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ABSTRACT
The diffusion of information on online social and information
networks has been a popular topic of study in recent years,
but attention has typically focused on speed of dissemina-
tion and recall (i.e. the fraction of users getting a piece of
information). In this paper, we study the complementary
notion of the precision of information diffusion. Our model
of information dissemination is “broadcast-based”, i.e., one
where every message (original or forwarded) from a user goes
to a fixed set of recipients, often called the user’s “friends” or
“followers”, as in Facebook and Twitter. The precision of the
diffusion process is then defined as the fraction of received
messages that a user finds interesting.

On first glance, it seems that broadcast-based information
diffusion is a “blunt” targeting mechanism, and must neces-
sarily suffer from low precision. Somewhat surprisingly, we
present preliminary experimental and analytical evidence to
the contrary: it is possible to simultaneously have high pre-
cision (i.e. is bounded below by a constant), high recall, and
low diameter!

We start by presenting a set of conditions on the struc-
ture of user interests, and analytically show the necessity of
each of these conditions for obtaining high precision. We
also present preliminary experimental evidence from Twit-
ter verifying that these conditions are satisfied. We then
prove that the Kronecker-graph based generative model of
Leskovec et al. satisfies these conditions given an appro-
priate and natural definition of user interests. Further, we
show that this model also has high precision, high recall, and
low diameter. We finally present preliminary experimental
evidence showing Twitter has high precision, validating our
conclusion. This is perhaps a first step towards a formal
understanding of the immense popularity of online social
networks as an information dissemination mechanism.

1. INTRODUCTION
Modern social and information networks such as Face-

book, LinkedIn and Twitter are used by hundreds of mil-
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lions of users every day. There are many hypotheses as to
the source of their popularity, and one popular hypothesis
relates to the effectiveness of these networks as information
dissemination mechanisms [10, 28]. In particular, a funda-
mental question about effectiveness is one of personalization:
given the large number of users, one would expect them to
be interested in a diverse set of content, and the network
must be an effective information conduit, simultaneously,
for all of them. Given that information dissemination mech-
anism in these networks occurs via broadcast (as opposed to
pairwise interactions) over the network topology, it is apriori
unclear whether effective information dissemination is even
feasible. For instance, wouldn’t users receive a large amount
of un-interesting content via this mechanism? And comple-
mentarily, wouldn’t users miss a large amount of content
they would have potentially been interested in?

The starting point of our study is this commonly stated
belief, especially in the media, that online social and infor-
mation networks mostly generate information that is irrel-
evant for most users [24]. This claim is often based on in-
specting a random tweet. However, such a claim ignores the
interest-based construction of social networks: as suggested
earlier, users on any social or information network have di-
verse interests, and tend to follow (i.e., receive content from)
other users who share some of their interests and post con-
tent that is interesting to them. Thus, although a random
tweet on Twitter is uninteresting to a random user, it could
be that for any given user, the tweets in their timeline are
very relevant to them.

The study of usefulness (or relevance) of content has been
a primary theme in the information retrieval literature [22],
but to the best of our knowledge it has not been directly
studied for information diffusion on social and information
networks. We adapt the widely accepted definition of rele-
vance for networks by defining the precision of information
in a social network: the fraction of content received by a
user that is relevant to them, where relevance is captured
by a match between the content and some “interest” of the
user. Then we capture virality by defining two quantities:
The recall, which is the fraction of content relevant to a user
that (s)he does not receive, and the dissemination time for
content, i.e., the number of hops in the graph taken for this
content to spread to users who would be interested in this
information.

Assuming that users have interests, and the social net-
work is constructed according to users’ interests, the follow-
ing natural questions arise about the precision and recall:
What conditions (if any) on the structure of user interests



are necessary for a social and information network to ensure
users have high precision and recall, and dissemination time
is small? Can we empirically validate these conditions as
well as the conclusion on existing networks?

We motivate this question with a preliminary empirical
user study that attempts to directly measure relevance with-
out resorting to a definition of user interests: we ask 10 ac-
tive Twitter users to rate a set of 30 tweets as Relevant/Not
Relevant. The users are students at Stanford University
who log in at least once a week on average, follow at least
30 people, and receive at least 20 new tweets a week in their
timeline. The set of 30 tweets is put together by choosing
15 tweets from the user’s timeline in the past 7 days, and 15
unique randomly selected tweets out of the set of all tweet
impressions over the same 7 days1. The set of 30 tweets is
then rendered in a random order as per usual tweet render-
ing guidelines [11]. The precision of each of the 15 tweets
is then the fraction of tweets that the user thought were
relevant. The results of the experiment for each of the 10
users is shown in Figure 1. The average precision of users
for tweets drawn from their timeline is 70%. On the other
hand, the precision drops to around 7% for the set of random
tweets shown to the users! Even though this is too small a
user study to draw a definitive conclusion about the actual
value of precision on Twitter, the results lend some credence
to the hypothesis that social networks such as Twitter are
much more precise than one would expect if users were seeing
content at random. Note that since we showed (as control)
each user 15 random tweets chosen from tweet impressions,
and got a low relevance score for this control set, it does not
appear that inspection paradox2 alone could be an adequate
explanation of the high precision we see in this trial.
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Figure 1: Comparison of self-reported precision be-
tween tweets from a user’s timeline and tweets cho-
sen at random.

1.1 Necessary Conditions for Precision
In this paper, we first outline some necessary conditions

for obtaining high precision. For each of these conditions,
we state the hypothesis, validate it with data, and argue via

1We imposed two restrictions on the randomly selected
tweets: the tweets must be in english (all the survey tak-
ers were english speakers), and the tweet must not be a
reply (since a reply may not make sense outside of the full
conversation, thus yielding artificially low precision).
2The inspection paradox is an analogue to the well-known
friendship paradox [6]: high quality users have more follow-
ers and hence a random tweet impression is of higher quality
than a random tweet.

modeling and analysis, why the hypothesis is necessary for
obtaining high precision.

Interest-based Networks.
Our first hypothesis is a natural one: Users on social and

information networks have interests, and link to other users
who share some or all of these interests. This assumption is
folklore in how these networks are generated –several com-
monly used generative models of social networks indeed use
this assumption [18, 17, 7]. We define (in Section 2) an ana-
lytic model capturing the essence of these generative models:
There are a set of users V and a set of interests I. Each user
u ∈ V has a set of interests C(u) that (s)he is interested in.
We term these users consumers for interest i. Each user con-
nects to other users based on their interests, and this yields
a graph G(V,E) on the users, which is the observed social
network. This network could be directed (e.g., Twitter),
where some users follow others and information flows along
directed edges, or undirected (e.g., Facebook), where friend-
ship is mutual, and information can flow in both directions
along an edge.

In order to analyze precision in this model, we need to
define which users sharing an interest i ∈ I produce content
related to the interest. Let P (i) denote the set of users
who act as producers, We show (in Section 3) that if for all
interests i, P (i) = C(i), which means any consumer can be
a potential producer, then it is only possible to construct
networks with good precision in the trivial scenario where
all users have the same interests.

Production vs. Consumption.
This leads us to our second hypothesis: the production

interests of a user are narrower than the consumption in-
terests. In other words, P (i) ⊂ C(i). We validate this
assumption on Twitter (described in Section 2). We de-
fine production as either tweeting or retweeting a tweet, and
consumption as tweets containing an URL that a user clicks
on. For simplicity, we refer to this as a click on a tweet.
We show that the set of interests captured by clicks has
larger entropy (per user) than the set capturing tweets or
retweets. We note that both restricting attention only to
tweets containing URLs, and requiring clicks as a measure
of consumption interests are strict notions, which makes the
empirical results stronger.

We also show via analysis (in Section 3) that separation of
production from consumption is still insufficient to explain
high precision. In particular, we show that if users choose
their production and consumption interests at random from
any distribution over interests (subject to mild restrictions),
it is not possible to achieve even constant precision. Our
result is fairly robust to the empirically observed variability
in the number of user interests, and the cardinality of the
interests. In Appendix A, we show the same result when
users themselves have varying number of interests, as in the
affiliation network models [17, 7].

Structured Interests.
The above result makes a case for interests with structure:

Users do not choose interests randomly, but rather, choose
them in a correlated fashion. In other words, interests have
a correlation structure, and users are more likely to choose
from among correlated interests than from among uncor-
related interests. We verify this assumption by measuring



the correlation between interests on Twitter defined by the
overlap between the sets of users having these interests. We
show that the correlation is indeed much larger than what
can be expected had users chosen interests at random. We
then cluster the interests using these correlations, and show
that these clusters have natural interpretations – sports, art,
technology, etc.

It would therefore appear that users are defined by their
values on various attributes (sports, art, etc), and interests
themselves are defined either as these attributes or sets of
attributes taking specific values. We finally consider a gener-
ative model of social networks that is based on users having
attributes: This is the Kronecker graph model [18, 14, 21],
where users connect with other users based on similarity in
attribute values. We define interests using the attributes in
this model, as well as producers and consumers of these in-
terests in a natural way, so that producers are more aligned
with an interest in terms of attribute similarity than con-
sumers. We show (in Section 4) that the resulting user-user
graph (or social network) has perfect precision and recall,
and constant dissemination diameter for any interest.

Finally, we present (in Section 5) an empirical study to
measure the precision of Twitter, defined as the fraction of
the set of interests that a user receives from her friends that
she is actually interested in consuming. As before, we use
clicks on URLs within tweets as a proxy for consumption
interest. We observe an average precision of 40%. This
implies on average, users are interested in one in 2.5 topics
(or interests) their neighbors tweet about. While this is
already a surprisingly good number, it is worth repeating
that clicks on URLs in tweets (and restricting attention to
tweets with URLs) are a strict notion for capturing user
interests, and it is conceivable that we are under-estimating
precision in our experiments. For all our experiments, we
use a classifier trained within Twitter to assign topics or
interests to a tweet.

In summary, we show, both by theoretical as well as em-
pirical analysis, that it is indeed possible for a social network
to have high precision and recall for broadcast information
dissemination if (a) users have interests, and connect with
other users based on similarity in interests; (b) the produc-
ers of an interest are a small subset of consumers; and (c)
users don’t choose interests at random, but the interests
have structure defined by attributes, which also define the
users. We consider this to be a surprising result since a
priori, a low dissemination time seems to require a well con-
nected network which seems to trade-off with precision (this
is analogous to the well studied precision-recall trade-off in
Information Retrieval community).

Caveats.
We should emphasize that our results should be viewed

as a first step in the understanding of the theoretical and
empirical underpinnings of precision in information dissem-
ination. For instance, our empirical measure of precision is
somewhat primitive (based on broad interests) and can be
refined. Though we have made use of proprietary click data
in our empirical analysis of precision, we believe our user
study provides an empirically better and reproducible tem-
plate for measuring precision across social networks, and as
future work, we plan to replicate it on a larger scale in a more
principled fashion. In summary, each of our hypotheses pre-
sented above is a valid area of research in itself, deserving a

more in-depth study with fine-tuned metrics, experiments,
and theory. We discuss future research directions in Sec-
tion 6.

1.2 Related Work
The rise of the World Wide Web and online social net-

works has seen an explosion of interest in the structure of
these networks. In particular, researchers have made many
empirical observations about network structure and posited
models that could explain this structure. A comprehen-
sive survey of these is beyond the scope of this work, but
we mention some relevant works (and surveys/books, where
available). There is a long line of work studying the power-
law degree distributions that arise in networks [26, 3, 5].
Among other structural properties that have been studied
extensively are small diameter [25, 31, 5], navigability [16,
5], densification [20] and clustering coefficients [8, 5]. It is
important to note that much of the above work not only
identifies the relevant structural properties, but also pro-
poses models of phenomenon that could give rise to those
properties. Among the desiderata for such models is mathe-
matical tractability and statistical soundness in that it’s as-
sumptions and predictions match well with empirical data.

Since the focus of this paper is the interplay between net-
work structure and information dissemination, we focus our
attention to modeling approaches that seek to explain prop-
erties related to information dissemination. The empirical
study of information dissemination through social networks,
and the role of network structure in this process, has a long
history in sociology [9, 29]. There has been an explosion
of work from the computer science community in this area
(sometimes known as viral marketing [19]) since the influ-
ential works of [4, 13], and we refer the interested reader to
a slightly old but excellent survey of work in this area [15].

Another line of work in network modeling is relevant to us,
namely one that seeks to capture the role of user interests
in the formation of the network. The works we are aware of
are the Kronecker graph model [18], the MAG model [14],
the affiliation networks model [17], and a network model
based on user behavior [7]. Among these, both the Kro-
necker graph model and the MAG model seek to be both
mathematically tractable and statistically sound. On the
other hand, the affiliation networks model and the model
based on user behavior are theoretical.

We note that many of these models study the role of net-
work structure in information propagation, but to the best
of our knowledge none of them have studied the trade-off
between precision and recall. Recall in the broadcast model
has been extensively studied in the context of rumor spread-
ing, but the goal in that line of work has typically been to
maximize speed of propagation [12]. We are not aware of any
work studying precision of information in social networks.

Finally, we mention that precision and recall are extremely
well-studied concepts in the Information Retrieval commu-
nity [22]. In particular, they are arguably the two most
frequent and basic measures for information retrieval effec-
tiveness.

2. A USER INTEREST MODEL
We start by formally describing the framework in which we

analyze the precision of information diffusion. We describe
a general model, folding into it the first two hypotheses pre-
sented above – that users have interests, these interests de-



termine who they connect to, and that for any user, the set
of interests for which they are the producers is a subset of
the set of interests they consume (or are interested in). Af-
ter presenting the model, we present an empirical rationale
for the basic premise of our model.

2.1 An Interest Based Model For Precision and
Recall

Interest Graph.
The set of users in the social network is denoted by set V .

Every user u ∈ V is assumed to have a fixed set of interests.
For user u, we denote the set of interests by C(u). This
defines a natural user-interest graph Q(V, I, F ), where I is
the set of interests, and F is the set of user-interest edges in
this graph. In the discussion below, unless otherwise stated,
we use n = |V | and m = |I|.

The interests themselves are defined via the set of users
that have those interests: Each interest i ∈ I is defined by a
set of producers Pi ⊆ V and set of consumers Ci ⊆ V , such
that Pi ⊆ Ci. The set Ci is precisely the set of neighbors of
i in the graph Q, and captures all nodes interested in read-
ing/consuming content related to interest i. The producers
are a subset of these users that are sufficiently interested to
produce new content or rebroadcast content associated with
interest i.

We say that Q(V, I, F ) is undirected if for any interest
i ∈ I, the set Pi = Ci, i.e., each consumer of i is a potential
producer as well. If this condition is not true so that Pi ⊂ Ci,
we call the graph Q as directed. We present the rationale
for the separation between producers and consumers below.

User Graph.
As is customary in the literature, we represent the social

network as a directed user-user graph G(V,E). In such a
network, if there is a directed edge from u to v, then we
assume u follows v, and information broadcast by v is re-
ceived by u. We call u a follower of v. (A user-user graph
G(V,E) is undirected if for any (u, v) ∈ E, u follows v and v
follows u. An example of such a network is Facebook, where
friendships are undirected.) This user-user graph G(V,E)
is constructed by the users based on the structure of the
user-interest graph Q, i.e., users form links based on mutual
interests in some specific manner. At the very least, for any
edge (u, v) ∈ E, some interest of user u must be the same as
some interest of user v. The nature of this link generation
process (in addition to the structure of the interests) will be
critical to how information disseminates in G.

Definition 2.1. Given a directed user-user graph G(V,E),
define the following quantities: Let N(u) denote the set of
nodes that u follows. Let P (v) = {i|v ∈ Pi} and let C(v) =
{i|v ∈ Ci}. Finally, let S(v) = {i|∃(u ∈ N(v) ∧ i ∈ P (u))},
i.e. the size of the union of the production interests of the
users who v follows.

The above definition can be extended to analogous terms
for undirected graphs G(V,E).

Information Dissemination Metrics.
An event refers to a piece of information that corresponds

to a single interest i, and originates at one user v ∈ Pi. This
information proceeds along the edges of the social network

according to the following broadcast process: At any time t,
suppose the event has been received by a set Rt of nodes;
initially, R0 = {v}. Let Qt = Rt ∩ Pi denote the nodes in
Rt which are producers. These nodes broadcast the event
to their followers, and the set Rt+1 is updated by including
these followers. The process terminates when the set of re-
ceivers does not increase from one step the next. Let Ri(v)
denote the final set of receivers if the broadcast started at
node v ∈ Pi. Our model of propagation is rather simplistic,
and it would be interesting to expand our results to models
where resending a piece of information is based on a stochas-
tic process or the “importance” of the information (eg. [13]).

Our goal is to study what user-interest graphs and what
generative processes of user-user graphs lead to “good” in-
formation dissemination. We will make the following sim-
plifying assumption: The user-user graph enforces that all
producers Pi of an interest i are strongly connected, so that
they can both send as well as receive information related to
interest i. We capture the quality of the information dis-
semination via the following metrics.

Definition 2.2. Given a user-interest graph Q(V, I, F )
and associated user-user graph G(V,E), the precision of a

user v is defined as |C(v)∩S(v)|
|S(v)| . This measures the fraction of

interests that v receives that it is actually interested in. The

recall of a user v is defined as |C(v)∩S(v)|
|C(v)| . This measures

the fraction of v’s interests that it actually receives.

We consolidate the above two measures into the following
notion of α-PR user-interest graphs.

Definition 2.3. A user-interest graph Q(V, I, F ) is said
to be α-PR if there exists a user-user graph G(V,E) such
that:

min
v∈V

|C(v) ∩ S(v)|
|C(v) ∪ S(v)| ≥ α

Analogously, a user v ∈ V is said to be α-PR if

|C(v) ∩ S(v)|
|C(v) ∪ S(v)| ≥ α

Definition 2.4. The dissemination time of the event is
the number of iterations of the broadcast process before the
event reaches all nodes in Ci.

3

The main question we ask can now be phrased formally
as follows: What kind of user-interest graphs and user-user
graphs based on these interests lead to high precision and
recall (captured by α-PR for constant α) and constant di-
ameter in the above broadcast process? And is there a gen-
erative process that would allow emergence of such graphs?
An important special case of interest is the following:

Definition 2.5. A user interest-graph Q is PR-perfect if
it is α-PR for α = 1.

PR-perfectness of a user-interest graph means that there
is an associated user-user graph where information dissem-
ination has 100% precision and recall, i.e., all pieces of in-
formation a user receives are relevant, and furthermore, the
user receives all relevant information.

3In all the models we consider, the graph is sufficiently con-
nected that the event reaches all nodes in Ci with high prob-
ability.



2.2 Empirical Validation of Production vs Con-
sumption Interests

A basic premise of the model described above is that users
have distinct consumer and producer interests. We validate
this premise empirically by using data from Twitter. As a
side-effect of this analysis, we demonstrate that the produc-
tion interests are in fact substantially “narrower” (i.e. have
smaller entropy) than consumption interests, which plays an
important role in subsequent analysis.

Experimental Setup.
We use a classifier trained within Twitter Inc. that can

tag the content of a tweet with topics (which we interpret
as interests for the purpose of this paper). For our classi-
fier we used L2 regularized Multinomial Logistic Regression
trained with stochastic gradient descent over a training cor-
pus where the number of examples for the 48 classes consid-
ered ranged from 5K to 30K. To classify tweet content we
converted the text to lower case, removed embedded urls,
if any, and represented each the content as a bag of char-
acter 4-grams. The set of unique feature IDs was hashed
onto a 1M dimensional space but no feature selection was
performed. While we have not tuned this model very exten-
sively, it performed adequately and on par with other rep-
resentations (e.g., tf-idf weighted unigrams). The training
instances were collected via combination of manual labeling
and manually constructed heuristic rules transferring labels
from specific authors, urls or hashtags. While we used a
custom learner implementation, very similar results can be
obtained with open source tools, such as Mahout, Mallet or
sofia-ml [2, 23, 30].

Note that the classifier only uses features from the text
of the tweet, guaranteeing that the topics tagged do not
use the social network (this is going to be important later
when we use the same classifier to acquire a lower bound
on precision). The mean AUC (Area Under the receiver
operating characteristic Curve) across the set of topics is
0.914, ranging from 0.97 down to 0.80, suggesting that the
classifier is high quality. The classifier provides 48 topics,
which are listed in figure 4.The entropy for distributions
over interests ranges from 0 to log(48) = 3.87.

Empirical Analysis.
We now present preliminary empirical evidence that Twit-

ter users have narrower production interests than consump-
tion interests. As before, we generate production and con-
sumption interests for users in the following manner: we
obtain the set of production interests for a user by taking
all the tweets (including retweets) produced by a user and
tagging each tweet with topics with the same classifier as the
one used in Section 2.2. For the consumption interests, we
again resort to looking at tweets where the user explicitly
expressed an interest in the tweet via clicking an URL in the
tweet. Note that in order to do this, we restrict attention
only to tweets that contain an URL. To be clear, this en-
compasses tweets containing pictures, videos etc since their
representation in tweets is via an URL. We emphasize that
our definition of consumption is narrow both due to the fil-
tered selection of tweets with URLs and also due to the fact
that a click can be construed as a more definite indication of
interest, as opposed to simply receiving the message. Hence,
we expect (though we have not formally proved it) that the

true consumption interests are wider than suggested by this
study, and would further widen the separation between pro-
duction and consumption interests.

We again generate a user sample of interest as before:
we compute PageRank [27] on the follow graph, then from
the 10 million highest PageRank users, we uniformly sam-
ple 1000 users who have generated at least k = 10 tweets and
clicks in a given 10 day period. This allows us to avoid us-
ing dormant users and spammers in the analysis, and ensures
we have enough tweets to analyze the production and con-
sumption distribution. We then tag k uniform tweets that
a user clicked on in their timeline in the given interval. The
tags from the classifier give us a probability distribution over
topics for the consumption of the user, with a corresponding
entropy. Similarly, we tag k uniform random tweets that the
user produced, giving a production distribution with corre-
sponding entropy.

Distribution Average
Support

Average
Entropy

Consumption Interest 7.78 1.999
Production Interest 3.96 1.242

Figure 2: The distribution of production vs con-
sumption interests

Our results are summarized in figure 2. It is clear that in
terms of both the support over interests and the entropy, the
distribution of consumption interests is much broader than
production interests. The average support and entropy are
obtained by averaging the support/entropy of the produc-
tion/consumption distribution over all users. We get similar
quantitative and qualitative results when we vary the time
period and k.

3. NECESSARY CONDITIONS ON THE USER-
INTEREST GRAPH

Our goal in the next two sections is to understand whether
it is possible to have non-trivial PR-perfect User-Interest
graphs. Towards this end, we will now develop two neces-
sary conditions that such graphs must satisfy. In the pre-
vious section, we already presented empirical evidence that
users have narrower production interests than consumption
interests. In this section, we first prove that if for every
user, her production and consumption interests are identi-
cal, then the corresponding User-Interest graph can not be
PR-perfect.

We then show that a user-interest graph that is formed by
users choosing production and consumption interests uni-
formly at random from a distribution over interests cannot
be constant-PR. This result is quite robust: In the full pa-
per, we extend it to random graphs where the users also have
non-uniform degrees. We will then empirically examine the
user-interest graph of a subset of Twitter, and exhibit non-
trivial structure suggesting that this graph is not drawn from
a random graph model with a given degree distribution.

3.1 Production vs. Consumption
We prove that it is not possible to achieve PR-perfection

with non-trivial undirected user-interest graphs (i.e. with
consumption and production interests being identical).



Lemma 3.1. If both the user-user graph G(V,E) and user-
interest graph Q(V, I, F ) are undirected, and if G(V,E) is
connected, then the only PR-perfect graph is a graph where
every user has identical interests.

Proof. If (u, v) ∈ E, then for any i such that u ∈ Pi, v
receives information related to i from u. If G is PR-perfect,
then v ∈ Ci = Pi. Since the graph is connected, all nodes
must share the same interests.

Lemma 3.2. Suppose Q(V, I, F ) is undirected, while G(V,E)
is directed. If G is PR-perfect, then for any strongly con-
nected component S ⊆ V , all users in S share the same
interests.

Proof. Suppose v ∈ Pi. Then for edge (u, v) ∈ E so
that u follows v, it must be that v ∈ Ci = Pi. Therefore,
all users in a strongly connected component must have the
same interests.

The above claim can be generalized as follows: Assume
P (u) = φ whenever u is a leaf of V . This corresponds to
saying that if no one follows u, then u produces nothing.
Then, if Q is undirected, this implies C(u) = φ, but PR-
perfection would imply that if (u, v) ∈ E, then P (v) = φ,
and so on. Therefore, PR-perfection combined with the as-
sumption that P (u) = φ for leaves u implies either that
G(V,E) is strongly connected with all nodes v having the
same interests, or that all nodes in G have no interests.

The above two observations justify making Q directed,
i.e. assume Pi ⊂ Ci for any i ∈ I if we are looking for the
existence of non-trivial PR-perfect graphs..

3.2 Independent Assortment of Interests
We continue with our question of when a user-interest

graph Q(V, I, F ) can be α-PR for α being an absolute con-
stant. Informed by section 3.1, we consider directed user-
interest graphs, where the production interests of a user are
narrower than consumption interests. We ask: What hap-
pens if users draw their interests at random and from the
same distribution as all other users? In other words, the
interests are unstructured, so that user sets of different in-
terests have little correlation.

Our results in this section are negative: it is not possible
to achieve constant PR with high probability in such graphs,
even with a separation of production and consumption in-
terests. We show the result when every user has the same
degree in Q, while interests could have non-uniform degrees.
This result is fairly robust, and extends (under mild assump-
tions) to the case where users have non-uniform degrees (see
Appendix A). This suggests that in a constant PR-perfect
user-interest graph, every user does not draw her interests
from the same distribution, and can be thought of as a nec-
essary condition.

3.2.1 Random Regular Graphs
We now show that even with the separation of producers

from consumers, it is not possible to achieve PR-perfection
if the user-interest graph Q(V, I, F ) is generated at random.
We begin with the observation that different interests have
different cardinalities in terms of number of users. We plot
the number of producers per interest for the 48 interests on
Twitter in Fig. 3. We observe that some interests are much
more popular than others.
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Figure 3: Number of Producers per Interest

We therefore consider a random graph model where the
degree distribution W of I in Q(V, I, F ) need not be sharply
concentrated. Our negative result holds under mild assump-
tions that the second moment of W is order of the mean.
We use the following standard method of generating such a
graph. Let n = |V | denote the number of users, and m = |I|
denote the number of interests. We generate I as follows:
We generate md interests with degree d, where 1 ≤ d ≤ nγ

for constant γ < 1/3, and
∑
d dmd = n. We draw md from

an appropriately scaled version of W , so that the mean is n
and second moment is O(n). A canonical example is Zipf(β)
with β > 3, which follows the power law.

Let C = |C(u)| and P = |P (u)| denote the size of the
produce and consume interests per user. Let Id denote the
interests in I with degree d. Consider a set I ′ where for ev-
ery d, each interest i ∈ Id is replaced with d pseudo-interests
of degree 1; note that |I ′| =

∑
d dmd = n. We generate the

consume interests by choosing C random perfect matchings
M between V and I ′ and taking the union of these match-
ings. Call this graph M(V, I ′)

After generating these matchings, consider any interest
i ∈ I. Let Ci be the set of all users who were assigned
to any of the d pseudo-interests corresponding to i. This
defines the sets C(u); note that |C(u)| ≤ C for all u ∈
V . Similarly, we generate the produce interests by choosing
a random subset M ′ of size P of these matchings. Note
that |P (u)| ≤ P for all u ∈ V . Call this graph of produce
interests as M ′(V, I ′). Without loss of generality, we assume
|C(u)| = C and |P (u)| = P – this is achieved by assigning
the remaining interests arbitrarily. This defines the graph
Q(V, I, F ).

Theorem 3.3. Suppose P = logδ n for constant δ > 2,
and C ≤ n1/12. Suppose further that the second moment of
the degree distribution of I is upper bounded by the mean,
and that the user-user graph G(V,E) has maximum degree
o(n). Then, the graphs Q(V, I, F ) as generated above are
not α-PR for any constant α > 0, with high probability.



Proof. Since M and M ′ are regular random graphs, they
are expanders with probability 1 − 1/n2. We will argue as
follows: Fix any user u ∈ V . For set S ⊆ V , letXuS be an in-
dicator random variable which is 1 if the following event hap-
pens: User u connects to set S and |C(u) ∩ (∪v∈SP (v))| ≥
α|C(u) ∪ (∪v∈SP (v))|. For realization r of the graph Q, let
Yur be an indicator random variable which is 1 if user u can
connect to some set S ⊆ V such that |C(u)∩ (∪v∈SP (v))| ≥
α|C(u)∪(∪v∈SP (v))|. Let ZurS be an indicator random vari-
able which is 1 if user u can connect to set S ⊆ V such that
|C(u) ∩ (∪v∈SP (v))| ≥ α|C(u) ∪ (∪v∈SP (v))|. Therefore,∑
u,r Yur ≤

∑
u,r,S ZurS =

∑
u,S XuS . We will show that

E[
∑
u,S XuS ] = o(1), which will imply E[

∑
ur Yur] = o(1).

The latter quantity is an upper bound on the probability
that a randomly chosen Q is α-PR, i.e., whether there is
some G(V,E) so that every u ∈ V is α-PR, which will com-
plete the proof. Since the users are symmetric, we will sim-
ply fix a u ∈ V and show that E[

∑
S XS ] = o(1/n) for this

vertex.
Fix any u ∈ V . Note that |C(u)| = C. Consider S =
{v1, v2, . . . , vr}, where r = o(n). First note that sinceM ′(V, I ′)
is an expander, with probability 1−1/n2, every set S of size
at least

√
n maps to at least

√
n pseudo-interests, which

must correspond to at least
√
n/nγ ≥ n1/6 produce inter-

ests, since γ < 1/3. Therefore, for every such set, | ∪v∈S
P (v)| = ω(|C(u)|), so that, restricted to sets S of this size,∑
r,S ZrS =

∑
S XS = 0 with probability at least 1− 1/n2.

Therefore, we can restrict attention to sets S of size nµ

for µ < 1/2. Fix some set S = {v1, v2, . . . , vr}. Each of
these r nodes has |P (v)| = P , so that the total number of
produce interests is at most P × r. For interest i ∈ I, let
Li be an indicator random variable which is 1 if i /∈ C(u),
but there exists vj , j ∈ {1, 2, . . . , r} such that i ∈ P (vj).
Therefore, Li = 1 is a bad event corresponding to interest i
contributing to the imprecision perceived by u. Recall that
Id is the subset of I with degree d. We have

Pr[Li = 1|i ∈ Id] =

(
1− dC

n

)(
1−

(
1− dP

n

)r)
≈ rdP

n

(
1− dC

n

)
The final approximation holds ignoring lower order terms as
follows: rdP = o(n) since r, d = O(n1/2), and P = logδ n.
Therefore,

E[
∑
i

Li] ≥
∑
d

dmd

n
rP −

∑
d

d2md

n

PCr

n

= rP − o(1)

To see the final equality, note that
∑

d d
2md

n
= O(1), since

this is the ratio of the second moment to the mean is O(1)

by assumption. Furthermore, r < n1/2, P = logδ n, and
C ≤ n1/12. The variables Li are negatively dependent, so
that by an application of Chernoff bounds, for every small
constant ε, we have:

Pr

[∑
i

Li < rP (1− ε)

]
< e−rPε

2/2

Therefore, the probability that there exists set S = {v1, v2, . . . , vr}
such that

∑
i Li < rP (1− ε) is at most er(logn−Pε

2/2). This

quantity is at most 1
n3 since P = Θ(logδ n) for constant

δ > 2. If
∑
i Li < rP (1 − ε), then u is not interested in a

(1 − ε) fraction of the rP produce interests of set S, which
implies u cannot be α-PR for constant α. This shows that
E[
∑
S XS ] = o(1/n). Therefore, Q(V, I, F ) is not α-PR for

any constant α with high probability.

Though the above proof assumes each user has exactly Q
consume interests and P produce interests, this assumption
is not critical. The proof easily generalizes to distributions
over degrees of users in Q(V, I, F ), as long as the degrees lie
in [logδ n, nµ] for suitable constants δ > 2 and µ < 1.

3.2.2 Extension
The above result, though very strong, assumes users have

super-constant number of interests and that this distribu-
tion is uniform. Our empirical analysis suggests that many
users on Twitter have very few interests. In Appendix A, we
consider a simple affiliation network model in the spirit of [7,
17] where users and interests have power law degree distribu-
tions (users for interests, and interests for users), and choose
to associate independently subject to the degree constraints.
We show that this model is not constant PR when the user-
user graph densifies (or has super-constant average degree),
an assumption that is widely believed to hold for social net-
works [18, 7]. It would therefore appear that the negative
result is robust as long as users choose interests indepen-
dently, so that there is little correlation between the user
sets for different interests. It is important to note that our
model is a simplification of affiliation networks, and the full
model is quite powerful. So our result does not imply that
affiliation networks are not a good model of social networks.

3.3 Empirical Analysis of a User-Interest Graph
The discussion so far has shown that to achieve constant

PR, it cannot be that all users draw interests independently
from the same distribution. We verify this condition on
Twitter as follows. For each pair of the 48 interests described
earlier (and listed in figure 4), we compute the number of
users who are producers for both these interests. Let nij
denote this value for interests i and j. Further, let ni de-
note the total number of users producing interest i, and let
n = |V | denote the total number of users. Then, if the graph
is formed by users repeatedly sampling from a common dis-
tribution, then in expectation, approximately eij = njnj/n
users would produce both i and j. We compute the chi-
squared measure:

χij =
|nij − eij |√

eij

We next sort the χ values in decreasing order. Let W
denote the graph on the m = 48 interests, where there is an
edge between all pairs of nodes. Let Wp denote the graph
that is obtained by only adding edges (i, j) between a frac-
tion p of the node pairs with the largest χij values. The
graph Wp has the same density as the Erdos Renyi graph
G(m, p) does in expectation. We then compute the transi-
tivity of Wp, which is the probability that two neighbors of
a node are connected. For p = 1/12 and p = 1/6, these val-
ues are 0.63 and 0.61 respectively. This shows a very high
degree of clustering compared to G(m, p), whose average
transitivity is approximately 0.09 and 0.17 for p = 1/12 and
p = 1/6 respectively. The value 1/12 is interesting because
it is just larger than ln 48

48
( lnn
n

is the connectivity threshold
for G(m, p)).



label name label name
1 Music and Radio 2 Technology Industry
3 Politics 4 Sports
5 Photography 6 Adult
7 Technology 8 Baseball
9 Financial Services Industry 10 Travel Industry
11 Arts and Entertainment 12 Movie/Film/TV
13 International News 14 Sports
15 Football 16 Books
17 Healthcare Industry 18 Education
19 Retail Industry 20 Application Store
21 Fiction and Literature 22 Movie/Film/TV:Adult
23 Games 24 Fashion Industry
25 Professional Services Industry 26 Alcoholic Beverages
27 Specialty 28 Non-Profit
29 Racing 30 Online Sales
31 Advertising and Marketing 32 Soccer/Futbol
33 Specialty Store 34 Food
35 Magazine 36 Artists
37 DJs 38 Hip Hop/Rap
39 Software Developers 40 Business
41 Hockey 42 Consumer/Disposable Goods Industry
43 Mixed Martial Arts 44 Beauty & Personal Care
45 Real-Estate Industry 46 Boxing
47 Religion 48 Science

Figure 4: Topic labels for topics in Figure 5

We then cluster the graphW 1
12

(using the fastgreedy method

in R with default parameters), and show the clustering in
Fig. 5. Note the emergence of several natural clusters, such
as sports, technology, and journalism. We find the emer-
gence of such a natural clustering of topics to be of inde-
pendent interest, which needs further study. While some
clusters are unsurprising (eg. sports), some others (eg. the
cluster 3, 17, 18, 28, 35, 16, 21, 47) are non-obvious.

Figure 5: Communities of topics on Twitter. Yel-
low: Adult. Green: Sports. Pink: Consumer Retail.
Dark Blue: Politics and News. Light Blue: Technol-
ogy. Red: Financial.

4. ATTRIBUTE-BASED INTEREST MODEL
Our final theoretical result, somewhat surprisingly, is a

positive one: we show that a natural and widely used genera-
tive model for interest-based social networks indeed achieves
PR-perfection. This is the Kronecker graph model intro-
duced in [18, 14, 21], where users are characterized by at-
tributes, which are related to each other by a similarity mea-
sure. This model achieves several properties observed in so-
cial networks, such as power law degree distributions, shrink-
ing diameter, and densification. We show a natural hierar-
chical definition of interests based on these attributes, which
leads to PR-perfection and constant dissemination time.

4.1 Kronecker Graphs
In this model parametrized by a small number K, there

are |V | = n users, and d = logK n attributes, each with K
possible values from the set S = {a1, a2, . . . , aK}. Each node
u ∈ V maps to a d-dimensional vector of attribute values
(u1, u2, , ud), where each ui ∈ S. Therefore, |V | = Kd = n.

We define an interest as a set of pairs of attribute dimen-
sions and their values, where a generic interest i ∈ I has the
following form:

i = {〈j1, aj1〉, 〈j2, aj2〉, . . . , 〈jr, ajr 〉}

where j1, j2, . . . , jr ≤ K and r ≤ d

In other words, an interest is defined by specifying some
r ≤ d attributes and their values. The set I is a subset of
the set of all possible interests, so that |I| ≤ (K + 1)d.

User-Interest Graph.
We now describe the mapping of users to producer and

consumer interests. Treat the values in S as the K vertices
of an undirected seed graph G0, and denote the adjacency



matrix of this graph as A. Assume A[as, as] = 1 for 1 ≤ s ≤
K. Consider interest i = {〈j1, aj1〉, 〈j2, aj2〉, . . . , 〈jr, ajr 〉}.
The consumers of this interest are defined as:

Ci = {u = (u1, u2, . . . , ud) | A[uj , aj ] = 1 ∀〈j, aj〉 ∈ i}

In other words, for each component of i of the form 〈j, aj〉,
there must be an edge between uj and aj in G0. Similarly,
the producers of this interest are defined as:

Pi = {u = (u1, u2, . . . , ud) | uj = aj ∀〈j, aj〉 ∈ i}

In other words, for each component of i of the form 〈j, aj〉,
the value uj must coincide with aj . It is clear that Pi ⊆ Ci
for all i.

The above interest model has the following interpretation.
Since each interest is specified by a subset of attributes along
with their values, the graph G0 and adjacency matrix A
specify which interests are related, i.e. which interests spec-
ify an interested in relationship. Further, the interests have
a natural hierarchical structure, where the broader interests
are those specified by fewer attributes. Also note that a pro-
ducer of an interest needs to align with it’s attribute values
on all the relevant attribute dimensions, while a consumer
of an interest only needs to be interested in those attribute
values in the relevant attribute dimensions.

We can also derive further intuition about this interpre-
tation by examining the typical size of these interest sets
are. The size of interest sets depend on the nature of the
adjacency matrix A. If the degree of each node ai in G0

is w and |i| = d − j, then |Pi| = nlogw/ logK(K/w)j . If
we set K = O(logn), w = O(1), and j = O(1), then

|Pi| ≈ n1/ log logn. Furthermore, |Pi|/|Ci| = 1/wd−j = o(1),
since d = logK n ≈

logn
log logn

. This means the interest sets can

be reasonably small (that is, o(nγ) for constant γ) for suit-
able choice of K,w, j, but within each interest set, we have
a very small number of producers relative to consumers.

User-user Graph.
The graph G(V,E) is undirected, and the generation pro-

cess is the same as the one described in [21, 18]. For each
u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd), the edge (u, v)
exists iff A[uj , vj ] = 1 for all j = 1, 2, . . . , d. In other words,
two nodes connect iff they are interested in each other’s at-
tribute values on all attribute dimensions. It is shown in [18]
that for suitably chosen adjacency matrices A, so that G0

has constant diameterD, the graphG(V,E) has multinomial
degree distribution, has super-constant average degree (den-
sifies) and the same constant diameter D as G0. This there-
fore leads to a densifying power law graph G, and is termed
the Kronecker graph on V using the attributes {1, 2, . . . , d}
and seed graph G0.

Theorem 4.1. Any user-interest graph Q(V, I, F ) and the
associated user-user graph G(V,E) generated by the above
described process is PR-perfect with dissemination time at
most D + 1.

Proof. Consider an arbitrary interest of the form i =
{〈j1, aj1〉, 〈j2, aj2〉, . . . , 〈jr, ajr 〉}. Let W = {j1, j2, . . . , jr},
and X = {1, 2, . . . , d} \W . The set Pi has users u such that
uj = aj for j ∈ W . Consider the graph G(Pi, E

′) induced
on the set of users Pi. This graph is a Kronecker graph on
the set Pi using the attributes X and seed graph G0. This
is therefore connected and has diameter at most D. This

means any message originating at u ∈ Pi reaches all of Pi in
D hops. Further, it is easy to check that every neighbor of
u ∈ Pi is a v ∈ Ci, so that the precision is 100% and so is the
recall. The total dissemination time is at most D + 1.

Theorem 4.1 shows that there is indeed a model that
achieves PR-perfection while preserving the key properties
of social networks such as densification, heave tailed degree
distribution, and shrinking diameter. The key aspects that
made PR-perfection possible in Kronecker graphs are two-
fold: producers are a subset of consumers that are more
aligned with that interest; and the interests have a hierar-
chical structure that enables users to connect to the appro-
priate producers. We have furthermore shown in previous
sections that both these properties are necessary, including
presenting empirical evidence validating their existence on
Twitter.

4.2 Generalizing Kronecker Graphs
We now generalize the definition of interests in the Kro-

necker graph model to smoothly trade off the precision with
the size of producer sets.

Consider the Kronecker graph model discussed in Sec-
tion 4.1. We now show a broader definition of producers
that leads to a smooth degradation in precision as the defi-
nition is broadened. Recall that K is the number of possible
values an attribute can take, and that there are d attributes.
Fix interest
i = {〈j1, aj1〉, 〈j2, aj2〉, . . . , 〈jr, ajr 〉}. The consumers of this
interest are defined as:

Ci = {u = (u1, u2, . . . , ud) | A[uj , aj ] = 1 ∀〈j, aj〉 ∈ i}

We generalize the definition of a producer as follows. Con-
sider user u = (u1, u2, . . . , ud). For interest i, let Si =
{j1, j2, . . . , js} be a fixed set of at most s attributes. Then
u produces i only if u ∈ Ci and {j|uj 6= aj}| ⊆ S. This
generalizes the definition of producers used in Section 4.1,
which corresponds to setting S = φ.

Theorem 4.2. For any s ≥ 0, the Kronecker graph model
with produce interests as defined above is α-PR for α = K−s.
This is constant if K and s are constant.

Proof. From the discussion in Section 4.1, it is clear that
any user u receives all interests in C(u). Therefore, |C(u)∩
S(u)| = |C(u)|. In order to bound |C(u) ∪ S(u)|, consider
any interest i ∈ C(u). Corresponding to i, there are at
most Ks interests in S(u) that are obtained by replacing the
attributes in Si with all possible values. There are Ks such
interests. These interests could be produced by a neighbor of
u, and hence be received by u though these need not belong
to C(u). Therefore, the graph is α-PR for α ≥ K−s.

A larger value of s implies producers are less aligned in
attributes with the interest, i.e., they are lower quality pro-
ducers for that event. As is to be expected, this leads to a
degradation in the precision of that interest. Therefore, this
model shows a trade-off between the size of the producer set
and the precision achieved, with smaller and more highly
aligned producers leading to larger precision.

5. PRECISION ON TWITTER
Finally, we also present a preliminary empirical measure-

ment of the precision observed on Twitter to build on the



small user trial presented in Section 1. Since we cannot make
the direct measurement as was done in the user trial (we
don’t have the counter-factual of random tweets for users),
we define the production and consumption interests using a
procedure very similar to the one in Section 2.2. Namely, the
set of consumption topics is obtained using the topic distri-
bution for tweets that contain an URL that a user clicked on.
And the set of production topics is obtained using the topic
distribution for tweets that the user tweeted (or retweeted).
Also as before, we sampled 1 million users from the 10 mil-
lion highest PageRank users, and within these, restrict at-
tention to those users who have generated at least k = 10
tweets and clicks in a given 10 day period. The rationale be-
hind this was to avoid using dormant users and spammers
in the analysis, and ensure that we have enough tweets to
analyze the production and consumption distribution. We
then tweets that a user clicked on in their timeline in the
given interval. The tags from the classifier give us the set
of consumption topics for each user u, which is the same as
C(u). Similarly, we tag k uniform random tweets that a user
v produced, giving a production distribution P (v).

We indicate the set of edges between the users as E, and
define an average empirical precision or user u as:

Precision(u) =

∑
(u,v)∈E |C(u) ∩ P (v)|∑

(u,v)∈E |P (v)|

The formula above is an easy to compute approximation to
an unbiased estimator constructed as follows: Each user u
computes the multi-set S(u) = ]{P (v)|(u, v) ∈ E}. The
precision seen by u is the probability that a randomly cho-
sen interest in S(u) belongs to C(u). The reason for taking
a multi-set union of the produce interests as opposed to a
set union is that each user follows a large number (over a
hundred) producers, and therefore, it is likely every inter-
est is represented in one of these producers. Our estimator
excludes sparse interests that are represented in only a few
producers, from being counted towards precision.
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Figure 6: Distribution of Precision(u) on Twitter.

Using this measure, the average precision during the same
time period was 40.5%, and the distribution of precision is
presented in Fig. 6. As a baseline, since there are 48 in-
terests and E[C(u)] ≈ 8, the average precision would be
17% had each consumer received all interests. The precision

we obtain is significantly larger than the baseline, and we
find this surprising given that we have only used a very nar-
row definition of consumption (clicks on tweets containing
URLs). There are two possible explanations for this: The
first is that tweets with URLs tend to be among the most
interesting for users [1]; and the second is that we are mea-
suring precision as the fraction of overlapping interests as
opposed to the fraction of received tweets that are interest-
ing – in this metric, we observe one in 2.5 received interests
on any follow edge to be relevant on average. Nevertheless,
it is clear that users read several tweets of interest without
clicking on them, and as future work, we plan to determine
better methods to measure precision empirically. We believe
our user study provides a better and more reproducible tem-
plate for performing such a study. We also re-emphasize that
this measurement is not the central thesis of the paper, and
is only provided as a preliminary datapoint of behavior on
a real social network.

6. CONCLUSIONS AND FUTURE WORK
We have presented a definition of precision and recall

for information dissemination on social networks using an
interests-based framework. We also provide some necessary
conditions on the structure of these interests to achieve good
precision and recall, and validated these conditions on Twit-
ter data. Somewhat surprisingly, we show that the Kro-
necker graph model achieves high precision and high recall
while having constant dissemination time. We show prelimi-
nary empirical evidence towards the hypothesis that, despite
widely held belief to the contrary, information flow on Twit-
ter does indeed have high precision. Tying these together,
the following explanation of this phenomenon emerges: users
connect to other users based on similarity in interests, users
produce content related to a narrower set of interests than
they consume, and interests have structure so that users
choose interests in a correlated fashion.

Our work is only a first step in understanding precision of
information flow. Several research directions open up from
this work. We have not really touched on recall or speed
of dissemination, and it is a priori not even clear how to
measure recall on Twitter. Furthermore, our measure of
precision only uses a coarse set of interests, and the rela-
tion of the tweets to interests – in reality, even within an
interest, tweets can have a wide range of “interestingness”.
This is harder to capture empirically, but is an interesting
research direction. In a similar vein, we have not studied the
structure of interests in Twitter in a very systematic way,
since it is secondary to the main theme of this paper – this
aspect will benefit from a more in-depth study.

Moving further afield, we have not considered the phe-
nomena of discoverability and coevolution: Users need to
discover other users who share their interests, and further-
more, users gradually change their links and the content
they tweet based on the interests of their neighbors. These
aspects need both theoretical modeling and empirical study.
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APPENDIX
A. SIMPLE AFFILIATION NETWORKS

The result in Section 3.2.1 assumes all users have simi-
lar number of interests, and this number is super-constant.
However, on Twitter, we observe that many users have very
few interests, and some users have many interests. We plot
this in Fig. 7.

In order to model such behavior, we consider a fairly
natural interest-based generative model of social networks
termed affiliation network model [17, 7]. This model achieves
many observed statistical properties of social networks (the
graph G(V,E)), such as shrinking diameter, heave tailed de-
gree distributions, and super-constant average degree. Fur-
thermore, at a qualitative level, it models both skewed inter-
est degrees from Section 3.2.1, as well as the skew observed
in Fig. 7.

The model we present simplifies the models presented
in [17, 7], and we show this cannot be α-PR for any constant
α, whenever the user-user graph G(V,E) has super-constant
average degree (or it densifies). Our model follows the dis-
cussion in Section 3.2.1 – the bipartite graph Q(V, I, F ) on



Figure 7: Histogram of number of interests per user

users and interests is generated by the following random
process. Fix two numbers a2 = 2 + ε, and a1 = 2 + 1/ε
for 0 < ε < 1. For instance, we can choose a2 = 2.5 and
a1 = 4. There are n interest nodes I. The degrees in I
are drawn from Zipf(a2), with maximum degree nγ for suf-
ficiently small γ. The distribution X =Zipf(a) is integer
valued, with Pr[X = r] ∝ 1

ra
.

User-Interest Graph.
Now imagine there is an infinite pool of user nodes, whose

degrees are drawn from Zipf(a1). Again assume the maxi-
mum degree is nγ for sufficiently small constant γ. For a user
node u of degree d(u), we split it into d(u) unit user nodes
each annotated with the degree d(u). Each node q ∈ Q of
degree d(q) chooses d(q) unit user nodes uniformly at ran-
dom from this infinite pool and connects to these nodes.
The unit-user nodes that are connected to are considered
marked. At the end of the process, we generate the final set
of users V and the bipartite graph Q as follows: For every
degree d, we collect together all marked unit-user nodes an-
notated with degree d. We group these nodes into buckets
of size d, and each of these buckets becomes a user u ∈ U
with degree d. Note that there could be multiple parallel
edges in Q(V, I, F ); we retain these edges for simplicity of
analysis.

By a simple application of Chernoff bounds, the number
of nodes in V with degree in [1, nγ ] for sufficiently small γ
agrees with the distribution Zipf(a2) to within a factor of 2
w.h.p., and we ignore this error in the remaining discussion.

User-User Graph.
For any interest i ∈ I, let V (i) denote the set of users

having an edge to this interest. We generate the user-user
graph G(V,E) by folding the graph Q(V, I, F ) as follows:
We place an edge between u1, u2 ∈ V (i) with probability
1/r1−δ, where r = |V (i)| and δ > ε. The graph induced on
V (i) is therefore an Erdos-Renyi random graphG(r, 1/r1−δ).

It is shown in [17] that for the choice of parameters men-
tioned above, i.e., a1 = 2+1/ε, a2 = 2+ε, and 0 < ε < δ ≤ 1,
the resulting graph G(V,E) has heavy-tailed degree distri-
bution (since it stochastically dominates Zipf(a1)), constant
effective diameter for each interest set (since the induced

graph is G(r, 1/r1−δ) for δ > 0), and super-constant ex-
pected degree. This part requires δ > ε, and follows from
an easy calculation that is implicit in the proof below. The
canonical setting is to have δ = 1, so that the graph induced
on users sharing an interest is a complete graph.

We term the above model Simple Affiliation Networks.
Since we are considering a generative process, we define the
notion of expected precision:

Definition A.1. Given sets V, I, a generative process for
Q(V, I, F ) and G(V,E) is said to be α-EPR if

min
v∈V

E[|C(v) ∩ S(v)|]
E[|C(v) ∪ S(v)|] ≥ α

where the expectation is over the process that generates Q,G.

We show the following theorem; our result holds for any
δ > ε, so that the graph G(V,E) densifies.

Theorem A.2. Assuming |Pi| ≥ 1 for all interests i, the
Simple Affiliation Network model with δ > ε is not α-EPR
for any constant α, regardless of the choice of Pi for each i.

Proof. We present the proof for the case δ = 1. In the
analysis below, we will focus on some user u, and condition
on u having at degree (or number of interests) d. We will
calculate the expected precision and recall of u conditioned
on this event. Define the degree d(·) of a user (resp. interest)
as their degrees in the bipartite graph Q(V, I, F ). Choose
any u ∈ U , and let |C(u)| = M ∈ [1, nγ ] for γ < 1/10.
We will need to calculate the degree distributions of users
sharing an interest, as well as the degree distributions of
interests for a given user. For this purpose, view the graph
Q(V, I, E) as follows: Each node u ∈ V is d(u) unit-user
nodes of degree one, and each i′ ∈ I is d(i′) unit-nodes of
degree 1. Therefore, we can view fixed u ∈ V as M unit-
nodes u1, u2, . . . , uM each of which connects to an interest
node at random. Fix some uj . The interest node ij ∈ I
connected to by uj has degree d(ij) drawn from the following
distribution:

Pr[Degree of ij = d] =
d× 1/da2∑∞
s=1 s× 1/sa2

Therefore, the degree distribution of the M users sharing
interest i is Zipf(a2 − 1), where a1 = 1 + ε < 2. Consider
some ij with degree dij , and consider some neighbor v of this
interest. Then, with constant probability, the following two
events happen for v: (1) Its degree is exactly 2; let the other
interest shared by v be i′; and (2) the degree of i′ is one, so
that v ∈ P (i′). This means that for every neighbor v of ij ,
with constant probability, v produces one interest. Node u
receives this interest since (u, v) ∈ E due to shared interest
ij . Therefore, the expected number of interests received
by u due to interest ij is Ω(dij ). Since dij is drawn from
Zipf(a2 − 1), where a1 = 1 + ε < 2, the expected number of
received interests of u is:

E[Interests received by u] = E[d(u)]

(
∞∑
s=1

Ω(s)× 1

sa2−1

)
= ω(E[d(u)])

Next note that E[d(u)] = E[C(u)] = O(1) since the degree
of u is distributed as Zipf(a1). Therefore, G(V,E) is not
α-EPR for any constant α.


