼
Xp
k¼0

X 1
n1!

ð�1Þ
ðn2 � n1 þ 1Þ! � � �

ð�1Þ
ðp� nk þ 1Þ! , (6.12)

where the term with k¼ 0 should be read as 1=p!, we thus get

Qpðx1, : : :, xpÞ ¼ �Cp H, xh1
� �

E , x2, : : :, xpi
h i

þ Cp H, xh1, x2, : : :, xpi
� �

¼ �Cpð dxh1, x2, : : :, xpi
� �� Dxh1, x2, : : :, xpi

� �Þ
þ Cp dxh1, x2, : : :, xpi

� �
¼ Cp Dxh1, x2, : : :, xpi

� �
:

(6.13)

Now Cp can also be written

Cp ¼ �
Xp
j¼1

X ð�1Þ
ðm1 þ 1Þ! � � �

ð�1Þ
ðmj þ 1Þ! (6.14)

where the inner sum goes over all k-tuples of positive integers ðm1, : : :,mjÞ such that m1 þ � � � þ
mj ¼ p� 1: Written this way, it is easily shown (by induction, using recursion formulas for the
Bernoulli numbers) that

Cp ¼ � 1
ðp� 1Þ!Bp�1

� (6.15)

and we arrive at (6.4). w
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