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Abstract: Classification is a very common image processing task. The accuracy of the classified map
is typically assessed through a comparison with real-world situations or with available reference data
to estimate the reliability of the classification results. Common accuracy assessment approaches are
based on an error matrix and provide a measure for the overall accuracy. A frequently used index is
the Kappa index. As the Kappa index has increasingly been criticized, various alternative measures
have been investigated with minimal success in practice. In this article, we introduce a novel index
that overcomes the limitations. Unlike Kappa, it is not sensitive to asymmetric distributions. The
quantity and allocation disagreement index (QADI) index computes the degree of disagreement
between the classification results and reference maps by counting wrongly labeled pixels as A and
quantifying the difference in the pixel count for each class between the classified map and reference
data as Q. These values are then used to determine a quantitative QADI index value, which indicates
the value of disagreement and difference between a classification result and training data. It can
also be used to generate a graph that indicates the degree to which each factor contributes to the
disagreement. The efficiency of Kappa and QADI were compared in six use cases. The results indicate
that the QADI index generates more reliable classification accuracy assessments than the traditional
Kappa can do. We also developed a toolbox in a GIS software environment.

Keywords: remote sensing; accuracy assessment; alternative to traditional Kappa; image classification

1. Introduction

Earth observation technology and remote sensing methods are critical for a variety of
environmental applications. The range of satellite sensors and the volume of remote sensing
data has increased, as has the user base and the variety of methods and methodologies
to process large amounts of data [1,2]. In addition, the spatial, spectral, and temporal
resolutions of satellite images have increased, and data have become more accessible.
It is sometimes argued that progress in technology and data analysis and increasing
demand for efficient and cost-effective data-driven approaches have revolutionized Earth
Observation methods [2,3]. Recent work illustrates the demand from various application
fields for effective data-driven solutions [4–13]. Several efficient data-driven approaches
(e.g., semi/automated and machine learning methods, deep learning, conventional network,
etc.) have been proposed and implemented in recent years [7,14,15].

At the same time, novel data-driven approaches demand efficient accuracy assessment
methods [13]. However, despite significant progress in image classification techniques, the
development of accuracy assessment methods has not kept pace. This may seem surprising
since the accuracy assessment and validation of results are critical steps in the process of
image classification [16]. The purpose of the accuracy assessment is to indicate the degree
to which the results derived from image classification agree with reality or conform to the
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‘truth’ [17]. Accuracy estimates are usually empirical estimates of map properties, and, as
with all statistical estimates, they have uncertainties [18]. This encompasses the validation
of thematic maps obtained by classifying remotely sensed imagery by expressing the degree
of ‘correctness’ of a classified map [19]. Specifically, accuracy assessment methods are used
to compute the difference between a classified map and reference data.

Several accuracy assessment methods have been proposed to assess remote sensing-
based classification accuracy [17,20–27]. The considered criteria can be a function of
variables, such as the characteristics of the remotely sensed satellite imagery (e.g., the
spatial- and spectral resolution), details of the defined classes (e.g., number and details of
classes), and user preferences (e.g., tolerance to error). Thus far, no universal guidelines
have been proposed or developed for assessing the accuracy of thematic maps based on
remote sensing image classification [17]. A significant challenge in accuracy assessment
lies in determining the minimum level of accuracy required to validate the results. The
answer to the question of what constitutes a “good” classification result remains. Remote
sensing-based classified maps must be validated in reference to the magnitude of their
estimated accuracy. According to Lillesand and Kiefer [16], the minimum level of accuracy
for results of a remote sensing-based classified map to be considered valid is ≥85%, which
the remote sensing community has widely accepted as a target in image classification.

In the context of the accuracy assessment, the error matrix, which is assigned based
on ground control data, is the most common and widely applied method to validate clas-
sified maps in remote sensing [28]. The confusion/error matrix is a traditional accuracy
assessment approach that cross-tabulates classified data against observed reference data.
This cross-tabulation computation produces several measures, including the overall accu-
racy, user’s accuracy, producer’s accuracy, and the Kappa coefficient [19,29]. Despite its
popularity, the error matrix has been criticized for its inherent uncertainty [19,21,30–34].

A review of remote sensing literature indicates that the accuracy assessment based
on the Kappa index is the most widely applied and constitutes the core of the accuracy
assessment literature [30,31]. Cohen [35] introduced the Kappa coefficient of agreement
to measure the effect and minimize the impact of chance on classifications. This is ac-
knowledged by the remote sensing community as Cohen’s Kappa [36]. The well-known
Kappa approach is commonly used to determine the overall accuracy and the proportion
of correctly classified pixels. However, Kappa is also often criticized for its inability to
indicate the agreement level between the classification and the reference data. The Kappa
coefficient measures the level of agreement observed beyond chance, which is computed
using a model of chance that is incorrect for the typical accuracy assessment scenario. The
fundamental publications that promoted the use of the Kappa coefficient were significant
and fostered ideas about rigorous quantitative categorization assessments. However, they
promoted an incorrect index [31].

Early research criticized the limitations of Cohen’s Kappa and indicated that Kappa
failed to evaluate the inter-rater agreement [17,30,31,37]. Other Kappa versions, such as
weighted Kappa and Krippendorff’s Alpha, were proposed to minimize the uncertainty
associated with Cohen’s Kappa. Uncertainty of Kappa can be explained as a lake of sure-
ness when one uses it. For example, it is not clear enough how much Kappa can or must
be trusted, and it is because of its time-to-time misleading results such as negative Kia
values in spite of high accuracy in classification. However, due to the inherent uncertainty
and simplicity of computing and interpreting the Cohen’s Kappa, it became the most used
method to assess the inter-rater agreement and compute the accuracy in many fields of
science, and none of the other proposed indicators succeeded in correcting the accuracy
assessment [32]. Kappa has also been incorporated into most of the main image processing
software packages (e.g., Erdas, Envi, Idrisi, eCognition, ERmapper). It is also acknowledged
that the popularity of Kappa in the remote sensing community results from the software
availability and the failure of scientists to appreciate that using percentages as a measure
of correctness is a straightforward and easily interpretable alternative [38]. However, the
Kappa’s popularity has not led to a reduction in criticisms and documentation of its flaws.
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The limitations of the Kappa index are obvious when applying it to images classified using
the object-based image analysis (OBIA) classification method [18]. OBIA is a soft classifi-
cation approach that employs fuzzy decision rules as the basis of the image classification.
Due to the nature of fuzzy classification, the results of OBIA cannot be easily validated in
binary mode and be assigned to ‘true’ and ‘false’ categories. This difficulty results from
the segmentation, the scale dependency, rule-based and automated delineation, as well as
the broad ontological spectrum related to the object-based classification process [39]. To
deal with these issues, researchers have proposed several alternative methods to Kappa,
such as the Fuzzy Synthetic Evaluation Dempster–Shafer Theory [17] and spatial accuracy
assessment [39]. Our main objective is to introduce a novel and robust accuracy assessment
method of quantity and allocation disagreement index (QADI) that resolves the flaws of
Kappa and provides an efficient and comprehensive method for accuracy assessment in
remote sensing-based classification.

2. From Kappa to QADI: The Proposed Approach
2.1. Cohen’s Kappa Coefficient

According to Cohen [35], if two independent raters classify each of N objects to one of
the n pre-established classes, then the resulting classifications can be displayed in an n×n
contingency table with proportions for cell entries, which is also known as the confusion or
error matrix [40]. The Kappa coefficient is thus commonly employed to assess the level of
agreement between different observers’ ratings or between the same observer’s ratings at
various points in time for nominal-level items. The Kappa coefficient (κ) can be computed
as follows:

κ =
Po − Pe

1− Pe
(1)

where Po = ∑n
i=1

Xii
N denotes the observed proportion of agreement and Pe = ∑n

i=1
X+i
N ×

Xi+
N

expresses the proportion of chance agreement (expected agreement). Note that all over this
article, lowercase n refers to the rank of matrix, while uppercase N represents total amount
of pixels or observations, and Xij represents the entry that is placed in row i and column j
of error matrix or raters cross-table (in non-remote-sensing studies). Furthermore, jk are
temporary integers that change from 1 to n. Kappa values range from −1

n−1 to +1, where n
is the number of classes (rank) and must be greater than 1. A larger n value will result in
the Kappa index being limited to values between 0 and 1. Cohen interpreted this value
of Kappa as the proportion of agreement between the assigners after chance agreement
is removed from consideration [40]. A higher Kappa value indicates greater agreement.
Kappa is assumed to be positive when agreement exceeds that expected to occur purely by
chance. On the other hand, the Kappa value is negative when the observed agreement is
less than the expected chance agreement [35]. Table 1 shows guidelines, proposed by Landis
and Koch [41], Fleiss et al. [42], and Altman [43], for evaluating the level of agreement in
scores based on categorical data.

Table 1. Thresholds for the strength of agreement that have been constructed for Kappa in literature.

Landis and Koch Benchmark Scale for the
Kappa Index

Fleiss’s Benchmark Scale for the
Kappa Index

Altman’s Benchmark
Scale for the Kappa Index

<0.40
0.40 to 0.75

More than 0.75

Poor
Intermediate to good

Excellent

<0.0 Poor <0.20 Poor
0.21 to 0.40 Fair 0.21 to 0.40 Fair
0.41 to 0.60 Moderate 0.41 to 0.60 Moderate
0.61 to 0.80 Substantial 0.61 to 0.80 Good
0.81 to 1.00 Almost perfect 0.81 to 1.00 Very good

2.2. Criticisms of Kappa

Even though the Kappa index is efficient and popular, it has been criticized and ne-
glected by many researchers. Krippendorff [44] indicated that Cohen’s Kappa should be
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disqualified as a validation measure for the accuracy assessment of classified thematic
maps. This unsuitability for use on thematic maps results from the index’s definition
of chance agreement, which is obtained from association measures because it assumes
rater independence. Kappa is also criticized for its inherent insufficiency and uncertainty
when used for validating image classification results [19,21,30]. Feinstein and Cicchetti [45]
reported that one of its primary shortcomings is related to the symmetrically unbalanced
situation, called the “first paradox”, which states that “If pe is large, the chance correction
process can convert a relatively high value of po into a relatively low value of Kappa” [45]. Further-
more, in the asymmetrical unbalanced situation, for the same po, κ will be higher than in
the symmetrical unbalanced situation, which is also called the ‘second paradox’. Feinstein
and Cicchetti [45] indicated that “Unbalanced marginal totals produce higher values of κ than
more balanced total.” DiEugenio and Glass [33] also report the same issue in more accessible
language: “κ is affected by skewed distributions of categories (the prevalence problem)
and by the degree to which the coders disagree (the bias problem)”.

2.3. The Proposed QADI Index for Accuracy Assessment

The quantitative index proposed in this research minimizes the limitations of Cohen’s
Kappa by using two types of errors derived from the error matrix (EM): the difference in
pixel count between the reference map (RM) and classified map (CM) per class, denoted as
Qi, and the number of incorrectly labeled pixels, represented by Ai,. This paper provides
a correction that is sometimes needed for the quantity (Q) and allocation (A) indices
developed by Pontius and Millones [38]. Then it introduces a new index that summarizes
total error level as a unique numeric value and illustrates a graph of classification accuracy.
Qi represents the difference in the pixel count between the reference map (RM) and the
classified map (CM) for class number (i). This value indicates the ‘quantity disagreement’
between the classification algorithm and the reference map (RM) per class, while ‘Ai’
represents the number of "Required pixel relabelings" that could be interpreted as required
movements of pixels to correct their position in sample map below as well as to adapt the
classification map (CM) to the reference map (RM) as precisely as possible. Figure 1 shows
an example that is useful to describe the functionality of QADI.

Figure 1. Example to describe the functionality of QADI reference map (a), classified map (b), and
error matrix (c).

As shown in Figure 1, comparing the CM and RM results can be expressed as follows:

Q1 = |4− 3| = 1, Q2 = |4− 3| = 1, Q3 = |4− 3| = 1, Q4 = |13− 16| = 3→ Q =
1 + 1 + 1 + 3

2
= 3 (2)

Furthermore, as shown above, movement No. 1 corrects the placement of two pixels,
as movement No. 2 does. However, movement No. 3 only corrects the placement of
one pixel (green pixel). These three movements make the classified map (CM) much
more looking similar to the reference map (RM). Thus, value of A could be calculated as:
A = 2 + 2 + 1 = 5.
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When the confusion matrix of classification is provided as M, values of Qi and Ai for
each class number i will be computable as the following formula, which is initially adapted
from the formula of Pontius and Millones [38], and accordingly optimized as follows:

∀ i = 1 : n ; Qi = ABS
(
∑n

k=1 Mi,k −∑n
k=1 Mk,i

)
, and Q =

∑n
i=1 Qi

2
(3)

In some cases, due to reasons such as a skewed distribution, the real value of Q and A
might be unexpectedly different from the computation mentioned above. In order to have
experimental evidence, two 5 × 5 image models were made from paper. Unlike Pontius
and Millones’ [38] article, which uses the size of 3 × 3 and only the two types of black
and white pixels, in this study, a 5 × 5 image model as a source image with 25 pixels of
colored paper (at least 4 types) has been used. The other 5 × 5 model was a classified
image with 25 pixels of colored paper that did not necessarily look similar to the first image
because of quantity or label differences (example in Figure 1). By comparing two images
in each case, the error matrix of each item was recorded. Then, using the calculations
mentioned for Q and A, the obtained numbers from formulas were compared with the
reality in the two images. In some cases, for example, the quantity error Q was 5, but in the
case of colored-paper pixels, the difference in the number of pixels in the two models was
different (more or less). There was a similar condition for labeling (allocation) error as A.
According to the initial results of this section, more than a hundred attempts for arranging
model pixels and counting place-correction (label-correction) movements of pixels have
been considered in the computation trial. Based on these empirical evidences and results, it
has been determined that the following adjustments are required:

Q∗ = ABS
(
∑n−1

i=1 ∑n
k=1 Mi,k −∑n−1

i=1 ∑n
k=1 Mk,i

)
. (4)

When Q differs from Q*, the value of Q* will be used as the quantity disagreement mea-
sure, and A must be replaced with A∗ = A + ABS(Q−Q∗) as the allocation disagreement
measure. As shown in Figure 1c, the value of Q* for that matrix equals:

Q∗ = ABS (((2 + 1 + 1 + 0) + (0 + 1 + 1 + 2) + (1 + 1 + 1 + 1))
−((2 + 0 + 1 + 0) + (1 + 1 + 1 + 0) + (1 + 1 + 1 + 0)))
= 3.

(5)

Taking a look at both the source and classified images will clarify that this value of 3 is
the number of extra pixels that have been added to real numbers of pixels (the difference)
in first (n − 1) classes in source image. Rest of pixels do not belong to first (n − 1) class
and therefore have same class in both images, and that is why in relation to (4), the value
of (n − 1) has been used instead of n. Since this value matches the value of Q that was
previously calculated using Equation (5), there is no need to change the value of A and Q to
new values. To calculate a value for Ai, Pontius and Millones [38] proposed the following
measures for each i from 1 to n:

Omission o f class No. i = Omi = ∑n
k=1(Mk,i −Mi,i),

Commission o f class No. i = Cmi = ∑n
k=1(Mi,k −Mi,i),

(6)

Ai = 2×min{Omi , Cmi}. And, finally, A =
∑n

i=1 Ai

2
(7)

Mi,j represents the entry of row number i and column number j of error matrix, and
i,j,k are temporary integers changing from 1 to n; that is, the rank of matrix. Ai could
be considered as the number of wrongly labeled pixels of class number i or, in other
words, as the number of pixels that are not correctly positioned compared to the reference
map. Furthermore, each common unit of omission error and commission error for classes
implies that if one pixel is misplaced, one other pixel (in a different class) is also misplaced.
Therefore, another coefficient must be considered (part Ai in Equation (7)). As a result, all
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Ai factors will be even numbers. Since each pixel movement will correct the placement
of one pair, accordingly, the total amount of movements needed to correct all wrongly
placed pixels (A) will be equal to the sum of all Ais divided by two (part A in Equation (7)).
Respecting the idea of Pontius and Millones [38], their index for measuring accuracy
C = 1− (A + Q) is only a numerical index such as Kappa, and according to what has been
mentioned before, in some skewed distribution cases, it does not correspond to reality, and
it needs adjustments. On the other hand, the role of each of the two error types in the total
classification error is not clear. The main equation for the QADI index is thus as follows:

QADI =

√(
A
N

)2
+

(
Q
N

)2
(8)

The resulting QADI value varies between 0 and 1. In order to calibrate the QADI
index, more than 100 classifications (e.g., land use/cover classification, forest fire mapping,
landslide delineation, crop area estimation, etc.) were performed on different satellite
images using OBIA algorithms, and a confusion matrix was computed for each case.
Traditional Kappa and overall accuracy, together with the new QADI index, were derived
from all error matrices. The graphical representation of QADI was produced using Matlab.
Table 2 shows the results of the calibration of QADI and benchmarks for the strength of the
classification accuracy.

Table 2. Calibration for QADI and benchmarks for the strength of the classification accuracy.

QADI Scale Color Scheme Classification Accuracy
0.00 ≤ QADI < 0.07 Blue Very high confidence/(Very low disagreement)
0.07 ≤ QADI < 0.12 Green High confidence/(Low disagreement)
0.12 ≤ QADI < 0.20 Yellow Moderate confidence/(Moderate disagreement)
0.20 ≤ QADI < 0.30 Orange Low confidence/(High level of disagreement)

0.30 ≤ QADI ≤ 1 Red Very low confidence/(lack of accuracy)

Using Matlab and Python, which are programing languages, a plugin (Download the
tool from Supplementary Materials) was compiled and packed as a toolbox for ArcMap
that provides a graph. In addition to the actual QADI value (see Figure 2). The user must
not be worried about if the confusion matrix is skewed or not because the algorithm of
QADI detects that and will perform the adjustments to Q and A if necessary. In each graph,
coordinates (Q/N, A/N) depict a point to illustrate how these factors affect disagreement
and which one has a greater impact. Thus, for the image classification experiment shown
in Figure 1, the QADI graph illustrates the accuracy as a black dot (Figure 2). As shown in
Figure 2, the black dot is located above the diagonal line (yellow line) close to the allocation
disagreement axis, which indicates that the primary reason for the disagreement is the
allocation error. For this experiment, the numeric QADI value is 0.2332, which indicates an
‘accidental classification’, and that a kind of labeling error (allocation disagreement) has a
strong impact on the disagreement and is, in fact, the principal cause of the disagreement.
The black dot is above the diagonal line. To be compared, the Kappa value is 0.4751, which
implies an ‘intermediate to good’ classification according to the benchmark proposed
by Landis and Koch [41]. Further, it implies a ‘moderate classification’ according to the
benchmark proposed by Fleiss et al. [42] and Altman [43]. The proposed approach allows
computing the error matrix and interpreting the efficiency of the computed Kappa based on
the QADI graph and value. The QADI graph, shown in Figure 2, enables a quantification
of the confidence level in the computed Kappa. The QADI value also theoretically varies in
the range of 0–1, as indicated in Table 2.
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Figure 2. Quantitative analysis of the level of confidence in the computed Kappa.

2.4. The Validation Experiments

In order to examine the QADI index, its functionality and performance were evaluated
and compared against the traditional Kappa index. Therefore, two experiment classifica-
tions using various algorithms were established. The first one has a balanced distribution,
and the other has a skewed distribution of 500 pixels each (see Table 3). The classifications
were categorized into four classes: water body, soil, vegetation, and urban area. In order to
compare the results of QADI and Kappa, confusion matrices for both classifications were
derived and provided in Table 3. According to these confusion matrices, both classifications
determined the same proportion (80%) of correctly classified pixels. The rater A (first rater)
is the reference map, and the rater B (second rater) is the classification algorithm.

Table 3. Tables illustrating a confusion matrix with a balanced (a) and a skewed (b) distribution.

(a) Balanced distribution

Rater B
(Practice)

Rater A (Reference Map)
Sum

W S V U

Water body 100 8 8 8 124

Soil 8 100 8 9 125

Vegetation 8 8 100 9 125

Urban area 8 8 10 100 126

sum 124 124 126 126 500

(b) Skewed distribution

Rater B
(Algorithm)

Rater A (Reference Map)
Sum

W S V U

Water 400 40 4 1 445

Soil 40 0 3 1 44

Vegetation 4 3 0 1 8

Urban 1 1 1 0 3

sum 445 44 8 3 500
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For the balanced distribution, as shown in the confusion matrix on the Table 3a, the
sums of the lines are 124, 125, 125, 126, and the sums of the columns are 124, 124, 126,
126, respectively. According to this confusion matrix, the sums of the lines and columns
do not show significant differences, and they are within a similar range, which clearly
indicates that this confusion matrix has a balanced distribution. However, for the confusion
matrix with a skewed distribution (Table 3b), the sums of the lines are 445, 44, 8, 3, and
the sums of the columns are 445, 44, 8, 3, respectively. As this confusion matrix shows, the
obtained values are not in the same range, which clearly indicates a skewed distribution in
the confusion matrix. In this experiment, 500 pixels were considered for classification, and
according to both confusion matrices, 400 pixels (80%) were classified correctly. Since the
classification was performed based on the same decision rules, it is anticipated that Kappa
will deliver the same accuracy for both confusion matrices. We may highlight that Kappa is
an index that is computed from confusion matrices. Despite having the same accuracy for
both confusion matrices, Kappa represented an accuracy of 73% for the confusion matrix
with a balanced distribution and a negative value for the confusion matrix with a skewed
distribution. This shows that Kappa is very sensitive to the distribution in the confusion
matrix, and it may even deliver misleading results for a confusion matrix with a skewed
distribution. The sensitivity of Kappa to the distribution in the confusion matrix is the main
issue with Kappa and the primary issue that the proposed QADI method aims to overcome.
In order to confirm this superiority of the QADI method, a step-by-step computation of
the QADI index is derived separately for both confusion matrices (balanced and skewed
distribution) and represented in the following sections:

2.5. Confusion Matrix with a Balanced Distribution

As stated in relation (1), the factors required to determine Kappa and the κ value are
calculated as follows:

Po =
n
∑

i=1

Xii
N = 100+100+100+100

500 = 0.8

Pe =
n
∑

i=1

X+i
N ×

Xi+
N = 124

500 ×
124
500 + 124

500 ×
125
500 + 126

500 ×
125
500 + 126

500 ×
126
500 = 0.25→ κ = Po−Pe

1−Pe
= 0.8−0.25

1−0.25 = 0.73
(9)

Quantity disagreement of classes:

Q1 = |124− 124| = 0, Q2 = |124− 125| = 1, Q3 = |126− 125| = 1,
Q4 = |126− 126| = 0.→ Q = 0+1+1+0

2 = 1.
(10)

Omission and commission of classes:

Om1 = 124− 100 = 24, Om2 = 124− 100 = 24, Om3 = 126− 100 = 26, Om4 = 126− 100 = 26
Cm1 = 124− 100 = 24, Cm2 = 125− 100 = 25, Cm3 = 125− 100 = 25, Cm4 = 126− 100 = 26

Allocation disagreement of classes according to Equation (7):

A1 = 2×min{Om1 , Cm1} → A1 = 2×min{24, 24} = 48. (11)

In the same way, A2 = 48, A3 = 50, A4 = 52 and so the total allocation disagreement
is equal to: A = 48+48+50+52

2 = 99.
To ensure that A and Q are calculated correctly, Q∗ must be calculated:

Q∗ = ABS(((100 + 8 + 8 + 8) + (8 + 100 + 8 + 9) + (8 + 8 + 100 + 9))
− ((100 + 8 + 8 + 8) + (8 + 100 + 8 + 8)

+(8 + 8 + 100 + 10))) = 0
(12)

Since Q∗ differs from Q , the value of the quantity disagreement should be set to 0,
and the value of the allocation disagreement should be set to 99 + ABS(1− 0) = 100.
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Finally, the QADI will be:

QADI =

√(
100
500

)2
+

(
0

500

)2
= 0.2 (13)

According to the interpretation presented in Table 1, this value implies “Poor Accuracy”
of the developed classification.

2.6. Confusion Matrix with a Skewed Distribution

Po =
n

∑
i=1

Xii
N

=
400 + 0 + 0 + 0

500
= 0.8 (14)

Pe =
n

∑
i=1

X+i
N
× Xi+

N
=

445
500
× 445

500
+

44
500
× 44

500
+

8
500
× 8

500
+

3
500
× 3

500
= 0.800136 (15)

κ =
Po − Pe

1− Pe
=

0.8− 0.800136
1− 0.800136

= −0.00068 (16)

Quantity disagreement of classes:

Q1 = |445− 445| = 0, Q2 = |44− 44| = 0, Q3 = |8− 8| = 0 and Q4 = |3− 3| = 0.→ Q =
0 + 0 + 0 + 0

2
= 0 (17)

Omission and commission of classes:

Om1 = 445− 400 = 45, Om2 = 44− 0 = 44, Om3 = 8− 0 = 8 and Om4 = 3− 0 = 3

Cm1 = 445− 400 = 45, Cm2 = 44− 0 = 44, Cm3 = 8− 0 = 8 and Cm4 = 3− 0 = 3

Allocation disagreement of classes according to Equation (7):

A1 = 2×min{Om1 , Cm1} → A1 = 2×min{45, 45} = 90 (18)

In the same way, A2 = 88, A3 = 16, A4 = 6 and so the total amount of allocation
disagreement is equal to: A = 90+88+16+6

2 = 100.
To ensure that A and Q are calculated correctly, Q∗ must be calculated:

Q∗ = ABS(((400 + 40 + 4 + 1) + (40 + 0 + 3 + 1) + (4 + 3 + 0 + 1))
−((400 + 40 + 4 + 1) + (40 + 0 + 3 + 1)

+(4 + 3 + 0 + 1))) = 0
(19)

Since Q∗ does not differ from Q, the values of the quantity disagreement and the
allocation disagreement are correct. Finally, QADI will be equal to:

QADI =

√(
100
500

)2
+

(
0

500

)2
= 0.2 (20)

According to the interpretation presented in Table 1, this value implies “Poor Accuracy”
of the classification, as does the QADI value for the balanced distribution. Figure 3 shows
two samples of normal and skewed matrices, as represented in Table 3. Figure 3a shows that
in the case of the skewed matrix and its respective QADI graph, Kappa is subject to the first
paradox issue by representing a negative value of −0.00068, which is strange provided the
80% overall accuracy. Contrarily, the proposed QADI computed the classification accuracy
to be 0.2, which indicates a ‘low confidence’. In addition, the QADI also interpreted the
classification error as incorrect labeling resulting from the classification algorithm. Figure 3b
represents the normal error matrix and the QADI graph. Here, Kappa indicates a moderate
accuracy of 0.73333, while the QADI considers it as low confidence.
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Figure 3. Accuracy assessment illustrated by the graphical representation of QADI. (a) QADI graph
for Skewed matrix and (b) QADI graph for normal matrix2.7. Implementation and use cases.

To apply the proposed QADI approach, we developed a toolbox in Python (Figure 4)
that allows the calculation of QADI in a GIS environment. Several experiments were
conducted to examine the efficiency of the proposed QADI approach for accuracy assess-
ment. The first case is an object-based image analysis (OBIA) land use land cover (LULC)
classification for a subset of Sydney, Australia. The LULC map was produced based on
OBIA using different techniques based on each image’s context and the LULC classes
(Table 4 summarizes the object-based rule set for the LULC classifications). For this goal,
we collocated ground control point data for each class; accordingly, 70% of all data were
employed as training data, and 30% employed for validation task. Figure 5 shows the
developed LULC map and its respective error matrix based on the ground control points
provided in Table 5. In addition to calculating the overall accuracy and Kappa value, the
error matrix was stored to be used in the QADI calculator plugin. We also used five error
matrices from earlier work and research literature as input for the QADI to examine its
efficiency. Therefore, we considered error matrices for the accuracy assessment of the LULC
classification using different data-driven approaches, namely OBIA (Table 6: [46]), deep
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learning (Table 7: [47]), and the three machine learning algorithms random forest, support
vector machine, and artificial neural network (Tables 8–10: [48]).

Figure 4. Toolbox developed for the implementation of QADI.

Table 4. Details of the OBIA-based LULC classification for the Sydney use case.

Satellite images Resolution of 1.6 m
Segmentation parameters Scale of 30, shape index of 0.8 and compactness of 0.5
LULC classes Grass, Trees, Algae, Roads, Water body, Built up area, Bare soil

Features and algorithms

Shape indexes, GLCM textural parameters, normalized difference vegetation index
(0.24> and <0.3), ratio of green (<0.3), length/width (0.9>), rectangular fit indexes
(1.3–1.6 and 0.3–0.05), shape indexes, GLCM textural parameters, normalized
difference vegetation index (0.3> and <0.8), ratio of green (0.4>), brightness (135>),
length/width (0.9>), rectangular fit (1.2–1.5), mean (1.6>)

Classification algorithm Sample-based supervised classification based on nearest neighbor
Accuracy assessment Control points for the error matrix and to calculate the Kappa and QADI
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Figure 5. Results of LULC classification for Sydney.

Table 5. Error matrix for the accuracy assessment of the Sydney LULC classification.

User/Reference Grass Trees Algae Roads Water Body Bare Soil Built up Area Sum

Grass 5146 138 0 0 0 0 0 5284
Trees 0 4858 122 147 0 0 0 5127
Algae 320 0 1806 0 0 0 0 2126
Roads 0 0 0 4525 0 0 258 4783
Water body 0 0 0 0 5625 0 0 5625
Bare Soil 0 0 0 0 0 2048 0 2048
Built up area 0 0 0 0 0 0 6539 6539
Column total 5466 4996 1928 4672 5625 2048 6797 31,532
Overall accuracy 0.97
Kappa 0.93

Table 6. Error matrix for accuracy assessment of LULC classification using OBIA (Naboureh et al. [46]).

User/Reference W RA SL FA BL OIA Sum

Water(W) 11 0 1 1 0 0 13
Residential area (RA) 0 48 0 0 2 1 51
Salty lands (SL) 1 0 39 2 0 0 42
Farm agriculture (FA) 0 2 0 72 1 1 76
Bare lands (BL) 1 0 2 0 65 1 69
Orchard and irrigated agriculture (OIA) 0 1 0 2 1 66 70
Column total 13 51 42 77 69 69 320
Accuracy 0.84 0.94 0.92 0.93 0.94 0.95
Overall Accuracy = 0.94
Kappa = 0.92
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Table 7. Error matrix for accuracy assessment of LULC classification based on deep learning
(Rousset et al. [47]).

a b c d e f g h i j k l

Urban areas (a) 720 320 0 90 10 20 10 0 10 0 0 0
Industrial Areas (b) 30 430 0 0 0 0 0 0 0 0 0 0
Worksites and mines (c) 0 0 860 20 150 0 10 20 270 690 20 50
Road Networks (d) 50 180 10 580 70 0 0 0 0 20 0 40
Trails (e) 10 10 20 30 80 0 0 10 20 10 0 10
Forests (f) 60 30 0 60 70 770 190 20 50 10 40 30
Medium-density Vegetation (g) 90 20 30 70 250 170 690 460 270 30 10 50
Low-density vegetation (h) 40 10 30 40 160 20 80 470 90 60 0 30
Bare rocks (i) 0 0 0 10 40 0 10 10 120 0 0 10
Bare soil (j) 0 0 20 50 40 0 0 10 20 140 0 40
Water surfaces (k) 0 0 0 0 0 10 0 0 10 0 880 10
Engravements (l) 0 0 30 50 130 10 10 0 140 40 50 370
Column total
Overall accuracy 0.52
Kappa 0.48

Table 8. Error matrix for accuracy assessment of LULC classification using random forest
(Leeuwen et al. [48]).

LULC Deep Water Shallow
Water Urban Bare

Soil
Agricultural
Land Grassland Forest Cloud Sum

Deep
water 1067 1 0 0 0 0 0 0 1068
Shallow
water 0 291 1 0 0 0 0 0 292

Urban 8 0 3045 0 15 0 44 0 3112
Bare
soil 2 0 0 2971 0 0 0 0 2973
Agricultural
land 32 0 160 0 1689 0 0 0 1881

Grassland 37 0 157 0 29 624 0 0 847
Forest 44 0 251 0 0 0 1373 0 1668
Cloud 0 0 3 0 0 0 0 1582 1585
Sum 1190 292 3617 2971 1733 624 1417 1582 13,426
Overall
accuracy 0.94
Kappa 0.93

Table 9. Error matrix for accuracy assessment of LULC classification using support vector machine
(Leeuwen et al. [48]).

LULC Deep Water Shallow
Water Urban Bare

Soil
Agricultural
Land Grassland Forest Cloud Sum

1066 1 0 0 0 0 1 0 1068
Shallow
water 0 289 1 0 0 1 1 0 292

Urban 0 0 3000 0 29 0 83 0 3112
Bare
soil 0 0 0 2973 0 0 0 0 2973

Agricultural
land 0 0 130 0 1751 0 0 0 1881

Grassland 0 0 71 0 103 673 0 0 847
Forest 0 0 21 0 0 1 1646 0 1668
Cloud 0 0 16 0 0 0 0 1569 1585
Sum 1066 290 3239 2973 1883 675 1731 1569 13,426
Overall
accuracy 0.97

Kappa 0.96
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Table 10. Error matrix for accuracy assessment of LULC classification using artificial neural network
(Leeuwen et al. [48]).

LULC Deep
Water

Shallow
Water Urban Bare

Soil
Agricultural
Land Grassland Forest Cloud Sum

Deep
water 1065 3 0 0 0 0 0 0 1068

Shallow
water 0 291 1 0 0 0 0 0 292

Urban 0 0 2953 3 69 0 87 0 3112
Bare
soil 0 0 0 2973 0 0 0 0 2973

Agricultural
land 0 0 110 0 1771 0 0 0 1881

Grassland 0 6 45 0 121 675 0 0 847
Forest 2 37 28 0 0 0 1601 0 1668
Cloud 0 0 3 0 0 0 0 1582 1585
Sum 1067 337 3140 2976 1961 675 1688 1582 13,426
Overall
accuracy 0.96

Kappa 0.95

3. Results

This section presents the results of using the QADI method for the accuracy assessment
of several LULC classifications, as discussed in the implementation section. Results of this
investigation show that in addition to previous defections (e.g., skewness sensitivity and
the paradoxes), the numeric Kappa index cannot determine the causes of disagreement
between classification maps and the reference maps. A summary of the results is presented
in Table 11 to provide a better comparison between the performance of the Kappa and
QADI indexes. This shows that Kappa provides a result for a skewed distribution dataset
that fails the common-sense test and confirms the work of various researchers who have
already criticized Kappa [45,49–51].

Table 11. Comparison of QADI and Kappa values for a balanced distribution and a skewed distribution.

Confusion Matrix with a Balanced Distribution Confusion Matrix with a Skewed Distribution

Kappa 0.73 Kappa −0.00068
QADI 0.2 QADI 0.2

As discussed in the implementation section, we examined the efficiency of the pro-
posed QADI method in several case studies. Figure 6 presents the QADI graph developed
based on the error matrix in Table 5 for a Sydney LULC classification case study. The
obtained Kappa for this error matrix was 0.96, which, as Altman [43] pointed out, can
be considered a very high and accurate classification. As indicated, the QADI value for
this classification is computed to be 0.024, which indicates a “very high confidence” in the
classification. Based on the QADI graph, the QADI point is located within the blue area
and thus expresses that the classification error is caused by incorrect labeling, which might
be caused by the classification algorithm.
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Figure 6. The QADI graph for the error matrix of the Sydney LULC classification.

The QADI graph for the OBIA-based LULC classification matrix provided in Table 6 [46]
is presented in Figure 7. The Kappa for this error matrix was 0.92271, and, based on the
graph, the QADI point with a value of 0.05927 is in the green area, which indicates a
“very high confidence” for the classification. Both indexes indicated the classification to
be efficient based on the Altman [43] scale. In addition, the QADI was also able to deduce
the cause of the classification error to be incorrect labeling. Figure 8 presents the QADI
graph for the error matrix in Table 7 [47]. The Kappa value for this matrix is 0.48, and
the computed QADI value is 0.45905 and lies within the red area, which indicates a very
low confidence. Based on the QADI result indicating the labeling error as the cause of
the low accuracy, the user could improve the accuracy by applying efficient classification
algorithms. As previously indicated, we also used the accuracy assessment results for
LULC classification based on the three machine learning techniques of RF, SVM and ANN
previously published by Leeuwen et al. [48]. Figures 9–11 depict the QADI values for the
error matrices for the accuracy assessments of LULC classifications computed to be 0.05817,
0.03302, and 0.03792, respectively, all of which lie within the green area and thus indicate a
very high confidence.

Figure 7. The QADI graph for the error matrix of the OBIA-based LULC classification (Table 6) by
Naboureh et al. [46].
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Figure 8. The QADI graph for the error matrix for Table 7 developed by Rousset et al. [47].

Figure 9. The QADI graph for the error matrix of LULC classification based on RF, (Table 8) developed
by Leeuwen et al. [48].

Figure 10. The QADI graph for the error matrix of LULC classification based on SVM (Table 9)
developed by Leeuwen et al. [48].
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Figure 11. The QADI graph forthe error matrix of LULC classification based on ANN (Table 10)
developed by Leeuwen et al. [48].

4. Discussion
4.1. Kappa Index and Issues

In terms of the accuracy assessment of thematic maps derived from remote sensing
data, when two or more raters that are equally skilled categorize the same observations or
objects into specific and separate pre-defined classes, there is a keen interest in knowing
the level of agreement between a classified map and a reference map or between different
classifications. As state of art, the main objective of this research was to develop and
propose an alternative method to the Kappa index for accuracy assessment. Results of
implementation in several experiments indicate that the QADI is an effective index to
investigate the accuracy of thematic and classified maps. According to Ye et al. [52], a
literature review shows that Kappa has been used in at least 40% of the remote sensing-
based published papers between 2003 and 2017. Despite the popularity of Kappa, the
results acknowledged that Kappa, due to its statistical orientation, is prone to uncertainty
in decisions and may not be able to efficiently evaluate the accuracy of thematic maps.
Pontius and Millones [38] and Foody [31] demonstrate why Kappa is a poor statistic for
accuracy assessment regardless of whether the confusion matrix is derived from OBIA
or some other categorization. Kappa compares the measured accuracy to a sometimes
deceptive and often irrelevant random accuracy baseline, especially when dealing with a
skewed matrix, as represented in Table 3 and Figure 3. Because random categorization is
usually not an alternative approach for creating the map, a comparison to random accuracy
is usually meaningless. Even if random categorization were important, Kappa calculates
random accuracy incorrectly. Technically, a totally random classification would yield a
correct proportion equal to one divided by the number of categories [19], which is not the
Kappa baseline.

Furthermore, Kappa muddles quantity and allocation disagreements in a way that
makes interpretation difficult [14,38,52]. Values that span the full range of widely used
interpretation scales, indicating a level of agreement that equates to that estimated to
arise from chance alone all the way through to nearly perfect agreement, can be obtained
from classifications that meet demanding accuracy targets [31]. Thus, the error measures
obtained from the confusion matrix will not represent the map attributes if the class
proportions in the confusion matrix fail to represent the actual landscape proportions. If
testing samples are created using an entirely random sample, the proportion of samples in
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each class will provide an unbiased estimate of the map’s characteristic attributes. However,
the analytic approach will be different if alternative sampling methods, such as stratified
random sampling, are used [18].

4.2. Significance of QADI

Recent progress in earth observation and remote sensing technologies produced satel-
lite images with improved spatial, spectral, and temporal resolutions, which accordingly
increased the demands of efferent data-driven approaches [53–56]. In this context, a number
of machine learning and particularly deep learning methods were developed and proposed
over the past decade [13]. Despite developing a variety of classification methods (e.g.,
machine learning, deep learning, etc.), the accuracy assessment methods are still under-
developed, and it remains an area of active research, and disagreements on key accuracy
assessment issues remain. Most derived measures, including the overall accuracy, are
generated from the confusion matrix. The common purpose of these accuracy measures is
to describe the correctness of maps that are intended to reflect real landscapes. In addition,
the traditional accuracy assessment methods such as Kappa were criticized by the remote
sensing community, and their efficiency for the navel data-driven approaches is still a
question of interest. Thus, our proposed QADI index can be employed for data-driven
approaches such as OBIA, pixel-based, machine learning, etc. In this context, we examined
its efficiency by analyzing the accuracy of different data-driven approaches, including
OBIA (Tables 5 and 6), deep learning (Table 7), random forest (Table 8), support vector
machine (Table 9), and artificial neural network (Table 10). The obtained results indicated
the capability of QADI as an efficient accuracy assessment for a variety of data-driven
approaches. In addition, the advantage of QADI is that this method resolves the issues of
the traditional Kappa index by means of a numeric and graphic representation of accuracy.

The numeric values of the QADI index range from 0 to 1, whereby lower QADI
values represent a higher accuracy. QADI measures the number of disagreements between
the reference map and the classified map. Technically, disagreement depends on two
factors, namely quantity disagreement (Q) and allocation disagreement (A). Aside from
representing a numeric index, QADI can also be used to illustrate the classification accuracy
graphically. The graphical representation of QADI depicts which factors have a stronger
contribution to the disagreement and uncertainty of the results. The proposed QADI also
provides the statement for the obtained QADI value. The graphical QADI representation
can be used to further investigate and thus improve the methods and algorithms that
are employed for image classification. The results clearly indicate that the QADI index
is not sensitive to the variety of distribution in the confusion matrix and does not allow
the variety in the confusion matrix to impact the results. Especially in OBIA, QADI leads
to an improvement of the rule-sets that are applied for image classification. This specific
suitability of QADI for OBIA is based on the advantage that QADI can be applied to
determine “how and to what extent quantity or labeling errors may occur when applying
each rule-set or classification algorithm to an image”. Furthermore, QADI solves some
problematic paradoxes faced by the Kappa index. Especially skewed distributions that
cause irregular Kappa values are treated in a more precise manner by QADI.

5. Conclusions

Remote sensing has become a critical technology for environmental monitoring and
application. Based on recent progress in earth observation technologies and the availability
of a variety of improved satellite images, data-driven methods (e.g., Machine learning,
deep learning, etc.) have been proposed in the remote sensing domain. The Kappa index is
popular due to its availability in image processing programs and its easy implementation.
Since the accuracy assessment is a critical step for validating the thematic maps derived
from remote sensing, and the issues associated with the traditional Kappa method have
already been demonstrated, introducing the new and effective QADI method is a signif-
icant contribution to the domain of remote sensing sciences. The results of this research
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demonstrated that the QADI index could be employed as an efficient alternative to Kappa.
Because of the functionality and efficiency of this method, we intend to publish the devel-
oped method and its implementation toolbox as an open-source toolbox to support future
studies. We also share the toolbox and codes with image processing software companies
(e.g., eCognation, Erdas, Envi) for future extension of the accuracy assessment methods
in most applied software. We consider this to be progressive research furthering the field
of remote sensing. Considering the increase in remote sensing and its applications in
different fields and the availability of different data-driven approaches, the proposed QADI
will benefit the remote sensing community as a novel state-of-the-art accuracy assessment
method. It is very important to mention this point that QADI has been developed to work
on error matrixes and, therefore, it is not dependent on methodology for the classification of
images. In fact, any method or algorithm such as OBIA, pixel-based, machine learning, or
deep learning methodology that has the capability to classify satellite images and produce
a confusion matrix (error matrix) may be analyzed by QADI much more efficiently. As
state of the art, we conclude that the results of this research are of great importance from
a methodological perspective for any validation and accuracy assessment task and will
significantly contribute to progressing the state of research in remote sensing itself and in its
role as a cross-cutting interdisciplinary field. Based on the results of this research and our
early studies for developing a navel methodology for accuracy assessment [17], our future
research will focus on integrating the QADI with spatial uncertainty analysis methods such
as Dempster–Shafer Theory to improve the efficiency of QADI as outstanding accuracy
assessment for remote sensing. We conclude that the proposed QADI can be employed as a
base of accuracy assessment method in remote sensing.
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