
A fast morphological algorithm with unknown word
guessing induced by a dictionary for a web search

engine

Ilya Segalovich
Yandex

iseg@yandex-team.ru

Abstract
This paper describes a {simple yet practical}

algorithm of morphological analysis and synthesis
that uses a limited dictionary to obtain {rather
precise} morphology of a wide lexical coverage. It
doesn't imply any particular morphological model of
the dictionary and is implemented for Russian, Polish
and English. The design of the algorithm fits the
constrains of a modern web search engines.

Preamble: does a web search
engine need morphology?

Some IR studies showed very little or no
improvements in search effectiveness with
morphological analysis applied [harman1991].
Though later results proved success even in
languages that typically have few word forms
such as English [hull1996] it is still under the
question if a web search engine needs
morphologic analysis at all. Google, the #1
ranked search engine in the world, claims that it
intentionally doesn't use stemming to provide
the most accurate results to its users
[google1998]. Such an extreme position was a
good revisionist point in the late 90s before the
link analysis had improved the precision of web
search. But is recall really unnecessary? Here
are some arguments pro. Number of pages that a
web search engines return are distributed
according to a Zipf law, which means that
though on popular queries it is very big, the
amount of queries with only few found
documents is substantial. For example more than
30% of responses received at www.yandex.ru on
the 06.09.2001 contained less than 100

documents while only 5-10% of queries have
misspelling.

The user behaviour, coordinate
ranking and morphology

Another observation in favour of
morphological processing on the web is the
searchers behaviour and expectations. Users
have their own mental models of how search
engines should work [muramatsu2001] and they
generally prefer coordinate-level ranking
[heimstra2002]. To satisfy this model (please
note that we don’t mention precision and recall
as the primary goals) Web search engines first
look for the exact phrase matching. When it is
impossible (more 50% of queries doesn't have a
“phrase match” anywhere on the web) search
engines rank results according to the term
proximity [muramatsu2001] so the responses are
as "similar" to queries as possible. One may
notice looking at the typical web search engine
response that documents are roughly listed in the
decreasing order of the edit distance
(“likelihood”) between the query and snippets of
the documents. In the same time 75% of web
search queries consist from more than 1 word
[onestat2003]. So why the "similarity" of
responses to longer queries allows insertion of
big spans of characters (words, sentences)
between search terms but doesn’t' allow small
changes of terms' suffixes when terms are close
to each other?

Introduction & current trends
The state-of-the-art algorithms for

morphological analysis are based on the Finite
State Transducers of different flavours

([kimo1983], [kartunen1992], [mohri2000],
[daciuk2000]), where phonological rules are
described by hand and each word from the
dictionary is assigned its corresponding
(inflectional/derivational) model. These
transducers allow both analysis and synthesis of
the word forms; they are very fast and robust.
Unfortunately number of unknown lexical items
brought from the web with every crawl are very
big and can be estimated by Heaps law
VR = Knβ, where VR is the portion of the
vocabulary represented by the instance text of
size n. K and β are free parameters determined
empirically. On the web β is closer to 1.0 than to
0.5 due to (un) intentional misspellings, foreign
words, privately invented words such as taken
from blogs etc. This means that the dictionary
grows sub linear with grow of index. One
approach here is simply to ignore all the words
that are not from main dictionary
[www.aport.ru] hoping that the coverage will
suffice.

Recently the problem of the morphological
analysis of the unknown words draws more
attention mostly from the success in
unsupervised learning of morphology from the
corpora itself. [Jackuemin1997] analysed
statistics of k-n conflations (where k – length of
the hypothesized suffix, usually 3 letters, and n –
the width of the context window – usually 2
words) and obtained decent results compared to
Lovins and Porter famous hand-made stemmers
([lovins1968], [porter1980]). [gaussier1999]
used similar approach (p-similarity – the number
of common letters between two words) to learn
derivational morphological families and even
derivational trees. The more generalized
approaches of corpus suffix analysis are
presented in [goldsmith2001] and [snover2002].
They use MDL (Minimum Description Length)
principle, known from theory of information, to
produce the set of stems, signatures (paradigms)
and affixes that can be encoded in the minimal
number of bits [goldsmith2001] or that are most
probable (Brent) thus making morphological
description of corpus minimal in some sense.
Linguistica [goldsmith2001] is also a publicly
available tool that we will use later in this paper.

Another promising approach [schone2001]
makes use of word contexts to distillate
hypothesized models obtained from pure
suffixal analysis. It uses the primitive of PPMV
— pair of potential morphological variants and
measures semantic similarity between them,
which is understood as the normalized
correlation between their vectors in the latent
semantic space (which in fact is word-to-word-
neighbours matrix factorised with the help of
LSI).

All of the approaches mentioned above are
unsupervised in a sense that they don’t use any
prior knowledge about a language and its
morphological models. Unfortunately there are
at least two obstacles that don’t let direct use of
the unsupervised methods in Web search
engines as is. The first is the quality of the
morphology of the most used words that must be
as precise as possible. The second is that the
complicating of index updates: index is
distributed over hundred and thousands of
computers, so the morphological interpretation
of the new words that appear in daily crawls
must not change too often or it may require daily
patching of the index. It worth noting that if a
language has a web corpus substantial enough to
be of a public interest and of a commercial
search engine to strive on, it usually has plenty
of dictionaries that already accumulated some
knowledge. For example widespread spelling
tools that use compact description of all possible
word forms such as [ispell] or [aspell] have
dictionaries for 37 and 26 languages
respectively. Of course the task of the compact
listing of all allowed forms in a language is not
exactly the task of describing all words and its
respecting paradigms, nevertheless these
dictionaries are successfully used in the web
search engines ([mnogosearch], [glimpse],
[aspseek] etc). Important observation about
existing dictionaries that they always (and
hopefully correct) describe the most frequently
used words of the language. Here we suppose
that all the complex and non-trivial
[inflectional/derivational] models always belong
to the most used words of the language -- which
is in fact another law of Zipf -- “the greater the

frequency of a word, the greater the number of
morphologically complex forms it will be used
in” [manning1999]).

The idea of applying a relatively small
dictionary to guess new words morphology is
not new. For example [woods1999] used a set of
aggressive rules together with a small lexicon to
improve lexical coverage, [mikheev1995]
presented a technique of automatic acquisition
of unknown words morphology through a
general-purpose lexicon and word frequencies,
the classic Russian morphology algorithm
[belonogov1985] used the same dictionary both
for known and unknown words, also all the FST
machines allow to write catch-all rules for the
words that are not in the dictionary. While the
process of describing particular word
morphology seem to be deterministic, the catch-
all rules are rather hard to write and debug. The
example of applying a one-time learning
procedure together with the existing
morphological dictionary to the corpus in order
to obtain morphological guesser is presented in
[kovalenko2002].

The approach described here is based on
[segalovich1998] and uses a very simple idea of
morphological similarity. Unknown word
morphology is taken from all the closest words
from dictionary, where the closeness is the
number of letters on its end. From the
[belonogov1985] approach it differs in that it
doesn’t choose one variant, but rather take all
possible variants that have the same common
length, and unlike [kovalenko2002] it uses for
the induction of the hypothesizes the whole
dictionary not just N several last letters of stems.
To build such dictionary we don’t need to know
the morpheme structure or any particular
formalism of any particular morphology, the
compiler accepts input in the form of full listing
of all word paradigms from the dictionary. If the
grammar tags are available they are accepted
either. Such a dictionary is be able not only to
analyse known words, but also to synthesize all
forms both known and hypothesized. The
algorithmic idea behind this algorithm is that
after we analysed the word trying to find its
exact form in the dictionary we already have

enough information (we already looked at all its
letters) to find the most probable inexact
equivalent. The FST approach also use one pre-
compiled automata with exact and catch-all rules
but unlike [Karttunen1992] we don’t require
catch-all rules, we rather consider them harmful
and completely rely on the probabilistic nature
of the unknown words analysis. This is the idea
of the algorithm – use deterministic knowledge
when possible (for all the ‘known’ words) and
probabilistic approach when the exact
interpretation is not available.

An interesting application of this algorithm is
the combined dictionary of several languages
which is useful in the situations when the
language is ambiguous, so the combined
dictionary will choose the most likely
morphological interpretations based on the
likelihood to all words of all languages. (Such a
combined Polish-English dictionary is used in
our experimental project at www.yandex.pl as a
part of the query interpretation).

Design issues
There are some questions about

morphological model and algorithms that must
be answered before we describe the algorithm
itself. All of them originate from the nature of
the information retrieval or from the technical
requirement of search engines. What kind of
morphological analysis to perform: inflectional
or derivational? Are grammar tags (or POS tags)
required as a result of analysis? Do we need
stems (roots) or the base form (in other words --
do we need stemming or lemmatisation)? How
unknown words are processed? Shall we use the
context of words to help analysis? Is the analysis
corpus-dependent and if it is, to what degree? To
fully answer to all of these questions we will
need a much longer paper, in short the answers
are: inflectional, no grammar tags,
lemmatisation, no context built in morphology.
Here is very a short reasoning.

Inflectional morphology. For the sake of
precision we don’t want derivational
morphology, though the difference is often very
subtle; consider for example aspect, gender of
nouns, diminutive forms.

No grammar tags. Different languages have
different morphology with different grammar
systems and search engine often can’t
distinguish nor the language of the queries
(people never choose appropriate switches)
neither of the document (consider multilingual
document, technical documents, etc). So the
index keys should have purely textual
representation without any grammar ot language
tags.

Lemmas not stem. Stemming is not only
connects different parts of speech or derivational
forms (that we don’t want) but also produce
spurious conflations. So search engines usually
need the dictionary forms as a result of
morphological analysis. That in turn opens the
question of disambiguation between them even
if we completely drop POS tags; consider
stocking -> (stock OR stocking).

Context analysis. The morphological
algorithm itself must not rely on the word
context or on the assumption that all the words
will be submitted strictly in the order of the text
flow. The indexing speed requirements of
modern search engine may not permit this (their
speed is about 50-100 documents per second
[najork2001]), the morphological module is
often called in multi-threaded environment once
per word form met anywhere in the portion of
texts.

Ambiguity. It’s important to note that
ambiguity won’t cost more than 10-20% of the
index size. And the linguistic disambiguation is
impossible in short queries (in fact non-
linguistic disambiguation is much more
successful by coordination ranking).

Algorithm
The dictionary is represented as a set of tries

[cormen1990] of inverted stems and a trie of all
possible suffixes. The boundary between stem
and suffix is taken either from the input file if it
is explicitly presented or computed
automatically as the length of the common part
of all word forms in the paradigm. Here is the
description of the algorithm.

1. Sink into word from the right end using
the trie of all possible suffixes. As a result we

have all possible positions of stem/suffix
boundary in a single pass

2. Start with the deepest possible stem/suffix
boundary and perform the steps 3-7

3. Use two last letters of a possible stem as
an index to obtain an appropriate stem trie. If no
stem has last two letters like this go to the next
stem/suffix boundary

4. Sink into the appropriate stem trie and try
to find the terminal leaf at the edge of the word
collecting all the branching points in a single
pass

5. Dictionary word. If there is a terminal leaf
at the edge of the word compare the
corresponding inflectional model (its identifier
is stored in the stem trie as a special letter after
the first letter of a stem) with the word suffix. If
it matches it means we found the dictionary
word

6. Unknown word. If there is no terminal at
the edge of the word or the inflectional model
doesn't match to the suffix then perform the next
steps

7. Traverse all the previously collected
branching point of the stem trie starting from the
deepest one and find all the candidate stems
which can be models for the given unknown
word. Check their inflectional models against
the given suffix

The algorithm supports 2 additional modes:
check only dictionary words; find only one
candidate (this is useful to conform one-to-one
stemming).

Speed up. We cut traversing as early as we
can with the use of 'best candidate' metrics i.e.
the number of common letters at end of the word
between the given word and a model candidate.
All the branching points in a trie that have only
one inflectional model below are marked, so it
helps to limit traversing.

Learning. Some heuristics that was learned
and now built into algorithm are: the resulted
stem must contain a vowel, model stems must
have a productive POS tag (when available),
there must be minimum stem length, there must
be minimal common part of an example and
unknown word, the model paradigm must have

minimal frequency (e.g. met at least twice in the
dictionary).
It’s also quite useful [segalovich1998] to use the
corpus statistics to do some basic
disambiguation and eliminating of extra
morphological variants: remove lemmas with
paradigms fully ‘nested’ into paradigms of the
other lemmas (if we met shmocking->(shmock |
shmocking), shmockings-> (shmocking), but not
shmock or shmocked we can drop the lemma
shmock; or as an opposite if we met shmocking,
shmock and shmoked but not shmockings we can
drop the lemma shmocking), prefer paradigms
with more frequent lemmas, prefer paradigms
that contain lemma in the corpus, etc. These and
other heuristics may be obtained through the
learning by corpus. Anyway, in this paper we
concentrate on the quality of the morphology
itself, and don’t consider disambiguation phase
as a part of it.

Experiment
Though our dictionary is implemented for

several languages (theoretically for all that have
full paradigm dictionaries, in practice – only
Russian, Polish, and English) we have chosen to
measure its quality for Russian. First of all there
are very few comparisons available for Russian
morphology, especially for the guessers. In the
last years at least 3 new tools appeared that cope
with Russian morphology. The new version of
Porter stemmer [snowball] uses hand written set
of rules in a special ‘snowball’ language and is
available for Russian. The Linguistica
[goldsmith2001] learns morphology from the
corpus. The ‘stemka’ [kovalenko2002] is a
Russian and Ukrainian morphological guesser
that was built with the help of the full-fledged
morphological module based on [Zaliznak1980]
and the collected corpus statistics. Because it
produces several variants of stems for each word
we consider two extreme variants it produces:
the deepest or the aggressive, and the shallowest
or the conservative. The ‘mystem’ is the
algorithm presented here (it was originally
designed in 1996 as a part of Yandex search
engine development), it uses the full dictionary

[Zaliznak1980] as a guessing machine in a sense
described above.

Another part of the experiment is the corpus
with the canonical mappings between word
forms. For this purpose we took recently
appeared www.ruscorpora.ru [ruscorpora2003]
that is currently 1302329-words
morphologically annotated corpus of Russian.
Like CELEX or Brown corpus it contains
lemmas, POS and other grammar tags for each
word etc. Currently it contains 130823 different
words {and consists from two parts: from which
the second part (834255 words) is obtained with
the help of the independent morphosyntactic
tool, while the smaller one (468074 words) was
pre-processed with mystem, so we didn’t
consider it in the following study}.

It’s a very vague subject how to compare the
quality of morphological processors for IR
purposes. The obvious measures are
overstemming and understemming indexes (UI
and OI) that should be obtained as a result of
such experiment [Paice1996]. The traditional
approaches apply different morphology to the
same search engine and try to estimate the gain
or loss on the precision and recall. It is hardly
relevant mostly because of no-sense meaning of
the precision and recall on the web and of the
different way of how search engines incorporate
morphology. Another approach is to compare
the mappings (PPMVs [Shone2000]) to some
canonical mappings for example hand-coded in
the tagged corpus. This approach heavily
depends on the grammatical model chosen by
corpus editors – what they consider derivation
and what they consider inflection for example
(in Russian the common misjudgements
between linguists are participles vs. verbs,
different aspects, adverb vs. adjective, passive
voice etc). The ideal measure would be the
semantic similarity between variants of PPMV.
The semantic similarity is often seen as a
contextual interchangeability [manning1999]
and as such was used in [Shone2000] to
distillate spurious PPMVs. Unfortunately in
richly inflected languages the context itself is
syntactically dependent on the studied form so
it’s impossible to use the context words as is

without morphological processing. Another
issue for this approach is that the corpus
however big it is does not contain enough
statistical information to expose the semantics
scalable to the Web.

We propose here the following approach to
measure the semantic similarity between
variants of PPMV. If two different forms are
close enough they must be close in terms of
search results of a search engine (or even “The
Search Engine” i.e. Google which is a good
universal measure also because it doesn’t use
morphological processing). Modern search
engines make heavy use from word statistics;
generally they try to catch semantics as close as
possible also through socio-metrics methods
(e.g. link analysis) and all other possible sources
of information. Also it seems a good help for a
search engine to discover that the other forms of
the submitted word produce surprisingly close
results. Let us see for example how it can be
applied to English. Say we have two stemmers:
one collates stockings to stock, while other
collates it to stocking and stocks to stock. So we
take the first N (30) results from the Google
listing and see that stock and stocks have a lot of
common hosts (for example www.nasdaq.com),
so do the stocking/stockings PPMV (for example
www.stockingstore.com). The first PPMV
(stockings/stock) doesn’t have any common
hosts of course. So let us call a semantic
similarity of two different requests a number of
hosts that are common in the first 30 items of
both listings. But what requests we should use?
Ideally we should have found out the most
popular (say 3) requests containing the particular
word form and compare them to the same
requests with the PPMV variant instead. In this
case we would see a realistic degree of similarity
and would also catch more exactly what people
mean by that or this word form (its “meaning”).
Here for simplicity reasons we made only the
single word requests.

We applied all available stemmers to
www.ruscorpora.ru corpus and compared the
obtained PPMVs from each stemmer to the
canonical PPMVs from the corpus. The PPMV
in our sense are all pairs that collate to the same

textual representation, a lemma or a stem. To
lessen the sample set we left only word forms
that are met in the corpus with frequencies from
10 to 100, which is close to best term specificity
(10-100ppm).
Module Total PPMVs PPMVs with

10-100 freq.
Canonical 484462 70028
Stemka
(aggressive)

628154 82895

Stemka
(conservative)

108248 18014

Mystem 718216 93863
Snowball 519262 72568
Linguistica 575960 75515

Then we removed all the canonical PPMVs,
i.e. those, that were taken directly from the
www.ruscorpora.ru mappings. Thus we received
separate PPMV listing both for added PPMVs
and for deleted PPMVs for each stemmer. The
idea here is to measure maximum effect that
stemming has on the search engine, both
positive and negative. In fact we see the corpus
as a source of the new words and PPMVs (such
as a daily crawl) and use the semantic similarity
on whole index to find out how bad the PPMVs
were that the particular stemmer added and how
good those PPVMs were that the particular
stemmer lost comparing to canonical PPMVs.
So we took 30 most frequent forms and their
PPMVs from each listing of added and lost
PPMVs for each stemmer. Frequency was taken
according to www.yandex.ru search log (51387
words of the July 2002 that have frequency more
than 100 per a month).

Module Added
PPMV

Host
s

Lost
PPMV

Host
s

stemka
conserv.

136 46 1384 997

stemka
aggres.

787 210 493 269

snowball 643 219 487 308
linguistica 953 175 648 585
mystem 778 403 41 7

Notes on Speed
All the observed algorithms are written in

C++ without use of virtual functions and
templates. For the 1600 MHz Pentium IV we
measured speed on the 1 million of unique word
forms. The results are presented in the following
table:
Algorithm Thousands words per second
Snowball 180-190
Mystem 60-65
Stemka 380-390

Discussion
We tried to show here that the use of the

whole available dictionary as a guessing rule
outperforms both purely corpus inducted
morphology and hand-written set of guessing
rules. Though the number of extra PPMVs is
bigger than in other algorithms, they are much
more precise and rarely bring wrong
associations. Also the number of lost
associations is minimal. The purely corpus
inducted morphology (Linguistica) showed the
worst performance in terms of extra PPMVs and
low number of its semantic associations.
Deepest variant of stemka and snowball showed
very similar results, despite the fact, that
snowball is a hand-made set of rules and stemka
is the learned by corpus suffix-stripping
algoritym.

References
[1] [aspell], Aspell,

http://aspell.sourceforge.net/,
http://ftp.gnu.org/gnu/aspell/dict/

[2] [belonogov1985]

[3] [bosch1999], Memory-Based Morphological
Analysis, A. v. d. Bosch, W. Daelemans,
ACL’99, 1999

[4] [cormen1990], Introduction to algorithms,
Cormen, TH, Leiserson, CE, Rivest, RL,
London: MIT Press, 1990

[5] [daciuk2000], Incremental Construction of
Minimal Acyclic Finite-State Automata, J.
Daciuk; B. W. Watson; S. Mihov; R.E.
Watson Computational Linguistics, Volume
26, Number 1, March 2000

[6] [furnas1988], Information retrieval using a
singular value decomposition model of
latent semantic structure, G. W. Furnas, S.
Deerwester, S. T. Dumais, T. K. Landauer,
R. A. Harshman, L. A. Streeter, K. E.
Lochbaum, 11th ACM SIGIR, 1988,
Grenoble, France

[7] [gaussier1999], Unsupervised learning of
derivational morphology from inflectional
lexicons, E. Gaussier, ACL’99 Workshop:
Unsupervised Learning in Natural Language
Processing, 1999

[8] [goldsmith2001], Unsupervised learning of
the morphology of a natural language, J.
Goldsmith, Comp. Ling. 2001

[9] [Google1998], Google Help: The Basics of
Google Search, Google,
http://www.google.com/help/basics.html

[10] [gubin2002], Design of a Morphological
Dictionary for a Search Engine, M. Gubin,
Personal page, December 2002

[11] [harman1991] How effective is suffixing?
D. Harman, JASIS vol. 42, 1991

[12] [heimstra2002], Term-Specific Smoothing
for the Language Modelling Approach to
Information Retrieval: The Importance of a
Query Term, D. Hiemstra, 25th SIGIR, 2002

[13] [Hull1996], Stemming Algorithms A Case
Study for Detailed Evaluation, D. A. Hull
(Rank Xerox Research Centre), JASIS vol.
47, 1996

[14] [ispell], Ispell Dictionaries, http://fmg-
www.cs.ucla.edu/fmg-members/geoff/ispell-
dictionaries.html

[15] [jacquemin1997] Guessing morphology
from terms and corpora, C. Jacquemin,
SIGIR'97

[16] [karttunen1992], Two-Level Rule
Compiler, L. Karttunen, and K. R. Beesley ,
Xerox Palo Alto Research Centre, Palo Alto,
1992

[17] [koskonniemi1983], Two-level
Morphology: A General Computational
Model for Word-Form Recognition and
Production, K. Koskenniemi, Publication
No. 11, University of Helsinki.

[18] [lovins1968] Development of a Stemming
Algorithm, Lovins, J.B., .Mechanical
Translation and Computational Linguistics,
Vol. 11

[19] [manning1999] Foundations of Statistical
Natural Language Processing, C.D.
Manning, H. Schutze, 1999

[20] [manber1989], Suffix arrays: A new
method for on-line string searches, U.
Manber, G. Myers ,Proceedings of the First
Annual ACM-SIAM, May 1989

[21] [mikheev1997], Automatic Rule Induction
for Unknown Word Guessing, A. Mikheev
1997 University of Edinburgh

[22] [mohri2000], The Design Principles of a
Weighted Finite-State Transducer Library,
M. Mohri, Fernando Pereira, Michael Riley,
Theoretical Computer Science, 2000

[23] [Muramatsu2001], Transparent Queries:
investigation users' mental models of search
engines, J. Muramatsu, Wanda Pratt, 24th
ACM SIGIR, 2001

[24] [najork2001], High-Performance Web
Crawling, M. Najork, A. Heydon, Compaq
System Research Center Report, 2001

[25] [onestat2003], Onestat.com News Release,
http://www.onestat.com,
http://www.pressi.com/int/release/65369.ht
ml

[26] [Paice1996], Method for evaluation of
stemming algorithms based on error
counting, C. D. Paice, JASIS, Vol.47, Issue
8 , August 1996

[27] [porter1980], An algorithm for suffix
stripping, M. F. Porter, Program, 14:130—
137, July 1980

[28] [segalovich98], Russian Morphological
Analysis and Synthesis With Automatic
Generation of Inflection Models For

Unknown Words, I. Segalovich, M. Maslov,
Dialog'98 (in Russian)
http://company.yandex.ru/articles/article1.ht
ml

[29] [Shone2000], Knowledge-Free Induction
of Morphology Using Latent Semantic
Analysis, P. Schone, D. Jurafsky, 4th
Conference on Computational Natural
Language Learning and 2nd Learning
Language in Logic Workshop, Lisbon, 2000

[30] [snover2002], A Probabilistic Model for
Learning Concatenative Morphology, M. G.
Snover, M. R. Brent Proceedings of NIPS-
2002

[31] [snowball] Snowball,
http://snowball.tartarus.org/

[32] [woods1999], Aggressive Morphology for
Robust Lexical Coverage, W.A. Woods, Sun
Technical Report
http://research.sun.com/techrep/1999/smli_tr
-99-82.pdf

[33] [zaliznak1980]. Grammatical Dictionary of
the Russian Language. A.A. Zalizniak,
Published 1980

[34] [kovalenko2002]
http://linguist.nm.ru/stemka/stemka.html

[35] [ruscorpora2003] Russian Morphological
Corpus http://corpora.narod.ru/article.html

