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This is the view Brown obtained in 1828, when he first recognised
the cell nucleus. It shows about twenty epidermal cells, and the
nucleus can clearly be seen within each cell. Three stomata can

also be clearly seen - these are the breathing pores through which

a plant exchanges gases with the atmosphere.
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Brownian motion

In 1827, the botanist Robert Brown published a study
"A brief account of microscopical observations on the
particles contained in the pollen of plants...”, where we
reported his observations of irregular, jittery motion of
small (clay) particles in pollen grains.

He repeated the same experiment with particles of dust,
showing that the motion could not be due to the pollen

Robert Brown (1773-1858) particles being alive.

,% Although several people worked on this
: -jf/ phenomenon over the years, a proper physical
| explanation of it had to wait for almost 80 years.

An example of Brownian motion of a particle, recorded for three different resolutions
In time (time steps).

Incidentally, Robert Brown was also the first to note the ubiquitous
nature of a part of eukaryotic cells which he named the “cell nucleus”.
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Jan Ingen-Housz (1730-1799) William Sutherland (1859-1911)
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To see clearly how one can deceive one’s mind on
this point if one is not careful, one only has to
place a drop of alcohol in the focal point of a
microscope and introduce a little finely ground
charcoal therein, and one will see these
corpuscules in a confused, continuous and violent
motion, as if they were animalcules which move
rapidly around.



Stokes-Einstein-Sutherland equation?
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As a historical sidenote, Einstein did not, in fact, have the precedence
on the result above. Earlier in 1905 (March), a Scotsman/Australian
named William Sutherland published a very similar derivation of the
Stokes-Einstein equation (which he had publicly presented in a
conference already in 1904).

It is not known, why the Stokes-Einstein equation is not known today R, P
as the Stokes-Einstein-Sutherland equation instead (although some William Sutherland
authors have recently suggested it). (1859-1911)

Sutherland’s article was published in the Philosophical Magazine, a prestigious and well
known journal. In addition, in 1905 he was already quite famous. For example, he was one
of the two people outside Europe (the other one was J. Willard Gibbs) who were invited to a
conference held in honor of Ludwig Boltzmann in 1906. (Einstein was not).

You can get Sutherland’s paper, in addition to other Brownian-motion-related articles,
from Peter Hanggi’'s web page:

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html



Einstelin relation

In 1905, Albert Einstein published his PhD thesis on osmotic pressure. Developing
the ideas therein further, later that year he published one of his ground-breaking
papers of that year: the theory of Brownian motion.

Deriving a result, which nowadays is called a fluctuation-dissipation theorem, Einstein
showed that the diffusion coefficient of a particle undergoing Brownian motion is

D— kg T
o E_. , Friction factor of the particle;
the frictional force is given by Fy,,=- ¢V
Specifically,
D — kpT For a spherical particle much larger than the
67t1] R sovent molecules (Stokes-Einstein equation)

The relation between the diffusion coefficient D and the displacement of a particle
undergoing Brownian motion is

1
= lim —( 2(1)) whence, for long enough times t <r2(t)> = 2dtD

t—o0 2(lt



Langevin and Einstein
m 1911

In the same year Albert Einstein correctly
identified Brownian motion (such motion,
visible only under a microscope, is the
Incessant, random movement of micrometre-
sized particles immersed in a liquid) as due to
Imbalances in the forces on a particle resulting
from molecular impacts from the liquid. Shortly
thereafter, Langevin formulated a theory in
which the minute fluctuations in the position of
the particle were due explicitly to a random
force. Langevin's approach proved to have
great utility in describing molecular
fluctuations Iin other systems, including
nonequilibrium thermodynamics.



Langevin equation (1)

Let us consider the dynamics of a single colloidal particle under continuous
bombardment by the solvent molecules
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1 Langevin equation

The random force f(t) satisfies the following conditions:
(f) = (fx) = (fv) =0
(fO)f(t')) = ?50 —1')

Obtained through a fluctuation-dissipation theorem for the problem at hand.

APLCoRS Rl EsRC Paul Langevin and Albert Einstein, two friends who illuminated the physics of the
ll same phenomenon in two quite different ways.




Langevin equation (2)

For the displacement (x,y,z) of a Brownian particle x} (y) <Z> =
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However, for the mean-square displacements we have (X

2 2
And for the 3D-displacement we have the relation (F ) — 3<JC )

Since the total displacement of a Brownian particle is obtained with any of the one-
dimensional displacements, let us write the Langevin equation in the x-direction as

d’x dx
" (E) =5 (a) 7 (L1)
Using the relations

dx 1 [/ dx? d*x 1 [ d?x? dx\ *
M. _— S X _— —— _ _ _—
Nar) "2\ ) @ \az) "2\ dr

We can multiply eq. (L1) with x and rewrite it as

md2x2_ @2__§d_x2+f
2\ dr? "\ar) T 2 \ar A (L2)




Langevin equation (3)

We then take the average of eq. (L2), employing the well-known resulst from the
equipartition theorem

1 [dx\*\ 1 | | (dx?)
—m o — —kgT  and further using the notation o=

2 2 dt

we obtain a first-order differential equation

dar\ €, _ 2ksT

e —U = L3

dt m m (L3)
for which the general solution is

2kgT
o= 22T | coxp (-5 (L4)
& m

Finally, for times > —, integrating eq. (L4) over time we obtain the result

m

(x*) = Zkth or (x*) =2Dt
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Nonlinear
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normal Brownian motion

Levy flight: superdiffusion
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week ending
PRL 97, 230601 (2006) PHYSICAL REVIEW LETTERS 8 DECEMBER 2006

Measurement of the Translational and Rotational Brownian Motion
of Individual Particles in a Rarefied Gas

Jiirgen Blum,” Stefan Bruns, Daniel Rademacher, Annika Voss, Bjorn Willenberg, and Maya Krause

Institut fiir Geophysik und Extraterrestrische Physik, Technische Universitit Braunschweig,

Mendelssohnstrafie 3, 38114 Braunschweig, Germany
(Received 2 August 2006; published 4 December 2006)

We measured the free Brownian motion of individual spherical and the Brownian rotation of individual
nonspherical micrometer-sized particles in rarefied gas. Measurements were done with high spatial and
temporal resolution under microgravity conditions in the Bremen drop tower so that the transition from
diffusive to ballistic motion could be resolved. We find that the translational and rotational diffusion can
be described by the relation given by Uhlenbeck and Ornstein [Phys. Rev. 36, 823 (1930)]. Measurements
of rotational Brownian motion can be used for the determination of the moments of inertia of small
particles.
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