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For scientific and engineering computing, exascale (1018 operations 
per second) is the next proxy in the long trajectory of exponential 
performance increases that has continued for over half a century. 
Similarly, large-scale data preservation and sustainability within and 
across disciplines, metadata creation and multidisciplinary fusion, 
and digital privacy and security define the frontiers of big data. 
Solving the myriad technical, political and economic challenges of 
exascale computing will require coordinated planning across 
government, industry and academia, commitment to data sharing and 
sustainability, collaborative research and development, and 
recognition that both international competition and collaboration will 
be necessary.  
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1. INTRODUCTION 
Nearly two centuries ago, the English chemist, Humphrey Davy 
remarked,  

Nothing tends so much to the advancement of knowledge as the 
application of a new instrument. The native intellectual powers 
of men in different times are not so much the causes of the 
different success of their labors, as the peculiar nature of the 
means and artificial resources in their possession. 

Davy’s observation that advantage accrues to those who have the 
most powerful scientific tools is no less true today. Last year, 
Karplus, Levett and Warshel received the Nobel Prize in chemistry 
for their work in computational modeling.  As the Nobel committee 
noted, “computer models mirroring real life have become crucial for 
most advances made in chemistry today” and “computers unveil 

chemical processes, such as a catalyst’s purification of exhaust fumes 
or the photosynthesis in green leaves.” 

Whether describing the advantages of high-energy particle 
accelerators such as the Large Hadron Collider (LHC) and the recent 
discovery of the Higgs boson; powerful astronomy instruments such 
as the Hubble Space Telescope and the Planck all-sky survey and 
insights into the universe’s expansion and dark energy, or high 
throughput DNA sequencers and exploration of metagenomics 
ecology, ever more powerful scientific instruments continually 
advance knowledge. Each of these scientific instruments and a host of 
others are critically dependent on computing for sensor control, data 
processing and international collaboration and access.  

However, computing is much more than simply an augmenter of 
science. Unlike other tools, which are limited to particular scientific 
domains, computational modeling and data analytics are applicable to 
all areas of science and engineering, for they breathe life into the 
underlying mathematics of scientific models, and they allow 
researchers to understand nuanced predictions and to shape 
experiments more efficiently. They also help capture and analyze the 
torrent of experimental data being produced by a new generation of 
scientific instruments and sensors, themselves made possible by 
advances in computing and microelectronics.  

Computational modeling can illuminate the subtleties of complex 
mathematical models and advance science and engineering where 
time, cost or safety precludes experimental assessment alone.  
Computational models of astrophysical phenomena, on temporal and 
spatial scales as diverse as planetary system formation, stellar 
dynamics, black hole behavior, galactic formation, and the interplay 
of baryonic and putative dark matter have provided new insights into 
theories and complemented experimental data. Increasingly 
sophisticated climate models, which capture the effects of greenhouse 
gases, deforestation and other planetary changes, have been key to 
understanding the effects of human behavior on the weather and 
climate change.  

Computational science and engineering also enables multidisciplinary 
design and optimization, reducing prototyping time and costs. 
Advanced simulation has already allowed Cummins to build better 
diesel engines faster and less expensively, Goodyear to design safer 
tires much more quickly, Boeing to build more fuel-efficient aircraft, 
and Procter & Gamble to create better materials for home products. 

Similarly, “big data,” machine learning and predictive data analytics 
have been hailed as the fourth paradigm of science [5], allowing 
researchers to extract insights from both scientific instruments and 
computational simulations. Machine learning has yielded new 
insights into health risks and the spread of disease via analysis of 
social networks, web search queries and hospital data. It has also 

 



 
 
 
 
2 •  D. A. Reed and J. Dongarra 
 

 

 
  Fig.1 Advanced computing performance measured by the high-performance Linpack (HPL) benchmark  

been key to event identification and correlation in domains as diverse 
as high-energy physics and molecular biology. 

As with the successive generations of other large-scale scientific 
instruments, each new generation of advanced computing brings new 
capabilities and insights, along with technical design challenges and 
economic tradeoffs. High-performance computers and big data 
systems are tied inextricably to the broader computing ecosystem, its 
designs and its markets. They are also coupled to national security 
needs and economic competitiveness in ways that distinguish them 
from most other scientific instruments.  

This “dual use” model, together with the rising cost of ever-larger 
computing and data analysis systems, and a host of new design 
challenges at massive scale, are raising new questions about advanced 
computing research investment priorities, design and procurement 
models, and global collaboration and competition. This paper 
examines some of these technical challenges, the interdependence of 
computational modeling and data analytics, and the global ecosystem 
and competition for leadership in advanced computing.  We begin 
with a primer on the history of advanced computing. 

2. ADVANCED SCIENTIFIC COMPUTING AND 
THE CHALLENGES OF SCALE  

By definition, an advanced computing system embodies the hardware, 
software and algorithms needed to deliver the very highest capability 
at any given time. In the 1980s, vector supercomputing dominated 
high-performance computing, as embodied in the eponymously 
named systems designed by the late Seymour Cray. The 1990s saw 
the rise of massively parallel processing (MPPs) and shared memory 

multiprocessors (SMPs), built by Thinking Machines, Silicon 
Graphics and others. In turn, clusters of commodity (Intel/AMD x86) 
and purpose-built processors (e.g., IBM’s BlueGene), dominated the 
previous decade.  Today, those clusters have been augmented with 
computational accelerators and GPUs.   

Similarly, just a few years ago, the very largest data storage systems 
contained only a few terabytes of secondary disk storage, backed by 
automated tape libraries. Today, commercial and research cloud 
computing systems each contain many petabytes of secondary 
storage, and individual research laboratories routinely process 
terabytes of data produced by their own scientific instruments. 

2.1 The Leading Edge 
Given the rapid pace of technological change, leading edge capability 
is a moving target – today’s smartphone was yesterday’s 
supercomputer, and a personal digital music collection was once 
enterprise scale storage. Lest this seem an exaggeration, the measured 
performance of an Apple iPhone5 or Samsung Galaxy S4 on standard 
linear algebra benchmarks now substantially exceeds that of a Cray-1, 
which was widely viewed as the first successful supercomputer. That 
same smartphone has a storage capacity rivaling the text-based 
content of a major research library. 

Just a few years ago, teraflops (1012 floating point operations/second) 
and terabytes (1012 bytes of secondary storage) defined state-of-the-
art advanced computing.  Today, those same values represent a desk 
side PC with an NVidia or Intel Xeon Phi accelerator and local 
storage. In 2014, advanced computing is now defined by multiple 
petaflops (1015 floating operations/second) supercomputing systems 
and cloud data centers with many petabytes of secondary storage.  
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  Fig. 2 Growth of Amazon S3 Objects (Billions) 

Figure 1 shows this exponential increase in advanced computing 
capability, based on the widely used High-Performance Linpack 
(HPL) benchmark [20] and the Top500 list of the world’s fastest 
computers [28]. Although solution of dense linear systems of 
equations is no longer the best measure of delivered performance on 
complex scientific and engineering applications, this historical data 
illustrates how rapidly high-performance computing has evolved. 
Though high-performance computing has benefited from the same 
semiconductor advances as commodity computing, sustained system 
performance has risen even more rapidly, due to the increasing system 
size and parallelism.  

The growth of personal, business, government and scientific data has 
been even more dramatic, with commercial cloud providers building 
worldwide networks of data centers, each costing hundreds of 
millions of dollars, and the volume of scientific data produced 
annually now challenging the budgets of national research agencies. 
As an example, Figure 2 shows the exponential growth in the number 
of objects stored in Amazon’s Simple Storage Service (S3). 

There are natural technical and economic synergies among the 
challenges facing data-intensive science and exascale computing, and 
advances in both are necessary for future scientific breakthroughs. 
Data-intensive science relies on the collection, analysis and 
management of massive volumes of data, whether obtained from 
scientific simulations or experimental facilities. In both cases, 
national and international investments in “extreme scale" systems will 
be necessary to analyze the massive volumes of data that are now 
commonplace in science and engineering. 

2.2 The Race to the Future 
For scientific and engineering computing, exascale (1018 operations 
per second) is the next proxy in the long trajectory of exponential 
performance increases that has continued for over half a century. 
Similarly, large-scale data preservation and sustainability within and 
across disciplines, metadata creation and multidisciplinary fusion, and 
digital privacy and security define the frontiers of big data. This 
multifaceted definition encompasses more than simply quantitative 
measures of sustained arithmetic operation rates or storage capacity 
and analysis rates; it is also a relative term encompassing qualitative 
improvements in the usable capabilities of advanced computing 
systems at all scales. As such, it is intended to suggest a new frontier 
of practical, delivered capability to scientific and engineering 
researchers across all disciplines. 

Historically, high-performance computing advances have been largely 
dependent on concurrent advances in algorithms, software, 
architecture and hardware that enable higher levels of floating point 
performance for computational models. Today, advances are also 
shaped by data analysis pipelines, data architectures, and machine 
learning that manage large volumes of scientific and engineering data. 

However, just as changes in scientific instrumentation scale bring new 
opportunities, they also bring new challenges, some technical, but 
others organizational, cultural and economic, and these challenges are 
not self-similar across scales. Today, exascale computing systems 
cannot be produced in an affordable and reliable way (i.e., subject to 
realistic engineering constraints on capital and operating costs, 
usability, and reliability), and as the costs of advanced computing and 
data analysis systems have moved from millions to billions of dollars, 
design and decision processes have necessarily become more complex 
and fraught with controversy. This is a familiar lesson to those in 
high-energy physics and astronomy, where particle accelerators and 
telescopes have become planetary scale instrumentation and the 
province of international consortia and global politics. Advanced 
computing is no exception. 

The research and development costs to create an exascale computing 
system have been estimated to exceed $1B, with an annual operating 
cost of tens of millions of U.S. dollars. Concurrently, there is growing 
recognition that governments and research agencies have substantially 
underinvested in data retention and management, as evinced by multi-
billion dollar private sector investments in big data and cloud 
computing. Against this backdrop, U.S. support for basic research is 
at a decadal low, when adjusted for inflation [6], and both the U.S. 
and the European Union continue experience weak recoveries from 
the economic downturn of 2008.  

Further exacerbating the challenges, the global race for advanced 
computing hegemony is convolved with national security desires, 
economic competitiveness and the future of the mainstream 
computing ecosystem. The European Union, Japan and China have all 
launched next-generation computing system research and 
development projects [4, 10], in competition with the United States. 
The shift from personal computers to mobile devices and the end of 
Dennard scaling [16] have also further raised competition between the 
U.S.-dominated x86 architectural ecosystem and the globally-licensed 
ARM ecosystem. Concurrently, concerns about national sovereignty, 
data security and Internet governance have triggered new competition 
and political concerns around data services and cloud computing 
operations. 

Despite all of these challenges, there is reason for cautious optimism. 
Every advance in computing technology has driven industry 
innovations and economic growth, spanning the entire spectrum of 
computing, from the emerging Internet of Things through ubiquitous 
mobile devices to the world’s most powerful computing systems and 
largest data archives. These advances have also spurred basic and 
applied research in every domain of science. 

Solving the myriad technical, political and economic challenges will 
be neither easy nor even possible by tackling them in isolation. 
Rather, it will require coordinated planning across government, 
industry and academia, commitment to data sharing and 
sustainability, collaborative research and development, and 
recognition that both competition and collaboration will be necessary 
for success. Nor can the future of big data and analytics be pitted 
against exascale computing; both are critical to the future of advanced 
computing and scientific discovery. 
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3. Scientific and Engineering Opportunities 
Researchers in the physical sciences and engineering have long been 
major users of advanced computing and computational models. The 
more recent adoption by the biological, environmental and social 
sciences has been driven in part the rise of big data analytics. In 
addition, advanced computing is now widely used in engineering and 
advanced manufacturing. From understanding the subtleties of airflow 
in turbomachinery through chemical molecular dynamics for 
consumer products to biomass feedstock modeling for fuel cells, 
advanced computing has become synonymous with multidisciplinary 
design and optimization and advanced manufacturing. 

Looking forward, just a few examples illustrate the deep and diverse 
scientific and engineering benefits from advanced computing: 

• Biology and biomedicine have been transformed by access to 
large volumes of genetic data. Inexpensive, high throughput 
genetic sequencers have enabled capture of organism DNA 
sequences and have made possible genome-wide association 
studies (GWAS) for human disease and human microbiome 
investigations, as well as metagenomics environmental studies.  
More generally, biological and biomedical challenges span 
sequence annotation and comparison, protein structure 
prediction; molecular simulations and protein machines; 
metabolic pathways and regulatory networks; whole cell models 
and organs; and organisms, environments and ecologies.  

• High Energy Physics (HEP) is both computational and data-
intensive. First principles computational models of quantum 
chromodynamics (QCD) provide numerical estimates and 
validations of the Standard Model. Similarly, particle detectors 
require the measurement of probabilities of “interesting” events 
in large numbers of observations (e.g., in 1016 or more particle 
collisions observed in a year). The Large Hadron Collider (LHC) 
and its experiments necessitated creation of a worldwide 
computing grid for data sharing and reduction, driving 
deployment of advanced networks and protocols, as well as a 
hierarchy of data repositories.  All of these were necessary to 
identify the long-sought Higgs boson. 

• Climate science is also critically dependent on the availability of 
a reliable infrastructure for managing and accessing large, 
heterogeneous quantities of data on a global scale. It is inherently 
a collaborative and multidisciplinary effort that requires 
sophisticated modeling of the physical processes and exchange 
mechanisms among multiple Earth realms (atmosphere, land, 
ocean, and sea ice) and comparison and validation of these 
simulations with observational data from various sources, all 
collected over long periods.  

• Cosmology and astrophysics are now critically dependent on 
advanced computational models to understand stellar structure, 
planetary formation, galactic evolution and other interactions.  
These models combine fluid processes, radiation transfer, 
Newtonian gravity, nuclear physics and general relativity 
(among others). Underlying these is a rich set of computational 
techniques based on adaptive mesh refinement and particle in 
cell (PIC), multipole and Monte Carlo methods and smoothed 
particle hydrodynamics.  Complementing computation, whole 
sky surveys and a new generation of telescopes now routinely 
generate terabytes of data each day, with data reduction, machine 
learning and statistical comparisons now essential elements of 
observational astronomy. 

• Experimental and computational materials science is key to 
understanding materials properties and engineering options. For 
example, neutron scattering allows researchers to understand the 
structure and properties of materials, macromolecular and 
biological systems, and the fundamental physics of the neutron 
by providing data on the internal structure of materials from the 
atomic scale (atomic positions and excitations) up to the 
mesoscale (e.g., the effects of stress).  

There are two common themes across these science and engineering 
challenges. The first is an extremely wide range of temporal and 
spatial scales and complex, nonlinear interactions across multiple 
biological and physical processes. These are the most demanding of 
computational simulations, requiring collaborative research teams and 
the very largest and most capable computing systems.  In each case, 
the goal is predictive simulation – gleaning insights that test theories, 
identify subtle interactions and guide new research.   

The second theme is the enormous scale and diversity of scientific 
data, and the unprecedented opportunities for data assimilation, 
multidisciplinary correlation and statistical analysis. Whether in the 
biological or physical sciences, engineering or business, big data is 
creating new research needs and opportunities. 

4. TECHNICAL CHALLENGES IN ADVANCED 
COMPUTING 

The scientific and engineering opportunities made possible by 
advanced computing are deep, but the technical challenges in 
designing, constructing and operating advanced computing systems of 
unprecedented scale are just as daunting. To deliver exascale 
computing and big data analytics to the scientific and engineering 
communities, many challenges must be overcome. 

In a series of recent studies, the U.S. Department of Energy identified 
ten research challenges (DOE, 2010; Geist & Lucas, 2009; Lucas et 
al., 2014) in developing a new generation of advanced computing 
systems.  These include: 

Energy efficient circuit, power and cooling technologies. With current 
semiconductor technologies, all proposed exascale designs would 
consume hundreds of megawatts of power. New designs and 
technologies are needed to reduce this to a more manageable and 
economically feasible level (e.g., 20-40 MW, comparable to that used 
by commercial cloud data centers). 

High performance interconnect technologies. In the exascale regime, 
the cost to move a datum will exceed the cost of a floating point 
operation, necessitating very energy efficient, low latency, high 
bandwidth interconnects for fine-grained data exchanges among 
hundreds of thousands of processors.  Even with such designs, 
locality-aware algorithms and software will be needed to maximize 
performance and reduce energy needs. 

Advanced memory technologies to improve capacity and bandwidth. 
Minimizing data movement and minimizing energy use are also 
dependent on new memory technologies, including processor-in-
memory, stacked memory, non-volatile memory approaches. 
Algorithmic determinants of memory capacity will be a significant 
driver of overall system cost, as the memory per node will necessarily 
be smaller than in current designs.   

Scalable system software that is power and resilience aware. 
Traditional high-performance computing software has been predicated 
on the assumption that failures are infrequent; at very large scale, 
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systemic resilience in the face of regular component failures will be 
essential. Similarly, dynamic, adaptive energy management must 
become an integral part of system software, for both economic and 
technical reasons.  

Data management software that can handle the volume, velocity and 
diversity of data. Whether computationally generated or captured from 
scientific instruments, efficient in situ data analysis will require 
restructuring of scientific workflows and applications, as well as new 
techniques for data coordinating and mining. Without these, I/O 
bottlenecks will limit system utility and applicability. 

Programming environments to express massive parallelism, data 
locality, and resilience. The widely used communicating sequential 
process (CSP) model (i.e., MPI programming) places the burden of 
locality and parallelization on application developers. Exascale 
systems will have billion-way parallelism and frequent faults. More 
expressive programming models are needed that can deal with this 
behavior and simplify the developer’s efforts.   

Reformulation of science problems and refactoring solution 
algorithms. Many thousands of person-years have been invested in 
current scientific and engineering codes. Adapting them to billion-way 
parallelism will require redesigning, or even reinventing, the 
algorithms, and potentially reformulating the science problems. 
Understanding how to do these things efficiently and effectively will 
be key to solving mission-critical science problems at exascale. 

Ensuring correctness in face of faults, reproducibility, and algorithm 
verification. With frequent transient and permanent faults, lack of 
reproducibility in collective communication, and new mathematical 
algorithms with limited verification, computation validation and 
correctness assurance rise dramatically in importance for the next 
generation of massively parallel systems.  

Mathematical optimization and uncertainty quantification for 
discovery, design, and decision. Large-scale computations are 
themselves experiments that probe the sample space of numerical 
models. Understanding the sensitivity of computational predictions to 
model inputs and assumptions, particularly when involving complex, 
multidisciplinary applications is dependent on new tools and 
techniques for application validation and assessment.  

Software engineering and supporting structures to enable scientific 
productivity. Although programming tools, compilers, debuggers, and 
performance enhancement tools shape research productivity for all 
computing systems, at exascale, application design and management 
for reliable, efficient and correct computation is especially daunting.  
Unless researcher productivity increases, the time to solution may be 
dominated by application development, not computation. 

Similar hardware and software studies (Amarasinghe et al., 2009; 
Kogge et al., 2008) chartered by the U.S. Defense Advanced Research 
Projects Agency (DARPA) identified the following challenges, most 
similar to those cited by the Department of Energy studies: 

• Energy efficient operation to achieve desired computation rates 
subject to overall power dissipation 

• Primary and secondary memory capacity and access rates, 
subject to power constraints 

• Concurrency and locality to meet performance targets, while 
allowing some threads to stall during long latency operations 

• Resilience, given large component counts, shrinking silicon 
feature sizes, low power operation and transient and permanent 
component failures 

• Application scaling subject to memory capacity and 
communication latency constraints 

• Expressing and managing parallelism and locality in system 
software and portable programming models, including runtime 
systems, schedulers and libraries 

• Software tools for performance tuning, correctness assessment 
and energy management 

Finally, a recent study by the U.S. National Academy of Science 
(NAS) (Fuller & Millett, 2011) focused on the technology challenges 
created by the end of Dennard scaling (Dennard et al.) – the ability to 
shrink transistors while also reducing voltage and current – and the 
implications for programming models and software. Simply put, the 
NAS study suggests that, barring a breakthrough, the exponential 
increases in performance brought by shrinking semiconductor feature 
sizes and architectural innovations are nearing an end. 

These studies suggest that computing technology is poised at 
important inflection points, both at the very largest scale (i.e., leading 
edge high-performance computing) and at the very smallest scale (i.e., 
semiconductor processes). On this, the computing community remains 
divided, with strong believers that technical obstacles limiting 
extension of current approaches will be overcome, and others who 
believe, more radical technology and design approaches, (e.g., 
quantum or superconducting devices), may be required. 

4.1 Hardware and Architecture Challenges  
Although a complete description the hardware and software technical 
challenges just enumerated is beyond the scope of this survey, review 
of a selected subset is useful to illuminate the depth and breadth of the 
problems and their implications for the future of both advanced 
computing and the broader deployment of next-generation consumer 
and business computing technologies. 

4.1.1. Post-Dennard Scaling 
Over the past thirty years, Moore’s “law” has held true due to the hard 
work and creativity of a great many people, as well as many billions 
of dollars of investment in process technology and silicon foundries. It 
has also rested on the principle of Dennard scaling (Dennard et al.; 
Kamil, Shalf, & Strohmaier, 2008), which showed that as transistors 
got smaller the power density remained constant.  Thus, decreasing a 
transistor’s linear size by a factor of two, reduced the power by a 
factor of four (i.e., with both voltage and current halving).   

Although transistor sizes continue to decline, with 22 nanometer 
feature sizes now common, transistor power consumption no longer 
decreases accordingly. This has led to limits on chip clock rates and 
power consumption, along with design of multicore chips and the rise 
of dark silicon – chips with more transistors than can be active 
simultaneously due to thermal and power constraints (Esmaeilzadeh, 
Blem, Amant, Sankaralingam, & Burger, 2011). 

These semiconductor challenges have been mirrored by an 
increasingly empty bag of architectural tricks. Most of the techniques 
once found in supercomputer processor designs – superpipelining, 
scoreboarding, vectorization and parallelization – are now in 
mainstream microprocessors. These power constraints have also 
driven design of function-specific accelerators (e.g., graphics 
processing units (GPUs) and accelerators such as NVidia’s Tesla) and 
heterogeneous cores that balance power consumption and 
performance in different ways.  
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In this new world, hardware/software co-design becomes de rigeur, 
with devices and software systems interdependent. The implications 
are far fewer general-purpose performance increases, more hardware 
diversity, elevation of multivariate optimization – power, 
performance, reliability – in programming models, and new system 
software resource management challenges. 

4.1.2. Resilience and Energy Efficiency at Scale 
As advanced computing systems grow ever larger, the assumption of 
reliable hardware and software also becomes much less credible. 
Although the mean time before failure (MTBF) for individual 
components continues to increase incrementally, the large overall 
component count means the systems themselves will fail more 
frequently. This has been confirmed by analysis of high-performance 
computing failure modes (Schroeder & Gibson, 2006).  

Moreover, new data from commercial cloud data centers suggests that 
some long-held assumptions about component failures and lifetimes 
are incorrect (Gill, Jain, & Nagappan, 2011; Pinheiro, Weber, & 
Barroso, 2007; Schroeder & Gibson, 2007; Schroeder, Pinheiro, & 
Weber, 2009). A Google study (Schroeder et al., 2009) showed that 
DRAM error rates were orders of magnitude higher than previously 
reported, with more than eight percent of DIMMs affected by errors in 
a year.  Equally surprisingly, these were hard errors, rather than soft, 
correctable (via ECC) errors.  

In addition to resilience, scale also brings new challenges in energy 
management and thermal dissipation. Today’s advanced computing 
systems consume megawatts of power, and cooling capability and 
peak power loads both limit where many systems can be placed 
geographically. As commercial cloud operators have learned, energy 
infrastructure and power are a substantial fraction of total system cost 
at scale, necessitating new infrastructure approaches and operating 
models.  These have included low power designs, new cooling 
approaches, energy accountability and operational efficiencies. 

The energy constraints for exascale systems also have profound 
algorithmic and software implications.  Because the energy 
requirements for DRAM dominate a large-scale system’s energy 
budget, new designs are likely to be “memory starved” relative to 
current systems.  When combined with a reversal of traditional 
models, where communication is viewed as free relative to 
computation, a radical reengineering of algorithms and architectures 
will be essential.   

4.2 Software and Algorithmic Challenges 
Many of the software and algorithmic challenges for advanced 
computing are themselves consequences of extreme system scale. 
Consequently, advanced computing shares many of the scaling 
problems of web and cloud services, but differs in its price-
performance optimization balance, emphasizing high levels of 
performance, whether for computation or data analysis. This 
distinction is central to the design choices and optimization criteria. 

4.2.1. Locality and Scale 
As noted earlier, putative designs for extreme scale systems are 
projected to require billion-way computational concurrency, with 
aggressive parallelism at all system levels.  Thus, maintaining load 
balance on all levels of a hierarchy of algorithms and platforms will 
be the key to an efficient execution. This will likely require dynamic, 
adaptive run-time mechanisms (Datta et al., 2008) and self-aware 

resource allocation to tolerate not only algorithmic imbalances but 
also variability in hardware performance and reliability. 

In turn, the energy costs and latencies for communication will place 
an even greater premium on computation locality than today. 
Inverting long held models, arithmetic operations will be far less 
energy intensive and more efficient than communications. This will 
challenge traditional algorithmic design approaches and comparative 
optimizations, making redundant computation sometimes preferable to 
data sharing and elevating communication complexity to parity with 
computation. It will also necessitate models and methods to minimize 
and tolerate (hide) latency, optimize data motion and remove global 
synchronization.  

4.2.2. Adaptive System Software 
Resource management for today’s high-performance computing 
systems remains rooted in a deus ex machina model, with coordinated 
scheduling and tightly synchronized communication.  However, 
extreme scale, hardware heterogeneity, system power and heat 
dissipation constraints and increased component failure rates not only 
influence the design and implementation of applications, they also 
affect the design of system software in areas as diverse as energy 
management and I/O. Similarly, as the volume of scientific data 
grows, it is unclear the traditional file abstractions and parallel file 
systems used by technical computing will scale to trans-petascale data 
analysis.  

Instead, new system software and operating system designs will need 
to support management of heterogeneous resources and non-cache-
coherent memory hierarchies, provide applications and runtime with 
more control of task scheduling policies, and manage global 
namespaces. They will also need to expose mechanisms for finer 
measurement, prediction and control of power management, allowing 
schedulers to map computations to function-specific accelerators and 
manage thermal envelopes and application energy profiles.  

4.2.3. Parallel Programming Support 
As the diversity, complexity and scale of advanced computing 
hardware has increased, the complexity and difficulty in developing 
applications has grown equally rapidly, with many operating functions 
now subsumed by applications. This has been further exacerbated by 
the increasingly multidisciplinary nature of applications, which 
combine algorithms and models that span a wide range of spatio-
temporal scales and algorithmic approaches.   

Consider the typical single program multiple data (SPMD) parallel 
programming model, where application data is partitioned and 
distributed across the individual memories of the computation nodes, 
and the nodes share data via the message passing interface (MPI). In 
turn, the application code on each node manages the local, multilevel 
computation hierarchy – typically multiple, multithreaded, possibly 
heterogeneous cores and (often) a GPU accelerator – and coordinates 
I/O, manages application checkpointing, and oversees power budgets 
and thermal dissipation. This daunting level of complexity and 
detailed configuration and tuning makes developing robust 
applications an arcane art accessible to only a dedicated few.  

Ideally, future software design, development and deployment would 
be done with performance and correctness in mind at the outset rather 
than ex situ. Beyond more performance-aware design and 
development of applications based on integrated performance and 
correctness models, these tools need to be integrated with compilers 
and runtime systems, they need to provide support for heterogeneous 
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hardware and mixed programming models, and they must provide 
more intelligence in raw data processing and analysis. 

4.2.4. Algorithmic and Mathematics Challenges 
Given the scale and expected error rates of exascale systems, design 
and implementation of algorithms must be rethought from first 
principles. This includes exploration of global synchronization-free 
(or at least minimal) algorithms, fault oblivious and error tolerant 
algorithms, architecture-aware algorithms suitable for heterogeneous 
and hierarchical organized hardware, support for mixed arithmetic, 
and software for energy-efficient computing.  

Moving forward to exascale will put heavier demands on algorithms 
in at least two areas: the need for increasing amounts of data locality 
to perform computations efficiently, and the need to obtain much 
higher factors of fine-grained parallelism as high-end systems support 
increasing numbers of compute threads. As a consequence, parallel 
algorithms must adapt to this environment, and new algorithms and 
implementations must be developed to extract the computational 
capabilities of the new hardware.  

Significant model development, algorithm re-design and science 
application reimplementation, supported by (an) exascale-appropriate 
programming model(s), will be required to exploit the power of 
exascale architectures.  The transition from current sub-petascale and 
petascale computing to exascale computing will be at least as 
disruptive as the transition from vector to parallel computing in the 
1990’s.  

5. Economic and Political Challenges 
The technical challenges of advanced computing are shaped and 
constrained by other elements of the broader computing landscape.  In 
particular, powerful smartphones and cloud computing services are 
rapidly displacing the PC and local servers as the computing standard.  
This shift has also triggered international competition for industrial 
and business advantage, with countries and regions investing in new 
technologies and system deployments. 

5.1 Computing Ecosystem Shifts 
The Internet and web services revolution is now global and U.S. 
influence, though substantial, is being diluted. Notwithstanding 
Apple’s phenomenal success, most smartphones and tablets are now 
designed, built and purchased globally, and the annual sales volume of 
smartphones and tablets already exceeds that of PCs and servers. 

This ongoing shift in consumer preferences and markets is 
accompanied by another technology shift. Smartphones and tablets are 
based on energy-efficient microprocessors (a key component of 
proposed exascale computing designs) and systems-on-a-chip (SoCs) 
using the ARM architecture.  Unlike Intel and AMD, which design 
and manufacture the x86 chips found in today’s PCs and most leading 
edge servers and HPC systems, ARM does not manufacture its own 
chips.  Instead, it licenses the design to others, who incorporate the 
architecture into custom SoCs that are manufactured by global 
semiconductor foundries such as Taiwan’s TSMC.  

5.2 International Exascale Projects 
The international competition surrounding advanced computing mixes 
concerns about economic competitiveness, shifting technology 
ecosystems (e.g., ARM and x86), business and technical computing 

(e.g., cloud computing services and data centers), and scientific and 
engineering research. The European Union, Japan, China and the 
United States have each launched exascale computing projects, each 
with differing emphases on hardware technologies, system software, 
algorithms and applications. 

5.2.1. European Union  
The European Union (EU) announced the start of its exascale research 
program in October 2011 with 25 million Euros in funding for three 
complementary research projects in the EU’s Framework 7 effort. The 
CRESTA, DEEP, and Mont-Blanc projects will each investigate 
different exascale challenges using a co-design model spanning 
hardware, system software, and software applications. This initiative 
represents Europe’s first sustained investment in exascale research. 

CRESTA brings together four European high-performance computing 
centers: Edinburgh Parallel Computing Centre (project lead), the High 
Performance Computing Center Stuttgart, Finland's IT Center for 
Science Ltd, and Partner Development Center Sweden, as well as the 
Dresden University of Technology which will lend expertise in 
performance optimization. In addition, the CRESTA team also 
consists of application professionals from European science and 
industry, as well as HPC vendors—including HPC tool developer 
Allinea and HPC vendor Cray. CRESTA focuses on the use of 
applications as co-design drivers for software development 
environments, algorithms and libraries, user tools, and underpinning 
and crosscutting technologies.  

The Mont-Blanc project, led by the Barcelona Supercomputing 
Center, brings together European technology providers ARM, Bull, 
Gnodal, and major supercomputing organizations involved with the 
PRACE project  (Juelich, LRZ, GENCI, and CINECA). The project 
intends to deploy a first generation HPC system built from energy-
efficient embedded technologies, and will conduct the research 
necessary to achieve exascale performance with energy-efficient 
designs.  

The Dynamical Exascale Entry Platform (DEEP) ,led by 
Forschungszentrum Juelich, seeks to develop an exascale-enabling 
platform and optimization of a set of grand challenge codes. The 
DEEP system is based on a commodity cluster and accelerator design 
(Cluster Booster Architecture) as a proof-of-concept for a 100 
petaflop/s PRACE production system. In addition to the lead partner, 
Juelich, the project partners include Intel, ParTec, Leibniz-
Rechenzentrum (LRZ), Universität Heidelberg, German Research 
School for Simulation Sciences, Eurotech, Barcelona Supercomputing 
Center, Mellanox, EPFL, Katholieke Universiteit Leuven, CERFACS, 
the Cyprus Institute, Universität Regensburg, CINCA, and 
CGGVeritas. 

5.2.2. Japan 
In December 2013, the Japanese Ministry of Education, Culture, 
Sports, Science and Technology (MEXT) selected RIKEN to develop 
and deploy an exascale system by 2020.. RIKEN was selected based 
on its experience developing and operating the K computer, which at 
10 petaflop/s, was ranked as the fastest supercomputer in the world in 
2011. Estimated to cost 140 billion yen ($1.38B), the exascale system 
design will be based on a combination of general purpose processors 
and accelerators, and involves three key Japanese computer vendors 
(Fujitsu, Hitachi, and NEC), as well as technical support from the 
University of Tokyo, University of Tsukuba, Tokyo Institute of 
Technology, Tohoku University, and RIKEN. 
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5.2.3. China 
Today, China’s Tianhe-2 system is the world’s fastest supercomputer. 
It contains 16,000 nodes, each with two Intel Xeon processors and 
three Intel Xeon Phi coprocessors. The system also contains a 
proprietary high-speed interconnect, called TH Express-2, which was 
designed by the National University for Defense Technology 
(NUDT). NUDT, conducts research on processors, compilers, parallel 
algorithms, and systems. Based on this work, China is expected to 
produce two 100-petaflop/s systems as early as 2015, one of which 
will be built entirely from Chinese-made chips and interconnects. 
Tianhe-2 will also be upgraded from a peak of 55 petaflop/s to 100 
petaflop/s in 2015, and a second system based on China’s ShenWei 
processor will be deployed. 

5.2.4. United States 
Historically, the U.S. Networking and Information Technology 
Research and Development program (NITRD) has spanned several 
research missions and agencies, with primary leadership by the 
Department of Energy (DOE), the Department of Defense (DoD) and 
the National Science Foundation (NSF). Today, DOE is the most 
active deplorer of high-performance computing systems and in 
developing plans for exascale computing. In contrast, NSF and DoD 
have focused more on broad cyberinfrastructure and enabling 
technologies research. Although planning continues, the U.S. has not 
yet mounted an advanced computing initiative similar to those in 
Europe and Japan. 

5.3 International Collaboration 
Although the global competition for advanced computing leadership 
continues, there is active international collaboration. The International 
Exascale Software Project (IESP) is one such example. With seed 
funding from governments in the United States, the European Union 
and Japan, as well as supplemental contributions from industry 
stakeholders, IESP was formed to empower ultra-high resolution and 
data-intensive science and engineering research through the year 
2020.   

In a series of meetings, the international IESP team developed a plan 
for a common, high-quality computational environment for 
petascale/exascale systems. The associated roadmap for software 
development would take the community from its current position to 
exascale computing (Dongarra et al., 2011). 

6. CONCLUSIONS 
Computing is at a profound inflection point, economically and 
technically.  The end of Dennard scaling and its implications for 
continuing semiconductor design advances, the shift to mobile and 
cloud computing, the explosive growth of scientific, business, 
government and consumer data and the opportunities for data 
analytics and machine learning, and the continuing need for more 
powerful computing systems to advance science and engineering all 
form the backdrop for the debate over the future of exascale 
computing and big data analysis. However, certain things are clear. 

• High-end data analytics (big data) and high-end computing 
(exascale) are both essential elements of an integrated computing 
research and development agenda; neither can be sacrificed or 
minimized to advance the other. 

• Research and development of next-generation algorithms, 
software and applications is as crucial as investments in 
semiconductor devices and hardware, and we have historically 
underinvested in these areas relative to hardware. 

• The global information technology ecosystem is in flux, with the 
transition to a new generation of low power, mobile devices, 
cloud services, and rich data analytics. 

• Both private sector competition and global research collaboration 
will be necessary to address design, test and deploy exascale 
class computing and data analysis capabilities. 

There are both great opportunities and great challenges in advanced 
computing.  Scientific discovery via computational science and data 
analytics truly is the “endless frontier” of which Vannevar Bush spoke 
so eloquently in 1945.The challenges are for us to sustain the research, 
development and deployment of the high-performance computing 
infrastructure needed to enable those discoveries. 

ACKNOWLEDGMENTS 
We are grateful insights and perspectives from the DARPA and DOE 
exascale hardware, software and application study groups. 

 
REFERENCES 
Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., 

Elnohazy, E., . . . Sterling, T. (2009). Exascale Software Study: 
Software Challenges in Extreme Scale Systems: Defense Advanced 
Research Projects Agency (DARPA). 

Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., . . . 
Yelick, K. (2008). Stencil Computation Optimization and Auto-
Tuning on State-of-the-Art Multicore Architectures. Proceedings of 
the 2008 ACM/IEEE Conference on Supercomputing, 1-12.  

Dennard, R. H., Gaensslen, F. H., Yu, H.-n., Rideout, V. L., Bassous, E., 
& LeBlanc, A. R. Design of Ion-Implanted MOSFET’s with Very 
Small Physical Dimensions. IEEE Journal of Solid State Circuits, 
SC-9(5), 256-268.  

DOE. (2010). The Opportunities and Challenges of Exascale Computing: 
Office of Science, U.S. Department of Energy. 

Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J.-C., . 
. . Yelick, K. (2011). The International Exascale Software Project 
Roadmap. International Journal of High Performance Computing 
Applications, 25(1), 3-60.  

Esmaeilzadeh, H., Blem, E., Amant, R. S., Sankaralingam, K., & Burger, 
D. (2011). Dark Silicon and the End of Multicore Scaling. 
Proceedings of the 38th Annual International Symposium on 
Computer Architecture, 365-376.  

Fuller, S. H., & Millett, L. I. (2011). Computing Performance: Game Over 
or Next Level? Computer, 44(1), 31-38.  

Geist, A., & Lucas, R. (2009). Major Computer Science Challenges at 
Exascale. International Journal of High Performance Applications, 
23(4), 427-436.  

Gill, P., Jain, N., & Nagappan, N. (2011). Understanding Network Failures 
in Data Centers: Measurement, Analysis, and Implications. 
Proceedings of the ACM SIGCOMM 2011, 41(4), 350-361  

Kamil, S., Shalf, J., & Strohmaier, E. (2008). Power Efficiency in High 
Performance Computing. High-Performance, Power-Aware 
Computing (HPPAC 2008).  

Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., 
. . . Yelick, K. (2008). Exascale Computing Study: Technology 
Challenges in Achieving Exascale Systems: U.S. Defense Advanced 
Research Projects Agency (DARPA). 

Lucas, R., Ang, J., Bergman, K., Borkar, S., Carlson, W., Carrington, L., . 
. . Stevens, R. (2014). Top10 Exascale Research Challenges. 
Department of Energy Office of Science. 



 Exascale Computing and Big Data: The Next Frontier • 9 

 

Pinheiro, E., Weber, W.-D., & Barroso, L. A. (2007). Failure Trends in a 
Large Disk Drive Population. 5th USENIX Conference on File and 
Storage Technologies (FAST'07).  

Schroeder, B., & Gibson, G. A. (2006). A Large-Scale Study of Failures in 
High-Performance Computing Systems. Proceedings of the 
International Conference on Dependable Systems and Networks, 
249-258. doi: 10.1109/dsn.2006.5 

Schroeder, B., & Gibson, G. A. (2007). Understanding Disk Failure Rates: 
What Does an MTTF of 1,000,000 Hours Mean to You? ACM 
Transactions on Storage, 3(3), 8.  

Schroeder, B., Pinheiro, E., & Weber, W.-D. (2009). DRAM Errors in the 
Wild: A Large-Scale Field Study. Proceedings of the Eleventh 
International Joint Conference on Measurement and Modeling of 
Computer Systems, 37(1), 193-204.  

 


