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Abstract—Association discovery is a fundamental
data mining task. The primary statistical approach to
association discovery between variables is log-linear
analysis. Classical approaches to log-linear analysis
do not scale beyond about ten variables. We develop
an efficient approach to log-linear analysis that scales
to hundreds of variables by melding the classical sta-
tistical machinery of log-linear analysis with advanced
data mining techniques from association discovery
and graphical modeling.
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I. INTRODUCTION

Log-linear analysis is a well established statistical
technique for finding associations between variables in
data [1]. In contrast, data mining research into asso-
ciation discovery has focused primarily on finding as-
sociations between variable-values or items [2]. Each of
these approaches, finding associations between variables
or find associations between variable-values, has distinct
contexts in which it is more useful. Sometimes the
focus will be on which settings of which variables are
associated with which specific outcomes. In other cases,
for example, if one wishes to model a complex multi-
variate distribution, one needs to know which variables
interact in which ways.

Classical approaches to log-linear analysis are expo-
nential with respect to the number of variables, as they
calculate the frequency for all combinations of values.
For M binary variables, this requires 2™ operations.
This is not feasible for high M. In practice, classical
techniques are limited to a dozen variables at most.

A number of researchers have investigated approaches
that build log-linear models on subsets of the variables
and combine them [3], [4], [5], [6]. However, these are
unable to recover complex high-order interactions.

In this paper, we demonstrate that, by focusing on
a powerful sub-class of log-linear models — namely, de-
composable models — and taking advantage of theory
developed in data mining for association discovery, log-
linear analysis can be scaled to high-dimensional data,
with no further restrictions. In particular, we prove that
for decomposable models, x? tests can be computed in
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a significantly reduced number of marginal contingency
tables.

This paper is organized as follows. In Section II,
we formalize the problem. In Section III, we present
our solution Chordalysis, which enables the discovery of
statistically sound multi-way interactions between vari-
ables for hundred-dimensional datasets. In section IV,
we present related research. In Section V, we conduct
experiments that demonstrate 1) the relevance of our
approach on real-world high-dimensional datasets; 2) its
scalability; and 3) the importance of statistical control
for association discovery between variables. Finally, we
conclude and describe future research in Section VI.

II. PROBLEM STATEMENT
A. Definitions: log-linear models and analysis

Log-linear models: Let D be a dataset of N samples
over a set of M discrete variables V = {Vq,--- Vi }.
Every variable V' takes values in Dom(V'). D is drawn
from a probability distribution py over V, giving rise to
maximum likelihood estimates py:

Py : Dom(Vi) x---x Dom(Vy) — [0,1]CR
x = (x(1),-+,x(M)) —  Ox/N

where Oy designates the observed frequencies for a
vector of values x in D.

Log-linear models use a first-degree polynomial func-
tion to model the logarithm of the frequencies that can
be observed in a contingency table. With M variables,
the model for a vector of values x, the expected fre-
quency my has the form:

The w, . functions represent the interactions between
variables that are used to model the observed frequen-
cies. Terms are removed from the model by setting them
to zero. For example, a model that includes the term u; ;
will consider the interaction between the i*" and the j*"
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variable. Similarly, a model that includes the term u; ;
will consider the three-way interaction between the P,
the j*® and the £*" variable, while a model that doesn’t
include w; ;5 (having set it to zero) will not consider
the corresponding three-way interaction. A model that
includes all terms is called a saturated model.

Notation: Log-linear models are often represented
using the highest-order interactions that they include.
For example, [ABC] [CD] represents a model among four
variables, which includes a three-way interaction w4 B,c,
as well as a two-way interaction uc,p. Moreover, this
notation implies that all the lower-order interactions are
also included, i.e., ua,B, ua,c, up,c, as well as w4,
up, uc, up and u. Note that the log-linear models
that are completely determined by these highest-order
interactions are called hierarchical.

Log-linear analysis: Log-linear analysis is the gen-
eral name given to methods that seek to select a con-
sistent log-linear model from data. This corresponds
to determining which u_ terms can be removed from
the general form, without loosing too much “predictive
power”. The saturated model will always fit D perfectly.
Log-linear analysis methods add or remove terms to
an initial model, for as long as the quality /complexity
trade-off improves. Classical methods address this trade-
off with x? goodness-of-fit tests.

B. Forward selection

Log-linear analysis methods are divided into two
families: backward elimination and forward selection.
Both methods iterate so long as the quality/complexity
improves. Backward elimination starts with a complex
model (usually saturated) and iteratively removes terms.
Forward selection starts with a simple model (usually in-
dependence between the variables) and iteratively adds
terms. The saturated model for 100 variables includes

,160:00 (120) = 2100 > 1030 different terms. As it is
infeasible to iterate through such a set, and without loss
of generality with regard to our theoretical results, we
focus on forward selection.

Forward selection methods proceed as follows:
1) Start with an initial model M*.
2) Counsider the set of terms that can be added to M*.
3) Select from that set of terms the one that produces
the candidate model M with the best statistical
significance to replace M™.
« if the associated statistical significance achieves
a predetermined minimum level, replace M* by
M€ and loop to step 2.
o else the procedure terminates and returns M*.
The structure of the resulting model (i.e., the interac-
tions that are considered) represents the multi-way asso-
ciations — between the variables — that are statistically
significant in the dataset.

This paper shows how to scale up this procedure to
datasets with hundreds of variables.

C. Obstacles for high-dimensional datasets

Existing approaches to forward selection log-linear

analysis do not scale up to more than about ten vari-
ables, because they include several sub-processes that
are exponential with respect to the number of variables:
1. Evaluation: preferring one model over another is
usually assessed through x? goodness-of-fit tests [7, pp.
94-98]. These tests require the comparison of observed
frequencies to the ones predicted by the model for all
possible combinations of values, a number that is expo-
nential with the number of variables. While it can be
feasible to perform an exponential number of operations
for ten binary variables (#operations > 210 = 1024), it
becomes infeasible when the number of variables is high
(e.g., for 100 variables, #operations > 2100 > 1039).
Furthermore, these operations have to be performed
not just once, but for every potential model that is
considered — a number that itself grows exponentially
with the dimensionality of the data. Thus, the number of
operations prevents log-linear analysis from being scaled
up to high-dimensional data.
2. Fitting the model — MLE: Let us assume that
a model is considered to represent a better qual-
ity /complexity compromise by the log-linear analysis
process (i.e., that the previous problem of evaluation is
solved). To assess the model, its parameters first have
to be estimated. Classically, this procedure is performed
via a Newton-Raphson procedure [7, pp. 346-347]. Con-
sidering high-order interactions will exponentially in-
crease the size of the considered contingency tables. As
a consequence, the probability that contingency tables
contain zeros will increase exponentially (since the size of
the dataset remains constant). Zeros in the contingency
tables often lead to non-existing maximum likelihood
estimates (MLEs) [1], making it impossible to fit, and
thus to evaluate the model. See the work by [8] for an
up-to-date overview of this problem.

III. CHORDALYSIS

Our method for association discovery between vari-
ables is presented in this section. By focusing on a
particular sub-class of log-linear models — decomposable
or multiplicative models — the full log-linear analysis
paradigm can be extended to high-dimensional data. We
start by briefly presenting decomposable models, outline
our solution, then describe in detail the four features of
the method.

A. Decomposable models

Definition 1: [7] A log-linear model is graphical if,
whenever the model contains all two-factor terms gen-



erated by a higher-order interaction, the model also
contains the higher-order interaction.

Property 1: Being completely determined by its two-
factor terms, a graphical model can be represented by
an undirected graph, where the vertices represent the
variables and the edges represent the two-factor terms
included in the model.

Definition 2: A graphical log-linear model is decom-
posable if the corresponding graph is chordal, i.e., if the
graph does not admit chord-less cycles of length strictly
greater than three.

Decomposable models are the log-linear models that
have closed-form maximum likelihood estimates (MLEs)
[1]. Note that not only do decomposable models have
closed-form MLE, but that all the log-linear models
that have closed-form MLE are decomposable. This sub-
class is not only practical but also a sound class of
models. This is ensured by the fact that, for any non-
decomposable log-linear model p, there always exists
a log-linear model that is decomposable and that sub-
sumes 1 and hence can exactly model any distribution
modeled by p. The general proof of this existence comes
from the fact that the saturated model, which subsumes
any other log-linear model, is decomposable. In practice,
for a graphical model that is not decomposable, any
minimal triangulation of its graph [9] will provide such
a decomposable model.

The model’s probability p, can be evaluated using
marginal probabilities of a small number of terms. In
contrast, non-decomposable models can only be fitted to
the data if the dataset is low-dimensional [8] (no more
than a dozen variables). The expression of p,, is linked
to the graph representation of the model, and relies on
the maximal cliques, C, and minimal separators, S, of
the graph. The probability p, of a vector x under a
decomposable model M is then expressed by:

H pc(x)
cecC (1)

[ rsx)

SeS

pu(x) =

with p 4 representing the marginal probability of py, over
a set of variables A. Note that S is a multi-set of sets of
variables, since a minimal separator can separate several
maximal cliques.

The definition and efficient computation of C and S
are presented in App. A. Note that their computation
requires only O(|V|+ |E|) operations for chordal graphs.

B. Sketch of our solution

As we show below, decomposable models are closely
linked to chordal graphs, which gives the name to our
method Chordalysis: a scalable method for association
discovery between variables. Chordalysis is a forward

selection approach among decomposable models. The
obstacles described above are addressed with the follow-
ing four main features.
1. Searching among decomposable models: Decom-
posable models are intrinsically linked to chordal graphs.
We show how to take advantage of recent discoveries
in this field to perform the forward selection procedure
among decomposable models.
2. Rewriting the G? statistic: Taking advantage of
the closed-form MLEs, we show that a y? goodness-of-fit
test can be expressed without requiring an exponential
number of operations in terms of the number of vari-
ables. In fact, we prove that the likelihood ratio statistic
(G?) for decomposable models can be expressed in terms
of the graph structure associated with the model.
3. Efficient marginal entropies computation: We
show that the computation of the rewritten G? statistic
relies completely on the computation of marginal fre-
quencies for different combinations of values. We can
thus take advantage of the intersection-optimized data
structures that have been developed for itemset mining
(e.g., Tidsets [10]). In practice, forward selection proce-
dures can be seen as a breadth-first search. Our solution
combines a data structure based on a partial lattice, and
memoization of intermediate solutions.
4. Layered critical values: When statistical tests are
used repeatedly, to control the familywise error rate, the
significance threshold must be corrected. We propose a
correction scheme based on [11], that assigns different
critical values to different areas of the search space.
The conjunction of these features makes it possible to
scale log-linear analysis to hundreds of variables on a
standard desktop computer.

C. Searching among decomposable models

As described above, at each iteration, forward selec-
tion methods generate a set of more complex models,
by adding a single term per candidate model that is
not contained in the current best model. Decomposable
models are completely defined by their two-way interac-
tions (or two-factor terms). As a result, the generation
of candidate alternatives to a current model involves the
addition of a two-factor term. In order to ensure that the
candidate graphs remain decomposable, it is necessary
to consider only terms that result in a decomposable
model, ¢.e., for which its graph is chordal.

We need to determine whether adding an edge {a, b}
to a chordal graph G = (V, E) will result in a further
chordal graph. If a and b belong to different connected
components of G (i.e., if there is no path from a to b),
then the graph (V, E U {{a,b}}) will always be chordal.
However, if a and b belong to the same connected
component (i.e., there is a path from a to b), the problem
involves the concept of a 2-pair [12].



Definition 3: Given a chordal graph G; = (V, E), a

pair {a,b} of non-adjacent vertices is called a 2-pair iff
the graph G2 = (V, E U {{a,b}}) is chordal.
Recall that a chordal graph contains no chordless cycle
longer than three (triangles). The intuition behind the
above definition is then that the only cycles that will
be closed by adding the edge {a, b} are cycles of length
three, which keeps the graph chordal. Because the cycles
created by joining a to b all are of length three, any
chordless paths between a and b are of length two, hence
the name 2-pair.

In this way, every time a new model is chosen to
replace the previous best one (i.e., at each iteration of
the forward selection method), we build a set of eligible
interactions associated with the new model. Therefore,
we select all the pairs of variables for which all the
chordless paths from the one to the other are of length
two. Then, one new candidate model will be constructed
for every eligible interaction.

D. Rewriting the G2 statistic

In this section, we show that using the likelihood ratio
test statistic (G?), we can exactly express the fit of
a model to D, using marginal probabilities only. Let
us recall that the G2 statistic for a model M with df
number of degrees of freedom approximates a x2(df)
distribution for large samples. First, we develop and
simplify the G2 statistic for the evaluation of one model.
Then, we express, develop and simplify the G? statistic
for the replacement of M* by M¢€.

1) G2 of one model: We will use O2 (resp. E2) to
designate the observed (resp. expected from a model M)
frequencies for the configuration x with respect to the
set of variables A, and H(.) to denote the entropy.

2 v O
x€Dom(V) X
=2-N Z Py (x) Inpy(x) — Z Py (x) Inp,(x)
x€Dom(V) x€Dom(V)

(2)
In addition, the first term within the brackets in the last
equation corresponds to — H(V). Moreover, [13] showed
that, for decomposable models, the second term can be
simplified in the following way:

- > wE)hp(x) = Y HC) =Y H(S) (3)
x€Dom(V) ceC Ses
Replacing in Eqn. 2, we now have:

G*(M)=2-N ZH(O) - ZH(S) —H(V)> (4)

cecC Ses

Figure 1. Illustrative example of two decomposable models with
nine variables: M* = [123][234][15][567][68][79] is depicted with
strong lines and adding the edge {1,4} (dashed line) results in the
model M€ = [1234][15][567][68][79].

2) G2(M* vs. M®): Given a reference model M* and
a (strictly larger) candidate model M€, MLEs for log-
linear models satisfy[7, pp. 96-97]:

G2(M* vs. M) = G2(M*)—G2(M®)  (5)

Then, given Eqn. 4, it is simple to show that to test M*
against M, where M¢€ is strictly larger than M*, the
entropy of the dataset H(V) disappears:

2-N<Z H(C) - > H(S)

cec* SeS*

- > CHO) + Y H(S)) (6)

cece SeSse

G2(M* vs. M) =

Also, when M€ replaces M* in the forward selection
procedure, they differ by one edge only. Thus, the asso-
ciated graphs will have very close structures and many
entropies expressed in Eqn. 6 cancel each other out.

Consider the example illustrated in Fig. 1: let M* =
[123][234][15][567][68][79] and the additional interac-
tion under consideration be {1,4}. The candidate
model is thus M¢ = [1234][15][567][68][79]. Computing
Eqgn. 6, because of the similar cliques and separator
between M* and M€, many terms cancel out, leading
to GEH(M* vs. M®) = 2-N(H({123}) + H({234}) —
H({1231}) — H({23}).

This result is a consequence of graph-theoretical re-
sults on chordal graphs. If two decomposable models dif-
fer only in one edge {a, b}, then the maximal cliques and
minimal separators differ only in a local sub-structure
of the graph, namely around the minimal separator of a
and b[14]. Using [14, Theorem 4.2 and Corollary 4.1], we
can formulate the following theorem:

Theorem 1: If two decomposable models M*¢ C M*
differ only in one edge {a, b}, and let Sy, be the minimal
separator of {a, b}, then we have:

G?*(M® vs. M*) = 2-N(H(Saq U{a}) +
H(Sqp U {0}) — H(Sap U {a,b}) — H(Saw)) (7)

Note that in the previous example, we had S14 = {23}.

Then, assessing the statistical significance of the re-
placement of M* by M¢€ is a function of only four differ-
ent entropies. This extremely reduced expression of the
G? statistic improves dramatically the scalability of our



approach. The evaluation step is no longer exponential
in terms of the number of variables, but only depends
on a local graph sub-structure of the models.

E. Efficient marginal entropies computation

Evaluating the replacement of one model by another
relies on the computation of marginal entropies (Eqn. 7).
Chordalysis includes three main optimizations of this
computation. First, we ensure that every marginal en-
tropy is only computed once. Second, we show that all
the possible marginal entropies are sums of a limited
number of partial entropies. Third, we propose a data
structure, based on a partial lattice, that enables the fast
computation of all the required marginal frequencies.

1) Computing every marginal entropy once: Let us
consider again the example illustrated in Fig. 1. We
have seen that the simplified G? statistic requires compu-
tation of H({123}), H({234}), H({23}) and H({1234}).
Among these four entropies, the first two are entropies
of maximal cliques of M*. As a consequence, they were
previously computed when M* was a candidate for re-
placing the former reference model. The entropy H({23})
has also been computed in the process of selecting either
{123} or {234}.

Clearly, the forward selection procedure exhibits many
overlapping sub-problems. We propose to memoize these
partial solutions. The calculation of the G2 statistic is
then reduced to a function of only one new term, namely
H({1234}). This compares to the direct calculation of
Eqn. 6 that included 20 different entropies.

2) Computing every logarithm once: Another case of
overlapping sub-problems can be found at a lower level.
The marginal entropy for a set of variables A C V can
be expressed in terms of the observed frequencies:

H(A) = —% Y of- (mo;‘ —mN) (8)

xXEA

which can be re-expressed as:

H(A) = —% Z partial_entropy(O2) (9)
x€A

Given that the In(.) function is computationally expen-
sive and that VA C V,Vx € A, Of < N, we pre-compute
all values of the partial entropies in an array of size N
(with O(1) access).

3) Computing marginal frequencies: The scalability of
Chordalysis now mainly relies on the ability to efficiently
compute marginal frequencies (O2,¥x € A and for
different A C V). The evaluation of M* vs. M will
most of the time require computing a single marginal
entropy. We showed that all the possible partial entropies
can be pre-computed. The only missing elements are
thus Of for different sets of variables A and for all the
combinations of values for this set.

0
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Figure 2. Lattice on four variables A, B, C, D. The decomposable
model [ABC][ACD], which excludes the interaction between B and
D, is illustrated as a cut on the lattice. The green nodes haven’t
been explored yet, and are thus not stored. The blue nodes need
not be stored anymore.

Association discovery between values has carefully
studied the efficient computation of marginal frequen-
cies. The main methods rely on a vertical description of
the data — for instance Tidsets [10] or Diffsets [15].

Chordalysis uses Tidsets to store the dataset. Com-
puting marginal frequencies relies on the computation
of intersections between Tidsets. To optimize this com-
putation, a good data structure would minimize both
the number of Tidsets whose intersections are calculated
and their sizes. We propose a data structure based on
a partial lattice, as illustrated in Fig. 2. Every node of
the partial lattice stores one Tidset for every associated
combination of values. For example, the node AB will
store (| Dom(A)| - | Dom(B)|) Tidsets. We call this struc-
ture a partial lattice for two reasons: (1) nodes that
have not been explored are not stored (e.g., in Fig. 2,
the nodes ABD, BCD and ABCD are not part of the
partial lattice); (2) if all the children of a node have
been explored, the Tidsets of the node can be removed
from the lattice — this is a consequence of the forward
progression of the method. In Fig. 2, the first level need
not be stored because the entire second level has been
explored. Similarly, AC need not be stored, because
its two children ABC and ACD have been explored.
However, even though it has been explored, BD is kept
in memory, because it can be used to explore ABD and
BCD.

This partial lattice makes it possible to guarantee
that every Tidset will be computed with a single in-
tersection and the number of operations to compute
this intersection is minimal. When a new node n is
explored — in order to compute the associated marginal
entropy — a Tidset has to be computed for every as-
sociated combination of values. Every Tidset can be
computed from the corresponding Tidsets of any two
parents of n. This ensures that only one intersection is
required. Moreover, we choose the parents that have the
smallest corresponding Tidsets. This ensures the number
of operations for the single intersection is minimal.



F. Layered critical values

Chordalysis makes intensive use of statistical testing.

It is well known that multiple testing can result in
many false discoveries. Given the size of the search
space, a large number of tests will be performed. As
a result, modifications of the models may be accepted
too often. This can be avoided by using layered critical
values [11], a variant of the Bonferroni correction that
increases the number of significant patterns discovered
while still maintaining strict control over the risk of
false discoveries. Given the p-value threshold « (usually
a = 0.05), the layered p-value «ay, at step L with a search
space of size Sy, is defined as:
o«
S 2L.5;
where L is the number of edges in the current best model
M*, and Sp, is the number of chordal graphs that can
be formed by adding a single edge to M*.

ar (10)

G. Complexity

We compare here the complexity of Chordalysis

against that of a standard log-linear modeling forward
selection procedure among graphical models. In both
cases, the worst number of steps corresponds to the con-
struction of the saturated model, i.e., max_ #steps =
M M- steps. At step s, both methods will select a
M€ for which the corresponding graph includes s edges.
At step s, both methods consider the replacement of M*
by (max_f#steps — s + 1) M°. So far, both methods
have a similar worst case. However, the evaluation of
every M€ is drastically different. In the standard log-
linear analysis case, evaluating any M€ requires O(2M)
operations (assuming binary variables) irrespective of
its structure. In Chordalysis, the evaluation depends on
the structure of the graph and requires at most O(2V®)
operations.
Proof: At step s, all the M€ contain exactly s edges.
The computation of the G2 statistic is upper bounded by
the evaluation of the biggest clique that can be created
by adding the s** edge to the graph. If all s edges
are composing a single clique, the clique has at most
k= @ variables.! Assuming binary variables, thus
the evaluation requires at most O(2V*) operations. [J

Note also that it is very unlikely that all the edges will
be in the same clique. In practice, while the standard
approach will require O(2™) operations, the number of
operations will be much smaller for Chordalysis.

IV. RELATED RESEARCH

Researchers have investigated the learning of log-
linear models, also named Markov networks or Markov

k- (k=1)
2

1A clique of k variables contains
k- (k—1) 14+v/1+8s
2 2 :

edges. Solving

= s gives k =

random fields from high-dimensional data.

A first approach consists of building log-linear models
on subsets of variables — for which the classical log-
linear analysis scales up — and then to combine these
sub-models [3], [5].

A second approach consists of optimizing the negative
log-likelihood of the different neighboring of the graph
[6]. ¢1-regularized logistic regression is used to discover
the local structure of every variable. In a similar fashion,
[16] propose to focus on sets of variables that will best
divides the graph.

A third approach focuses on a reduced subset of
features [17]. This is achieved using ¢;-regularization
which biases the search towards models for which many
parameters are zero.

However, by focusing on local structures, these meth-
ods remain ad hoc, and cannot ensure that all the
subtleties of interactions will be captured.

To the best of our knowledge, [13], [14] are the only
cases in which researchers have tried to learn the struc-
ture of the model without focusing on local structures.
The objective function is the Kullback-Leibler diver-
gence, which is minimized when the observed frequencies
are equal to the modeled frequencies.

The saturated model (containing the full-way inter-
action) always minimizes the KL-divergence, because it
predicts exactly the observed frequencies. As a conse-
quence, models built with this objective function will
retrieve the saturated model if this model is explored.
This is an important issue because the MLEs require a
number of samples that is exponential with the num-
ber of variables. With 100 binary variables, the MLE
will require a dataset with more than 103° instances.
Moreover, such a model is of no interest to the data
analyst, because it doesn’t give any information about
the underlying dependencies that take place in data. To
address this issue, one solution is to limit the number
of variables that can interact in the model to a given
parameter k [18], known as the treewidth of the graph.
This constraint guarantees that the saturated model
will not be explored. However, this constraint raises two
other issues: (1) there is no method to determine k in
advance and (2) even if the best & is chosen, the approach
extremely overfits the data. We will show that KL
approaches are far from being optimal. This constraint
compares with the discovery of itemsets/associations
involving no more than k items. There will rarely be
a uniformly optimal k because the complexity of data is
usually not homogeneous: if one 5-way interaction has to
be discovered, and k is set to 5, then many other 5-way
interactions will be retrieved. In this paper, we argue
that ensuring statistical significance constitutes a sound
way to discover associations between variables.



V. EXPERIMENTS
A. Datasets from known models

Assessing the quality of association discovery between
variables requires having knowledge about the multi-
way interactions that take place in data. Therefore
we evaluate the discovery with data that is randomly
sampled from a known distribution (set of interactions
and associated probability tables). We can then compare
the discovered interactions to the true structure from
which the data was sampled.

As we pursue the class of decomposable models, the
structure of the model is completely determined by its
pairwise interactions. We can thus assess the recovery
of the structure in terms of the edges in the associated
graph. Each possible edge in the graph can be present
or absent in the true model and each edge can also
have been discovered or not. This corresponds to the
standard scheme true/false positive/negative. To take
into account both the precision and the recall of the
discovery process, we evaluate the models using the
F-measure, which corresponds to the harmonic mean
between precision and recall:

PR
P+R

We compare Chordalysis to the state-of-the-art

method based on the KL-divergence [13], [14]. The re-
sults are compared in terms of the quality of the recovery
of the structure and in terms of the execution time and
complexity.?
Data structures: We designed five models (Fig. 3) from
which the data will be sampled. The first four models are
used to investigate the behavior of the methods on par-
ticular types of distribution: three independent variables
(Dy), one triple interaction (Ds), one triple interaction
and two independent variables (D3) and a more com-
plicated structure with one 4-way, one 3-way and three
2-way interactions (D). These four models are intended
to investigate the relative overfitting behavior of the KL-
based method in contrast with the conservative behavior
of Chordalysis. Model D5 investigates the scalability
(quality and performance) on high-dimensional data.
It comprises 150 variables and includes 24 5-way (in
three interlaced groups of eight 5-ways), three 4-way,
two 3-way and three 2-way interactions as well as 55
independent variables.

1) D1 to Dy: The results are given in Fig. 4, with
the x-axis depicted in log-scale. For all these structures,
once 100 samples are present in the dataset, the KL-
based method terminates with the saturated model (the
model with the full-way interaction). The saturated

F=2.

2Note that both methods are implemented inside the exact same
framework, thus, the execution times are truly comparable.

(d)
Figure 3. Data structures that are randomly sampled. (a) D1. (b)
D>. (¢) D3. (d) Dy. (e) Ds.
model includes all the possible interactions, and has thus
a recall of 100 %. It is obvious that returning all the
possible interactions — whatever the true model is — will
lead in the general case to a very low precision. The poor
quality of the set of discovered interactions is illustrated
in the charts, with the exception of Dy for which the true
model actually is saturated.

To the contrary, Chordalysis is much more consistent.
The quality of the model increases with the number of
samples and always ends up with & = 1.0 indicating
recovery of the exact model. It is also interesting to
notice that the complexity of the interactions that can be
recovered generally depends upon the number of avail-
able samples. This behavior comes from the statistical
significance that is enforced by Chordalysis.

Note that the efficient data structure enables Chordal-
ysis to recover the true model with less than 150 ms.
The KL-based method requires twenty times longer to
converge for Dy, because it considers overly complex
models, even for these low-dimensional datasets.

2) Ds: Ds includes 150 variables. The complexity of
the KL approach is exponential with the size of the
maximal cliques that are retrieved (i.e., the size of
the multi-way interactions). This is a consequence of
the stopping criteria: it stops when there is no more
eligible pairs of vertices that would keep the graph
decomposable. For the previous experiments, this hap-
pened when reaching the saturated model. However, for
this 150-dimensional dataset the complexity makes the
unconstrained approach infeasible and another stopping
criteria has to be set. We limit the KL approach to
consider at most k-way interactions, with k € [2,7]. In
this case, limiting k to 7 is consistent since we know that
Ds include at most 5-way interactions. However, for real
cases there may be no way to determine k., because
the model from which the data is drawn is not known.
This is an additional advantage of Chordalysis, which
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Figure 4. Results of the experiments comparing Chordalysis to the KL-divergence approach on datasets Dy to Dj.

doesn’t need to set such a parameter.

Fig. 5(a) illustrates the results in terms of the quality
of returned structure. The KL approach achieves better
recall than Chordalysis with small quantities of data
because it is less conservative. However, from 50,000
samples, Chordalysis outperforms KL at all settings of
k, and with 500, 000 samples, the model is retrieved with
F=90% (P =83 % R =98 %). This compares to
the best scores obtained with the KL method and k£ =4
with only F =59 % (P =45 %, R =88 %).

Let us explain why the quality for the KL-based
method is ordered as KL4 > KL3 > KL5 > KL6 >
KL2 > KL7. The KL-based method will retrieve as
many k ways interactions as possible; even the 55 in-
dependent variables are included in k-way interactions.
The recall of the edges of the graph progressively in-
creases with the highest-order interaction k. From k = 5,
the recall is greater than 99 %. As a consequence of this
overfitting behavior, the precision follows an opposite
trend. Starting at 57 % for k = 2, the precision drops
down to 38 % for k = 5 and only 26 % for k = 7. Overall,
whatever the configuration, the precision of the retrieved
structure is too low to provide a consistent model.

Not only are the structure quality results of Chordal-
ysis much better, but its execution is also much quicker
(Fig. 5(b)). Chordalysis focuses on the statistically sig-
nificant part of the search space. As a consequence,
Chordalysis explores far fewer nodes of the lattice
(multi-way interactions) than the KL approach. Fewer
combinations of values are considered, and so fewer
intersections are computed (Fig. 5(c)). With 500,000
samples, Chordalysis explores almost as much as KL5.
However, by focusing on the statistically significant part
of the search space, Chordalysis obtains much better

results. Fig. 5(b) shows that Chordalysis only requires
half the time of KL5. This is another consequence of
the statistical significance of Chordalysis: the associated
decomposable graph is much simpler, which reduces the
maintenance time for the data structure.

B. Results on a real dataset

To demonstrate real-world performance we apply
Chordalysis to a 25 variable dataset from an epidemio-
logical study of the elderly (EPESE) [19]. The resulting
model (selected in less than 2s) is shown in Fig. 6.
Expert assessment of this dataset is provided in [20].

Many of the multi-way relationships retrieved by
Chordalysis have supporting evidence. For example, the
high-order interactions between age and gender and a
third variable are explained by the fact that, generally,
if the patient is older, then there has been a longer
period over which they have had the opportunity to have
smoked, been married or have retired (and hence not be
working), while it is well-known that women get married
earlier than men. Many identified interactions have a
direct medical interpretation, including the relationships
between diabetes and taking insulin, smoking (or having
smoked) and having had cancer, etc.. Other identified
interactions are less obvious. For example, the connec-
tion between taking high blood pressure medication and
having pain walking might be explained by the fact that
high blood pressure is often treated with diuretics, which
may decrease the body’s levels of the mineral potassium,
leading specifically to possible leg cramps. An interesting
example is the four-way relationship identified by our
method between the age, whether the patient provided
the correct age, and the two smoking variables. The cor-
rectness of the declared age is indicative of the patient’s
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Figure 5. Results of the experiments comparing the KL-divergence
approach to the proposed x? based one on dataset Ds. The KL-
divergence approach has been limited to k € [2, 7].

mental health. Mental health decreases with age and it
is more likely for someone to have smoked if he/she
is older. The a priori surprising fact is the inclusion
of smoking variables in a group of variables related to
mental health. It turns out that a recent neurological
study [21] established that smoking increases the risk of
dementia and Alzheimer’s disease.

VI. CONCLUSION AND FUTURE RESEARCH

While the data mining community has focused on
associations between variable values, it is often useful to
directly find associations between variables. Statisticians
have well-developed statistically sound techniques for
the latter task, but they have not scaled up to more
than about ten variables at a time. We have melded the
statistical machinery of log-linear analysis together with

Decomposable model selected for the EPESE dataset.

Figure 6.

the computational methods of association rule discovery
and network models, to develop a statistically sound
approach to discovering associations between variables
in high-dimensional data.

Our contributions to log-linear analysis include:

o Proof that the likelihood ratio statistic (G?) for
decomposable models can be expressed in terms of
the graph structure of the model.

e Proof that the G? statistic for comparing two de-
composable models that differ by the inclusion of
a single edge can be calculated using only a func-
tion of four marginal entropies. This dramatically
reduces the amount of computation relative to pre-
vious approaches.

« Efficient techniques for computing G2 using the
above proofs and techniques developed for itemset
mining.

« Efficient techniques for finding all candidate single
edge additions to an arbitrary decomposable model
that result in decomposable models. This is the
basis of our efficient forward-selection search.

o A variant of the layered critical values technique to
strictly control the familywise risk of Type 1 error.

o Memoization of marginal entropies, ensuring that
every marginal entropy will only be computed once.

One limitation of our approach is that it only con-

siders additions to a model that involve adding a sin-
gle edge that results in a decomposable graph. This
means that our approach may fail to find associations
between variables where the addition of the association
in a single step would result in a non-chordal graph.
It would be valuable to explore techniques that can
either step through graphs that are not decomposable,
or can consider single-steps that involve addition of
multiple edges, specifically, an edge of interest and the
additional edges required to triangulate the resulting
graph. This is a difficult problem because there can be
many ways to triangulate a single graph and there is no



obvious efficient way to select one from the many.

Our research builds upon a large body of work in the
learning of graphical models. It remains an important
direction for future research to compare the utility of
the statistical techniques we have scaled up, to Bayesian
and information theoretic approaches (e.g., [22], [23]) to
managing the trade-off between model complexity and
goodness of fit.

Association discovery is a fundamental data mining
task. We believe that we have opened the way for statis-
tically sound discovery of associations between variables
in high-dimensional data, and hope that this will prove
to be a powerful addition to the data mining toolbox.
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APPENDIX

A. Mazimal cliqgues and minimal separators

Let G = (V, E) be the undirected graph, where V is the
set of variables and E the set of edges in G.

Definition 4: A set C C V is a clique of G iff all its
vertices are pairwise adjacent.

Definition 5: A clique C' is maximal iff there is no
vertex V € V,V ¢ C such that C U {V'} is a clique.

Definition 6: A set S CV is a separator of G if G =
(V — S, E) is unconnected.

Definition 7: A separator set S of G is minimal if no
subset of S is a separator.

Chordal graphs (graphs corresponding to decompos-
able models) are an important family of graphs, for
which many polynomial time algorithms are available
for complex problems. This is due to the fact that a
perfect elimination ordering (peo) on the vertices can be
established with a Lexicographic Breadth First Search or
by a Maximum Cardinality Search, i.e., in O(|]V| + |E|)
operations. Moreover, for chordal graphs, the maximal
cliques and the minimal separators can be found in a
single pass [24].





