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Abstract. In experimental sciences many classification problems deal
with variables with replicated measurements. In this case the replicates
are usually summarized by their mean or median. However, such choice
does not consider the information about the uncertainty associated with
the measurements, thus potentially leading to over or underestimate the
probability associated to each classification. In this paper we present
an extension of the Naive Bayes classifier which, thanks to a Bayesian
hierarchical model, is able to properly deal with replicates and uncertain
measurements. We will show how to perform classification and learning
with continuous and discrete variables with replicated measurements and
we will describe the advantages of the proposed model over the standard
Naive Bayes algorithm with a simulation study.

1 Introduction

One of the fundamental topics of Supervised Machine Learning is the automated
construction of classifiers from labelled data, which can be then used to forecast
the class of a new example, given the values of its attributes. The exploitation of
a classification model may be very useful when dealing with experimental data,
such as in biomedical applications, where the classifier can eventually be used
for diagnostic and prognostic purposes. In many experimental contexts, how-
ever, the data belonging to a single example are the results of the averaging of
different repeated measurements, aimed at mitigating the effect of intra-example
variability and the measurement error. This happens, for example, when deal-
ing with biological samples, in which the datum of the variables of interest is
obtained by repeating two or more times the same measurement procedure and
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then by averaging the results. Although each value is usually provided with its
standard error, there have been very few attempts to deal with such kind of
”uncertain” data when building a classification model [1, 2], and none of them is
routinely applied. Nevertheless, the knowledge about the spread of the replicated
measurements may be crucial in both the learning and the classification phase.
For example, when monitoring diabetic patients, an average blood glucose value
of 100 mg/dl obtained by three measurements of 100, 50 and 150 is clinically dif-
ferent from the same average value coming from the measurements 100, 110, and
90 mg/dl. In this paper we will propose an extension of the Naive Bayes classifier
[3, 4] which is able to deal with such kind of repeated and uncertain measure-
ments. The proposed classifier will handle repeated measurements resorting to
a Bayesian hierarchical model [5–7]. In this paper we will show how to build a
Bayesian hierarchical classifier in both the cases of discrete and continuous gaus-
sian variables. While the classification phase will exploit a close form equation
for computing the posterior probability distribution, the learning phase will be
implemented resorting to convenient approximations or to the EM algorithm.
We will discuss the results obtained on a set of simulated data in comparison
with the standard Naive Bayes approach.

2 The hierarchical Naive Bayes classifier

The hierarchical Naive Bayes classifier that we introduce in this section assumes
that the measurements are stochastic variables with a hierarchical structure in
terms of their probability distributions. We suppose that we can collect a number
nrep of observations, or replicates on each example, and that an example belongs
to one of a set of given classes. Let us suppose that x is a stochastic variable rep-
resenting the replicates, whose probability distribution is dependent on a vector
of parameters θ, which corresponds to the single example, and may represent,
for example, the mean and variance of the probability distribution of replicates;
if we consider the i-th example, with i in 1, . . . , N , the probability distribution of
the vector of the replicates is given by p(Xi|θi), with Xi = {xi1, ...xij , ..., xinrep},
while the probability distribution of the individual parameters is p(θi|ξCk

), where
ξCk

is a set of population hyper-parameters that depends on the class Ck in the
set C = {C1, ...Ch} to which the example belongs, and is thus the same for all the
examples of the same class. Figure 1 shows the representation of the problems
though a graphical model with plates [8].

In a Bayesian framework, the classification step is therefore performed by
finding the class with the highest posterior probability distribution. Thanks to
the conditional independence assumptions of the hierarchical model described
above, we can write P(Ck|X) ∝ P(X|ξCk

)P(ξCk
|Ck)P(Ck). Since the population

parameters ξCk
are determined by the knowledge of the class Ck with probability

one, the equation can be simplified as P(Ck|X) ∝ P(X|ξCk
)P(Ck)

The posterior is thus dependent on the so-called marginal likelihood, P(X|ξCk
),

which can be calculated by integrating out the vector of parameters θ as follows:
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Fig. 1. The hierarchical structure of the data represented with the plates notation.
Many replicates are available for each example. The examples are characterized by an
individual vector of parameters θ and the examples belonging to the same class have
a common set of parameters ξ.

P(X|ξCk
) =

∫
Ωθ

P(X|θ)P(θ|ξCk
)dθ (1)

where Ωθ is the support of θ.
The learning problem will therefore consist in estimating the population pa-

rameters ξCk
for each class, while the classification problem is mainly related to

the calculation of the marginal likelihood.
To deal with multivariate problems, in this paper we resort to the Naive

Bayes algorithm, which assume that each attribute is conditionally independent
from the others given the class.

P(Ck|X) ∝ P(Ck)

Nfeature∏
f=1

P(Xf |Ck) (2)

From the computational viewpoint, this will allow us to compute separately
the marginal likelihood for each variable to perform classification and to learn a
collection of independent univariate models.

In the following of the paper we will show how to deal with the classifica-
tion and learning problem when i) the variables are continuous and normally
distributed; ii) the variables are discrete with multinomial distribution. These
two cases allow to deal with the majority of classification problems. Let us note
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that we will perform our analysis considering a single attribute x; since we are
exploiting a Naive Bayes strategy, the results will be easily generalized to the
multivariate case thanks to (2).

3 Continuous variables with Gaussian distribution

Let us denote xij the observed value of the j-th replicate of the i-th example,
with j = 1, 2, ..., nrepi

and i = 1, 2, ..NCk
where NCk

is the number of examples
belonging to the class Ck.
We assume that the replicates of the i-th examples are Gaussian distributed
stochastic variables with mean µi and variance σ2; we also assume that the
variance depends only on the class Ck. Following the hierarchical model described
in the previous section, the average values of the different examples belonging
to the same class are normally distributed with mean M and variance τ2.

xij ∼ N(µi,σ2) (3)
µi ∼ N(M,τ2) (4)

The hierarchical model corresponds to the general model described in the
previous section (see Figure 1) with θ = {µ} and ξ = {M, τ2, σ2}.

3.1 Classification

As described in Section 2, the classification problem needs the computation of
the marginal likelihood P(X|ξCk

), where X is the example to be classified, for
which x1, . . . , xnrep

replicates are available. In this case, given the conditional
independence model of Figure 1, we can write

P(X|ξCk
) = P(X|σ2,M,τ2) =

∫
Ωµ

P(X|µ,σ2)P(µ|M,τ2)dµ (5)

where we integrate over µ only, since we have assumed that σ2 is constant
over the class.

The integral of equation (5) can be solved as follows:

P(X|σ2,M,τ2) =
σ

(
√

2πσ)nrep(
√

nτ2 + σ2)
e−

1
2 ( M2

τ2 +

∑nrep

j=1
x2

j

σ2 )

∗e
1
2

σ2M2

τ2 +
n2

repx̄2τ2

σ2 +2x̄Mnrep

nrepτ2+σ2 (6)

where x̄ =
∑nrep

j=1
xj

nrep
. Given the marginal likelihood of each feature, we can

compute the posterior probability distribution as in equation (2).
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The computation of the marginal likelihood requires the knowledge of the
population (class) parameters ξ = (σ, τ,M), which can be learned from the data
resorting to different strategies.

3.2 Empirical learning

A fast strategy for calculating an estimate of the model parameters (σ, τ,M), can
be obtained with an approximation of the maximum likelihood estimate (ML)
called empirical learning [9, 10].

We first estimate the parameters of each example through the calculation of
the sample mean and variance:

µ̂i =

∑nrepi
j=1 xij

nrepi

(7)

σ̂2 =

∑NCk
i=1

∑nrepi
j=1

(xij−µ̂i)
2

nrepi

NCk

=
∑NCk

i=1 σ̂2
i

NCk

(8)

where σ̂i =
∑nrepi

j=1
(xij−µi)

2

nrepi
is the variance of the i-th example.

The population parameters are then obtained as:

M̂ =
∑NCk

i=1 µ̂inrepi∑NCk
i=1 nrepi

(9)

τ̂2 =
∑NCk

i=1 (µ̂i − M̂)2

NCK

−

∑NCk
i=1

σ̂2
i

nrepi

NCk

(10)

In this case the population mean is computed as a weighted average of the
individual means. The weight increases when the number of available replicates
increases. The population variance is derived by the subtraction of an estimate
of the intra-example variance from the estimate of the inter-example variance.
Of course, such estimate is valid only if the first term is greater than the second
one, i.e. when the inter-example variance is greater than the intra-example one.

3.3 EM learning

A learning technique which better preserve the stochastic nature of the hierarchi-
cal model described in this section relies on the Expectation-Maximization (EM)
strategy. Within this iterative strategy we will consider µ as a latent variable
and ξ = (M, τ, σ) the non-latent ones.

EM starts with an initial guess on the non latent variables ξ0. Then, an
expectation and a maximization steps are iterated as follows.
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E-step In the expectation step the expected values of the latent parameter is
calculated as:

E[µi|X, ξt−1] = µ̂i =
M̂t−1

(τ̂t−1)2 +
∑nrepi

j=1
xij

(σ̂t−1)2

1
(τ̂t−1)2 + nrepi

(σ̂t−1)2

(11)

V ar[µi|X, ξt−1] = V ar[µi] =
1

1
(τ̂t−1)2 + nrepi

(σ̂t−1)2

(12)

where t is the index of the iteration.
M-step Once the expected value of µ is calculated, the maximization step finds

the maximum likelihood estimate for the non-latent parameters. In this case
the estimate is:

M̂ t =
∑NCk

i=1 µ̂i

NCk

(13)

(τ̂ t)2 =
∑NCk

i=1 (µ̂i − M̂ t)2 + V ar[µi]
NCk

(14)

(σ̂t)2 =

∑NCk
i=1

∑nrepi
j=1 (xij − µ̂i)2 + V ar[µi]∑NCk

i=1 nrepi

(15)

The iteration of the two steps guarantees the convergence of the parameter
estimate to the maximum likelihood one.

4 Discrete variables

Although Gaussian distributed variables are rather common in nature, in partic-
ular after normalization and/or log-transformation, classification problems must
often deal with qualitative variables or non-gaussian data that can be conve-
niently discretized. As a matter of fact, the Naive Bayes classifier is usually
applied with discrete or discretized variables. For this reason, we herein propose
a version of the Hierarchical Naive Bayes classifier for discrete variables. For sake
of readability we have omitted the dependence of the vectors to the class k.

We assume that the vector of the occurrences (counts) of the i-th example
is Xi = {xi1, ..., xij , ..., xiS}, where xij is the number of occurrences of the j-th
discrete value, or state, of the i-th example and S is the number of states of the
variable x. The number of replicates of each example is given by nrepi

=
∑S

j xij .
We also assume that the relationship between the data Xi and the example
parameters θi is expressed by a multinomial distribution:

Xi ∼ Multin(nrepi
, θi1, ..., θij , ..., θiS) (16)



Hierarchical Naive Bayes Classifiers 7

Therefore θi is an S-dimensional vector, where θij represents the probability
of the occurrence of the j-th event in the example i. The parameters θi, for
i = 1, 2, ..., NCk

, are characterized by the same prior Dirichlet distribution:

θi ∼ Dirichlet(αξ1, ...., αξS) (17)

with probability density:

P (θi|α, ξ) =
Γ(α)∏S

j=1 Γ(αξj)

S∏
j=1

θ
αξj−1
ij (18)

where 0 < α < ∞, ξj < 1 ∀ j = 1, ..., S and
∑S

j=1 ξj = 1. Following the hierar-
chical model of Section 2, the individual example parameters θi, are independent
from each other given ξ = {ξ1, ..., ξS} and α.

In the following we will assume that the parameter α will be fixed, and it
will be thus treated as a design parameters of the algorithm. α represents the
prior assumption on the degree of similarity of all examples belonging to the
same class. A proper setting of the parameter α allows to derive a compromise
between a pooling strategy, where all replicates are assumed to belong to the
same example and a full hierarchical strategy where all examples are assumed
to be different.

4.1 Classification

As described in Section 2, the classification problem requires the computation
of the marginal likelihood (1). We assume that an estimate of the population
parameters ξ is available and that α is known. Given an example with counts
distributed on different states X = {x1, ..., xS}, where nrep =

∑S
j=1 xj , we must

compute:

P(X|Ck,ξ) =
∫

Ωθ

P(X|θ)P(θ|ξ)dθ (19)

where θ = {θ1, ..., θS} is the vector of the individual example parameters,
with

∑S
j=1 θj = 1 and Ωθ the support of θ.

This integral can be solved by noting that it is an integral of the product of
a Multinomial and a Dirichlet distribution. The marginal likelihood can be thus
computed as:

P(X|Ck,ξ) =
nrep! Γ (

∑
i αξi)

Γ (
∑

i xi + αξi)

∏
i

Γ (xi + αξi)
xi! Γ (αξi)

(20)

The Naive Bayes approach allows to exploit this equation for each variable in
the problem at hand, and then to apply the equation (2) to perform the classifi-
cation. The marginal likelihood however requires the estimate of the population
parameters ξ from the data. In analogy with Section 3, we will propose two
different strategies to learn the model from a data set of examples.
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4.2 Learning with collapsing

The task of learning the population parameters can be performed by resorting to
approximated techniques. Herein we will describe a strategy previously presented
by [11] and [12].

We suppose that a data set X = {X1, ..., XNCk
} is available for each class.

Such vector is transformed into a new vector X∗ where the i-th element X∗
i =

{τixi1, ..., τixij , ..., τixinrepi
} with

τi =
1 + α

nrepi + α
(21)

τi is a suitable weight that allows to take into account the prior assumptions
on the heterogeneity of the example belonging to the class. The hierarchical
model is then collapsed into a new model, where the vector of the measurements
X∗

i is assumed to have a multinomial distribution with parameters ξ and τinrepi
.

Such assumption can be justified by the calculation of the first and second mo-
ment of P(X∗|ξ), which is computed by approximating the distribution of the
parameters θ given ξ with its average value [11].

The ML estimate of the parameters ξ can be thus obtained for each state of
the discrete variable as:

ξ̂j =
∑NCk

i=1 τixij∑NCk
i=1 τinrepi

(22)

Within this framework we can also provide a Bayesian estimate of the pop-
ulation parameters ξ. We assume that ξ is a stochastic vector with a Dirichlet
prior distribution: ξ ∼ Dirichlet(βγ1, ...., βγS), where 0 < β < ∞, γj < 1 ∀
j = 1, ..., S and

∑S
j=1 γj = 1.

After collapsing, we may derive the posterior distribution of ξ is still a Dirich-
let with expected value of the probability of the j-th state of the discrete variable:

ξ̂j =
∑NCk

i=1 τixij + βγj∑NCk
i=1 τinrepi + β

(23)

In this setting, the parameter vector γ and β assume the same meaning of the
parameters usually specified in the Bayesian learning strategies applied in many
Machine Learning algorithms. In particular, if we assume γ = 1/S and β = 1 we
obtain an estimate which is close to the Laplace estimate, while different choices
of γ and β lead to estimates which are similar to the m-estimate, where β plays
the role of m.

4.3 Learning with the EM strategy

As an alternative to the collapsing algorithm previously presented, we have ap-
plied an implementation of the EM strategy. In this case, however, the maxi-
mization step cannot be solved in closed form, so that we must run an iterative
maximization algorithm within each M iteration, as proposed by [13].
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In this case the latent variables are the parameters θ, and the non-latent
ones are represented by the parameter vector ξ. As described in the previous
chapter, EM starts with an initial guess on the non latent variables ξ0. Then,
an expectation and a maximization steps are iteratively performed.

E-step In the E-step we compute the expected value of each θi from the poste-
rior distribution P(θi|X∗,ξt−1):

θi ∼ Dirichlet(τ1xi1 + αξ1, ..., τ1xiS + αξS) (24)

so that
E[θij |X∗, ξt−1] =

τ1xij + αξj

nrepi + α
(25)

M-step The M-step, which requires the maximization of the expected value
of the (log-)likelihood P (x, θ|ξ) cannot be solved in closed form. For this
reason it is necessary to resort to efficient numeric techniques, such as the
ones presented by [14] and [15].

5 Results on Simulated data

In this section we will present the results obtained on simulated data set. We
will compare the performance of the Naive Bayes (NB) classifier and of the
Hierarchical Naive Bayes method with the two different learning approaches
herein presented. The simulated data follow a hierarchical structure, since each
example has different replicates. To apply the NB approach the nrepi

replicates
of the i-th example are summarized by their sample average x̄i. The approaches
have been evaluated by computing the classification accuracy and the Brier score
calculated with an hold-out strategy.

5.1 Data generation

We generated multiple data sets (simulated experiments). Each experiment in-
cluded N examples, equally distributed into two classes. Each example had nrep

replicates for each attribute. We generated data from nfeat independent fea-
tures. The values of the replicates of the i-th example, for each attribute, have
been generated from a gaussian distribution N ∼ (µi, σ

2) where the individual
parameters µi have been sampled from a gaussian distribution N ∼ (M, τ2),
with parameters M and τ2 dependent on the class. The experiments that we
have performed can be divided into two subgroups. In subgroup I we have gen-
erated 4000 data, 2000 have been used as a training set and 2000 as a test set;
in subgroup II we have generated 140 data, 70 of them used for training and
70 for testing. In each subgroup we have then simulated data with 1, 3 and 10
features, with 5 replicates for subgroup I and 3 for subgroup II. For testing the
algorithm also with discretized data, we have discretized the obtained data set
with 5 bins for each variable.
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5.2 Results

The results obtained with the Gaussian model and for the discrete model are
shown in Table 1. Accuracy and Brier score are reported with their 95% confi-
dence intervals. The Hierarchical Naive Bayes with empirical learning is denoted
with HBN while the Hierarchical Naive Bayes with EM learning is denoted with
HBN-EM. Figure 2 shows the ROC curves computed in the Gaussian and dis-
crete cases.

Experiment Classifier Accuracy Brier Score Accuracy Brier Score
Gaussian data Gaussian data Discrete Data Discrete Data

I-1 HNB 0.928 [0.917-0.938] 0.105 0.860 [0.811-0.909] 0.188
HBN-EM 0.933 [0.924-0.942] 0.100 0.864 [0.818-0.909] 0.178

NB 0.874 [0.860-0.889] 0.181 0.841 [0.789-0.893] 0.229

I-3 HNB 0.984 [0.979-0.990] 0.022 0.935 [0.920-0.949] 0.086
HBN-EM 0.986 [0.981-0.991] 0.021 0.942 [0.927-0.957] 0.076

NB 0.942 [0.931-0.953] 0.086 0.925 [0.908-0.943] 0.106

I-10 HNB 0.999 [0.997-1.000] 0.002 0.985 [0.980-0.991] 0.019
HBN-EM 1.000 [0.999-1.000] 0.000 0.989 [0.984-0.994] 0.014

NB 0.985 [0.980-0.990] 0.023 0.979 [0.973-0.985] 0.031

II-1 HNB 0.889 [0.820-0.958] 0.150 0.849 [0.757-0.940] 0.200
HBN-EM 0.897 [0.823-0.970] 0.143 0.850 [0.760-0.940] 0.191

NB 0.864 [0.785-0.944] 0.192 0.842 [0.747-0.938] 0.216

II-3 HNB 0.958 [0.916-1.000] 0.051 0.918 [0.849-0.988] 0.103
HBN-EM 0.956 [0.912-1.000] 0.050 0.925 [0.862-0.988] 0.094

NB 0.933 [0.865-1.000] 0.096 0.911 [0.841-0.981] 0.111

II-10 HNB 0.979 [0.958-1.000] 0.021 0.972 [0.943-1.000] 0.030
HBN-EM 0.992 [0.985-1.000] 0.008 0.959 [0.917-1.000] 0.042

NB 0.976 [0.951-1.000] 0.028 0.948 [0.897-1.000] 0.052
Table 1. Results obtained on gaussian and discrete data. The accuracy confidence
intervals was computed by repeating the data generation, learning and classification
steps 100 times for gaussian variables and 60 times for discrete variables.

The two approaches for handling hierarchical data outperforms in both cases
the NB one. The results are better in the Gaussian case because the synthetic
data that we have generated follow the same distributional assumptions. The
HBN with EM learning is always slightly better than HBN with empirical learn-
ing and with collapsing, although the difference is minimal in the discrete case.
Finally, the advantage of using HBN with respect to NB is statistically significant
only in the Gaussian case, in presence of a large data set.

6 Discussion

From the analysis performed on simulated data the proposed HBN approach
provides an improvement with respect to the NB. The advantages given by our
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Fig. 2. The ROC curves of experiment 1 for the Gaussian and Discrete cases

algorithm are not dramatic from an accuracy viewpoint, since the improvements
in our simulated data set remains limited to the 5%. However, we believe that the
proposed methodology should be conveniently applied in presence of repeated
measurements at least for two reasons: i) the method is able to take into account
the uncertainty in the data in the learning and classification phase; the estimate
of the posterior distribution will be closer to the real one and the impact of the
evidence will take into account the spread of the replicates. For example, let us
suppose that we have collected two sets of three replicates, the first one being
X1 = [0.0762, 0.1467, 0.1860] with average value µX1=0.1363 and the second one
being X2 = [0.0725, 0.1220, 0.1206] with average value µX2=0.1050. The two
replicates are drawn from the same population distribution, with mean equal to
zero and and variance equal to one. In the non hierarchical model, the likelihood
of the two measurements is very similar, 0.3953 for the first set and 0.3967 for
the second set. On the contrary, the computation of the marginal likelihood of
the hierarchical one, assuming that both set of measurements are characterized
by an individual variance of 0.05, gives 0.6773 and 0.7118 for the two sets, show-
ing that the first set turns out to be clearly less likely than the first one. Such
information is used by the learning algorithm, but may be also used during clas-
sification to highlight difficult cases or experimental problems. ii) the proposed
learning algorithms can be implemented in a rather efficient way; in particular
the empirical learning and learning with collapsing strategies do not represent
an additional burden with respect to the NB one; moreover, the EM strategy in
the Gaussian case is also very efficient, reaching the convergence very fast.
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7 Conclusions

The approach proposed in this paper, called Hierarchical Naive Bayes, allows to
deal with classification of examples for when repeated measurements are avail-
able. It improves the Naive Bayes strategy by avoiding averaging and by properly
handling the uncertainty in the data. Our goal is to apply HBN with experimen-
tal data; we are currently working on the problem of diagnosing of cancer patients
on the basis of Tissue Microarray data [16].
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