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Using Bayesian Networks to Model Expected
and Unexpected Operational Losses

Martin Neil,'* Norman Fenton,! and Manesh Tailor?

This report describes the use of Bayesian networks (BNs) to model statistical loss distributions
in financial operational risk scenarios. Its focus is on modeling “long” tail, or unexpected, loss
events using mixtures of appropriate loss frequency and severity distributions where these
mixtures are conditioned on causal variables that model the capability or effectiveness of the
underlying controls process. The use of causal modeling is discussed from the perspective of
exploiting local expertise about process reliability and formally connecting this knowledge to
actual or hypothetical statistical phenomena resulting from the process. This brings the benefit
of supplementing sparse data with expert judgment and transforming qualitative knowledge
about the process into quantitative predictions. We conclude that BNs can help combine
qualitative data from experts and quantitative data from historical loss databases in a principled
way and as such they go some way in meeting the requirements of the draft Basel IT Accord
(Basel, 2004) for an advanced measurement approach (AMA).
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1. INTRODUCTION

The Basel Committee on Banking Supervision, in
reaction to a number of well-publicized financial dis-
asters, has drafted a system of regulation addressing
the issue of operational risk (OpRisk) and its assess-
ment (Basel, 2004). Key to the regulatory process is
the modeling of a business’s operational risks, in terms
of a variety of loss event types, in order to arrive at
an appropriate regulatory capital charge. To calcu-
late such a charge it is tempting to predict operational
risk by building a statistical model based on historical
data. However, from a statistical perspective the well-
publicized financial disasters, e.g., Barings (Rawnsley,
1995) and Allied Irish Bank (AIB) (Wachtell et al.,
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2002), in themselves, are too few in number for any
meaningful inference. Moreover, until recently, banks
have not historically collected loss event data on a
wide and systematic basis. This general paucity of
loss data means that traditional statistical approaches
are unlikely to provide useful predictions of opera-
tional losses. A mixture of qualitative and quantita-
tive methods is perhaps needed to model operational
risks.

The OpRisk problem is not peculiar to the finan-
cial sector and operational risk is not a new topic.
In his book James Reason argues that operational
risk is faced by all organizations and he uses ex-
amples from the financial, rail transport, civil avia-
tion, and nuclear power sectors to support his case
(Reason, 1997). Reason identifies a host of reasons
why catastrophic failures occur in these safety-critical
industries, including (but not restricted to) a failure
to enforce lessons learnt from previous failures, slow
degradation or collapse of safety procedures, changes
in culture and management, lack of visibility and
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support for risk reporting, and lack of attention to
detail. The key conclusion from this is that accidents
are not solely the result of human fallibility but are
supported by organizational features that fail to de-
fend against all-too-human mistakes, slips, and (in the
case of fraud) malicious acts. From this we can con-
clude that OpRisk prediction is inextricably entwined
with good management practice and that measure-
ment of OpRisk can meaningfully be done only if the
effectiveness of risk and controls processes is regu-
larly assessed. This contrasts sharply with the view
that modeling OpRisk simply involves the investiga-
tion of statistical phenomena.

By the same arguments financial catastrophes are
not a “bolt out of the blue” nor are they inexplica-
ble. The financial scandals such as Barings (Rawnsley,
1995) and the AIB (Wachtell et al., 2002) were all
the result of fraudulent activities building up over
lengthy periods of time during which active manage-
ment could have discovered and prevented them. In-
deed, if caught early the events would not have been
catastrophes at all. There is a tendency to see finan-
cial disasters as single “ultra high loss” events rather
than aggregations of smaller losses accrued over a pe-
riod of time. This is understandable given the fact that
the losses have to be realized upon discovery, all at
once. But this does not change the fact that such losses
are accumulated daily and could be detected by good
diligence, applied routinely. It is precisely this rou-
tine attention to good practice that, just as in safety-
critical industries, prevents disasters from occurring.
Any OpRisk scheme should, therefore, focus on de-
tecting near misses and small losses on a monthly or
quarterly basis before they become large losses and
disasters.

In this article we argue that Bayesian networks
(BNs) provide an attractive solution to the problems
identified above. BNs enable us to combine any sta-
tistical data that are available with qualitative data
and subjective judgments about the process. Hence
BNs provide a method of modeling operational losses
and measuring the effectiveness of a business’s opera-
tional processes, as part of a self-assessment-oriented
“Bayesian Scorecard” approach. Using BNs we can

1. combine proactive loss indicators, related to
the business process, with reactive outcome
measures such as near miss and loss data;

2. incorporate expert judgments about the con-
tribution qualitative estimates can make to the
overall risk assessment;
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3. enter incomplete evidence and still obtain
predictions;

4. perform powerful “what-if?” analysis to test
sensitivity of conclusions;

5. obtain a visual reasoning tool and a major doc-
umentation aid;

6. obtain output in the form of verifiable pre-
dictions against actual performance measures
and loss event rates.

In Section 2 we provide a brief overview of BNs. In
Section 3 we consider the widely accepted distinction
between expected and unexpected losses in OpRisk,
whereas in Section 4 we explain how BNs provide
a unified method of predicting both types of losses.
We believe this represents a significant improvement
over existing approaches since the distinction is, in
our view, arbitrary. We concentrate on the core prob-
lem of predicting losses using two BNs to show how
they can be used to model loss event frequency, sever-
ity, and heavy-tailed distributions. Section 5 discusses
the issues relating to prior estimation in BNs and how
prior beliefs can be informed by evidence from the op-
erational process. Finally, in Section 6 we offer some
conclusions.

2. BAYESIAN NETWORKS

The underlying theory of BNs combines Bayesian
probability theory and the notion of conditional in-
dependence to represent dependencies among vari-
ables (Pearl, 1986; Speigelhalter & Cowell, 1992). To
date BNs have proven useful in many areas of appli-
cation such as medical expert systems, diagnosis of
failures, pattern matching, speech recognition, and,
more relevantly for the OpRisk community, risk as-
sessment of complex systems in high-stakes environ-
ments (Fenton et al., 2004; Neil et al., 2001, 2003).

BNs enable reasoning under uncertainty and
combine the advantages of an intuitive visual repre-
sentation with a sound mathematical basis in Bayesian
probability. With BNs, it is possible to articulate ex-
pert beliefs about the dependencies among different
variables and to propagate consistently the impact of
evidence on the probabilities of uncertain outcomes.
BNs allow an injection of scientific rigor when the
probability distributions associated with individual
nodes are simply “expert opinions.” This can both
increase the reliability of the expert opinions, while
also making explicit the imprecision that is inherent
in such judgments.
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A BN is a directed graph whose nodes repre-
sent the (discrete) uncertain variables of interest and
whose edges are the causal or influential links between
the variables. Associated with each node is a node
probability table (NPT). This is a set of conditional
probability values that model the uncertain relation-
ship between the node and its parents together with
any uncertainty that is present in that relationship.

The key to the successful design of BNs is the
meaningful decomposition of a problem domain into
a set of causal or conditional propositions about the
domain. Rather than ask an expert for the full joint
probability distribution, which is obviously a very dif-
ficult task, we can apply a “divide and conquer” ap-
proach and ask for partial specifications of the model
that are themselves meaningful in the experts’ do-
main. Once we have achieved this decomposition we
have also, implicitly as a natural product of the ap-
proach, specified the covariance by virtue of the con-
ditional probability structure.

Next, we require the expert to model the NPT
for each variable (node): this can either be done us-
ing historical data (with standard Bayesian parame-
ter learning approaches or Monte Carlo simulations),
or by simply asking the expert to provide a series of
subjective estimates. Ideally, we would expect these
estimates to be based on experience and knowledge
rather than blind guesswork.

We can easily embed continuous and discrete sta-
tistical distributions within the BN model, as NPTs,
and generate values for these NPTs by Monte Carlo
simulation methods. For continuous functions we
have to discretize the model appropriately and in the
AgenaRisk software tool (AgenaRisk, 2005) this is
achieved using a substantially enhanced version of the
dynamic discretization algorithm presented in Kozlov
and Koller (1997) and that allows the approximate
solution of classical Bayesian statistical problems, in-
volving continuous variables, as well as hybrid prob-
lems involving both discrete and continuous variables.

Once a BN is built it can be executed using an ap-
propriate propagation algorithm, such as the junction
tree algorithm (Jensen, 1996). This involves calculat-
ing the joint probability table for the model from the
BN’s conditional probability structure in a computa-
tionally efficient manner. To do this an intermediate,
graph-theoretic representation of the BN, called the
junction tree (JT), is automatically derived from the
BN. The JT allows localized, modular computations
to be executed using a message-passing algorithm.
This is, in essence, an elaborate form of Bayes’s the-
orem (for full details, see Jensen, 1996; Lauritzen &

Speigelhalter, 1988; Pearl, 1986; or Speigelhalter &
Cowell, 1992). This process is entirely automatic and,
in a tool like AgenaRisk, is hidden from the domain
expert.

Once a BN has been compiled it can be exe-
cuted dynamically, and exhibits the following two key
features:

1. The effects of observations entered into one
or more nodes can be propagated throughout
the BN, in any direction, and the marginal dis-
tributions of all nodes are updated.

2. Only relevant inferences can be made in the
BN. The BN uses the conditional dependency
structure and the current knowledge base to
determine those inferences that are valid.

It is worth noting that the computational weight in-
volved in using BNs is manageable in terms of com-
puter memory and permanent storage space, if using
an efficient implementation of the JT algorithm. How-
ever, many academic, open-source, and off-the-shelf
packages do not offer implementations that are effi-
cient enough to support large BN models, especially
when combined with Monte Carlo simulation. But ef-
ficient implementations are possible for the class of
BNs needed to model OpRisk problems and can be
easily built in tools such as AgenaRisk (AgenaRisk,
2005).

3. ESTIMATING EXPECTED
AND UNEXPECTED LOSSES

The Basel report (Basel, 2004) classifies financial
losses due to operational factors into two “types”:

1. Expected losses—These are considered the
“normal” losses that occur frequently, as part
of everyday business, with a low severity. Ex-
amples include losses due to accidentally mis-
calculated foreign exchange transactions.

2. Unexpected losses—These are the unusual
losses that occur rarely and have a high sever-
ity. Examples include losses resulting from a
major fraud activity.

Fig. 1 shows the distinction between expected and
unexpected losses. The demarcation line is purely ar-
bitrary (in Fig. 1 this separation is shown at total losses
of $400,000). It therefore makes little sense to use fun-
damentally different methods for predicting expected
and unexpected losses; it is better to think in terms of
finding a distribution whose fail represents the unex-
pected losses.
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The traditional approach to these kinds of prob-
lems is to rely purely on historical data to find
the predicted distribution. Where extensive data ex-
ist traditional statistical modeling techniques work
well. However, in the case of operational loss data,
we have a number of special problems. Most im-
portantly, even when a lot of loss data are avail-
able, it is unlikely that there will be enough data
on the large “unexpected losses” for us to be able
to estimate the tail of the distribution properly—
usually we end up with tails that are too “thin” or
indeed “too fat” if the loss data are not relevant for
the domain in question. Even when modeling the
“expected losses” (the bulk of the distribution) the
data-oriented approach suffers from the following
limitations:

1. Loss data will be gathered over a period of
time that may represent varying levels of oper-
ational effectiveness and risk/threat level. We
cannot expect that losses are generated from
one single distribution with a small number of
“known” parameters.

2. Losses experienced are simply a sample of
possible events. They may not be represen-
tative of changing operational processes. As
the underlying operational process degrades
or improves, the value of such historical data
wanes.

3. The reported loss data might be wrong. Un-
derreporting and data ambiguity can lead to
significant errors in estimation.

4. Any attempt to bolster loss data with data
gathered from other organizations is subject
to the same problems and more because very
often the provenance of the data is unknown
or in doubt.

4. USING BNs TO PREDICT LOSSES

Given the serious limitations of the approaches
based purely on historical loss data, it is inevitable
that we will have to use methods that enable us to
incorporate other types of evidence. Where differ-
ent types of evidence need to be combined, classical
statistical methods do not work. Bayesian methods,
and in particular BNs, do provide a way forward
since they can offer the following specific benefits in
OpRisk:

1. Explicit combination of objective and sub-
jective data by modeling the connection be-
tween the operational environment and the
loss event process.

2. Can model “long” tail distributions for the
unexpected loss component of the total loss
distribution.

3. A method for eliciting subjective components
of risk forecast from experts by explicitly mod-
eling scenarios involving different operational
processes or threats to the business, with likely
outcomes.

4. A verifiable means for dealing with exper-
tise such that models can then be used
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independently of the expert in the same way
a medical expert system would support less
qualified practitioners by making “expert” ad-
vice available.

In this section we describe two BN models for
predicting operational losses. The first predicts to-
tal losses from event frequency and severity assum-
ing that these are independent. The second assumes
dependence between frequency and severity. These
models are by necessity simple and are presented
mainly to dissuade readers of some of the misconcep-
tions about how BNs might be used in OpRisk and
give a glimpse of the potential of BNs in this area.
It should be noted that the calculations here are pre-
sented from first principles—in practice all such calcu-
lations are performed by special purpose BN software
tools and so their complexity is completely hidden.

4.1. Predicting Total Losses from Event Frequency
and Severity

We can estimate the total loss distribution from
the convolution of the loss frequency and severity dis-
tributions where total losses, T, are conditioned on the
frequency of loss, F, and the severity of loss should it
occur. Loss event frequency and severity are random
variables, each with an appropriate probability den-
sity function (pdf). For a given loss event frequency,
F, and severity distribution, S, we wish to predict the
total loss distribution, 7. The joint probability distri-

bution p(F, S, T) is p(T | ES) p(S)p(F) and the total
loss distribution is calculated by marginalizing S and
F thus,

p(T) =) p(T|S, F)p(S)p(F),
S, F

p(ES, T) canbe depicted graphically by a BN as shown
in Fig. 2.

Given that BNs accommodate the use of Monte
Carlo methods to generate the probability tables we
donotneed torestrict our model to any given family of
conjugate probability distributions. For simplicity the
prior pdf for event frequency might be represented
best by single parameter distributions. Here we use
a Poisson distribution, with rate parameter, A, and
an exponential distribution, with parameter, 6, as the
prior distribution for severity, S; thus,

e M)T
p(F) = T,

p(S)~ f(S) = 6e™".

Using the AgenaRisk software we can generate
p(T|F, S) by sampling from S and F using Monte
Carlo methods and calculating total losses, T, for each
combination of F and S sampled.

Once the BN has been specified and the NPTs
generated we can calculate the marginal probability
of any node in the BN by invoking the propagation
algorithm.

Given our assumptions we simply need single-
parameter estimates for the pair (i, ) to generate
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Fig. 3. Posterior marginal distribution for p(7’) where T' < 1,000.

p(ES,T). Let us assume that, from past experience
elicited from discussion with an expert, the mean loss
event rate per year is approximately 10, A = 9.7, and
that the mean loss severity is $40,000 per loss event,
0 = 40. Then the resulting posterior distribution for
p(T), as calculated by the BN, is as shown in Fig. 3.
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4.2. Modeling Dependence Between Event
Frequency and Severity

The model above assumes that loss event fre-
quency and severity are independent of one another.
This is optimistic—in reality we can expect them to co-
vary at least for some classes of events such as fraud,
where one might expect that a poor controls process
encourages a fraudster to steal more than an effec-
tive controls process. For other classes of events the
dependency might be weaker.

We can easily model covariance between severity,
S, and frequency, F, by introducing a common cause,
which we will name process effectiveness, E, into the
BN model.

The new joint probability distribution p(F, S,
T,E)is

p(F, S, T,E)= p(T|F,S)p(S| E)p(F | E)p(E).

This is shown graphically by the BN in Fig. 4.

We can compare this “dependence” model, con-
ditioned on E, with the independent version discussed
previously by directly comparing the posterior
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posterior marginal distributions for each
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Table I. NPTs for p(E), p(F | E), and p(S | E)

E p(E) p(FIE) P(SIE)
1 0.05 Poisson (0.5) Exp (5)

2 0.11 Poisson (2) Exp (10)
3 0.22 Poisson (5) Exp (20)
4 0.43 Poisson (10) Exp (50)
5 0.11 Poisson (15) Exp (60)
6 0.05 Poisson (25) Exp (70)
7 0.03 Poisson (40) Exp (80)

marginal distributions for 7 in the dependent
and independent cases: Y . ¢ p(T|F,S)p(S)p(F)
and ) r s p p(T| F, S)p(S| E)p(F | E)p(E).

To best illustrate the differences between the
models we can construct a model with mean values
for p(S§) and p(F) that are very close to the original
independence model. The example mixture of NPTs
chosen is shown in Table 1.

The expectations for event frequency, F, and
severity, S, are easily derived from the BN. These are
almost identical to those used when F and S are inde-
pendent: E(F) = 10 and E(S) = 40. However, the key
issue relates to the differences in the tail of p(T), or
to put it as a question: Are the “unexpected” losses
larger when F and S covary?

Fig. 5 shows the tail probability density functions
for values of 7' > 1,000 and Table II shows a compari-

son of the mean and 99th percentile (we might assign
the 99th percentile as the value at risk (VaR) mea-
sure) statistics, when F and S are independent and
dependent, respectively. We can see that when F and
S are dependent we get a “longer” tail than when they
are independent. This difference in tails is further re-
vealed in the difference in the 99th percentile values
for T: under dependence the value is 4,937 and under
independence it is 1,933. Therefore, under indepen-
dence the VaR measure will be optimistic.

This model is by necessity simple but in prac-
tice the approach scales up and offers a realistic level
of resolution in two ways. First, by using Agena-
Risk, the user can specify a level of desired accu-
racy, constrained only by the computational resources
available, and thus calculate very accurate percentile
values for VaR and aggregated loss distributions over
many processes. Second, AgenaRisk also supports
an object-oriented notation to compose large models
from smaller fragments and we can use this to auto-
matically generate models from databases containing
loss data and process descriptions.

5. MODELING PROCESS EFFECTIVENESS

Estimating the prior distribution for process ef-
fectiveness, E, is very important if we are to arrive at
sensible estimates for the total loss distribution, p(T).
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Fig. 5. Total losses tail distribution comparison. The dark gray area shows the independent case and the black line shows the dependent

case.



Table II. Mean and 99th Percentile Statistics for F, S, and T
Under Dependence and Independence Assumptions

Fand S

Independent Dependent

Frequency, F mean 9.2 9.2
99th percentile 17.8 42.0
Severity, S mean 40.0 40.0
99th percentile 184.0 231.0
Total losses, T mean 371.0 514.0
99th percentile 1,933.0 4,937.0

The reason it makes sense to estimate p(F) rather
than simply estimate p(7') directly is because p(T) is
acompound measure of event frequency and severity;
experts find it hard to perform the mental calculations
to combine these directly. They find it much easier to
break it down into separate assessments of severity
and frequency. Moreover, experts have direct experi-
ence of the process; they are involved in it, they have
an intimate understanding of the controls, procedures,
staff, and threats the business may face. We can exploit
this direct experience to elicit information about the
process separately from the outcomes of the process
(i.e., event severity and frequency).

Thus, to populate the model we need to assess
P(S|E), p(F| E),and p(E). We can interpret E as the
level of maturity, or effectiveness, in preventing un-
desirable events. The measurement scale for E given
in Table I assigns “one” for the most effective pro-
cess and “seven” for the least effective. We could, of
course, label these differently and give detailed de-
scriptions of the mix of operating procedures, technol-
ogy, staff skills, etc. assigned to each level and doing
so would make process effectiveness an observable
quality.

Now we have some model for E; we need to con-
sider what the prior probability distribution actually
means in Table 1. If we examine p(E = 1) = 0.05 we
can interpret the subjective beliefs (probabilities) of
the expert in a number of ways:

1. p(E) reflects uncertainty about the current
process—the chance of this process at this mo-
ment in time being a Level 1 process is 1 in 20.

2. p(E) reflects the frequency of occurrence of
a changing process—over 20 years we would
expect our changing process to be equivalent
to Level 1 (the best), on average, once.

The first interpretation echoes the Bayesian def-
inition of probability, as a degree of belief, and the
second echoes the frequentist definition. Both of
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these interpretations are mathematically equivalent
but have subtly different semantics. The first implies
that we never really know how “good” the process
actually is (we are in doubt) and the second suggests
that the process changes or evolves over time in some
way, 1.e., there is some long-run frequency at which
the process occurs at a particular level. Both inter-
pretations are correct but an expert may find it easier
to think in subjective rather than frequency terms or
vice versa.

The next possible concern about E is that the ex-
perts may not have experienced the whole range of E
directly, and will thus be unable to make any confident
statement about p(S | E), p(F | E), and p(E) over this
range. However, experts are very good at anticipat-
ing and then recommending or taking action to avoid
unpleasant outcomes (this is why we employ humans
after all!). Indeed, the whole thrust of regulation is
to force businesses to anticipate and act in this way.
With this in mind we can generate, with the help of the
expert, hypothetical scenarios involving £ and asking:

1. What is the chance of this level of degrada-
tion or improvement occurring in the process,
P(E)?

2. Given that the process effectiveness is at a par-
ticular level, what would the event severity,
p(S|E), and frequency, p(F | E), distributions
look like?

In our experience we have found that experts are
willing and able to answer these two questions if they
are asked in a structured fashion and they can quickly
see the results of their assertions in the BN and then
refine it. In partnership with local domain experts we
have successfully built large-scale models exploiting
expertise and statistical reasoning for safety-critical
and mission-critical applications in vehicle reliabil-
ity, air traffic control, software risk prediction, and
warranty return prediction of electronics components
(Neil et al., 2001, 2003).

Answering these questions may be difficult if they
do not appear grounded enough. Under these circum-
stances we could extend the BN model to identify
causal factors related to E, such as that shown in Fig. 6,
where we have identified another layer of causes in the
form of three causal factors: operational procedure
quality, O; technology fidelity, TF; and staff quality,
Q. Collecting priors on these might then be easier for
the expert.

From a statistical modeling perspective the prob-
ability distribution for process effectiveness, E, sim-
ply acts as a mixture parameter that mixes a set of
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Fig. 6. Refinement of BN model to include another layer of causes.

statistical or empirical frequency and severity distri-
bution models that will result in a “longer” tail and
a more realistic VaR estimate (Venkataraman, 1997).
We obviously favor a causal interpretation of E rather
than a purely statistical interpretation in order to
focus expert attention on the underlying generative
process and hopefully to generate a more sensible
Bayesian model.

6. CONCLUSIONS

BNs can help combine qualitative data from
experts and quantitative data from historical loss
databases in a principled way and as such they go
some way in meeting the requirements of the draft
Basel Accord (Basel, 2004) for an advanced mea-
surement approach (AMA). Adopting a BN-based
approach should, therefore, lead to better opera-
tional risk governance and a reduced regulatory cap-
ital charge. Relying purely on historical loss data and
traditional statistical analysis techniques will neither
provide good predictions of future operational risk
losses, nor a mechanism for controlling and monitor-
ing such losses.

We have shown how BNs can be used to model
operational risk via two small examples in which to-
tal losses are based on event frequency and severity.
In the second model we took account of the possible
dependence between frequency and severity by intro-
ducing a common cause process effectiveness, E, and
we showed that we could use this BN to model “heavy

tailed” distributions in a way that would exploit the
expertise available within an organization. This helps
produce a realistic and reproducible VaR estimate.
We call the method used to construct the total loss
distribution the “Bayesian Scorecard” because of the
obvious similarities to the less sophisticated scorecard
measurement process.

BNs focus on assessing the effectiveness of the un-
derlying business process and we propose using them
as a form of self-assessment. This would involve mon-
itoring the underlying business process on a frequent
basis (such as quarterly or monthly) and translating
these self-assessment scores into total loss predictions
via the BN.

We could go further and automatically learn from
loss data, as it is observed, and self-assessment data
together as part of a dynamic approach. Similarly,
entering hypothetical self-assessments and notional
loss data into the BN model would then easily sup-
port “What-if” and sensitivity analysis. Such analysis
would then help assess the accuracy of and help re-
calibrate their expertise over time. These topics, and
others, will be covered in subsequent articles.

In this article we have shown that we can model
uncertainty about the process that generates losses as
well as the distribution of losses that might result. This
addresses only a small part of the overall problem and
clearly further work is needed to extend the modeling
approach to address these outstanding issues:

1. There will be a time series relationship be-
tween losses and the dynamic nature of busi-
ness processes.

2. The reported loss data might be wrong. Un-
derreporting and data ambiguity can lead to
significant errors in estimation.

3. Any attempt to bolster loss data with data
gathered from other organizations is subject
to the same problems and more because very
often the provenance of the data is unknown
or is in doubt. Classifying the type of organiza-
tion and process that led to losses might allow
us to weigh the contribution of data within a
model.

The modeling approach described here has al-
ready been implemented to model the operational
risk profile of a large South African national bank.
While it is premature to claim validity or whether a
regulator would find the approach compliant, early
results from this implementation show that the work
scales up well and also that the BN formalisms match
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the modeling requirements of business units for trans-
parency and practicality.
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