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Abstract

The trigintaduonions form a 32-dimensional Cayley-Dickson algebra. In this
paper, we introduce the k- Fibonacci and k-Lucas trigintaduonions. Moreover, we
give some properties of these trigintaduonions and derive relationships between
them.
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1. Introduction

The k-Fibonacci numbers appear in many fields of science (see, e.g., [14]). The
k-Fibonacci number F ,, is defined by the recurrence relation
Fro=0,F1 =1,Fns1 = kFyn+ Fn_;n > 1,

Another important sequence is the k-Lucas sequence. This sequence is defined by
the recurrence relation

Lyo=2,Lyy=kandLyp4q =kLgp + Lgp-1;n =1
These sequences were firstly studied by Horadam in [10]. The interested reader is
also referred to [2, 6-8] for further details about these sequences.
The Cayley- Dickson algebras are real numbers, complex numbers, quaternions,
octonions, sedenions and trigintaduonions. The Cayley- Dickson algebras have
been studied in several papers.
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In 1963, Horadam [11] introduced nth Fibonacci and nth Lucas quaternions.
Many interesting properties of Fibonacci and Lucas quaternions have been
presented in the literature ( e.g. see [9,12, 15]). Octonions and sedenions that are
hyper-complex
numbers as quaternions have been studied some of recent papers [1,13].
The trigintaduonions which are real algebras form a 32 -dimensional the
Cayley-Dickson algebra. A trigintaduonion is defined by

t =ty + X1, tie.
The trigintaduonions product is given in the matrix-vector multiplication form as:
3]

t1 = ag + Xy aze;ty = by + X1y biey, ts = tyty = ¢ + X2 ciep (1)

The operations requiring for the matrix-vector multiplication in (1) are quite alot.
Detailed informations about these operations have been presented in the literature
(e.g. see [3-5,16]).

In this paper, we give some properties of k - Fibonacci and k -Lucas
trigintaduonions and derive relationships between these trigintaduonions.

2. k- Fibonacci and k-Lucas Trigintaduonions

In this section, we introduce k-Fibonacci and k-Lucas trigintaduonions. Also, we
give generating functions, Binet’s formulas and some identities for these
trigintaduonions.

Definition 1.
k-Fibonacci and k-Lucas trigintaduonions are defined by
TEen = Zgio Fn+ses and Tlgn = Zgio Ly n+ses
where F,, and L, are the nth k-Fibonacci number and the nth k- Lucas
number, respectively.
The sum of TFy,,, and TLy, is

TFk,n + TLk,n = Zgio (Fk,n+s + Lk,n+s)es-

The conjugates of TF,,, and TLy , are defined by, respectively,
TF*k,n = Fyneo — Zgil Fineses and TL*k,n = Ly neo — Zgil Ly nises-

The norm of TF, ,, and TLy, are defined by, respectively,

— 31 2 — 31 2
TFk,nTF*k,n - Zs:O Fk,n+ses and TLk,nTL*k,n - Zs:O Lk,n+ses-
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We can give some important identities of k- Fibonacci trigintaduonion and
k-Lucas trigintaduonion as follows:
kKTFin + TFen—1 = TFeni1,
KTLgn + TLgn-1 = TLgnt1,
TFen-1+TFen1 = Tlgp
The characteristic equation of these sequences is 72 — kr — 1 = 0. The roots of

k+VkZ+4 k—VkZ+4 .
> and r, = — Also, There are the following

this equation are r; =
identities:
r1+r2 = k) rl_rz = Vk2+4, T'17”2 = —1_
Binet formulas for n-th (n = 0) k-Fibonacci and k-Lucas numbers are given by
Fk,n =

-1 n n
—r — , Lk,n =n + r,
1~ T2

respectively [6,8].

Theorem 2.
Binet’s formula for TF, and TL,,, respectively, are given by

_ f'lrf—f'zrgl d o n A n
TFy,=—"—"=and TLy, =1 —1r,,

=T
where 7, = Y31 rle; and #, = Y31 rle;.

Proof.

We know that TF , = Ar{* + Bry' (2

Forn=0and n=1, TF,,=A+B and TF,,; = Ar; + Br, we obtain
_TEy—nTFy 7

n—-n n - Tz'
B TFy1—1TFyp 7y
n—-n n - Tzl

When these values write in equality (2), we have

oS n ) n
TF _ T'1T1 - rzrz
kn — _ .
rn—nr

Similarly, we can see TLy , = fyr{" — fo1y".
Using the Binet’s formulas for TFy, and TLy,, we give some relations between
r, Ty, 11,7, and k-Fibonacci or k- Lucas trigintaduonion by following lemma:
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Lemma 3.
TL; -7r,TL
AN _ n+1 24 Hkn
"1y = TFpyr —1TF, = )
n—-n
TL; —nrTL
AN o _ n+1 14 Hkn
11y = TFeni1 —1TFen = :
n—-n
Proof.
By applying Binet formula, we obtain the following equalities:
_ Pt =ttt Prit—fory
TFyni1 —12TFq = — ) —
1
= (#yry ol 7c27”2(1 — Pirrt + o1y +1) =y
n—-n
_ _ Pt =gt A —Rprf

TFepns1 —1TF, = — L] —

1

= (ﬁﬁnﬂ - 7ﬁ27‘2n+1 + oy — f1rfl+1) = fory
n—-n

Theorem 4.

(Catalan’s identity) For n > r > 1, we have the foIIowing formulas:
(=prn—rt 1) A A
TFk,n—rTFk,n+r - TFkZ,n - ((Tlrz)( - (_1)r) +
(@ﬁ)(ﬁzr - (—1)r)),
TLk,n—rTLk,n+r _( n* r+1((7.1r2 -(=D"N+
(FP) (" — (=1N).

Proof.
By using Binet formula and r;7, = —1, we obtain

A o N=T 2 n+r n+r Y (S Ry (3
TF TF _ TFZ _ P T = T AT —forg _ (I Tl
kn—-r kn+r kn —
r1—"12 r1—T2 r1—T2

_ AR T A ) + AR T 'y

- (r, —12)?

_ =D (A = (D7) + B — (—1D)N)
(T —13)?
( prT ~, 2r r
~ira (( f1fy)(ry" — (=D7) + (Rf) (" — (=1) ))
TLk,n—rTLk,n+r - TLk,
= (A" — oy r)(r T =1 ) — (]t — pryt)?

= (=DM TR —(—1)r)+(fzf1)(rfr—(—1)r)).

r n+
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The Cassini’s identity given in the following theorem is the special case of
Catalan’s identity.

Theorem 5.
(Cassini’s identity) For n > 1, we have the following formulas:

1 A A A
TFinaTFinss = TFen = e (7 (3 + 1) + (R G + 1),
TLin-1TLgns1 —TLE , = (—1)n((f1f2)(rzz +1) + (A0 + 1)),

Theorem 6.
If m > n, then we get

(="
TFk,mTFk,n+r - TFk,m+rTFk,n =

\/k—Fkr(Tﬂ"zﬁ = 1Rt ),
TLk,mTLk,n+r - TLk,m+rTLk,n = (_1)n Vk? + Fk,r (flf'zrlm_n -

LY

Proof.

By using Binet formula and r;7, = —1, we obtain
n+r

A M _a M 4 o LM+
_ 7y —TaTy " TTq =11
TFmTFensr = TFimeTFen = ( ) -

r1—T2 r1—T2

(flrl MAT_p, 04T rlrln—f"zrzn)

= —
_ (nm (7 N _ ey
= Jieta Fier Pufor] " — oy .

The second identity is found in a similar manner.

Corollary 7.
If m > n, then we get

TFk,mTFk,n+1 - TFk,m+1TFk,n = \/kz—( 1 27‘1 = f'zflrzm_n):
TLemTLigns1 — ThgmerTLgn = (=D)"™Vk2 + 4(# " = Ffyry ™).

Proof.
Taking r = 1 a special case of theorem 6, the proof can easily seen.

Theorem 8.
The relationship between TF ,, and TLy,, is as follows:

; 2 _ _1 2

i TFZ, = Tl
2 2

.. 2 2 k2+5(TL?;p)

Il. TLk,n + TFk,n = T

Proof. By using Binet formula for TF ,, and TLy,, we have
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: 2 2 n a2 (Farf—fard)?
l. TLk,TL - TFk,TL = (T‘lrl - rzrz ) - ( — )

A T 2. T2
= ((n —rp)? - DR

(ry-m2)?2
_ K243(Tlkn)
k%2+4
2 __1 2
TFEn = T .
.- 2 2 2 f‘lr:‘ln—f'zrén 2
I1. TLk,n + TFk,n == (rlr{l - rzrzn) + ( P )
1~ T2
_ K2+5(TL%kn)
k2+4

Theorem 9.
The generating functions for the k-Fibonacci and k-Lucas trigintaduonions are

=  TF.o+TF,_.x
Z TFy ' = k,0 k,—1
i=0

1—kx—x?
and
-  TLyo+ TLy_1x
TL, xt = . - .
Z keiX 1— kx — x2
=0
Proof.

Define G(TFy;x) = %20 TFyix'. Multiplying both sides of this equation by
- kx and —x?, we obtain the following equations;
G(TFi;x) = TFyo + TF1x + TFpx? + -+ TFixt + -,
—kxG(TFy;;x) = —kTFy ox — kTFy1x? — kTFy 2% — -+ — kTF ;x'*t — -,
—x2G(TF ;%) = —TFy0x? — TFy1 %3 — TF px* — -+ — TF ;x't2 — ..,

By adding these equations and using the identity kT F,, + TFy 1 = TFy n41, We
obtain
TFk,O + TFk‘l.X - kTFk’O.X

G(TFii;x) = 1—kx —x?
_ TFyo+ TFy1x
o 1—kx—x2

The generating function for the k-Lucas trigintaduonion is obtained in a similar
way.

Theorem 10.
For any integer m, n, the generating functions of the k-Fibonacci trigintaduonion
TFy m+n and the k-Lucas TLy .4+, trigintaduonion are
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= -  TFum +XTF s
. k,m+nx - 1—kx—x2
n=
and
i o on— Tl XTLigms
. fomin 1—hkx—x%2
n=
Proof.
had e popmin _ g ,.min
ZTFk,m+nxn=Z<11 272 >xn
n=0 n=0 rl N Tz
2, m

Tl - TZ 1 - kx - xz
_ TFk,m + xTFk,m_l
1 —kx—x%
The proof of the second sum is found in a similar manner.

Theorem 11.
For any integer n, we have

(%) KiTFii = TFyzn,

D=1

..‘
Il
o

(%) i TLis = Thigzn.

Proof.
n

- n i n if‘lrli_f‘ZTZi
O (DkrRg= (e
i=0 i=0 12
A n N n
T- n .. T- n .
=1 Z(.)k‘rf— 2 Z(.)klrzl
el R Ebr
7 7
=—L1 (A+kr)"——2—(1+knr)"
rn—nr

n—-n

1 <(7A”17"1m — forg™) + x(Fyr{" ™t — )

)
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r, and 7, are roots of the equation r? — kr — 1 = 0. Thus, we can write 1+
kr, = (r1)? and 1 + kr, = ()% Using these equations in the last equation, we
obtain

n
A 2N A 22N
n . T'lT'l - rzrz
() kiTF,; = ———=2 =TF,,,.
l ’ rl — rz ’
i=0

The second identity is found in the same manner.
Now, we give the matrix representations of k -Fibonacci and k -Lucas
trigintaduonions.

Theorem 12.
Let n > 1 be integer. Then we have
TFin TFk,n—l] _ TFy1 TFk,O] [k 1t
TFent1  TEn TF., TFdl1 ol
TLyn TLk,n—l] _ [TLiea TLk,O] [k 1!
TLin+1r Tlgn TLyz TLgqll1 01 -

Proof.
The proof will be done by induction steps. Firstly, for n = 1, it holds the equation.
Assume that the equation holds for all n, that is,
TFen TFen-a]  [TFex TFeoltk 17"7°
TFene1  TEen ] B [TFk,Z TFk,l] 1 o
We can end up the proof if we show that
TFen+1  TEen ]_ [TFk,l TFk,O] kK 11"
TFiniz TFiengid  |TFz TFEealll 0l
By using induction’s hypothesis, we have
[TFk,l TFk,O] k 1]"_1 [k 1] _ [ TFyn TFk,n—l] k1
TFy, TFealll 0 1 0 TFyny1 TEen 1110
_ [kTFyn+TFyn1  TFyn
B kTFk,n+1 + TFk,n TFk,n+1]
_ TFk,n+1 TFk,n ]
B TFk,n+2 TFk,n+1 -
Thus, the proof is ended.
The remaining part of the theorem is proved in a similar way.

Corollary 13.

TFin-1TFins1 — TF2, = ()" YTF o TF, — TF?,),
TLin-1TLinsr — TLan = (=)™ (TLyoTLy, — TL: 1)
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Proof.
If there exist the determinations of the matrix representations of TF , and TLy ,,
the proof can be easily seen.
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