International Journal of Contemporary Mathematical Sciences Vol. 13, 2018, no. 1, 1 - 10

HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2018.71134

On k-Fibonacci and k-Lucas Trigintaduonions

Kübra Gül

Department of Computer Engineering Kafkas University, Turkey

Copyright © 2018 Kübra Gül. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The trigintaduonions form a 32-dimensional Cayley-Dickson algebra. In this paper, we introduce the k- Fibonacci and k-Lucas trigintaduonions. Moreover, we give some properties of these trigintaduonions and derive relationships between them.

Mathematics Subject Classification: 11B39, 11B83, 17A45

Keywords: k-Fibonacci numbers, k-Lucas numbers, trigintaduonions

1. Introduction

The k-Fibonacci numbers appear in many fields of science (see, e.g., [14]). The k-Fibonacci number $F_{k,n}$ is defined by the recurrence relation

$$F_{k,0} = 0, F_{k,1} = 1, F_{k,n+1} = kF_{k,n} + F_{k,n-1}; n \ge 1.$$

Another important sequence is the k-Lucas sequence. This sequence is defined by the recurrence relation

$$L_{k,0} = 2$$
, $L_{k,1} = k$ and $L_{k,n+1} = kL_{k,n} + L_{k,n-1}$; $n \ge 1$.

These sequences were firstly studied by Horadam in [10]. The interested reader is also referred to [2, 6-8] for further details about these sequences.

The Cayley- Dickson algebras are real numbers, complex numbers, quaternions, octonions, sedenions and trigintaduonions. The Cayley- Dickson algebras have been studied in several papers.

In 1963, Horadam [11] introduced *n*th Fibonacci and *n*th Lucas quaternions. Many interesting properties of Fibonacci and Lucas quaternions have been presented in the literature (e.g. see [9,12, 15]). Octonions and sedenions that are hyper-complex

numbers as quaternions have been studied some of recent papers [1,13].

The trigintaduonions which are real algebras form a 32 -dimensional the Cayley-Dickson algebra. A trigintaduonion is defined by

$$t = t_0 + \sum_{i=1}^{31} t_i e_i$$

The trigintaduonions product is given in the matrix-vector multiplication form as: [3]

$$t_1 = a_0 + \sum_{i=1}^{31} a_i e_i, t_2 = b_0 + \sum_{i=1}^{31} b_i e_i, t_3 = t_1 t_2 = c_0 + \sum_{i=1}^{31} c_i e_i$$
 (1)

The operations requiring for the matrix-vector multiplication in (1) are quite alot. Detailed informations about these operations have been presented in the literature (e.g. see [3-5,16]).

In this paper, we give some properties of k - Fibonacci and k -Lucas trigintaduonions and derive relationships between these trigintaduonions.

2. k- Fibonacci and k-Lucas Trigintaduonions

In this section, we introduce k-Fibonacci and k-Lucas trigintaduonions. Also, we give generating functions, Binet's formulas and some identities for these trigintaduonions.

Definition 1.

k-Fibonacci and k-Lucas trigintaduonions are defined by

$$TF_{k,n}=\sum_{s=0}^{31}F_{k,n+s}e_s$$
 and $TL_{k,n}=\sum_{s=0}^{31}L_{k,n+s}e_s$

where $F_{k,n}$ and $L_{k,n}$ are the *n*th *k*-Fibonacci number and the *n*th *k*- Lucas number, respectively.

The sum of $TF_{k,n}$ and $TL_{k,n}$ is

$$TF_{k,n} \pm TL_{k,n} = \sum_{s=0}^{31} (F_{k,n+s} \pm L_{k,n+s})e_s.$$

The conjugates of $TF_{k,n}$ and $TL_{k,n}$ are defined by, respectively,

$$TF^*_{k,n} = F_{k,n}e_0 - \sum_{s=1}^{31} F_{k,n+s}e_s$$
 and $TL^*_{k,n} = L_{k,n}e_0 - \sum_{s=1}^{31} L_{k,n+s}e_s$.

The norm of $TF_{k,n}$ and $TL_{k,n}$ are defined by, respectively,

$$TF_{k,n}TF^*_{k,n} = \sum_{s=0}^{31} F_{k,n+s}^2 e_s$$
 and $TL_{k,n}TL^*_{k,n} = \sum_{s=0}^{31} L_{k,n+s}^2 e_s$.

We can give some important identities of k- Fibonacci trigintaduonion and k-Lucas trigintaduonion as follows:

$$kTF_{k,n} + TF_{k,n-1} = TF_{k,n+1},$$

 $kTL_{k,n} + TL_{k,n-1} = TL_{k,n+1},$
 $TF_{k,n-1} + TF_{k,n+1} = TL_{k,n}.$

The characteristic equation of these sequences is $r^2 - kr - 1 = 0$. The roots of this equation are $r_1 = \frac{k + \sqrt{k^2 + 4}}{2}$ and $r_2 = \frac{k - \sqrt{k^2 + 4}}{2}$. Also, There are the following identities:

$$r_1 + r_2 = k$$
, $r_1 - r_2 = \sqrt{k^2 + 4}$, $r_1 r_2 = -1$.

Binet formulas for n-th $(n \ge 0)$ k-Fibonacci and k-Lucas numbers are given by

$$F_{k,n} = \frac{r_1^n - r_2^n}{r_1 - r_2}$$
, $L_{k,n} = r_1^n + r_2^n$,

respectively [6,8].

Theorem 2.

Binet's formula for $TF_{k,n}$ and $TL_{k,n}$, respectively, are given by

$$TF_{k,n} = \frac{\hat{r}_1 r_1^n - \hat{r}_2 r_2^n}{r_1 - r_2}$$
 and $TL_{k,n} = \hat{r}_1 r_1^n - \hat{r}_2 r_2^n$,

where $\hat{r}_1 = \sum_{i=0}^{31} r_1^i e_i$ and $\hat{r}_2 = \sum_{i=0}^{31} r_2^i e_i$.

Proof.

We know that
$$TF_{k,n} = Ar_1^n + Br_2^n$$
 (2)

For
$$n=0$$
 and $n=1$, $TF_{k,0}=A+B$ and $TF_{k,1}=Ar_1+Br_2$ we obtain
$$A=\frac{TF_{k,1}-r_2TF_{k,0}}{r_1-r_2}=\frac{\hat{r}_1}{r_1-r_2},$$

$$B=-\frac{TF_{k,1}-r_1TF_{k,0}}{r_1-r_2}=-\frac{\hat{r}_2}{r_1-r_2}.$$

When these values write in equality (2), we have

$$TF_{k,n} = \frac{\hat{r}_1 r_1^n - \hat{r}_2 r_2^n}{r_1 - r_2}.$$

Similarly, we can see $TL_{k,n} = \hat{r}_1 r_1^n - \hat{r}_2 r_2^n$.

Using the Binet's formulas for $TF_{k,n}$ and $TL_{k,n}$, we give some relations between r_1 , r_2 , \hat{r}_1 , \hat{r}_2 and k-Fibonacci or k-Lucas trigintaduonion by following lemma:

Lemma 3.

$$\hat{r}_1 r_1^n = T F_{k,n+1} - r_2 T F_{k,n} = \frac{T L_{k,n+1} - r_2 T L_{k,n}}{r_1 - r_2},$$

$$\hat{r}_2 r_2^n = T F_{k,n+1} - r_1 T F_{k,n} = \frac{T L_{k,n+1} - r_1 T L_{k,n}}{r_1 - r_2}.$$

Proof.

By applying Binet formula, we obtain the following equalities:

$$\begin{split} TF_{k,n+1} - r_2 TF_{k,n} &= \frac{\hat{r}_1 r_1^{n+1} - \hat{r}_2 r_2^{n+1}}{r_1 - r_2} - r_2 \frac{\hat{r}_1 r_1^n - \hat{r}_2 r_2^n}{r_1 - r_2} \\ &= \frac{1}{r_1 - r_2} \left(\hat{r}_1 r_1^{n+1} - \hat{r}_2 r_2^{n+1} - \hat{r}_1 r_2 r_1^n + \hat{r}_2 r_2^{n+1} \right) = \hat{r}_1 r_1^n. \\ TF_{k,n+1} - r_1 TF_{k,n} &= \frac{\hat{r}_1 r_1^{n+1} - \hat{r}_2 r_2^{n+1}}{r_1 - r_2} - r_1 \frac{\hat{r}_1 r_1^n - \hat{r}_2 r_2^n}{r_1 - r_2} \\ &= \frac{1}{r_1 - r_2} \left(\hat{r}_1 r_1^{n+1} - \hat{r}_2 r_2^{n+1} + \hat{r}_2 r_1 r_2^n - \hat{r}_1 r_1^{n+1} \right) = \hat{r}_2 r_2^n. \end{split}$$

Theorem 4.

(Catalan's identity) For $n \ge r \ge 1$, we have the following formulas:

$$\begin{split} TF_{k,n-r}TF_{k,n+r} - TF_{k,n}^2 &= \frac{(-1)^{n-r+1}}{k^2+4} \Big((\hat{r}_1\hat{r}_2)(r_2^{2r} - (-1)^r) + \\ &(\hat{r}_2\hat{r}_1)(r_1^{2r} - (-1)^r) \Big), \\ &TL_{k,n-r}TL_{k,n+r} - TL_{k,n}^2 = (-1)^{n-r+1} \Big((\hat{r}_1\hat{r}_2)(r_2^{2r} - (-1)^r) + \\ &(\hat{r}_2\hat{r}_1)(r_1^{2r} - (-1)^r) \Big). \end{split}$$

Proof.

By using Binet formula and $r_1r_2 = -1$, we obtain

$$\begin{split} TF_{k,n-r}TF_{k,n+r} - TF_{k,n}^2 &= \frac{\hat{r}_1r_1^{n-r} - \hat{r}_2r_2^{n-r}}{r_1 - r_2} \frac{\hat{r}_1r_1^{n+r} - \hat{r}_2r_2^{n+r}}{r_1 - r_2} - \left(\frac{\hat{r}_1r_1^n - \hat{r}_2r_2^n}{r_1 - r_2}\right)^2 \\ &= \frac{\hat{r}_1\hat{r}_2(-r_1^{n-r}r_2^{n+r} + r_1^nr_2^n) + \hat{r}_2\hat{r}_1(-r_2^{n-r}r_1^{n+r} + r_1^nr_2^n)}{(r_1 - r_2)^2} \\ \\ &= \frac{(-1)^{n-r+1}\left((\hat{r}_1\hat{r}_2)(r_2^{2r} - (-1)^r) + (\hat{r}_2\hat{r}_1)(r_1^{2r} - (-1)^r)\right)}{(r_1 - r_2)^2} \\ \\ &= \frac{(-1)^{n-r+1}\left((\hat{r}_1\hat{r}_2)(r_2^{2r} - (-1)^r) + (\hat{r}_2\hat{r}_1)(r_1^{2r} - (-1)^r)\right)}{(r_1 - r_2)^2} \\ \\ &= \frac{(-1)^{n-r+1}}{k^2 + 4}\left((\hat{r}_1\hat{r}_2)(r_2^{2r} - (-1)^r) + (\hat{r}_2\hat{r}_1)(r_1^{2r} - (-1)^r)\right) \\ TL_{k,n-r}TL_{k,n+r} - TL_{k,n}^2 \\ &= (\hat{r}_1r_1^{n-r} - \hat{r}_2r_2^{n-r})(\hat{r}_1r_1^{n+r} - \hat{r}_2r_2^{n+r}) - (\hat{r}_1r_1^n - \hat{r}_2r_2^n)^2 \\ &= (-1)^{n-r+1}\left((\hat{r}_1\hat{r}_2)(r_2^{2r} - (-1)^r) + (\hat{r}_2\hat{r}_1)(r_1^{2r} - (-1)^r)\right). \end{split}$$

The Cassini's identity given in the following theorem is the special case of Catalan's identity.

Theorem 5.

(Cassini's identity) For $n \ge 1$, we have the following formulas:

$$TF_{k,n-1}TF_{k,n+1} - TF_{k,n}^2 = \frac{(-1)^n}{k^2+4} \Big((\hat{r}_1\hat{r}_2)(r_2^2+1) + (\hat{r}_2\hat{r}_1)(r_1^2+1) \Big),$$

$$TL_{k,n-1}TL_{k,n+1} - TL_{k,n}^2 = (-1)^n \Big((\hat{r}_1\hat{r}_2)(r_2^2+1) + (\hat{r}_2\hat{r}_1)(r_1^2+1) \Big).$$

Theorem 6.

If m > n, then we get

$$TF_{k,m}TF_{k,n+r} - TF_{k,m+r}TF_{k,n} = \frac{(-1)^n}{\sqrt{k^2+4}}F_{k,r}(\hat{r}_1\hat{r}_2r_1^{m-n} - \hat{r}_2\hat{r}_1r_2^{m-n}),$$

$$TL_{k,m}TL_{k,n+r} - TL_{k,m+r}TL_{k,n} = (-1)^n\sqrt{k^2+4}F_{k,r}(\hat{r}_1\hat{r}_2r_1^{m-n} - \hat{r}_2\hat{r}_1r_2^{m-n}).$$

Proof.

By using Binet formula and $r_1r_2 = -1$, we obtain

$$\begin{split} TF_{k,m}TF_{k,n+r} - TF_{k,m+r}TF_{k,n} &= \left(\frac{\hat{r}_1r_1^m - \hat{r}_2r_2^m}{r_1 - r_2}\frac{\hat{r}_1r_1^{n+r} - \hat{r}_2r_2^{n+r}}{r_1 - r_2}\right) - \\ \left(\frac{\hat{r}_1r_1^{m+r} - \hat{r}_2r_2^{m+r}}{r_1 - r_2}\frac{\hat{r}_1r_1^n - \hat{r}_2r_2^n}{r_1 - r_2}\right) \\ &= \frac{(-1)^n}{\sqrt{k^2 + 4}}F_{k,r}(\hat{r}_1\hat{r}_2r_1^{m-n} - \hat{r}_2\hat{r}_1r_2^{m-n}). \end{split}$$

The second identity is found in a similar manner.

Corollary 7.

If m > n, then we get

$$TF_{k,m}TF_{k,n+1} - TF_{k,m+1}TF_{k,n} = \frac{(-1)^n}{\sqrt{k^2+4}} (\hat{r}_1\hat{r}_2r_1^{m-n} - \hat{r}_2\hat{r}_1r_2^{m-n}),$$

$$TL_{k,m}TL_{k,n+1} - TL_{k,m+1}TL_{k,n} = (-1)^n\sqrt{k^2+4} (\hat{r}_1\hat{r}_2r_1^{m-n} - \hat{r}_2\hat{r}_1r_2^{m-n}).$$

Proof.

Taking r = 1 a special case of theorem 6, the proof can easily seen.

Theorem 8.

The relationship between $TF_{k,n}$ and $TL_{k,n}$ is as follows:

i.
$$TF_{k,n}^2 = \frac{1}{k^2+4} TL_{k,n}^2$$

ii.
$$TL_{k,n}^2 + TF_{k,n}^2 = \frac{k^2 + 5(TL_{k,n}^2)}{k^2 + 4}$$

Proof. By using Binet formula for $TF_{k,n}$ and $TL_{k,n}$, we have

i.
$$TL_{k,n}^2 - TF_{k,n}^2 = (\hat{r}_1 r_1^n - \hat{r}_2 r_2^n)^2 - \left(\frac{\hat{r}_1 r_1^n - \hat{r}_2 r_2^n}{r_1 - r_2}\right)^2$$

$$= ((r_1 - r_2)^2 - 1) \frac{(\hat{r}_1 r_1^n - \hat{r}_2 r_2^n)^2}{(r_1 - r_2)^2}$$

$$= \frac{k^2 + 3(TL^2_{k,n})}{k^2 + 4}$$

$$TF_{k,n}^2 = \frac{1}{k^2 + 4} TL^2_{k,n}.$$
ii.
$$TL_{k,n}^2 + TF_{k,n}^2 = (\hat{r}_1 r_1^n - \hat{r}_2 r_2^n)^2 + \left(\frac{\hat{r}_1 r_1^n - \hat{r}_2 r_2^n}{r_1 - r_2}\right)^2$$

$$= \frac{k^2 + 5(TL^2_{k,n})}{k^2 + 4}.$$

Theorem 9.

The generating functions for the k-Fibonacci and k-Lucas trigintaduonions are

$$\sum_{i=0}^{\infty} TF_{k,i} x^{i} = \frac{TF_{k,0} + TF_{k,-1} x}{1 - kx - x^{2}}$$

and

$$\sum_{i=0}^{\infty} TL_{k,i} x^{i} = \frac{TL_{k,0} + TL_{k,-1} x}{1 - kx - x^{2}}.$$

Proof.

Define $G(TF_{k,i};x) = \sum_{i=0}^{\infty} TF_{k,i}x^i$. Multiplying both sides of this equation by -kx and $-x^2$, we obtain the following equations;

$$G(TF_{k,i};x) = TF_{k,0} + TF_{k,1}x + TF_{k,2}x^2 + \dots + TF_{k,i}x^i + \dots,$$

$$-kxG(TF_{k,i};x) = -kTF_{k,0}x - kTF_{k,1}x^2 - kTF_{k,2}x^3 - \dots - kTF_{k,i}x^{i+1} - \dots,$$

$$-x^2G(TF_{k,i};x) = -TF_{k,0}x^2 - TF_{k,1}x^3 - TF_{k,2}x^4 - \dots - TF_{k,i}x^{i+2} - \dots.$$

By adding these equations and using the identity $kTF_{k,n} + TF_{k,n-1} = TF_{k,n+1}$, we obtain

$$G(TF_{k,i};x) = \frac{TF_{k,0} + TF_{k,1}x - kTF_{k,0}x}{1 - kx - x^2}$$
$$= \frac{TF_{k,0} + TF_{k,-1}x}{1 - kx - x^2}.$$

The generating function for the k-Lucas trigintaduonion is obtained in a similar way.

Theorem 10.

For any integer m, n, the generating functions of the k-Fibonacci trigintaduonion $TF_{k,m+n}$ and the k-Lucas $TL_{k,m+n}$ trigintaduonion are

$$\sum_{n=0}^{\infty} TF_{k,m+n} x^n = \frac{TF_{k,m} + xTF_{k,m-1}}{1 - kx - x^2}$$

and

$$\sum_{n=0}^{\infty} TL_{k,m+n} x^n = \frac{TL_{k,m} + xTL_{k,m-1}}{1 - kx - x^2}.$$

Proof.

$$\begin{split} \sum_{n=0}^{\infty} TF_{k,m+n} \, x^n &= \sum_{n=0}^{\infty} \left(\frac{\hat{r}_1 r_1^{m+n} - \hat{r}_2 r_2^{m+n}}{r_1 - r_2} \right) x^n \\ &= \frac{\hat{r}_1 r_1^m}{r_1 - r_2} \sum_{n=0}^{\infty} r_1^n x^n - \frac{\hat{r}_2 r_2^m}{r_1 - r_2} \sum_{n=0}^{\infty} r_2^n x^n \\ &= \frac{\hat{r}_1 r_1^m}{r_1 - r_2} \frac{1}{1 - x r_1} - \frac{\hat{r}_2 r_2^m}{r_1 - r_2} \frac{1}{1 - x r_2} \\ &= \frac{1}{r_1 - r_2} \left(\frac{(\hat{r}_1 r_1^m - \hat{r}_2 r_2^m) + x(\hat{r}_1 r_1^{m-1} - \hat{r}_2 r_2^{m-1})}{1 - k x - x^2} \right) \\ &= \frac{TF_{k,m} + xTF_{k,m-1}}{1 - k x - x^2}. \end{split}$$

The proof of the second sum is found in a similar manner.

Theorem 11.

For any integer n, we have

$$\sum_{i=0}^{n} {n \choose i} k^{i} T F_{k,i} = T F_{k,2n},$$

$$\sum_{i=0}^{n} {n \choose i} k^{i} T L_{k,i} = T L_{k,2n}.$$

Proof.

$$\sum_{i=0}^{n} {n \choose i} k^{i} T F_{k,i} = \sum_{i=0}^{n} {n \choose i} k^{i} \frac{\hat{r}_{1} r_{1}^{i} - \hat{r}_{2} r_{2}^{i}}{r_{1} - r_{2}}$$

$$= \frac{\hat{r}_{1}}{r_{1} - r_{2}} \sum_{i=0}^{n} {n \choose i} k^{i} r_{1}^{i} - \frac{\hat{r}_{2}}{r_{1} - r_{2}} \sum_{i=0}^{n} {n \choose i} k^{i} r_{2}^{i}$$

$$= \frac{\hat{r}_{1}}{r_{1} - r_{2}} (1 + kr_{1})^{n} - \frac{\hat{r}_{2}}{r_{1} - r_{2}} (1 + kr_{2})^{n}$$

 r_1 and r_2 are roots of the equation $r^2 - kr - 1 = 0$. Thus, we can write $1 + kr_1 = (r_1)^2$ and $1 + kr_2 = (r_2)^2$. Using these equations in the last equation, we obtain

$$\sum_{i=0}^{n} {n \choose i} k^{i} T F_{k,i} = \frac{\hat{r}_{1} r_{1}^{2n} - \hat{r}_{2} r_{2}^{2n}}{r_{1} - r_{2}} = T F_{k,2n}.$$

The second identity is found in the same manner.

Now, we give the matrix representations of k-Fibonacci and k-Lucas trigintaduonions.

Theorem 12.

Let $n \ge 1$ be integer. Then we have

$$\begin{bmatrix} TF_{k,n} & TF_{k,n-1} \\ TF_{k,n+1} & TF_{k,n} \end{bmatrix} = \begin{bmatrix} TF_{k,1} & TF_{k,0} \\ TF_{k,2} & TF_{k,1} \end{bmatrix} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix}^{n-1},$$

$$\begin{bmatrix} TL_{k,n} & TL_{k,n-1} \\ TL_{k,n+1} & TL_{k,n} \end{bmatrix} = \begin{bmatrix} TL_{k,1} & TL_{k,0} \\ TL_{k,2} & TL_{k,1} \end{bmatrix} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix}^{n-1}.$$

Proof.

The proof will be done by induction steps. Firstly, for n = 1, it holds the equation. Assume that the equation holds for all n, that is,

$$\begin{bmatrix} TF_{k,n} & TF_{k,n-1} \\ TF_{k,n+1} & TF_{k,n} \end{bmatrix} = \begin{bmatrix} TF_{k,1} & TF_{k,0} \\ TF_{k,2} & TF_{k,1} \end{bmatrix} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix}^{n-1},$$

We can end up the proof if we show that

$$\begin{bmatrix} TF_{k,n+1} & TF_{k,n} \\ TF_{k,n+2} & TF_{k,n+1} \end{bmatrix} = \begin{bmatrix} TF_{k,1} & TF_{k,0} \\ TF_{k,2} & TF_{k,1} \end{bmatrix} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix}^n.$$

By using induction's hypothesis, we have

$$\begin{bmatrix} TF_{k,1} & TF_{k,0} \\ TF_{k,2} & TF_{k,1} \end{bmatrix} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} TF_{k,n} & TF_{k,n-1} \\ TF_{k,n+1} & TF_{k,n} \end{bmatrix} \begin{bmatrix} k & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} kTF_{k,n} + TF_{k,n-1} & TF_{k,n} \\ kTF_{k,n+1} + TF_{k,n} & TF_{k,n+1} \end{bmatrix}$$

$$= \begin{bmatrix} TF_{k,n+1} & TF_{k,n} \\ TF_{k,n+2} & TF_{k,n+1} \end{bmatrix} .$$

Thus, the proof is ended.

The remaining part of the theorem is proved in a similar way.

Corollary 13.

$$TF_{k,n-1}TF_{k,n+1} - TF_{k,n}^2 = (-1)^{n-1} (TF_{k,0}TF_{k,2} - TF_{k,1}^2),$$

$$TL_{k,n-1}TL_{k,n+1} - TL_{k,n}^2 = (-1)^{n-1} (TL_{k,0}TL_{k,2} - TL_{k,1}^2).$$

Proof.

If there exist the determinations of the matrix representations of $TF_{k,n}$ and $TL_{k,n}$, the proof can be easily seen.

References

- [1] G. Bilgici, Ü. Tokeşer and Z. Ünal, Fibonacci and Lucas Sedenions, *Journal of Integer Sequences*, **20** (2017), 1-11.
- [2] C. Bolat and H. Köse, On the properties of k-Fibonacci numbers, *Int. J. Contemp. Math. Sciences*, **5** (2010), no. 22, 1097-1105.
- [3] A. Cariow and G. Cariowa, An algorithm for multiplication of trigintaduonions, *Journal of Theoretical and Applied Computer Science*, **8** (2014), no. 1, 50-75.
- [4] R.E. Cawagas, A.S. Carrascal, L.A. Bautista, J.P. Sta. Maria, J.D. Urrutia, B. Nobles, The Subalgebra Structure of the Cayley-Dickson Algebra of Dimension 32 (Trigintaduonions), arXiv:0907.2047v3, (2009).
- [5] W.L. Chan, H. Choi and R.G. Baraniuk, Directional hypercomplex wavelets for multidimensional signal analysis and processing, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, (2004), 996-999. https://doi.org/10.1109/icassp.2004.1326715
- [6] S. Falcon, On the k-Lucas numbers, *Int. J. Contemp. Math. Sciences*, **6** (2011), no. 21, 1039-1050.
- [7] S. Falcon, The k-Fibonacci matrix and the Pascal matrix, *Cent. Eur. J. Math.*, **9** (2011), no. 6, 1403-1410. https://doi.org/10.2478/s11533-011-0089-9
- [8] S. Falcon and A. Plaza, On the Fibonacci k-numbers, *Chaos Solitons Fractals*, **32** (2007), no. 5, 1615-1624. https://doi.org/10.1016/j.chaos.2006.09.022
- [9] S. Halici, On Fibonacci quaternions, *Adv. Appl. Clifford Algebras*, **22** (2012), 321–327. https://doi.org/10.1007/s00006-011-0317-1
- [10] A.F. Horadam, A generalized Fibonacci sequence, *Amer. Math. Montly*, **68** (1961), 455-459. https://doi.org/10.2307/2311099
- [11] A.F. Horadam, Complex Fibonacci numbers and Fibonacci quaternions, *Am. Math. Month.*, **70** (1963), 289–291. https://doi.org/10.2307/2313129

[12] M.R. Iyer, A note on Fibonacci quaternions, *Fibonacci Quaterly*, **3** (1969), 225–229.

- [13] O. Keçilioğlu and I. Akkus, The Fibonacci Octonions, *Adv. Appl. Clifford Algebras*, **25** (2015), no. 1, 151–158. https://doi.org/10.1007/s00006-014-0468-y
- [14] T. Koshy, *Fibonacci and Lucas Numbers with Applications*, John Wiley & Sons, Interscience Publication, 2001. https://doi.org/10.1002/9781118033067
- [15] J.L. Ramirez, Some combinatorial properties of the *k*-Fibonacci and the *k*-Lucas quaternions, *An. St. Univ. Ovidus Constanta*, **23** (2015), no. 2. https://doi.org/10.1515/auom-2015-0037
- [16] Z.H. Weng, Compounding Fields and Their Quantum Equations in the Trigintaduonion Space, arXiv: 0704.0136.

Received: December 1, 2017; Published: January 2, 2018