

Novel Use of Cyanate Esters in Aerospace Applications

(Paper presented International AC Fire & Cabin Safety Conf. October 29-Nov 2, 2007)

Sajal Das

Lonza Inc. 90 Boroline Rd Allendale, NJ 07401 sajal.das@lonza.com Alessandro Falchetto Lonza AG Wallise & Werke CH-3930 Visp, Switzerland alessandro.falchetto@lonza.com

Richard Lyon

FAA Fire Safety Branch Atlantic City Int'l Airport Atlantic City, NJ 08405

- - Cyanate esters belong to a class of thermoset resins available in di and multifunctional forms.
 Depending on chemical structure, cyanate esters can be:
 - Solid
 - Liquid
 - Semisolid
 - The versatility of physical form gives wide formulation flexibility (similar to epoxy resin) to formulators and crosslink structure makes it inherently flame retardant (similar to phenolic)

- Addition cure—no volatility during curing
- Gives high crosslink structure with T_g over 400°C (720°F) depending on chemical structure
- Excellent solvent and radiation resistance
- Very low di-electric constant (D_K) and low-loss (D_f) at high frequency
- Excellent solubility to common organic solvents (suitable for solvent prepregs)
- Low stable viscosity—suitable for hot/melt prepregs
 - RTM/VARTM
 - Filament winding
 - Pultrusion
 - Other liquid casting similar to polyurethane
- Depending on chemical structure, some cyanate esters are inherently flame retardant with excellent FST properties suitable for aircraft and other transportation industries

What are the Known Drawbacks?

<u>Past</u>

 \bigcirc

 (\mathbf{R})

 $\overline{\mathbf{c}}$

(::)

- Relatively high cost☺☺☺
- High temperature cure cycle
- Stability of materials at processing temperature
- Lack of formulation knowledge (toughness, moisture problem, etc.)
- Lack of material availability and commitment from chemical companies

Lonza

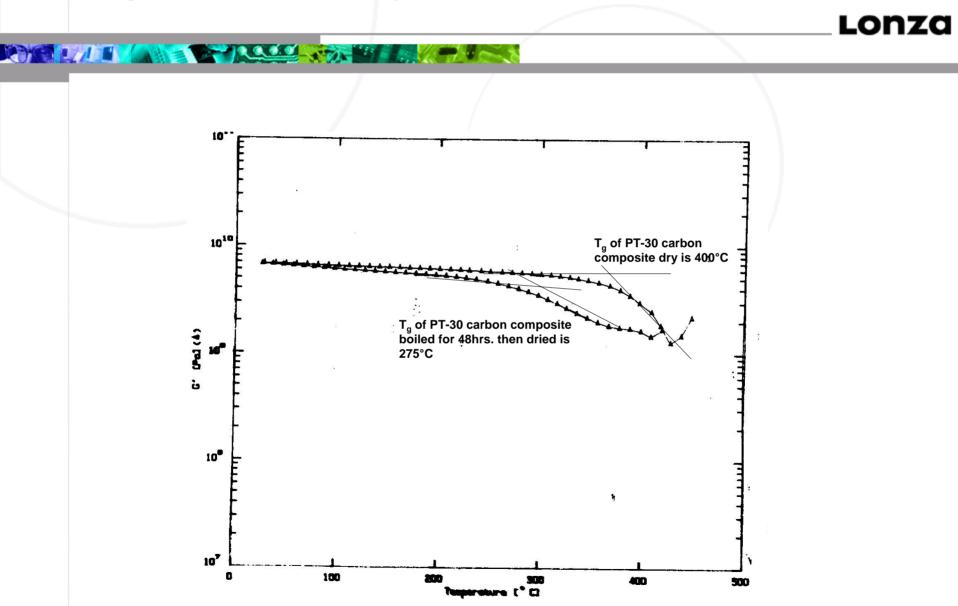
Today

(••)

 $(\mathbf{\cdot})$

 \bigcirc

 $(\mathbf{ })$


 (\cdot)

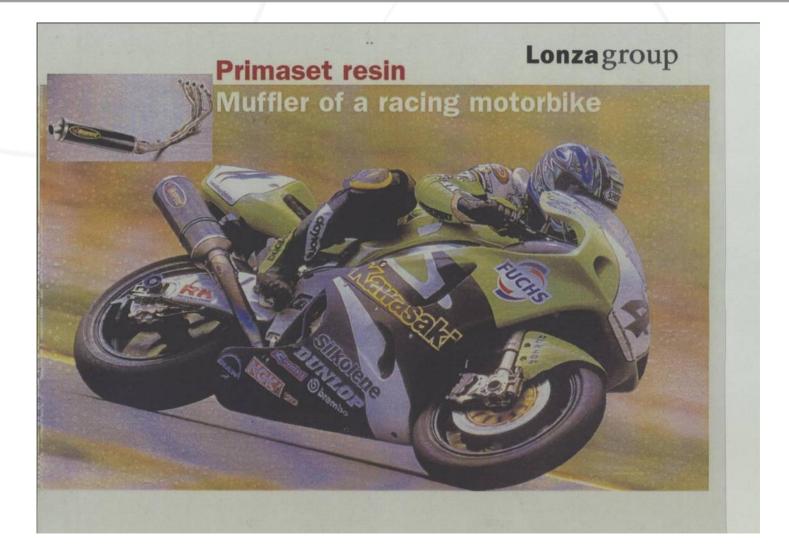
Today

- High performance Printed Circuit Board (PCB)
- Radomes, low loss at very high frequency (>40-60 GHz) (F-35, F-18, F-22 and other classified programs)
- Satellites
- Air duct in Airbus 340/380
- Formula One racing car and muffler system for motorbike
- Some critical electrical components close to engines (exposed 450°F) in Boeing 737/777
- Laser guided missile hardware

DMA graph of boiled and dry PT/carbon composite

Mechanical properties of PT and PMR-15 carbon-fiber composites (fiber 58-64 vol.-%) of Modern Plastics, Feb, 1999

_ Lonza


Properties	ies PT-resin		PMR-15		
	24°C	330°C	24°C	315°C	
0°C Flexural					
Strength, 10 ³ p.s.i.	250-360 ^b	150-200 ^b	220-280 ^c	a 140 ^c	
0°C Flexural					
Modulus, 10 ⁶ p.s.i.	15-17 [°]	16 [°]	15-17 ^c	15 [°]	
Short-beam-shear					
strength, 10 ³ psi	21-24 ^d	21-22 ^d	- /	-	
	10 ^e	7.2 ^e	15 ^f	7.2 ^f	

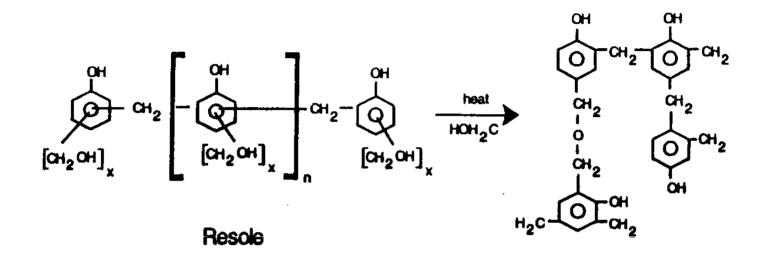
A: PMR-15 (Dexter Composites) is a polyimide produced by the polymerization of methylene dianiline (MDA).

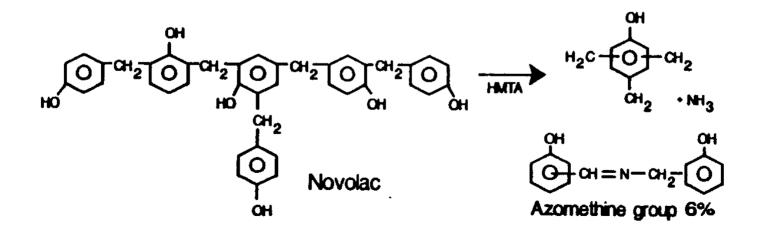
B: Range of data for composites made with Celion (BASF) 6000, T300, and T650 carbon fibers.

C: Celion 6000 fiber.

D: Celion T650/42 fibers. E: Polyimide-sized fibers. F: Unsized fibers.

Use of Cyanate Esters in Aircraft Interiors


Focus: Weight Reductions / Good Surface Finish / Environmentally Problematic Chemicals


LOr

- Phenolic resin (Resole or novolac based) are the primary resin for aircraft interior structures
- Brominated epoxy are used in ducting (mainly USA) and also in aircraft flooring
- Some phosphorous additives are used as flame retardants
- More than 7000-8000MT prepregs are used in only in Aircraft Interiors

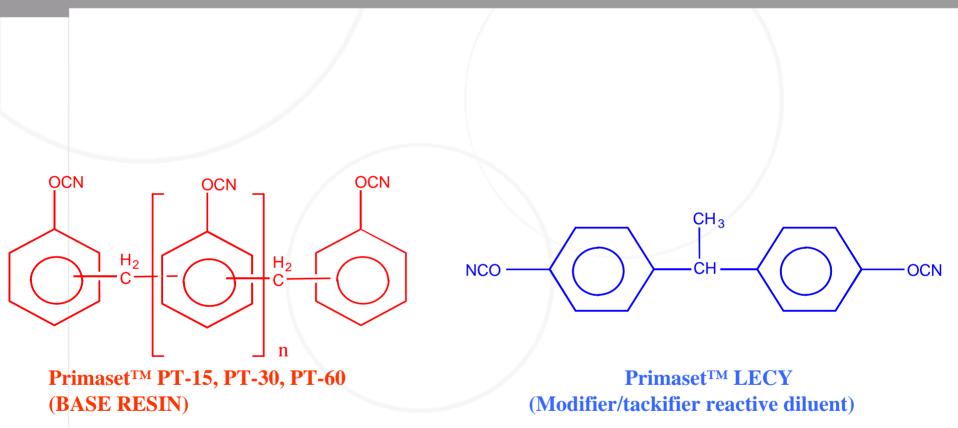
Cure Chemistries of PF Resins

Lonza

- Free phenol and formaldehyde even with excessive Bstaging
- Excessive B-staging results low tack in the prepreg and artificial tack is introduced by alcohol
- During curing, volatiles generate from condensation polymerization and from tackifier solvent
- Surface becomes poor for interior applications
- Extra coating polishing required to smooth the surface

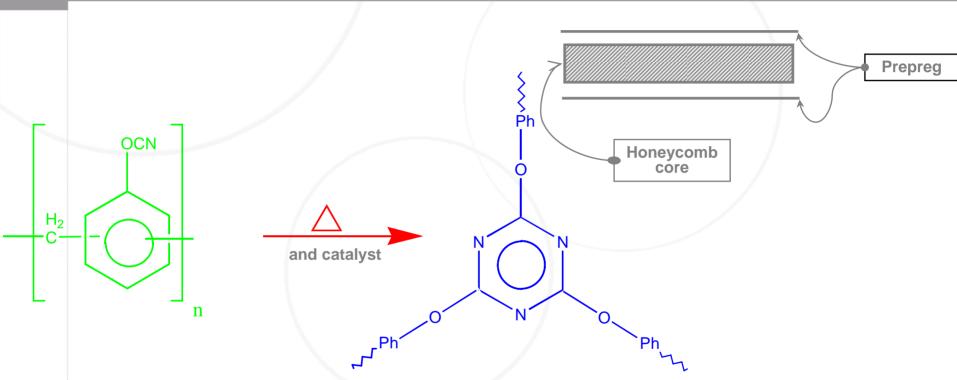
- Adds extra weight and additional labor lost
 - Not the best time to add additional weight when fuel cost is skyrocketing
- Airflow Duct with phenol-formaldehyde resin?
- Kevlar duct keeps weight reduction but PF resin required in additional coating (weight!)
- Brominated epoxy or brominated FR cause heavy smoke [Fixing wrong building block, adds weight and cost]

Entry of New Chemistry in Aircraft Interiors


→ Cyanate Esters

- First present at the FAA Conference in 1993
- Major advancements have taken place since then:
 - Lonza built a large dedicated cyanate ester plant in 1999
 - More than 60% of ducting made for A340/380 today is made from a modified PT resin
 - Prepreg available from Gurit

- New building block development focusing on environmentally friendly and other regulatory (ROSH, REACH) and FAA material requirements
- Cost effective process to manufacture parts
 - Vacuum bagging
 - RTM
 - VRTM
 - Resin Infusion
 - less additives to pass OSH and FST
 - alternative to thermoplastic (TP)


Structures of Recommended Cyanate Esters for Aircraft Interiors

Lonza

A typical homopolymerization structure (CE cure structure).

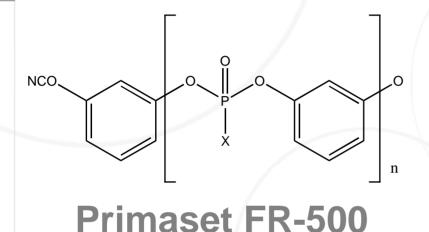
- Possible to cure 125-135°C prepreg bonding with honeycomb core or crushed core (150°C) technology
- No volatile during cure and gives excellent surface finish

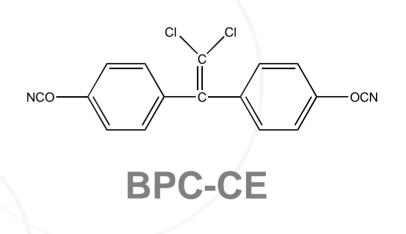
Table 1: Mechanical Properties ofStesapreg EP127-C510-40				
Properties	Unit	Value		
Ultimate Tensile Strength ¹⁾				
23°C	MPa	840		
135°C		800		
Tensile Modulus ¹⁾				
23°C	GPa	65		
135°C		63		
Ultimate Compression Strength ¹⁾				
23°C	1.05	800		
135°C	MPa	630		
135°C HW ²		530		
Ultimate Flexural Strength ¹⁾				
23°C		1100		
135°C	MPa	1050		
135°C HW ²⁾		800		
Flexural Modulus ¹⁾		000		
23°C		64		
135°C	GPa	61		
135°C HW ²)		61		
IIS short beam		·		
23°C	MPa	65		
135°C		50		
Climbing Drum Peel Strength ³⁾				
23°C	Nmm/mm	45		
1) normalized to 62 Vol. % of fibre				
2) HW= Hot-Wet: boiling water unti	il saturation			
3) 2 plies of Prepreg material with 50		_		
Core material: Nomex honeycom	b, cell size 3.2 n	nm : 48kg/m ³		

Flammability properties of commercial prepreg

Lonza

in	lammability of Stesapro solid laminate consistin	e g EF 127-C5 1 <u>g of 5</u> plies	10-40
	Properties	Unit	Value
Flame Test v	ert. 60 sec. FAR 25.853		
	Self-Extinguishing Time	sec.	0
	Burn Length	mm	4
	Drip Extinguishing Time	sec	0
NBS Smoke (Chamber		v
	Flaming mode	D _s	50
Heat Release	FAR 25.853	23	20
	Peak	kW/m ²	50
	2 min	kW/min/m ²	20


ties	Unit	Value
ec. FAR 25.853		
inguishing Time	sec.	2
ngth	mm	4
Drip Extinguishing Time		
r	•	Ŭ
mode	D.	30
FAR 25.853	- 3	00
Peak	kW/m ²	40
2 min	kW/min/m ²	30
	ec. FAR 25.853 inguishing Time ngth inguishing Time r mode FAR 25.853 Peak	ec. FAR 25.853 inguishing Time sec. ngth mm inguishing Time sec r mode D _s FAR 25.853 Peak kW/m ²


Primary Goal:

- Building block chemistry to enhance ultra low OSU and FST properties without free phenol amines and formaldehyde chemicals
- Auxiliary products compatible with CE, epoxy to provide tack, low temperature cure and toughness is bonded with honeycomb core

New Developments

Lonza

- semi-solid
- soluble in MEK, Acetone
- Additive for CE, epoxy, and other polymers
- sample available


- developed by FAA/Huntsman
- Ultra low OSU
- halogen derivative
- crystalline solid
- raw material issue?

New development

Lonza

OCN

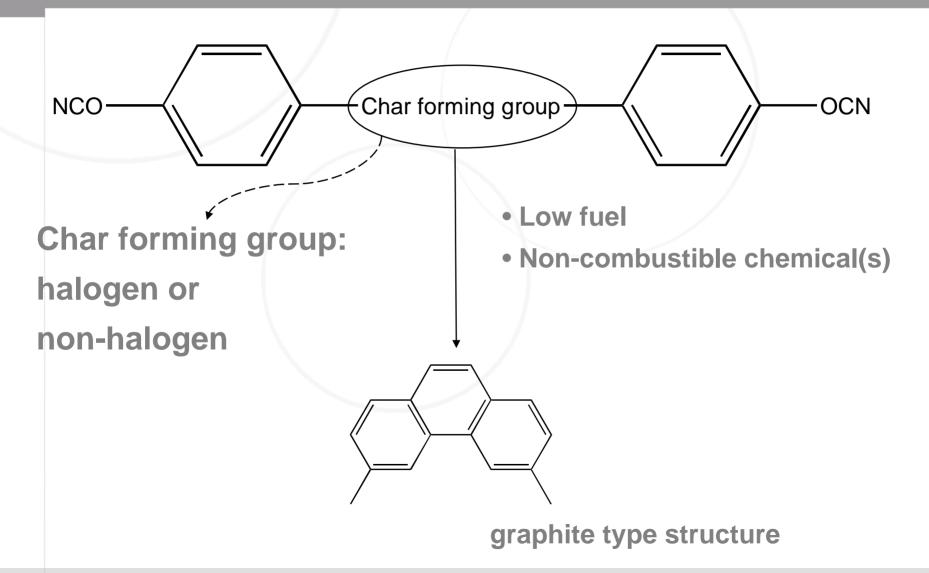
Primaset TC-65

- Long chain low viscosity (<80 CPs) liquid for improved toughness and tackiness
- Compatible with CE, Epoxy
- Low temperature, thermal or free radical cure

Primaset LHR-10

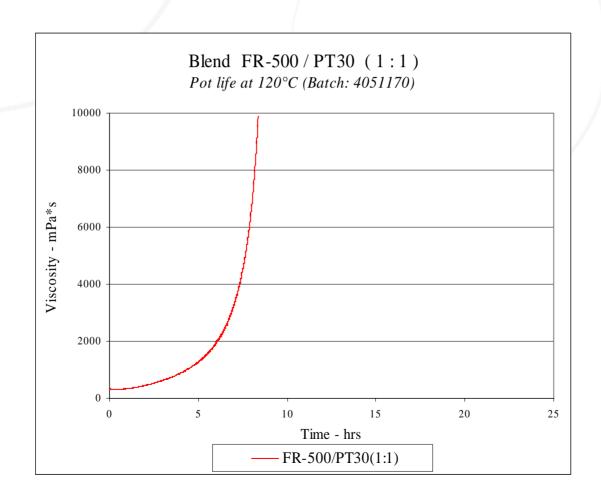
Char. forming

aroup

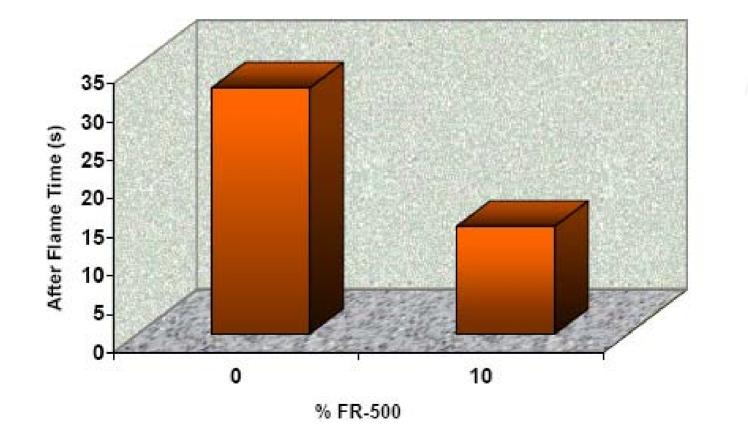

Low OSU

NCO

- No halogen
- Low temperature cure, organic catalyst for CE


Char forming Mechanism

Lonza


FR-500/ PT-30 blend viscosity

Effect of FR-500 on Epoxy & CE

FR 500 / PT 15 blends

1. Sample preparation (polymerisation at standard conditions).

Exper	PT 15 / FR 500 ratio		Polymerisation					
	DT 45		G	el	C	ure	Post	t-cure
	PT 15	FR 500	Т.	Time	Т.	Time	Т.	Time
#	%	%	°Ċ	min	°C	min	°C	min
4640-120- 1	100		150	60	200	180	260	60
4640-120- 2	90	10	150	60	200	180	260	60
4640-120- 3	80	20	150	60	200	180	260	60
4640-120- 4	70	30	150	60	200	180	260	60
4640-120- 5	60	40	150	60	200	180	260	60

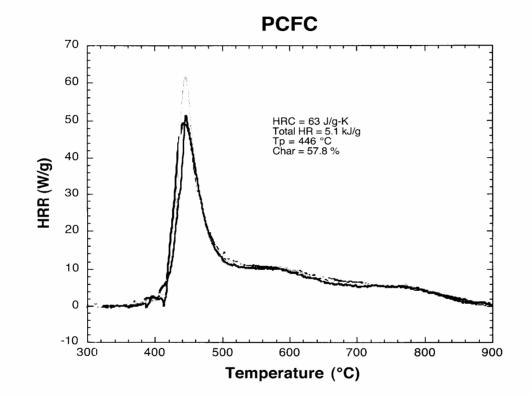
2.	Flame	test
----	-------	------

2. Flame les				
Experiment	Flame	time(everage) sec.	Drops	Sample
#	1 st	Time total (5 specimen)		after measurement
4640-121-1	> 100	400	No	
4640-121- 2	2- 4	8	No	
4640-121- 3	0	7-8	No	

4640-121- 4	0	0	No	
4640-121- 5	0	0	No	

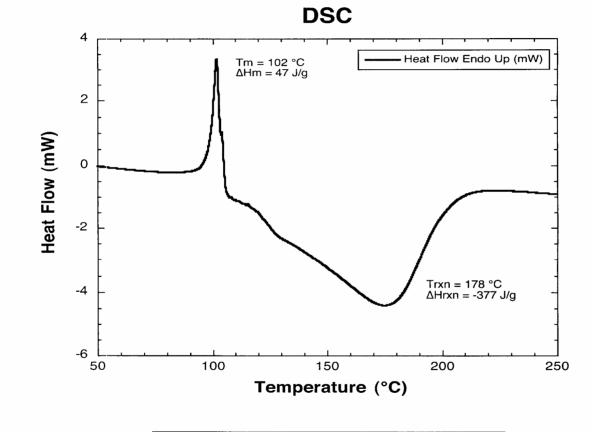
Heat Release Capacity, Total Heat Release, and Char Yield of New Developmental Products

Lonza



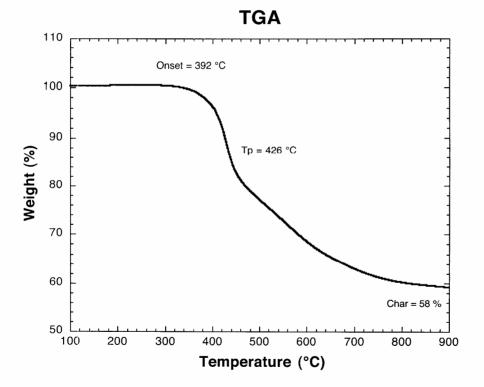
Product	Heat Release Capacity (J/g-K)	Total Heat Release (KJ/g)	Char Yield (%)	OSU (single glass ply)
BPC-CE	24	4.2	53	14/13*
LHR-10	89	7.1	49	56/17*
LHR-10 (m)	54	5.1	58	40/10*
PT-30	122	9.9	52	
Ultem™	121	11.0	49	< 65/65**
PEEK	155	12.4	44	≤ 65/65**
Phenolic	50-80	12	44	35/23*
HDPE	1486 ± 20	43.5 ± .1	0	Fail**
РС	359	16.3	21.7	Fail**
FR-500				

*Single ply/glass fabric;


** 1/16-inch sheet

PCFC

	Microscale Combustion Calorimeter				
Test	HR Cap	Peak HRR	Total HR	Тр	Char
	(J/g-K)	(W/g)	(kJ/g)	(°C)	(%)
1	59	49	5.2	444	58.5
2	75	62	5.3	446	57.6
3	56	51	4.8	447	57.2
Average	63	54	5.1	446	57.8

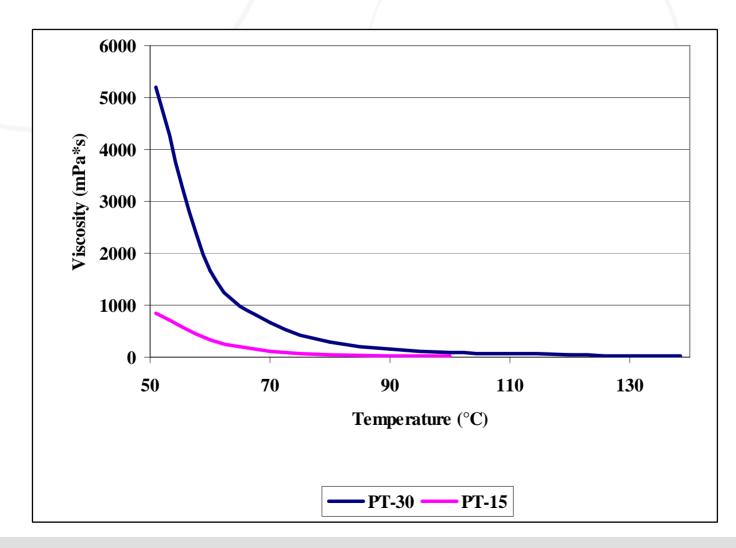

LHR-10 DSC

Differential Scanning Calorimetry			
Peak Melting Temperature	102°C		
Heat of Melting	47 J/g		
Peak Reaction Temperature	178°C		
Heat of Reaction	-377 J/g		

LHR-10 TGA

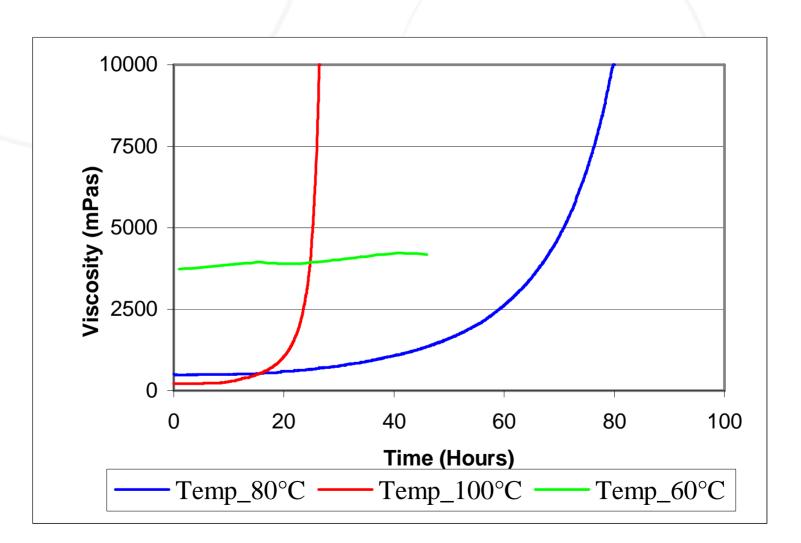
Lonza

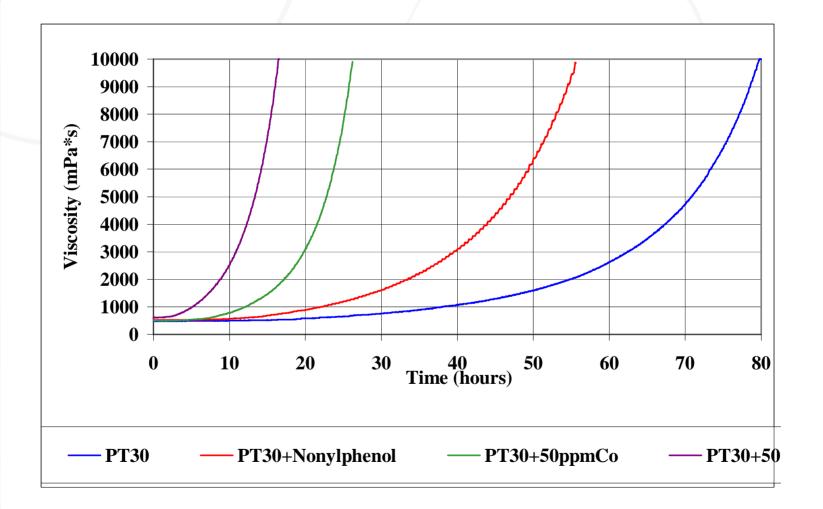
Thermogravimetric Analysis				
Mass Loss Onset Temperature	392°C			
Peak Mass Loss Rate Temperature	426°C			
Char Yield	58 %			

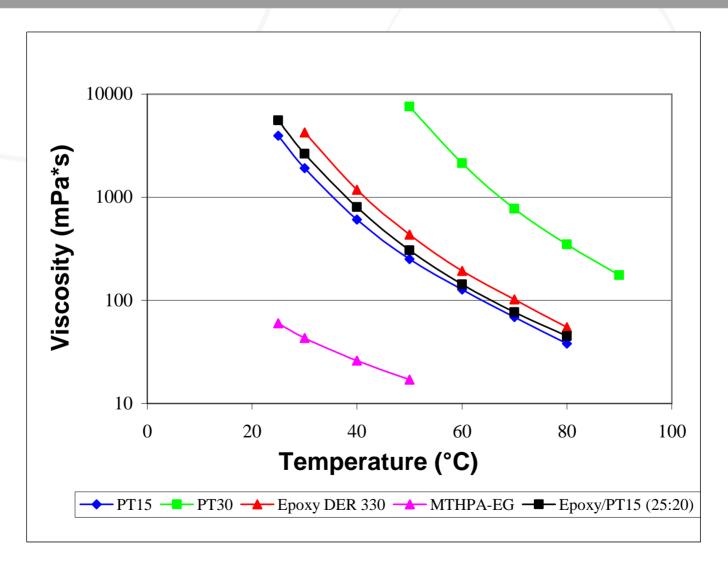


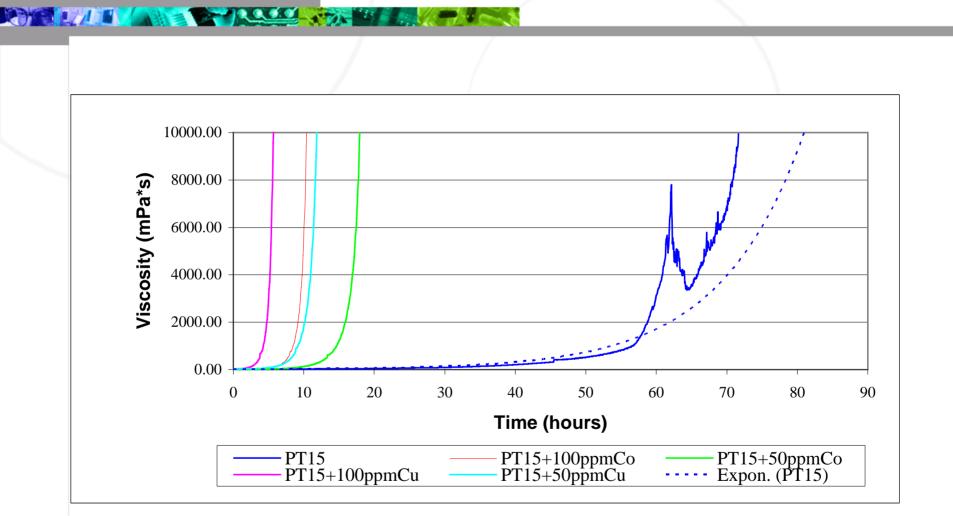
- Hot melt prepreg
- FTM
- VRTM

alternative to TP process (expensive tooling)


Viscosity Comparison between PT-30 and PT-15 Respect to Temperature.

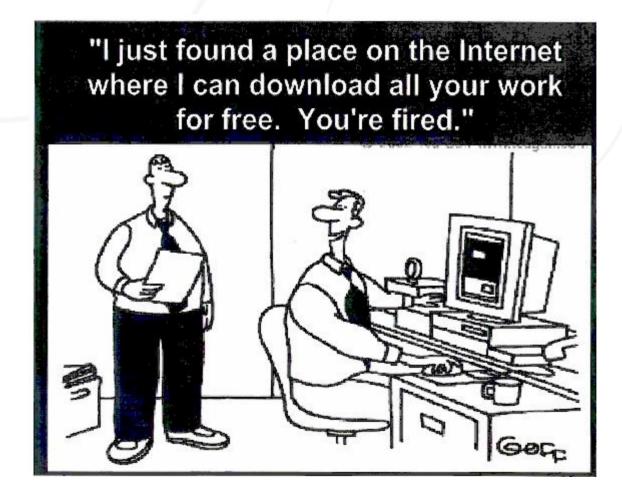

The Influence of Temperature on PT-30 Shelf-life.


Catalyst effect on Shelf-life of PT-30 at 80°C



Effect of Epoxy on Viscosity of PT-15 with respect to Temp

Lonza



Catalyst effect on PT-15 Shelf-life

- Phenolic-Triazine (PT Resin) now proven material for aircraft interior applications
- With new char forming building block with and without halogen provides very low heat release and easily passes 65/65 requirements of FAA OSU numbers
- Non-volatile addition polymerization without free phenol formaldehyde and aniline chemistry would be ideal material for mass scale use of aircraft and other transportation industries

- Weight reduction (no additional coating/ polishing/ painting) would be prompt alternative to phenolic chemistry
- Cost effective manufacturing process such as RTM, vacuum bagging, VRTM, FW and other alternatives to TP process
- Fire resistant spray coating to mold or prepreg

