The Crystal Structures of BaSe_{2} and BaSe_{3}

F. Hulliger and T. Siegrist*
Laboratorium für Festkörperphysik ETH, CH-8093 Zürich

Z. Naturforsch. 36b, 14-15 (1981); received September 9, 1980

Crystal Structure, Polyselenides

Abstract

BaSe_{2} crystallizes with a monoclinic cell, $a=9.820(5), b=4.929(3), c=9.335(5) \AA$, $\beta=118.48(5)^{\circ} ; Z=4$, space group C 2/c. BaSe 3 is tetragonal, $a=7.2802(5), c=4.2495(4)$ $\AA ; Z=2$, space group $\mathrm{P} \overline{4} 2_{1} \mathrm{~m}$. Both polyselenides are isotypic with the corresponding polysulfides.

In the system $\mathrm{Ba}-\mathrm{S}$ three polysulfides are known and structurally characterized: tetragonal $\mathrm{Ba}_{2} \mathrm{~S}_{3}$ [1], monoclinic $\mathrm{BaS}_{2}[2,3]$ and tetragonal BaS_{3} [2]. We tried to synthesize the corresponding selenides by reacting the constituent elements in the appropriate ratios in closed silica tubes at temperatures between 500 and $700^{\circ} \mathrm{C} . \mathrm{BaSe}_{3}$ was obtained as a brown-red powder while in the case of BaSe_{2} red transparent single crystals grew occasionally. Both compounds are fairly stable in dry air. X-ray patterns immediately suggested isomorphism with the sulfides. We used Guinier patterns, taken with copper radiation and silicon as internal standard, for the determination of the lattice parameters. For BaSe_{3} we tried to derive the positional parameters from diffractometer intensity measurements. Unfortunately the BaSe_{3} powder was not so well crystallized so that we were able to determine the intensities of only 25 independent reflections. With isotropic refinement we arrived at a reliability factor $R=$ 0.092 . Thus, although the resulting interatomic distances are less accurate than we would wish, there is no doubt that BaSe_{3} crystallizes in the same structure as the corresponding polysulfide.

The single-crystal measurements on BaSe_{2} were carried out on an automatic four-circle diffractometer SYNTEX P2 2_{1} with monochromatic Mo K α radiation. Up to $2 \vartheta_{\text {max }}=50.3^{\circ}$ (corresponding to $\sin \vartheta / \lambda=0.6$) we collected 789 independent reflexions of which 364 had an intensity $>3 \sigma$. The absorption corrections of the intensities were somewhat hampered by the very unfavorable plate-like shape of the crystal. The refinement led to a final R value of 0.13 .

[^0]Table I. Crystallographic data for BaSe_{3}. BaS_{3} type, space group $\mathrm{P} \overline{4} 2_{1} \mathrm{~m}$ (Nr .113).
$a=7.2802(5), c=4.2495(4) \AA ; Z=2$.

Ba in $2(\mathrm{a})$:

$0,0,0 ; 1 / 2,1 / 2,0$.
$\mathrm{Se}(1)$ in $2(\mathrm{c})$:
$0,1 / 2, z ; 1 / 2,0, \bar{z}$ with $z=0.175(15)$.
$\mathrm{Se}(2)$ in $4(\mathrm{e}): x, 1 / 2+x, z ; \bar{x}, 1 / 2-x, z ; 1 / 2+x, \bar{x}, \bar{z}$;
$1 / 2-x, x, \bar{z}$ with $x=0.189(3), z=0.485(20)$.
Interatomic distances

$\mathrm{Ba} \quad-4 \mathrm{Se}(2)$ at $3.36(6) \AA$	
$4 \mathrm{Se}(2)$ at $3.44(6) \AA$	
$4 \mathrm{Se}(1)$ at $3.72(1) \AA$	
2 Ba at $c=4.25(1) \AA$	
$\mathrm{Se}(1)-2 \mathrm{Se}(2)$ at $2.35(6) \AA$	
2	$\mathrm{Se}(2)$ at $3.52(9), 3.54(7) \AA$
4 Ba at $3.72(1) \AA$	
$\mathrm{Se}(2)-1$	$\mathrm{Se}(1)$ at $2.35(6) \AA$
2 Ba at $3.35(5) \AA$	
2 Ba at $3.44(5) \AA$	
$2 \mathrm{Se}(1)$ at $3.51(3), 3.54(7) \AA$	

The structural data for BaSe_{3} and BaSe_{2} are collected in Table I and Table II, respectively. Both compounds are nonmetallic polyselenides. Thus, they are Mooser-Pearson phases [4] and therefore can formally be described by ionic formulae $\mathrm{Ba}^{+2} \mathrm{Se}_{2}^{-1}$ and $\mathrm{Ba}^{+2} \mathrm{Se}^{0} \mathrm{Se}_{2}^{-1}$. From their color we deduce an energy gap of roughly 2 eV , somewhat larger in the diselenide than in the triselenide.
In the ThC_{2}-type structure of BaSe_{2} the anions form pairs with an $\mathrm{Se}-\mathrm{Se}$ separation of $2.40 \AA$. This distance lies well within the range observed in other nonmetallic polyselenides (in pyrite-type MnSe_{2} : $2.38 \AA$ [5], in orthorhombic $\mathrm{PdSe}_{2}: 2.36 \AA$ [6], in the pyrite derivative $\mathrm{Rh}_{3} \mathrm{Se}_{8}: 2.415$ and $2.416 \AA[7]$ and in marcasite-type $\mathrm{FeSe}_{2}: 2.535 \AA$ [8]. The less accurate $\mathrm{Se}-\mathrm{Se}$ distances in $\mathrm{BaSe}_{3}, 2.35 \AA$, appear to be at the lower limit. In the alkali triselenides which

Table II. Crystallographic data for BaSe_{2}. Monoclinic ThC_{2} type, space group C 2/c (Nr. 15)
$a=9.820(5), b=4.929(3), c=9.335(5) \AA, \beta=118.48(5)^{\circ} ; Z=4$.
$(0,0,0 ; 1 / 2,1 / 2,0)+$
Ba in $4(e): \pm(0, y, 1 / 4) ;$ Se in $8(f): \pm(x, y, z ; x, \bar{y}, 1 / 2+z)$.

contain very similar polyanions, the $\mathrm{Se}-\mathrm{Se}$ distances and the $\mathrm{Se}-\mathrm{Se}-\mathrm{Se}$ angles are as follows: $\mathrm{K}_{2} \mathrm{Se}_{3}$ $2.382(2) \AA, 102.5(1)^{\circ} ; \mathrm{Rb}_{2} \mathrm{Se}_{3} 2.383(7) \AA, 103.1(3)^{\circ}$; $\mathrm{Cs}_{2} \mathrm{Se}_{3}$ 2.358(1) \AA, 103.6(5) ${ }^{\circ}$ [9]. Shorter distances were found in orthorhombic $\mathrm{Rb}_{2} \mathrm{Se}_{5}$ [10] which contains 5 -membered Se chains: $\mathrm{I}-\mathrm{II}=2.31(2) \AA$, $\mathrm{II}-\mathrm{III}=2.36(1) \AA, \mathrm{III}-\mathrm{IV}=2.37(2) \AA, \mathrm{IV}-\mathrm{V}=$ $2.33(1) \AA$, and angles of $109.1(5)^{\circ}, 104.5(6)^{\circ}$ and $108.0(5)^{\circ}$. In the infinite chains of grey selenium the distance is $2.373(5) \AA$ and the angle is $103.1(2)^{\circ}$ [10]. Shorter $\mathrm{Se}-\mathrm{Se}$ distances are observed in metalorganic compounds such as $\mathrm{Fe}_{2}(\mathrm{CO})_{6}\left(\mu-\mathrm{Se}_{2}\right)$: 2.293(2) \AA [11].

The bonding Ba-Se distances range from 3.28 to $3.36 \AA$ in BaSe_{2} and from 3.36 to $3.45 \AA$ in BaSe_{3}. They may be compared with the separation $\mathrm{Ba}-\mathrm{Se}=$ $\mathrm{a} / 2=3.30 \AA$ in rocksalt-type BaSe , where however, both Ba and Se are six-coordinated. The ThC_{2}-type structure of BaSe_{2} can formally also be derived from the rocksalt structure by replacing one kind of atoms by anion pairs. The different orientations of the anion pairs are responsible for the various degrees of distortions of the originally cubic cell in cubic pyrite, tetragonal CaC_{2} and monoclinic ThC_{2}. Whereas in pyrite the cation coordination number
remains six (while the coordination number of the anion is reduced to four) it is increased to eight in the ThC_{2} structure while the anion coordination number is five. Whereas the non-bonding $\mathrm{Ba}-\mathrm{Se}$ distances are at least as large as the sum of the Van-der-Waals radii in BaSe_{2}, four additional Se atoms surround the cation in BaSe_{3} at a distance which is only $\sim 0.3 \AA$ larger than the bond distance.
It may be noteworthy that the structure of $\mathrm{Yb}^{+2} \mathrm{~S}_{2}$ [12] is not of a new type but belongs also to the ThC_{2} family. Since the size of the Sr ion is between those of Ba and Yb^{2+}, but SrS_{2} crystallizes in the CuAl_{2} type [2], either the reported structure of YbS_{2} or that of SrS_{2} does not correspond to the normal-pressure room-temperature modification. Moreover, CaS_{2} might also exist in a ThC_{2} modification although we failed to synthesize this phase.

We are highly indebted to Professor H. C. Siegmann for the stimulating support. Furthermore, we would like to thank Dr. W. Petter and D. Altermatt of the Crystallographic Institute for constant help and advice as well as for the permission to use the SYNTEX diffractometer. This work was supported by the Swiss National Science Foundation.
[1] S. Yamaoka, J. T. Lemley, J. M. Jenks, and H. Steinfink, Inorg. Chem. 14, 129 (1975).
[2] H. G. v. Schnering and Ngoh-Khang Goh, Naturwissenschaften 61, 272 (1974).
[3] I. Kawada, K. Kato, and S. Yamaoka, Acta Crystallogr. B 31, 2905 (1975).
[4] E. Mooser and W. B. Pearson, Phys. Rev. 101, 1608 (1956); Progr. Semicond. 5, 103 (1960).
[5] J. M. Hastings, N. Elliott, and L. M. Corliss, Phys. Rev. 115, 13 (1959).
[6] F. Grønvold and E. Røst, Acta Crystallogr. 10, 329 (1957).
[7] D. Hohnke and E. Parthé, Z. Kristallogr. 127, 164 (1968).
[8] A. Kjekshus, T. Rakke, and A. F. Andresen, Acta Chem. Scand. A 28, 996 (1974).
[9] P. Boettcher, Z. Anorg. Allg. Chem. 461, 13 (1980).
[10] P. Boettcher, Z. Kristallogr. 150, 65 (1979).
[11] C. F. Campana, F. Yip-Kwai Lo, and L. F. Dahl, Inorg. Chem. 18, 3060 (1979).
[12] C. L. Teske, Z. Naturforsch. 29 b, 16 (1974).

[^0]: * Reprint requests to Theo Siegrist.

 0340-5087/81/0100-0014/\$ 01.00/0

