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3.3 Controlling Confounding Bias

Whenever we undertake to evaluate the effect of one factor (X) on
another (Y'), the question arises as to whether we should adjust our
measurements for possible variations in some other factors (Z), oth-
erwise known as “covariates,” “concomitants,” or “confounders” (Cox
1958, p. 48). Adjustment amounts to partitioning the population into
groups that are homogeneous relative to Z, assessing the effect of X
on Y in each homogeneous group, and then averaging the results (as
in (3.15)). The illusive nature of such adjustment was recognized as
early as 1899, when Karl Pearson discovered what is now called Simp-
son’s paradoz (see Section 6.1): Any statistical relationship between two
variables may be reversed by including additional factors in the analy-
sis. For example, we may find that students who smoke obtain higher
grades than those who do not smoke but, adjusting for age, smokers
obtain lower grades in every age group and, further adjusting for family
income, smokers again obtain higher grades than nonsmokers in every
income-age group, and so on.

Despite a century of analysis, Simpson’s reversal continues to “trap
the unwary” [Dawid, 1979], and the practical question that it poses—
whether an adjustment for a given covariate is appropriate—has re-
sisted mathematical treatment. Epidemiologists, for example, are still
debating the meaning of “confounding” (Grayson 1987; Shapiro 1997)
and often adjust for wrong sets of covariates (Weinberg 1993; see also
Chapter 6). The potential-outcome analyses of Rosenbaum and Rubin
(1983) and Pratt and Schlaifer (1988) have led to a concept named
“ignorability,” which recasts the covariate selection problem in coun-
terfactual vocabulary but falls short of providing a workable solution.
Ignorability reads: “Z is an admissible set of covariates if, given Z,
the value that Y would obtain had X been z is independent of X.”
Since counterfactuals are not observable, and since judgments about
conditional independence of counterfactuals are not readily assertable
from ordinary understanding of causal processes, the question has re-
mained open: What criterion should one use to decide which variables
are appropriate for adjustment?

Section 3.3.1 presents a general and formal solution of the adjust-
ment problem using the language of causal graphs. In Section 3.3.2
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we extend this result to nonstandard covariates that are affected by X
and hence require several steps of adjustment. (Finally, Section 3.3.3
illustrates the use of these criteria in an example.

3.3.1 The Back-Door Criterion

Assume we are given a causal diagram G, together with nonexperimen-
tal data on a subset V of observed variables in (G, and suppose we wish
to estimate what effect the interventions do(X = z) would have on a set
of response variables Y, where X and Y are two subsets of V. In other
words, we seek to estimate P(y|Z) from a sample estimate of P(v).

We show that there exists a simple graphical test, named the “back-
door criterion” in Pearl (1993b), that can be applied directly to the
causal diagram in order to test if a set Z C V of variables is sufficient
for identifying P(y|z).°

Definition 3.3.1 (Back-Door)
A set of variables Z satisfies the back-door criterion relative to an
ordered pair of variables (X;, X;) in a DAG G if:

(i) no node in Z is a descendant of X;; and

(ii) Z blocks every path between X; and X; that contains an arrow
mto X;.

Stmilarly, if X and'Y are two disjoint subsets of nodes in G, then Z is
said to satisfy the back-door criterion relative to (X,Y) if it satisfies the
criterion relative to any pair (X;, X;) such that X; € X and X; € Y.

The name “back-door” echoes condition (ii), which requires that only
paths with arrows pointing at X; be blocked; these paths can be viewed
as entering X; through the back door. In Figure 3.4, for example,
the sets Z; = {X3, X4} and Zy = {X4, X5} meet the back-door cri-
terion, but Z3 = {X,} does not because X, does not block the path
(Xi,Xg,Xl,X4,X2,X5,Xj).

5This criterion may also be obtained from Theorem 7.1 of Spirtes et al. (1993).
An alternative criterion, using a single d-separation test, is established in Section
3.4 (see (3.39)).



3.3. CONTROLLING CONFOUNDING BIAS 125

Theorem 3.3.2 (Back-Door Adjustment)

If a set of variables Z satisfies the back-door criterion relative to (X,Y),
then the causal effect of X on Y 1is identifiable and s given by the
formula

P(yl#) = Y P(ylz, 2)P(2). (3.21)

The summation in (3.21) represents the standard formula obtained un-
der adjustment for Z; variables X for which the equality in (3.21)
is valid were named “conditionally ignorable given Z” in Rosenbaum
and Rubin (1983). Reducing ignorability conditions to the graphical
criterion of Definition 3.3.1 replaces judgments about counterfactual
dependencies with judgments about the structure of causal processes,
as represented in the diagram. The graphical criterion can be tested
by systematic procedures that are applicable to diagrams of any size
and shape. The criterion also enables the analyst to search for an op-
timal set of covariate—mnamely, a set Z that minimizes measurement
cost or sampling variability [Tian 1998]. The use of a similar graphical
criterion for identifying path coefficients in linear structural equations
is demonstrated in Chapter 5. Applications to epidemiological research
are given in Greenland et al. (1999a), where the set Z is called “suffi-
cient set” for control of confounding.

Figure 3.4: A diagram representing the back-door criterion; adjusting
for variables {X3, X4} (or {X4, X5}) yields a consistent estimate of
P(zj).
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Proof of Theorem 3.3.2

The proof originally offered in Pearl (1993b) was based on the obser-
vation that, when Z blocks all back-door paths from X to Y, setting
(X = z) or conditioning on X = z has the same effect on Y. This can
best be seen from the augmented diagram G’ of Figure 3.2, to which
the intervention arcs F'y — X were added. If all back-door paths from
X to Y are blocked, then all paths from Fx to Y must go through the
children of X, and those would be blocked if we condition on X. The
implication is that Y is independent of Fx given X,

P(y|z, Fx = do(x)) = P(y|z, Fx = idle) = P(y|z), (3.22)

which means that the observation X = z cannot be distinguished from
the intervention Fx = do(z).

Formally, we can prove this observation by writing P(y|Z) in terms
of the augmented probability function P’ in accordance with (3.11) and
conditioning on Z to obtain:

P(y|z) = P'(y|Fy) = Y P'(ylz, Fu)P'(2|Fy)

= ZP'(y‘z,x,Fw)P'(z\Fz). (323)

The addition of x to the last expression is licensed by the implication
F, = X = z. To eliminate F, from the two terms on the right-hand
side of (3.23), we invoke the two conditions of Definition 3.3.1. Since
F, consists of root nodes with children restricted to X, it must be
independent of all nondescendants of X, including Z. Thus, condition
(i) yields

P'(z|F;) = P'(z) = P(?)

Invoking now the back-door condition (ii), together with (3.22), permits
us to eliminate Fj from (3.23), thus proving (3.21). O

3.3.2 The front-door criterion

Condition (i) of Definition 3.3.1 reflects the prevailing practice that “the
concomitant observations should be quite unaffected by the treatment”



3.3. CONTROLLING CONFOUNDING BIAS 127

(Cox 1958, p. 48). This section demonstrates how concomitants that are
affected by the treatment can be used to facilitate causal inference. The
emerging criterion, named the front-door criterion in Pearl (1995a), will
constitute the second building block of the general test for identifying
causal effects (Section 3.4).

Consider the diagram in Figure 3.5, which represents the model
of Figure 3.4 when the variables Xi,..., X5 are unobserved and
{Xi, X, X,} are relabeled {X, Z,Y}, respectively. Although Z does
not satisfy any of the back-door conditions, measurements of Z can
nevertheless enable consistent estimation of P(y|Z). This will be shown
by reducing the expression for P(y|Z) to formulas that are computable
from the observed distribution function P(z,y, z).

@ (Unobserved)

Figure 3.5: A diagram representing the front-door criterion. A two-step
adjustment for Z yields a consistent estimate of P(y|z).

The joint distribution associated with Figure 3.5 can be decomposed
(equation (3.6)) into
P(z,y,z,u) = P(u)P(z|u)P(z|z)P(y|z,u). (3.24)
From (3.12), the intervention do(z) removes the factor P(z|u) and in-
duces the postintervention distribution
P(y, z,u|z) = P(y|z,u)P(z|z)P(u). (3.25)
Summing over z and u then gives

P(y|z) = ZP(Z|.T) ZP(y|Z, u)P(u). (3.26)

In order to eliminate u from the r.h.s. of (3.26), we use the two condi-
tional independence assumptions encoded in the graph of Figure 3.5:

P(ulz,z) = P(u|zr), (3.27)
P(y|lz,z,u) = P(y|lz,u). (3.28)
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This yields the equalities

S P 0PE) = XY Pyl w)P(uia) P
= Y > P(ylz,z u)P(ulz, z) P(x)

= 3 P(y|z,2)P(x) (3:29)

and allows the reduction of (3.26) to a form involving only observed
quantities:

P(y|z) =) P(z|z) Z’P(ykc', 2)P(z"). (3.30)

All factors on the r.h.s. of (3.30) are consistently estimable from
nonexperimental data, so it follows that P(y|Z) is estimable as well.
Thus, we are in possession of an identifiable nonparametric estimand
for the causal effect of X on Y whenever we can find a mediating
variable Z that meets the conditions of (3.27) and (3.28).

Equation (3.30) can be interpreted as a two-step application of the
back-door formula. In the first step, we find the causal effect of X on
Z; since there is no back-door path from X to Z, we simply have

P(z|z) = P(z|z).

Next, we compute the causal effect of Z on Y, which we can no longer
equate with the conditional probability P(y|z) because there is a back-
door path Z < X <+ U — Y from Z to Y. However, since X blocks
(d-separates) this path, X can play the role of a concomitant in the
back-door criterion, which allows us to compute the causal effect of 7
on Y in accordance with (3.21), giving P(y|2) = >, P(y|z', 2)P(2').
Finally, we combine the two causal effects via

P(ylz) = > P(yl2)P(|2),

which reduces to (3.30).
We summarize this result by a theorem after formally defining the
assumptions.
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Definition 3.3.3 (Front-Door)
A set of variables Z is said to satisfy the front-door criterion relative
to an ordered pair of variables (X,Y) if:

(i) Z intercepts all directed paths from X to Y;
(i) there is no back-door path from X to Z; and
(iii) all back-door paths from Z to'Y are blocked by X .

Theorem 3.3.4 (Front-Door Adjustment)
If Z satisfies the front-door criterion relative to (X,Y) and if P(x, z) >
0, then the causal effect of X on Y s identifiable and is given by the

formula
P(y|z) =} P(z|z) Z P(yla', z) P(a'). (3.31)

The conditions stated in Definition 3.3.3 are overly restrictive; some of
the back-door paths excluded by conditions (ii) and (iii) can actually be
allowed provided they are blocked by some concomitants. For example,
the variable Z5 in Figure 3.1 satisfies a front-door-like criterion relative
to (X, Z3) by virtue of Z; blocking all back-door paths from X to 7,
as well as those from Z5 to Z5. To allow the analysis of such intricate
structures, including nested combinations of back-door and front-door
conditions, a more powerful symbolic machinery will be introduced in
Section 3.4, one that will sidestep algebraic manipulations such as those
used in the derivation of (3.30). But first let us look at an example
illustrating possible applications of the front-door condition.

3.3.3 Example: Smoking and the Genotype The-
ory

Consider the century-old debate on the relation between smoking (X)
and lung cancer (Y) (Spirtes et al. 1993, pp. 291-302). According to
many, the tobacco industry has managed to forestall antismoking leg-
islation by arguing that the observed correlation between smoking and
lung cancer could be explained by some sort of carcinogenic genotype
(U) that involves inborn craving for nicotine.
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The amount of tar (Z) deposited in a person’s lungs is a variable
that promises to meet the conditions listed in Definition 3.3.3, thus fit-
ting the structure of Figure 3.5. To meet condition (i), we must assume
that smoking cigarettes has no effect on the production of lung cancer
except as mediated through tar deposits. To meet conditions (ii) and
(iii), we must assume that, even if a genotype is aggravating the pro-
duction of lung cancer, it nevertheless has no effect on the amount of
tar in the lungs except indirectly (through cigarette smoking). Like-
wise, we must assume that no other factor that affects tar deposit has
any influence on smoking. Finally, condition P(z,z) > 0 of Theorem
3.3.4 requires that high levels of tar in the lungs be the result not only
of cigarette smoking but also of other factors (e.g., exposure to environ-
mental pollutants) and that tar may be absent in some smokers (owing
perhaps to an extremely efficient tar-rejecting mechanism). Satisfaction
of this last condition can be tested in the data.

To demonstrate how we can assess the degree to which cigarette
smoking increases (or decreases) lung-cancer risk, we will assume a hy-
pothetical study in which the three variables X, Y, Z, were measured
simultaneously on a large, randomly selected sample of the population.
To simplify the exposition, we will further assume that all three vari-
ables are binary, taking on true (1) or false (0) values. A hypothetical
data set from a study on the relations among tar, cancer, and cigarette
smoking is presented in Table 3.1.

It shows that 95% of smokers and 5% of nonsmokers have developed
high levels of tar in their lungs. Moreover, 81% of subjects with tar de-
posits have developed lung cancer, compared to only 14% among those
with no tar deposits. Finally, within each of these two groups (tar
and no-tar), smokers show a much higher percentage of cancer than
nonsmokers.

These results seem to prove that smoking is a major contributor
to lung cancer. However, the tobacco industry might argue that the
table tells a different story—that smoking actually decreases one’s risk
of lung cancer. Their argument goes as follows. If you decide to smoke,
then your chances of building up tar deposits are 95%, compared to 5%
if you decide not to smoke. In order to evaluate the effect of tar de-
posits, we look separately at two groups, smokers and nonsmokers. The
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P(z,z) P(Y =1|z,z)
Group Type Group Size % of Cancer Cases
(% of Population) in Group
X =0, Z =0 | Non-smokers, No tar 47.5 10
X =1, Z =0 | Smokers, No tar 2.5 90
X =0, Z=1 | Non-smokers, Tar 2.5 )
X =1, Z=1 | Smokers, Tar 47.5 85

Table 3.1:

table shows that tar deposits have a protective effect in both groups:
in smokers, tar deposits lower cancer rates from 90% to 85%; in non-
smokers, they lower cancer rates from 10% to 5%. Thus, regardless of
whether I have a natural craving for nicotine, I should be seeking the
protective effect of tar deposits in my lungs, and smoking offers a very
effective means of acquiring those deposits.

To settle the dispute between the two interpretations, we now ap-
ply the front-door formula (equation (3.31)) to the data in Table 3.1.
We wish to calculate the probability that a randomly selected person
will develop cancer under each of the following two actions: smoking
(setting X = 1) or not smoking (setting X = 0).

Substituting the appropriate values of P(z|z), P(y|z, z), and P(z),
we have

P(Y =1|do(X =1)) = .05(.10 x .50 + .90 x .50)
+.95(.05 x .50 + .85 x .50)
= .05 % .50+ .95 x .45 = .4525,
P(Y =1|do(X =0)) = .95(.10 x .50 + .90 x .50)
+.05(.05 x .50 + .85 x .50)
= .95 x .50 4 .05 x .45 = .4975. (3.32)

Thus, contrary to expectation, the data prove smoking to be somewhat
beneficial to one’s health.



132CHAPTER 3. CAUSAL DIAGRAMS AND THE IDENTIFICATION OF CAUSAL I

The data in Table 3.1 are obviously unrealistic and were deliberately
crafted so as to support the genotype theory. However, the purpose of
this exercise was to demonstrate how reasonable qualitative assump-
tions about the workings of mechanisms, coupled with nonexperimen-
tal data, can produce precise quantitative assessments of causal effects.
In reality, we would expect observational studies involving mediating
variables to refute the genotype theory by showing, for example, that
the mediating consequences of smoking (such as tar deposits) tend to
increase, not decrease, the risk of cancer in smokers and nonsmokers
alike. The estimand of (3.31) could then be used for quantifying the
causal effect of smoking on cancer.



