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Abstract 
This paper describes a {simple yet practical} 

algorithm of morphological analysis and synthesis 
that uses a limited dictionary to obtain {rather 
precise} morphology of a wide lexical coverage. It 
doesn't imply any particular morphological model of 
the dictionary and is implemented for Russian, Polish 
and English. The design of the algorithm fits the 
constrains of a modern web search engines. 

Preamble: does a web search 
engine need morphology? 

Some IR studies showed very little or no 
improvements in search effectiveness with 
morphological analysis applied [harman1991]. 
Though later results proved success even in 
languages that typically have few word forms 
such as English [hull1996] it is still under the 
question if a web search engine needs 
morphologic analysis at all. Google, the #1 
ranked search engine in the world, claims that it 
intentionally doesn't use stemming to provide 
the most accurate results to its users 
[google1998]. Such an extreme position was a 
good revisionist point in the late 90s before the 
link analysis had improved the precision of web 
search. But is recall really unnecessary? Here 
are some arguments pro. Number of pages that a 
web search engines return are distributed 
according to a Zipf law, which means that 
though on popular queries it is very big, the 
amount of queries with only few found 
documents is substantial. For example more than 
30% of responses received at www.yandex.ru on 
the 06.09.2001 contained less than 100 

documents while only 5-10% of queries have 
misspelling. 

The user behaviour, coordinate 
ranking and morphology 

Another observation in favour of 
morphological processing on the web is the 
searchers behaviour and expectations. Users 
have their own mental models of how search 
engines should work [muramatsu2001] and they 
generally prefer coordinate-level ranking 
[heimstra2002]. To satisfy this model (please 
note that we don’t mention precision and recall 
as the primary goals) Web search engines first 
look for the exact phrase matching. When it is 
impossible (more 50% of queries doesn't have a 
“phrase match” anywhere on the web) search 
engines rank results according to the term 
proximity [muramatsu2001] so the responses are 
as "similar" to queries as possible. One may 
notice looking at the typical web search engine 
response that documents are roughly listed in the 
decreasing order of the edit distance 
(“likelihood”) between the query and snippets of 
the documents. In the same time 75% of web 
search queries consist from more than 1 word 
[onestat2003]. So why the "similarity" of 
responses to longer queries allows insertion of 
big spans of characters (words, sentences) 
between search terms but doesn’t' allow small 
changes of terms' suffixes when terms are close 
to each other?  

Introduction & current trends 
The state-of-the-art algorithms for 

morphological analysis are based on the Finite 
State Transducers of different flavours 



([kimo1983], [kartunen1992], [mohri2000], 
[daciuk2000]), where phonological rules are 
described by hand and each word from the 
dictionary is assigned its corresponding 
(inflectional/derivational) model. These 
transducers allow both analysis and synthesis of 
the word forms; they are very fast and robust. 
Unfortunately number of unknown lexical items 
brought from the web with every crawl are very 
big and can be estimated by Heaps law 
VR = Knβ, where VR is the portion of the 
vocabulary represented by the instance text of 
size n. K and β are free parameters determined 
empirically. On the web β is closer to 1.0 than to 
0.5 due to (un) intentional misspellings, foreign 
words, privately invented words such as taken 
from blogs etc. This means that the dictionary 
grows sub linear with grow of index. One 
approach here is simply to ignore all the words 
that are not from main dictionary 
[www.aport.ru] hoping that the coverage will 
suffice.  

Recently the problem of the morphological 
analysis of the unknown words draws more 
attention mostly from the success in 
unsupervised learning of morphology from the 
corpora itself. [Jackuemin1997] analysed 
statistics of k-n conflations (where k – length of 
the hypothesized suffix, usually 3 letters, and n – 
the width of the context window – usually 2 
words) and obtained decent results compared to 
Lovins and Porter famous hand-made stemmers 
([lovins1968], [porter1980]). [gaussier1999] 
used similar approach (p-similarity – the number 
of common letters between two words) to learn 
derivational morphological families and even 
derivational trees. The more generalized 
approaches of corpus suffix analysis are 
presented in [goldsmith2001] and [snover2002]. 
They use MDL (Minimum Description Length) 
principle, known from theory of information, to 
produce the set of stems, signatures (paradigms) 
and affixes that can be encoded in the minimal 
number of bits [goldsmith2001] or that are most 
probable (Brent) thus making morphological 
description of corpus minimal in some sense. 
Linguistica [goldsmith2001] is also a publicly 
available tool that we will use later in this paper. 

Another promising approach [schone2001] 
makes use of word contexts to distillate 
hypothesized models obtained from pure 
suffixal analysis. It uses the primitive of PPMV 
— pair of potential morphological variants and 
measures semantic similarity between them, 
which is understood as the normalized 
correlation between their vectors in the latent 
semantic space (which in fact is word-to-word-
neighbours matrix factorised with the help of 
LSI). 

All of the approaches mentioned above are 
unsupervised in a sense that they don’t use any 
prior knowledge about a language and its 
morphological models. Unfortunately there are 
at least two obstacles that don’t let direct use of 
the unsupervised methods in Web search 
engines as is. The first is the quality of the 
morphology of the most used words that must be 
as precise as possible. The second is that the 
complicating of index updates: index is 
distributed over hundred and thousands of 
computers, so the morphological interpretation 
of the new words that appear in daily crawls 
must not change too often or it may require daily 
patching of the index. It worth noting that if a 
language has a web corpus substantial enough to 
be of a public interest and of a commercial 
search engine to strive on, it usually has plenty 
of dictionaries that already accumulated some 
knowledge. For example widespread spelling 
tools that use compact description of all possible 
word forms such as [ispell] or [aspell] have 
dictionaries for 37 and 26 languages 
respectively. Of course the task of the compact 
listing of all allowed forms in a language is not 
exactly the task of describing all words and its 
respecting paradigms, nevertheless these 
dictionaries are successfully used in the web 
search engines ([mnogosearch], [glimpse], 
[aspseek] etc). Important observation about 
existing dictionaries that they always (and 
hopefully correct) describe the most frequently 
used words of the language. Here we suppose 
that all the complex and non-trivial 
[inflectional/derivational] models always belong 
to the most used words of the language -- which 
is in fact another law of Zipf -- “the greater the 



frequency of a word, the greater the number of 
morphologically complex forms it will be used 
in” [manning1999]). 

The idea of applying a relatively small 
dictionary to guess new words morphology is 
not new. For example [woods1999] used a set of 
aggressive rules together with a small lexicon to 
improve lexical coverage, [mikheev1995] 
presented a technique of automatic acquisition 
of unknown words morphology through a 
general-purpose lexicon and word frequencies, 
the classic Russian morphology algorithm 
[belonogov1985] used the same dictionary both 
for known and unknown words, also all the FST 
machines allow to write catch-all rules for the 
words that are not in the dictionary. While the 
process of describing particular word 
morphology seem to be deterministic, the catch-
all rules are rather hard to write and debug. The 
example of applying a one-time learning 
procedure together with the existing 
morphological dictionary to the corpus in order 
to obtain morphological guesser is presented in 
[kovalenko2002]. 

The approach described here is based on 
[segalovich1998] and uses a very simple idea of 
morphological similarity. Unknown word 
morphology is taken from all the closest words 
from dictionary, where the closeness is the 
number of letters on its end. From the 
[belonogov1985] approach it differs in that it 
doesn’t choose one variant, but rather take all 
possible variants that have the same common 
length, and unlike [kovalenko2002] it uses for 
the induction of the hypothesizes the whole 
dictionary not just N several last letters of stems. 
To build such dictionary we don’t need to know 
the morpheme structure or any particular 
formalism of any particular morphology, the 
compiler accepts input in the form of full listing 
of all word paradigms from the dictionary. If the 
grammar tags are available they are accepted 
either. Such a dictionary is be able not only to 
analyse known words, but also to synthesize all 
forms both known and hypothesized. The 
algorithmic idea behind this algorithm is that 
after we analysed the word trying to find its 
exact form in the dictionary we already have 

enough information (we already looked at all its 
letters) to find the most probable inexact 
equivalent. The FST approach also use one pre-
compiled automata with exact and catch-all rules 
but unlike [Karttunen1992] we don’t require 
catch-all rules, we rather consider them harmful 
and completely rely on the probabilistic nature 
of the unknown words analysis. This is the idea 
of the algorithm – use deterministic knowledge 
when possible (for all the ‘known’ words) and 
probabilistic approach when the exact 
interpretation is not available.  

An interesting application of this algorithm is 
the combined dictionary of several languages 
which is useful in the situations when the 
language is ambiguous, so the combined 
dictionary will choose the most likely 
morphological interpretations based on the 
likelihood to all words of all languages. (Such a 
combined Polish-English dictionary is used in 
our experimental project at www.yandex.pl as a 
part of the query interpretation). 

Design issues 
There are some questions about 

morphological model and algorithms that must 
be answered before we describe the algorithm 
itself. All of them originate from the nature of 
the information retrieval or from the technical 
requirement of search engines. What kind of 
morphological analysis to perform: inflectional 
or derivational? Are grammar tags (or POS tags) 
required as a result of analysis? Do we need 
stems (roots) or the base form (in other words -- 
do we need stemming or lemmatisation)? How 
unknown words are processed? Shall we use the 
context of words to help analysis? Is the analysis 
corpus-dependent and if it is, to what degree? To 
fully answer to all of these questions we will 
need a much longer paper, in short the answers 
are: inflectional, no grammar tags, 
lemmatisation, no context built in morphology. 
Here is very a short reasoning.  

Inflectional morphology. For the sake of 
precision we don’t want derivational 
morphology, though the difference is often very 
subtle; consider for example aspect, gender of 
nouns, diminutive forms.  



No grammar tags. Different languages have 
different morphology with different grammar 
systems and search engine often can’t 
distinguish nor the language of the queries 
(people never choose appropriate switches) 
neither of the document (consider multilingual 
document, technical documents, etc). So the 
index keys should have purely textual 
representation without any grammar ot language 
tags. 

Lemmas not stem. Stemming is not only 
connects different parts of speech or derivational 
forms (that we don’t want) but also produce 
spurious conflations. So search engines usually 
need the dictionary forms as a result of 
morphological analysis. That in turn opens the 
question of disambiguation between them even 
if we completely drop POS tags; consider 
stocking -> (stock OR stocking). 

Context analysis. The morphological 
algorithm itself must not rely on the word 
context or on the assumption that all the words 
will be submitted strictly in the order of the text 
flow. The indexing speed requirements of 
modern search engine may not permit this (their 
speed is about 50-100 documents per second 
[najork2001]), the morphological module is 
often called in multi-threaded environment once 
per word form met anywhere in the portion of 
texts.   

Ambiguity. It’s important to note that 
ambiguity won’t cost more than 10-20% of the 
index size. And the linguistic disambiguation is 
impossible in short queries (in fact non-
linguistic disambiguation is much more 
successful by coordination ranking). 

Algorithm 
The dictionary is represented as a set of tries 

[cormen1990] of inverted stems and a trie of all 
possible suffixes. The boundary between stem 
and suffix is taken either from the input file if it 
is explicitly presented or computed 
automatically as the length of the common part 
of all word forms in the paradigm. Here is the 
description of the algorithm. 

1. Sink into word from the right end using 
the trie of all possible suffixes. As a result we 

have all possible positions of stem/suffix 
boundary in a single pass 

2. Start with the deepest possible stem/suffix 
boundary and perform the steps 3-7 

3. Use two last letters of a possible stem as 
an index to obtain an appropriate stem trie. If no 
stem has last two letters like this go to the next 
stem/suffix boundary 

4. Sink into the appropriate stem trie and try 
to find the terminal leaf at the edge of the word 
collecting all the branching points in a single 
pass 

5. Dictionary word. If there is a terminal leaf 
at the edge of the word compare the 
corresponding inflectional model (its identifier 
is stored in the stem trie as a special letter after 
the first letter of a stem) with the word suffix. If 
it matches it means we found the dictionary 
word 

6. Unknown word. If there is no terminal at 
the edge of the word or the inflectional model 
doesn't match to the suffix then perform the next 
steps 

7. Traverse all the previously collected 
branching point of the stem trie starting from the 
deepest one and find all the candidate stems 
which can be models for the given unknown 
word. Check their inflectional models against 
the given suffix 

The algorithm supports 2 additional modes: 
check only dictionary words; find only one 
candidate (this is useful to conform one-to-one 
stemming).  

Speed up. We cut traversing as early as we 
can with the use of 'best candidate' metrics i.e. 
the number of common letters at end of the word 
between the given word and a model candidate. 
All the branching points in a trie that have only 
one inflectional model below are marked, so it 
helps to limit traversing. 

Learning. Some heuristics that was learned 
and now built into algorithm are: the resulted 
stem must contain a vowel, model stems must 
have a productive POS tag (when available), 
there must be minimum stem length, there must 
be minimal common part of an example and 
unknown word, the model paradigm must have 



minimal frequency (e.g. met at least twice in the 
dictionary). 
It’s also quite useful [segalovich1998] to use the 
corpus statistics to do some basic 
disambiguation and eliminating of extra 
morphological variants: remove lemmas with 
paradigms fully ‘nested’ into paradigms of the 
other lemmas (if we met shmocking->(shmock | 
shmocking), shmockings-> (shmocking), but not 
shmock or shmocked we can drop the lemma 
shmock; or as an opposite if we met shmocking, 
shmock and shmoked but not shmockings we can 
drop the lemma shmocking), prefer paradigms 
with more frequent lemmas, prefer paradigms 
that contain lemma in the corpus, etc. These and 
other heuristics may be obtained through the 
learning by corpus. Anyway, in this paper we 
concentrate on the quality of the morphology 
itself, and don’t consider disambiguation phase 
as a part of it. 

Experiment 
Though our dictionary is implemented for 

several languages (theoretically for all that have 
full paradigm dictionaries, in practice – only 
Russian, Polish, and English) we have chosen to 
measure its quality for Russian. First of all there 
are very few comparisons available for Russian 
morphology, especially for the guessers. In the 
last years at least 3 new tools appeared that cope 
with Russian morphology. The new version of 
Porter stemmer [snowball] uses hand written set 
of rules in a special ‘snowball’ language and is 
available for Russian. The Linguistica 
[goldsmith2001] learns morphology from the 
corpus. The ‘stemka’ [kovalenko2002] is a 
Russian and Ukrainian morphological guesser 
that was built with the help of the full-fledged 
morphological module based on [Zaliznak1980] 
and the collected corpus statistics. Because it 
produces several variants of stems for each word 
we consider two extreme variants it produces: 
the deepest or the aggressive, and the shallowest 
or the conservative. The ‘mystem’ is the 
algorithm presented here (it was originally 
designed in 1996 as a part of Yandex search 
engine development), it uses the full dictionary 

[Zaliznak1980] as a guessing machine in a sense 
described above.  

Another part of the experiment is the corpus 
with the canonical mappings between word 
forms. For this purpose we took recently 
appeared www.ruscorpora.ru [ruscorpora2003] 
that is currently 1302329-words 
morphologically annotated corpus of Russian. 
Like CELEX or Brown corpus it contains 
lemmas, POS and other grammar tags for each 
word etc. Currently it contains 130823 different 
words {and consists from two parts: from which 
the second part (834255 words) is obtained with 
the help of the independent morphosyntactic 
tool, while the smaller one (468074 words) was 
pre-processed with mystem, so we didn’t 
consider it in the following study}. 

It’s a very vague subject how to compare the 
quality of morphological processors for IR 
purposes. The obvious measures are 
overstemming and understemming indexes (UI 
and OI) that should be obtained as a result of 
such experiment [Paice1996]. The traditional 
approaches apply different morphology to the 
same search engine and try to estimate the gain 
or loss on the precision and recall. It is hardly 
relevant mostly because of no-sense meaning of 
the precision and recall on the web and of the 
different way of how search engines incorporate 
morphology. Another approach is to compare 
the mappings (PPMVs [Shone2000]) to some 
canonical mappings for example hand-coded in 
the tagged corpus. This approach heavily 
depends on the grammatical model chosen by 
corpus editors – what they consider derivation 
and what they consider inflection for example 
(in Russian the common misjudgements 
between linguists are participles vs. verbs, 
different aspects, adverb vs. adjective, passive 
voice etc). The ideal measure would be the 
semantic similarity between variants of PPMV. 
The semantic similarity is often seen as a 
contextual interchangeability [manning1999] 
and as such was used in [Shone2000] to 
distillate spurious PPMVs. Unfortunately in 
richly inflected languages the context itself is 
syntactically dependent on the studied form so 
it’s impossible to use the context words as is 



without morphological processing. Another 
issue for this approach is that the corpus 
however big it is does not contain enough 
statistical information to expose the semantics 
scalable to the Web. 

We propose here the following approach to 
measure the semantic similarity between 
variants of PPMV. If two different forms are 
close enough they must be close in terms of 
search results of a search engine (or even “The 
Search Engine” i.e. Google which is a good 
universal measure also because it doesn’t use 
morphological processing). Modern search 
engines make heavy use from word statistics; 
generally they try to catch semantics as close as 
possible also through socio-metrics methods 
(e.g. link analysis) and all other possible sources 
of information. Also it seems a good help for a 
search engine to discover that the other forms of 
the submitted word produce surprisingly close 
results. Let us see for example how it can be 
applied to English. Say we have two stemmers: 
one collates stockings to stock, while other 
collates it to stocking and stocks to stock. So we 
take the first N (30) results from the Google 
listing and see that stock and stocks have a lot of 
common hosts (for example www.nasdaq.com), 
so do the stocking/stockings PPMV (for example 
www.stockingstore.com). The first PPMV 
(stockings/stock) doesn’t have any common 
hosts of course. So let us call a semantic 
similarity of two different requests a number of 
hosts that are common in the first 30 items of 
both listings. But what requests we should use? 
Ideally we should have found out the most 
popular (say 3) requests containing the particular 
word form and compare them to the same 
requests with the PPMV variant instead. In this 
case we would see a realistic degree of similarity 
and would also catch more exactly what people 
mean by that or this word form (its “meaning”). 
Here for simplicity reasons we made only the 
single word requests. 

We applied all available stemmers to 
www.ruscorpora.ru corpus and compared the 
obtained PPMVs from each stemmer to the 
canonical PPMVs from the corpus. The PPMV 
in our sense are all pairs that collate to the same 

textual representation, a lemma or a stem. To 
lessen the sample set we left only word forms 
that are met in the corpus with frequencies from 
10 to 100, which is close to best term specificity 
(10-100ppm).  
Module Total PPMVs PPMVs with 

10-100 freq. 
Canonical 484462 70028 
Stemka 
(aggressive) 

628154 82895 

Stemka 
(conservative) 

108248 18014 

Mystem 718216 93863 
Snowball 519262 72568 
Linguistica 575960 75515 

Then we removed all the canonical PPMVs, 
i.e. those, that were taken directly from the 
www.ruscorpora.ru mappings. Thus we received 
separate PPMV listing both for added PPMVs 
and for deleted PPMVs for each stemmer. The 
idea here is to measure maximum effect that 
stemming has on the search engine, both 
positive and negative. In fact we see the corpus 
as a source of the new words and PPMVs (such 
as a daily crawl) and use the semantic similarity 
on whole index to find out how bad the PPMVs 
were that the particular stemmer added and how 
good those PPVMs were that the particular 
stemmer lost comparing to canonical PPMVs. 
So we took 30 most frequent forms and their 
PPMVs from each listing of added and lost 
PPMVs for each stemmer. Frequency was taken 
according to www.yandex.ru search log (51387 
words of the July 2002 that have frequency more 
than 100 per a month).  



Module Added 
PPMV 

Host
s 

Lost 
PPMV 

Host
s 

stemka 
conserv. 

136 46 1384 997 

stemka 
aggres. 

787 210 493 269 

snowball 643 219 487 308 
linguistica  953 175 648 585 
mystem 778 403 41 7 

Notes on Speed 
All the observed algorithms are written in 

C++ without use of virtual functions and 
templates. For the 1600 MHz Pentium IV we 
measured speed on the 1 million of unique word 
forms. The results are presented in the following 
table:  
Algorithm Thousands words per second 
Snowball 180-190 
Mystem 60-65 
Stemka 380-390 

Discussion  
We tried to show here that the use of the 

whole available dictionary as a guessing rule 
outperforms both purely corpus inducted 
morphology and hand-written set of guessing 
rules. Though the number of extra PPMVs is 
bigger than in other algorithms, they are much 
more precise and rarely bring wrong 
associations. Also the number of lost 
associations is minimal. The purely corpus 
inducted morphology (Linguistica) showed the 
worst performance in terms of extra PPMVs and 
low number of its semantic associations. 
Deepest variant of stemka and snowball showed 
very similar results, despite the fact, that 
snowball is a hand-made set of rules and stemka 
is the learned by corpus suffix-stripping 
algoritym. 
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