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Abstract. Whole-slide image (WSI) analysis has been largely performed
in a 2D tissue space to support routine pathology diagnosis and imag-
ing based biomedical research. For a more definitive representation and
characterization of the tissue spatial space, it is critical to extend such
tissue based investigations to a 3D space by spatially aligning 2D serial
sections, which are often stained differently, such as Hematoxylin and
Eosin (H&E) and Immunohistochemistry (IHC) stains. However, regis-
tration of whole slide images is challenged by the overwhelmingly scale of
images, the complexity of local histology structure changes across slides,
and significant variations of tissue appearance between staining methods.
We propose a novel translation based registration network CycGANReg-
Net using deep learning for serial WSI images in different stains, which
requires no prior deformation field information for deep model training.
We first generate synthetic IHC slides from H&E slides through a robust
image synthesis algorithm. The synthetic IHC images and the real IHC
images are then registered through a Fully Convolutional Network with
multi-scale based deformable vector fields and a joint loss optimization
for enhancing image alignment. We perform the registration at origi-
nal image resolution with a patch-wide approach, thus tissue details at
the highest resolution are retained in the results. CycGANRegNet out-
performs both the state-of-the-art conventional and deep learning-based
registration methods based on the evaluation using a serial WSI image
dataset in H&E stain and IHC stain with two biomarkers from 76 breast
cancer patients. The experimental and comparison results demonstrate
that CycGANRegNet can produce promising registration results with
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serial WSIs in different stains, suggesting its potential for integrative 3D
tissue-based biomedical investigations.

Keywords: H&E · IHC · Pathology Image · CycleGAN · WSI.

1 Introduction

Histopathology Whole-Slide Images (WSIs) of tissue sections provide high reso-
lution tissue details critical for disease prognosis and study. However, such high
resolution WSIs have been largely analyzed in a 2D tissue space by far. As each
2D WSI only captures information from the tissue cutting plane, it is inevitably
subject to information loss and even distortion. Therefore, it is important and
necessary to extend to a 3D tissue space for studies requiring a definitive tissue
characterization. Additionally, there is an increasing demand of integrative tis-
sue analyses involving both histology tissue phenotype descriptions by the clini-
cally used Hematoxylin and Eosin (H&E) stain and underlying disease molecular
underpinnings by highlighted Immunohistochemistry (IHC) biomarkers, which
urges a 3D tissue space based approach. Apparently, an accurate registration
of serial tissue WSIs is a prerequisite to such 3D tissue analyses and integra-
tion. However, WSI registration is technically challenging and existing methods
only achieve a limited success due to the overwhelmingly large WSI scale, com-
plex local histology structure change across adjacent slides, and significant tissue
appearance difference by different staining methods [1].

With the emergence of deep learning methods, it becomes feasible to take
advantage of the image-to-image translation through the latent feature disen-
tanglement for registering images in different appearances [4–6]. Specifically,
translation-based approaches use Generative Adversarial Network(GAN) to trans-
late images from one modality into another, simplifying the difficult multi-
stained image registration task into a much easier analysis with images in a
single stain. By this strategy, GAN can be used to convert H&E to synthetic
IHC images for a multi-stain image integrative analysis. Although much simpli-
fied, such an analysis still presents two significant challenges. First, H&E and
IHC WSIs are unpaired data as each pathology tissue slide is stained only once
in most clinical practice. Second, it is time and financially costly to have good
quality annotations on landmark pairs from serial WSIs for registration.

Recently, CycleGAN with the cycle consistent loss has been developed to
learn an image-to-image mapping between two domains from unpaired data [8].
The cycle consistency loss for the adversarial training process forces the gener-
ator to find an accurate mapping between two different domains with unpaired
data. With this approach, synthetic slice-wise computed tomography (CT) data
has been produced from magnetic resonance (MR) head images [9]. In another
study, a mono-modal image registration with CycleGAN-produced synthetic im-
ages presents a comparable performance to the multi-modal deformable regis-
tration with paired image data of thoracic and abdominal organs [4]. These
studies leverage the standard CycleGAN [8] for image synthesis not customized

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494254


Title Suppressed Due to Excessive Length 3

for pathology data. Furthermore, a deformation field is used for registration in
a dual-stream fashion with CycleGAN-translated MR and original CT image
pairs [10]. MIND based [10] loss term added to CycleGAN loss describes the
local image structure. It is computed from gray-scale images, and thus cannot be
applied to multi-stained pathology image data. A CycleGAN based image gen-
eration method is reported to generate IHC pathology microscopic images from
H&E images without any annotation [11]. As this method with class-related
information is used as an additional input image patch channel, it is not appro-
priate for our study.

In this paper, we present a new translation based deep learning registra-
tion approach (CycGANRegNet) for serial whole-slide histopathology images
in different stains. The developed unsupervised registration approach requires
no prior deformation field information for deep model training. It consists of
an image translation and an image registration module. The image translation
module produces synthetic IHC slides (i.e. synIHC images) from H&E slides
through a robust image synthesis algorithm. With Fully Convolutional Network
(FCN) model [12] as a building block, the synIHC and the real IHC image pairs
are registered through a multi-scale based FCN registration model. The major
contributions of this paper are summarized in multiple folds:

– We develop a modified CycleGAN method to generate synthetic IHC pathol-
ogy images (i.e. synIHC) from unpaired H&E pathology slides. To enhance
the image stain translation ability, we propose to adopt a perceptual loss
in the CycleGAN loss function, resulting in a better image mapping from
H&E to synthetic IHC images. Such an image translation enables a better
registration between synIHC and real IHC images.

– We extend the original FCN model to a multi-scaled architecture. Our pro-
posed multi-scale FCN uses a coarse-to-fine multi-scale deformable image
registration strategy that combines the Deformable Vector Fields (DVFs) at
multiple resolutions for better image alignment.

– To overcome the overwhelming scale of WSI images, instead of resizing im-
ages to a lower resolution [1], we recover the WSI registration results with
patch-based image registration results at the highest image resolution. In
this way, high resolution tissue details captured by WSIs are retained.

2 Methods

We develop a deep learning based model CycGANRegNet to register serial IHC
to H&E histopathology images for pathology hallmark and biomarker integra-
tion. It has an end-to-end deep learning process in two stages. First, we develop
an image translation module with a modified CycleGAN to translate real ref-
erence H&E to synthetic reference synIHC image patches. Next, we develop a
multi-scale FCN in the image registration module to estimate the spatial map-
ping from the moving real IHC to the synthetically produced synIHC image
patches. Finally, the moving real IHC image is transformed to the reference H&E
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image space via Spatial Transformation Network (STN) [13]. Individual regis-
tered image patches are spatially assembled to recover registered WSI blocks.
We present the overall schema of CycGANRegNet in Figure 1.

Fig. 1. The overall schema of the CycGANRegNet model. (A) Patch-based H&E-IHC
image registration; (B) Translation from H&E to synIHC images; and (C) WSI block
registration.

2.1 Unpaired Image Translation

Although serial slides in different stains look similar at the global tissue level
(Supplemental Figure 1), they are unpaired at the pixel level. Although Cycle-
GAN can be applied to unpaired image-to-image translation, it can be tailored to
pathology image translation for an enhanced performance [11, 8, 14]. Therefore,
we propose a modified CycleGAN for an enhanced H&E-IHC image translation.
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Illustrated in Figure 2, the modified CycleGAN consists of an encoder and a
decoder module. Both share the same network structure that includes a gen-
erator and a discriminator. The generator translates an image between stain
domains and the discriminator assesses the generated image quality. The modi-
fied CycleGAN model consists of two generators GHE and GIHC . The generator
GHE translates IHC to synHE image, while GIHC translates synHE to synIHC
image(i.e. the red arrows). Similarly, the reverse translation goes from H&E to
synIHC and then from synIHC to synHE (i.e. the black arrows). Each generator
module consists of two-dimensional fully convolutional networks with nine resid-
ual blocks and two fractionally strided convolution layers as used in ResNet [32].
Additionally, the model has two discriminators DHE and DIHC for distinguish-
ing between translated H&E (i.e. synHE) and real H&E images, and between
translated synIHC and real IHC images, respectively. Each discriminator has a
fully convolutional architecture to predict if overlapping image patches of size
70 × 70 by pixels are real or synthetic [28](PatchGAN). The leaky ReLU acti-
vation function is used with factor 0.2. All data are normalized with instance
normalization. The detailed architecture of generator is adopted from [15].

The CycleGAN training loss includes adversarial loss (i.e. LDHE
and LDIHC

)
from two discriminators and the cycle-consistent loss (Lcyc). Although the cycle-
consistent loss plays an important role of prohibiting the generators from gen-
erating images not related to the inputs [8], this loss is not sufficient to enforce
feature or structural similarity between translated and real images. To address
this problem, we adopt the vgg-16 based perceptual loss function as an additional
constraint in the CycleGAN loss function to regularize the tissue content and
the stain style discrepancies, the key contributing to an enhanced histopathol-
ogy image translation. Such a perceptual loss can measure high-level perceptual
and semantic differences between each image pair [15]. The perceptual loss func-
tion is implemented as a deep convolutional neural network denoted as φ [15].
The loss network φ is a 16-layer VGG network [16] pre-trained on the ImageNet
dataset [17]. The transformed network output image ŷ and the input real image
y are enforced to have similar feature representations from the loss network φ.
Let φj(x) be the activation of the j-th layer of the network φ with the input
image x. The feature reconstruction loss Lfeat is computed as:

Lfeat = lφ,jfeat(ŷ, y) =
1

CjHjWj
‖φj(ŷ)− φj(y)‖22 (1)

where φj(x) is an activation map of size Cj ×Hj ×Wj . Note the image transfor-
mation network trained by the feature reconstruction loss encourages the output
image ŷ to be perceptually similar to the target image y. However, it does not
force them to match each other exactly.

The total loss L of our modified CycleGAN is defined as:

L = LDHE
+ LDIHC

+ λcycLcyc + λfeatLfeat (2)

where λcyc and λfeat are weights for different loss terms.
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Fig. 2. The overall schema of the modified CycleGAN with the forward and backward
translation information flow.

2.2 Multi-scaled Image Patch Registration

The FCN model is a state-of-the-art deep learning approach with known promis-
ing performance for histopathology image registration [12]. Multiple prior studies
on flow estimation have shown the effectiveness of multi-scale strategy [19, 2].
Using FCN and the multi-scale strategy as building blocks, we create a multi-
scale FCN model with multi-scale Displacement Vector Fields (DVFs) to enable
a coarse-to-fine multi-scale deformable image registration. The developed multi-
scale registration framework consists of three DVF estimation models and is
demonstrated in Figure 3.

Fixed IF and moving IM image pairs are inputs to the multi-scale FCN
model. For each pair, the real moving and fixed image are concatenated and
provided to the first DVF estimation model to estimate the DVF V1 at scale-1.
V1 has three different components (i.e. V11, V12 and V13) generated from two
different regression layers and the final layer of the FCN model. The resulting
warped moving images are V11 ◦ IM , V12 ◦ IM , and V13 ◦ IM respectively. Next,
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the fixed IF and moving IM image pairs are concatenated and down-sampled by
a factor of four. The resulting image pairs are provided to the second DVF esti-
mation model for DVF estimation at scale-2. The resulting DVF is up-sampled
to match the original input image size and denoted as V2. Similarly, V2 is applied
to the input moving image IM to generate the warped moving image V2 ◦ IM . In
the next step, the warped moving image V2 ◦ IM at scale-2 and the input fixed
image IF are concatenated and down-sampled by a factor of two. The resulting
image pairs are provided to the third DVF estimation model for the residual
DVF estimation. The resulting DVF is up-sampled to the original input data
size and denoted as V3 at scale-3. Finally, V3 is used to deform the moving image
IM for the warped moving image V3 ◦ IM . Instead of training each model sep-
arately, we train all three DVF estimation models to minimize the joint loss at
multiple scale levels, achieving an overall end-to-end optimal performance. The
total loss function is defined as:

L =

3∑
i=1

σ1i{Lsim(IF , IM ◦ V1i) +R(V1i)}

+ σ2Lsim(IF , IM ◦ V2) + σ3Lsim(IF , IM ◦ V3)

(3)

where Lsim is the similarity loss measured as negative Normalized Cross-
Correlation (NCC) [7], penalizing the differences in appearance between fixed
and moving images. Parameter σ11, σ12 and σ13 are weights of the similarity loss
metrics at scale level 1 and σ2 and σ3 are weights at scale levels 2 and 3 respec-
tively. R(V ) is a total variation based regularizer that makes the transformation
spatially smooth and physically plausible [3].

After the weight initialization, all weights are updated by the joint training
of three DVF estimation models in an end-to-end manner for the harmonic mini-
mization of the composite loss. With displacement vectors between the fixed and
moving image pairs, we use Spatial Transformer Network (STN) [13] to deform
the moving image with the dense deformation field V [12]. To make the result-
ing registered images retain more tissue details, we adopt the Enhanced SRGAN
(ESRGAN) model [31] in the post-processing step. Figure 4 demonstrates the
registered images by our proposed multi-scale FCN model with and without the
post-processing. There is a noticeable difference in image details with and with-
out such post-processing. After post-processing, the registration performance is
improved by all performance metrics as presented in Table 2.

2.3 WSI Block Registration

Due to the limited GPU memory size, deep learning methods cannot process
giga-pixel WSIs at the full histopathology image resolution. Therefore, the tissue
region in each WSI is first partitioned into image blocks of size 8, 000 × 8, 000
pixels for tissue pre-alignment. Each H&E block is next translated to synIHC
block by the developed modified CycleGAN. Real IHC and synIHC image blocks
are then divided into image patches of size 1, 024×1, 024 to retain sufficient tissue
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Fig. 3. The overall architecture of the developed multi-scale FCN model is presented
with detailed illustrations of FCN layers for multi-sscale DVF estimation and multiple
loss function components in the total loss.

information for registration. The resulting synIHC and real IHC patch pairs are
further resized to 256 × 256 pixels for the deep learning model training and
prediction. After registration, the registered real IHC image patches are resized
back to 1, 024× 1, 024 size and spatially combined [20].

3 Experimental Result

3.1 Dataset and Implementation

We assess our model on 228 WSIs of tumor tissue sections of 76 Neoadjuvant
Chemotherapy (NAC) treated Triple Negative Breast Cancer (TNBC) patients
from Dekalb Medical Center in Emory University Healthcare. Formalin-fixed
paraffin-embedded serial section samples are collected before neoadjuvant ther-
apy. The serial sections are H&E and immunohistochemically stained with Ki67
biomarker for cell proliferation and Phosphohistone H3 (PHH3) for mitotic activ-
ity. After the image pre-alignment by the global affine spatial transformation at
a low image resolution, the resulting transformation is mapped to the full image
resolution level. The pre-aligned tissue regions at the full image resolution level
are next partitioned into 1,023 WSI blocks of size 8, 000× 8, 000 pixels by each
stain. The pre-aligned WSI blocks are further partitioned into non-overlapping
image patches of size 1, 024 × 1, 024 pixels, followed by resizing to 256 × 256
to make the image size appropriate for deep learning models. Patches contain-
ing more than 30% background pixels are excluded from further analyses. This
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Fig. 4. Registration results from our proposed multi-scale FCN model with and without
the ESRGAN model based post-processing. A registered image patch from (A) testing,
and (B) validation dataset is demonstrated (Left) with and (Right) without the post-
processing.

results in 60,000 image patches that are randomly divided into training, vali-
dation and testing cohorts by the 80:10:10 ratio. Our model is first tested with
H&E-Ki67 slide registration, followed by H&E-PHH3 registration for additional
validation. We compare our model with multiple state-of-the-art methods using
‘real’ and ‘synthetic’ datasets. The ‘real’ dataset includes pairs of H&E and real
IHC images, while a ‘synthetic’ dataset consists of real IHC and synIHC image
pairs with synKi67 for testing and synPHH3 for validation, respectively. Note the
‘synthetic’ data with synIHC images generated from the CycleGAN is labeled
as ‘syn-1’ dataset, whereas the ‘syn-2’ dataset includes synIHC images from our
modified CycleGAN model. The developed CycGANRegNet is implemented with
the open-source deep learning library Tensorflow [21]. The experiment is carried
out on Tesla K80 and V100 GPUs with CUDA 9.1. Adam optimization algo-
rithm [22] with learning rate 0.0001 is used to train both image translation and
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image registration models. For the modified CycleGAN training, H&E and IHC
images are partitioned into 256 × 256 image patches. The modified CycleGAN
is trained for up to 2,00,000 iterations. Loss weights λcyc and λfeat are set to 1.
All other parameter settings are suggested by the original CycleGAN work [8].
The values of registration loss weights σ11, σ12, σ13, σ2 and σ3 are set to 0.9,
0.6, 0.3, 0.05 and 0.05 respectively.

3.2 Evaluation of Image Translation Module

Image translation performance of the CycleGAN and our modified CycleGAN
is evaluated and compared both at the patch and WSI block level. Represen-
tative translated image patches and WSI blocks are demonstrated in Figure 5
and Figure 6, respectively. In addition to the qualitative assessment, we quanti-
tatively evaluate the translated IHC image quality by Root Mean Square Error
(RMSE), Structural Similarity Index Measure (SSIM), and Peak Signal-to-Noise
Ratio (PSNR) [23, 24, 10]. Specifically, the trained generator GIHC and GHE are
used to translate a H&E to a synIHC image, and then back from the synIHC to
the synHE (i.e. black arrows in Figure 2), in turn. The similarity between the
real H&E and resulting synHE images is quantitatively evaluated and presented
in Table 1. Both forward (i.e. H&E to synIHC and synIHC to synHE) and re-
versed (IHC to synHE and synHE to synIHC) translation performances by the
original and our modified CycleGAN model are presented. Note the image trans-
lation between H&E and Ki67 is for testing, while the H&E-PHH3 translation
is for validation. Our proposed modified CycleGAN presents consistent superior
performance to the original CycleGAN by all evaluation metrics in both forward
and reversed translation directions. Additionally, the translated synIHC image
patches are spatially combined to generate the translated synIHC WSI blocks
as depicted in Figure 6. Both qualitative and quantitative experiments with the
testing and validation dataset suggest an enhanced image translation by our
modified CycleGAN.

Table 1. Quantitative image translation performance comparison between the original
CycleGAN and our modified CycleGAN model with testing and validation dataset.

Testing Data Validation Data

RMSE SSIM PSNR RMSE SSIM PSNR

CycleGAN
(H&E → Ki67)

15.200 0.934 29.928
CycleGAN

(H&E → PHH3)
17.641 0.905 28.528

Our
(H&E → Ki67)

14.414 0.935 30.387
Our

(H&E → PHH3)
17.210 0.911 28.754

CycleGAN
(H&E ← Ki67)

13.088 0.955 31.215
CycleGAN

(H&E ← PHH3)
15.114 0.928 29.956

Our
(H&E ← Ki67)

12.123 0.959 31.867
Our

(H&E ← PHH3)
14.430 0.935 30.282
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Fig. 5. Representative image patch translation results. (A) Real H&E image patch; (B)
synKi67 patch by CycleGAN; (C) synKi67 patch by our modified CycleGAN; (D) Real
H&E patch; (E) synPHH3 patch by CycleGAN; (F) synPHH3 patch by our modified
CycleGAN.

3.3 Evaluation of Patch-based Image Registration Module

After the image translation, the resulting synIHC and real IHC WSI blocks are
first pre-aligned by a global intensity-guided rigid transformation [18]. Next, Cy-
cGANRegNet takes rigidly registered synIHC and real IHC WSI blocks as inputs
and fine tunes image alignment by our proposed multi-scale FCN model. To eval-
uate the registration performance, we apply our method to the ‘real’, ‘syn-1’ and
‘syn-2’ dataset from both the testing and validation data. Our proposed multi-
scale FCN model is compared with multiple state-of-the-art deep learning based
registration methods, including DirNet [25], FCN [12], Unet VoxelMorph [26]
and the conventional registration method SimpleElastix [27].

Note the H&E and IHC WSI blocks are pre-aligned by the global affine trans-
formation before registration methods for comparison, the registration effect on
the image patch level can be not salient in some cases. To manifest the method
efficacy, we first manually deform the moving images by both affine and elas-
tic transformations, resulting in multiple synthetically deformed moving images.
Diverse shear transformations with rotation angle range [−40, 30] and elastic
deformations are applied to moving images. A total of 20, 000 synthetically de-
formed image patches of size 256 × 256 are derived from 1,023 WSI blocks for
training purpose. Typical registration results from the shear transformation and
the elastic deformation by state-of-the-art deep learning-based registration mod-
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Fig. 6. Representative WSI block translation results with the test (top) and validation
dataset (bottom). (A) Real H&E WSI blocks; (B) synKi67 WSI blocks by our modified
CycleGAN; (C) Real Ki67 WSI blocks; (D) Real H&E WSI blocks; (E) synPHH3 WSI
blocks by our modified CycleGAN; (F) Real PHH3 WSI blocks.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494254


Title Suppressed Due to Excessive Length 13

Fig. 7. Patch based registration performance by the synthetic shear transformation.
(A)Fixed real H&E image; (B)Fixed synIHC image by CycleGAN; (C)Fixed synIHC
image by our modified CycleGAN); (D) Manually rotated Moving image; Registration
results by (E)DirNet, (F)VoxelMorph Unet, (G)FCN, and (H)Proposed multi-scale
FCN.

els for comparison are presented in Figure 7 and Figure 8, respectively. By visual
assessments, FCN and our proposed multi-scale FCN model present significantly
better registration results than other deep learning methods.

After method evaluation with manually deformed images, we next apply reg-
istration methods to ‘real’, ‘syn-1’ and ‘syn-2’ datasets from the testing (i.e.
H&E and Ki67 image pairs) and validation (i.e. H&E and PHH3 image pairs)
data. We present the registration results in Figure 9 and Figure 10, respec-
tively. By visual comparisons, baseline FCN and our proposed multi-scale FCN
demonstrate a superior registration performance to other methods when ‘syn-2’
dataset is used. Additionally, we present quantitative performance evaluation
results in Table 2 where Normalized Cross Correlation (NCC), SSIM and Nor-
malized Mutual Information (NMI) are used to report the registration accuracy.
Note our developed multi-scale FCN with the ‘syn-2’ dataset from both testing
and validation data achieves the best performance by NCC, and the second best
by SSIM. By contrast, the performance of the conventional registration method
SimpleElastix is limited due to its over-deformed image outputs (Supplemen-
tal Figure 2). Additionally, all deep learning-based models outperform with the
‘syn-2’ than the ‘syn-1’ or ‘real’ dataset, suggesting the efficacy of the enhanced
image translation quality by our modified CycleGAN.
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Fig. 8. Patch based registration performance by the synthetic elastic deformation.
(A)Fixed real H&E image; (B)Fixed synIHC image by CycleGAN; (C)Fixed synIHC
image by our modified CycleGAN); (D) Manually rotated Moving image; Registration
results by (E)DirNet, (F)VoxelMorph Unet, (G)FCN, and (H)Proposed multi-scale
FCN.

3.4 Evaluation of WSI Block Registration

We further evaluate the image registration with WSI blocks. As each WSI block
has a size of 8, 000 × 8, 000 pixels, it is partitioned into small image patches
for registration. After individual image patch registration, they are spatially
combined to generate the registered WSI blocks. In this study, we adopt Dice
Similarity Coefficient (DSC) [29], Hausdorff Distance (HD) [30], SSIM and NCC
as the similarity metrics for WSI block registration accuracy evaluation.

Eight Region of Interest (ROI) pairs are manually annotated from the test-
ing and validation WSI blocks before ROI pairs are registered. The complete
evaluation process is presented in Supplemental Figure 3. The quantitative eval-
uation results are reported in Table 3. Our proposed multi-scale FCN with ‘syn-
2’ dataset exhibits the second best performance by DSC and HD both for the
testing and validation dataset, respectively. Note our proposed multi-scale FCN
with ‘syn-2’ dataset produces the best performance by NCC and the third best
by SSIM value in both testing and validation dataset. The best performance by
SSIM is achieved by DirNet with the testing ‘syn-2’ dataset and FCN with the
validation ‘syn-1’ dataset, respectively.

We present the WSI block derived ROI registration results with the test-
ing and validation dataset in Figure 11 and Figure 12, respectively. By visual
assessments, the registered ROIs by our proposed CycGANRegNet model are
better aligned with the fixed images than results from other models for compar-
ison. Thus, both quantitative and qualitative results suggest that our proposed
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Table 2. Image patch registration performance with the testing and validation data.

Method Name dataset
Testing Data Validation Data

NCC SSIM NMI NCC SSIM NMI

real 0.2045 0.2307 1.0358 0.2030 0.2413 1.0344
syn-1 0.2644 0.3320 1.0356 0.2613 0.3161 1.0334DirNet
syn-2 0.2977 0.3505 1.0374 0.2553 0.3443 1.0324

real 0.2165 0.2168 1.0373 0.1742 0.2266 1.0362
syn-1 0.2508 0.3119 1.0363 0.2688 0.3050 1.0339FCN
syn-2 0.3057 0.3356 1.0392 0.2683 0.3356 1.0340

Our Proposed
CycGANRegNet

syn-2 0.3161 0.3403 1.0387 0.2625 0.3375 1.0343

real 0.0231 0.1922 1.0329 0.0346 0.2078 1.0324
syn-1 0.0755 0.3164 1.0314 0.0910 0.2828 1.0321

Voxel
Morph
UNet syn-2 0.1063 0.3384 1.0347 0.1306 0.3243 1.0260

Simple
Elastix

real 0.0968 0.1379 1.0472 0.0880 0.1453 1.0474

CycGANRegNet exhibits promising registration performance. Additionally, all
registration results with WSIs in different stains suggest that the image trans-
lation from H&E to synIHC images help better align moving to fixed images.

Table 3. Registration performance with WSI blocks from the testing and validation
data.

Dataset Method Name
Testing Data Validation Data

DSC HD SSIM NCC DSC HD SSIM NCC

real
DirNet 0.9516 925.6837 0.7914 0.7983 0.9072 1290.1709 0.8153 0.7447
FCN 0.9566 606.5160 0.7887 0.7833 0.9088 1302.1997 0.8145 0.7323

Simple
Elastix

0.9423 1240.1000 0.7348 0.6372 0.8881 1214.1727 0.7534 0.5276

syn-1
DirNet 0.9510 272.2740 0.8362 0.7958 0.9004 1300.1804 0.8659 0.7241
FCN 0.9572 272.1319 0.8347 0.7988 0.9161 984.5001 0.8709 0.7639

syn-2
DirNet 0.9554 264.6888 0.8369 0.8075 0.9073 486.4495 0.8641 0.7576
FCN 0.9631 244.2928 0.8345 0.8101 0.9149 1216.2255 0.8637 0.7614

Our Proposed
Multi-scale

FCN
0.9612 257.2176 0.8347 0.8175 0.9152 724.4312 0.8654 0.7683

4 Discussion

In this study, we propose CycGANRegNet for registration of serial WSI images
in different stains. By both qualitative and quantitative experiments, CycGAN-
RegNet demonstrates a comparable performance to the standard FCN-based
registration and a superior performance to other state-of-the-art registration
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methods for comparison. Specifically, our proposed multi-scale FCN, i.e. the
registration component in CycGANRegNet, follows a coarse-to-fine multi-scale
deformable image registration strategy and optimizes the joint loss at multi-scale
levels, leading to a more accurate DVF estimation critical for registration.

In Table 2, performance values for the patch-based registration are rela-
tively low as some image patches are extracted from some poorly matched WSI
block pairs after the pre-alignment step (Supplement Figure S4). When such
registration performance is evaluated with well aligned WSI ROI pairs after pre-
alignment step, performance values are much improved (c.f. Supplement Figure
S5). To test the CycGANRegNet efficacy, we synthetically deform moving image
patches by different affine transformations. In such controlled experiments, they
can be well aligned to the fixed images. As real patch pairs are pre-aligned by a
global rigid registration, the registration effect with real patch pairs from both
testing and validation data is relatively subtle. To manifest the registration effect
at the WSI block level, we zoom into specific tissue regions. Both registration
results at the patch- and WSI block level suggest the necessity of image trans-
lation from one stain to another. The resulting synIHC images by the image
translation help better estimate DVF for registration. In future, we will extend
this work by better integrating spatial transformations from the H&E-IHC and
synIHC-IHC pipeline for registration.

5 Conclusion

In this study, we propose a fully unsupervised translation based network Cy-
cGANRegNet for H&E and IHC pathology image registration. The resulting
synthetic IHC images from the image translation module can be used for a bet-
ter alignment with the real IHC images, with a multi-resolution approach to
preserve histology structures at the original resolution. CycGANRegNet can be
efficiently trained without any ground truth image deformation information. Ex-
periments results at both high resolution image patches level and WSI blocks
level demonstrate high effectiveness of the registration method with real world
dataset.
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1. Borovec, Jǐŕı, Jan Kybic, Ignacio Arganda-Carreras, Dmitry V. Sorokin, Glo-
ria Bueno, Alexander V. Khvostikov, Spyridon Bakas et al. ”ANHIR: automatic
non-rigid histological image registration challenge.” IEEE transactions on medical
imaging 39, no. 10 (2020): 3042-3052.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494254


Title Suppressed Due to Excessive Length 17

2. de Vos, Bob D., Floris F. Berendsen, Max A. Viergever, Hessam Sokooti, Marius
Staring, and Ivana Išgum. ”A deep learning framework for unsupervised affine and
deformable image registration.” Medical image analysis 52 (2019): 128-143.

3. Vishnevskiy, Valery, Tobias Gass, Gabor Szekely, Christine Tanner, and Orcun
Goksel. ”Isotropic total variation regularization of displacements in parametric
image registration.” IEEE transactions on medical imaging 36, no. 2 (2016): 385-
395.

4. Tanner Christine, Firat Ozdemir, Romy Profanter, Valeriy Vishnevsky, Ender
Konukoglu, and Orcun Goksel. ”Generative adversarial networks for mr-ct de-
formable image registration.” arXiv preprint arXiv:1807.07349 (2018).

5. Wei, Dongming, Sahar Ahmad, Jiayu Huo, Wen Peng, Yunhao Ge, Zhong Xue,
Pew-Thian Yap, Wentao Li, Dinggang Shen, and Qian Wang. ”Synthesis and
inpainting-based mr-ct registration for image-guided thermal ablation of liver tu-
mors.” In International Conference on Medical Image Computing and Computer-
Assisted Intervention, pp. 512-520. Springer, Cham, 2019.

6. Qin, Chen, Bibo Shi, Rui Liao, Tommaso Mansi, Daniel Rueckert, and Ali Kamen.
”Unsupervised deformable registration for multi-modal images via disentangled
representations.” In International Conference on Information Processing in Medical
Imaging, pp. 249-261. Springer, Cham, 2019.

7. Briechle, Kai, and Uwe D. Hanebeck. ”Template matching using fast normalized
cross correlation.” In Optical Pattern Recognition XII, vol. 4387, pp. 95-102. In-
ternational Society for Optics and Photonics, 2001.

8. Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. ”Unpaired image-
to-image translation using cycle-consistent adversarial networks.” In Proceedings
of the IEEE international conference on computer vision, pp. 2223-2232. 2017.

9. Wolterink, Jelmer M., Anna M. Dinkla, Mark HF Savenije, Peter R. Seevinck,
Cornelis AT van den Berg, and Ivana Išgum. ”Deep MR to CT synthesis using
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Fig. 9. Patch based registration performance with two typical image regions. (A)Fixed
real H&E image; (B)Fixed synKi67 image by CycleGAN; (C)Fixed synKi67 image
by the modified CycleGAN; (D)Real Ki67 moving image; Registration results by
(E)DirNet, (F)VoxelMorph Unet, (G)FCN, and (H)Our proposed multi-scale FCN.
A green box is used to highlight the registration result.

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted June 1, 2022. ; https://doi.org/10.1101/2022.05.31.494254doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.31.494254


Title Suppressed Due to Excessive Length 21

Fig. 10. Patch based registration performance with two typical image regions. (A)Fixed
real H&E image; (B)Fixed synPHH3 image by CycleGAN; (C)Fixed synPHH3 image
by the modified CycleGAN; (D)Real PHH3 moving image; Registration results by
(E)DirNet, (F)VoxelMorph Unet, (G)FCN, and (H)Our proposed multi-scale FCN. A
green box is used to highlight the registration result.
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Fig. 11. Registration of ROIs from WSI blocks of H&E stain and Ki67 IHC biomarker.
A green box is used to highlight the registration result.(A)Fixed real H&E image;
(B)Fixed synKi67 image by CycleGAN; (C)Fixed synKi67 image by the modified Cy-
cleGAN; (D)Real Ki67 moving image; Registration results by (E)DirNet, (F)FCN, and
(G)Proposed CycGANRegNet; (H)Zoomed view of green boxed region of Fixed image
(Original H&E); Close-up views of (I) the moving image, (J) the registered image by
DirNet with the ‘syn-2‘ dataset, and (K) the registered image by CycGANRegNet.
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Fig. 12. Registration of ROIs from WSI blocks of H&E stain and PHH3 IHC biomarker.
A green box is used to highlight the registration result.(A)Fixed real H&E image;
(B)Fixed synPHH3 image by CycleGAN; (C)Fixed synPHH3 image by the modified
CycleGAN; (D)Real PHH3 moving image; Registration results by (E)DirNet, (F)FCN,
and (G)Proposed CycGANRegNet; (H)Zoomed view of green boxed region of Fixed
image (Original H&E); Close-up views of (I) the moving image, (J) the registered image
by DirNet with the ‘syn-2‘ dataset, and (K) the registered image by CycGANRegNet.
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