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Domain-specific SoCs (DSSoCs) are an attractive solution for domains with extremely stringent power, performance, and area

constraints. However, DSSoCs suffer from two fundamental complexities. On the one hand, their many specialized hardware

blocks result in complex systems and thus high development effort. On the other hand, their many system knobs expand

the complexity of design space, making the search for the optimal design difficult. Thus to reach prevalence, taming such

complexities is necessary. To address these challenges, in this work, we identify the necessary features of an early-stage design

space exploration (DSE) framework that targets the complex design space of DSSoCs and provide an instance of one such

framework that we refer to as FARSI. FARSI provides an agile system-level simulator with speed up and accuracy of 8,400×

and 98.5% compared to Synopsys Platform Architect. FARSI also provides an efficient exploration heuristic and achieves up to

62× and 35× improvement in convergence time compared to the classic simulated annealing (SA) and modern Multi-Objective

Optimistic Search (MOOS). This is done by augmenting SA with architectural reasoning such as locality exploitation and

bottleneck relaxation. Furthermore, we embed various co-design capabilities and show that, on average, they have a 32% impact

on the convergence rate. Finally, we demonstrate that using development-cost-aware policies can lower the system complexity,

both in terms of the component count and variation by as much as 60% and 82% (e,g., for Network-on-a-Chip subsystem),

respectively.
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Techniques.
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Fig. 1. DSE components need the characteristics shown in green to tame the DSSoC design space complexities.

We introduce FARSI, an early-stage DSE framework with those characteristics.

CCS Concepts: • Computer systems organization→ System on a chip; System on a chip.

1 INTRODUCTION

With the end of Moore’s law, general-purpose processors do not provide a path forward for domains with strin-

gent power/performance/area constraints. This is due to the performance and energy inefficiencies of these

systems/processors, such as the high instruction fetch and decode overhead. Domain-specific SoCs (DSSoCs) are

a sound alternative solution. These are SoCs that use domain-specialized hardware blocks to keep the computa-

tion/communication fast and efficient. Consequently, they provide the performance and energy scalability required

for highly constraints domains.

DSSoC Design and Development Challenges: Although efficient, the development of DSSoCs suffers from

two sources of complexities, namely system, and design space complexity. These systems suffer from “system

complexity” and thus demand high development efforts to design. This complexity is driven by the number and the

variation (heterogeneity) of the processing elements and the intricate topological structure connecting them. From

the compute perspective, increasingly customized accelerators accompany general-purpose processors; from the

communication perspective, both the Network-on-a-Chip (NoC) and memory subsystems see a complexity rise to

keep the data local and the movement low energy [75]. DSSoCs also suffer from “design space complexity”, as

the sheer number of design knobs per component dramatically expands the design space making the search for

the optimal design difficult. For example, a simple system with five simple workloads and six total knobs (e.g.,

frequency, bus width, accelerator hardening knobs) totals over a million design points. Naive brute force sweeps

are infeasible for the design space exploration of DSSoCs.

To manage the system and design space complexities, we need a design space exploration (DSE) technique

that is agile/efficient to navigate the space. DSEs typically consist of two components, a simulator (Figure 1,

top left) to capture the design behavior and an exploration heuristic (Figure 1, bottom left) to navigate the

design space efficiently. To this end, we provide an efficient early-stage (pre-synthesis) DSE, called FARSI,

that contains an agile simulator and efficient heuristic targeting DSSoCs complexity. Our work is open-sourced:

https://github.com/facebookresearch/Project_FARSI.

DSSoC Simulation Requirements: DSSoC simulators must estimate system-level dynamics since profiling

components in isolation cannot accurately measure their system-level impact. Furthermore, these simulators must

be agile to enable sufficient coverage of the vast design space. Many state-of-the-art simulators either focus on

single components, e.g., accelerators [73, 74] and memory [67], or the one with system wide focus do not provide

sufficient agility [76], or accuracy [34]. In contrast, FARSI’s system-level simulator captures the complexity of
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accelerator-rich systems. It also achieves high agility/accuracy by combining analytical models’ speed and the

phase-driven simulation’s accuracy. Our analytical models expand roofline-based Gables [34], and our phase-driven

simulation uses the “phase” concept, the longest duration with a fixed system bottleneck. A phase can contain many

transactions, thus giving us higher agility compared to state-of-the-art transactional models.

DSSoC Heuristic Requirements: DSSoC heuristics must have a host of features (Figure 1, bottom right, green).

These heuristics need to be “domain-aware” to exploit workload-specific opportunities like loop-level parallelism.

They need to apply “architectural reasoning” to identify and relax system bottlenecks and efficiently prune the

design space. They need to apply co-design to optimize across boundaries such as workloads/design stages to

accelerate convergence. Finally, they need to be “development cost-aware” to keep system complexity and thus

the development effort low. However, state-of-the-art either lacks said features, only contains a subset of them or

applies them to limited sub-system scope. For example, [30, 63] lack architectural reasoning, and [91] only applies

them to the NoC design. [68, 82] only co-design across a subset of design stages. [18, 78] only targets fabrication

cost instead of development cost, and [62] only reduces the processor’s development cost.

FARSI exploits architectural reasoning and co-design and further applies them at the system-wide level to

address the said shortcoming. FARSI uses architectural insights to find system bottlenecks and exploits parallelism

or locality to relax them. This approach improves the convergence rate by quickly finding and navigating toward

high potential neighboring designs (Section 4.3.2). FARSI also uses co-design across multiple design vectors,

specifically (1) across design stages (topology generation, allocation, and mapping), (2) workloads, (3) metrics,

and (4) computation-communication. Holistically co-designing across boundaries such as workloads boundaries

improves the convergence rate (Section 4.3.3). Finally, FARSI deploys a development-aware heuristic by prioritizing

low development-cost optimizations, which in turn lowers the system complexity (Section 5.1).

Evaluation: FARSI’s framework is general and can be applied to any domain without modifications. Without the

loss of generality, we evaluate FARSI for the augmented reality (AR) domain as it is a great candidate for DSSoC

design. On the one hand, AR’s tight budgets require a host of high-efficiency specialized hardware units [37]. On

the other hand, its diverse sub-domains, including video, graphics, computer vision, and audio, seek holistic designs

that go beyond each sub-domain.

We validate FARSI simulator’s fidelity against Synopsys’ Platform Architect [66], an industry-strength early-

stage SoC simulator, for over 250 designs of different complexities and achieve an average speedup of 8,400×

at the accuracy of 98.5%. In addition, we quantify our simulator’s error sensitivity and speedup across multiple

software/hardware knobs.

We compare FARSI’s heuristic against the classic simulated annealing (SA) and more modern Multi-Objective

Optimistic Search (MOOS) [16] and achieve up to 62× and 35× speedup, respectively. We also evaluate FARSI’s

efficiency for other metrics such as Quality Gain and Pareto Hyper Volume and demonstrate the impact of

architectural awareness and various co-design vectors.

Finally, we provide two case studies demonstrating FARSI’s capabilities. First, we show how development-

awareness lowers the design complexity by decreasing the number and variation of components when system

budgets such as latency are relaxed. Second, we compare FARSI with the divide and conquer approach that is

commonly used to manage complexity, reveal its problems, and show how FARSI mitigates them by 56% and 52%

for power and performance, respectively.

In short, FARSI reveals a methodology for efficiently managing the system and the search space complexity of

DSSoCs. Our major contributions are outlined as follows:

• We provide the first Gables-based [34] characterization of a host of AR workloads from three different AR

application primitives—audio decoding [37], CAVA [? ], and edge detection [47] (Section 4.1 and Appendix).

• We present a hybrid estimation methodology that combines analytical models and phase-driven simulation

and can provide both the agility (8,400× speed up) and the accuracy (98.5%) much needed for DSSoCs. Our

ACM Trans. Embedd. Comput. Syst.



4 • Boroujerdian et al.

simulator lowers the convergence time from (estimated) 3 years to 3 hours compared to Synopsys Platform

Architect (Section 4.2).

• We show how architectural reasoning (e.g., locality exploitation or bottleneck relaxation) and co-design

can improve the convergence time of classic search heuristics such as simulated annealing and modern

data-driven ones such as MOOS (Section 4.3).

• We present a case for FARSI and show how development-aware policies (e.g., prioritizing incremental

improvements) can exploit relaxed budgets and lower the final system complexity, both in terms of component

counts and variations by more than 80% (Section 5).

2 RELATED WORKS

This section presents an overview of the prior work in the Design Space Exploration (DSE) landscape. DSEs

have two components, a simulator and an exploration heuristic. We provide related work for each component and

further detail FARSI’s solution to address their shortcomings.

2.1 Simulators

Simulators targeting DSSoCs need to be agile and accurate. Here we detail related simulators and their suitability

for DSSoCs and present explanations of how FARSI differs and improves upon prior art.

Cycle-accurate: Cycle-accurate simulators model components at a very low-level [8, 9] whereas FARSI uses

high-level analytical+phase-driven models. Although cycle-accurate simulators offer higher accuracy, their extreme

low agility is not suitable for DSSoCs.

Trace-driven: They address the cycle-accurate model’s lack of agility by predicting the performance of the

system using traces of the program. State-of-the-art trace-driven simulators such as [7, 44, 67, 73, 74] only focus

on individual components, such as accelerators [44, 73, 74] or memory [7, 67]. In contrast, as DSSoCs demand,

FARSI models the entire SOC’s system-level dynamics. Although works such as [73, 74] are later augmented to

enable system-level modeling, they suffer from non-agile cycle-level simulation.

Transaction-level (TLM): They lower the modeling fidelity from individual communication signals to transac-

tions. This reduces the synchronization points, lowers simulation time, and thus renders them ideal for early-stage

SoC analysis [10, 66, 72]. Instead of using transactions, FARSI relies on the concept of “phase”, the longest

duration with a fixed system bottleneck. A phase can contain many transactions, thus giving FARSI higher agility.

Furthermore, unlike TLM-based simulators, FARSI combines event-driven simulators with analytical models to

gain further agility.

Analytical modeling: They use mathematical models to capture the system behavior. Works such as [34] and

roofline [87] use bottleneck analysis, others such as ETP [12], GPGPUAn [77] and logCA [4] use performance

prediction to capture the execution time, and [5, 54] deploy a hybrid analytical model/iterative algorithm to improve

their estimation fidelity. Relying solely on mathematical models lowers their fidelity. Furthermore, the static nature

of these models fails to capture complex SoCs’ behavior, such as the data flow of a complex task graph. To improve

on them, FARSI augments these analytical models with a phase-driven simulator to capture said complexities.

2.2 DSE Optimization strategies

Heuristics targeting DSSoC needs to be equipped with the following features to efficiently navigate the design

space complexity and lower the system complexity.

Co-design Across System Components, Design Stages, and Workloads: Design space exploration of DSSoCs

involves multiple optimizations across system components, workloads, and design stages (e.g., topology generation,

allocation, and mapping), all impacting the exploration convergence (Section 4.3.3). However, state-of-the-art

solutions focus on a subset of these problems. For example, [38] only targets optimization of multi-core processors,

[22] customizes out-of-order, and [6] customizes VLIW processors, [15] targets memory, and [16, 42] explore NoC

ACM Trans. Embedd. Comput. Syst.
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design. In contrast, FARSI takes a holistic system view, optimizing all components depending on system needs. For

example, if a design suffers from memory contention, it exploits task re-mapping to reduce the traffic, while for

systems bottlenecked by processors, it swaps general-purpose cores with accelerators.

Other works that take a holistic view similar to FARSI only target a subset of DSSoC’s design stages. DSSoCs

design stages include (1) system topology generation (also known as architectural template), (2) hardware al-

location/customization, and (3) task to hardware mapping/scheduling. A DSSoC DSE must conduct all these

steps and further exploit the co-design opportunities across them. Many solutions target one stage, for example

[21, 36, 39, 49, 61, 71] target mapping and [43, 46, 53, 69, 81, 84] target scheduling/resource management. Oth-

ers prior works combine a subset of these stages. [51, 68, 82] combine mapping and allocation, and [5] combine

scheduling and allocation, ignoring system topology generations. [26] target all said stages similar to FARSI;

however, they do them sequentially one after another and thus missing on co-optimization across them. In contrast,

we simultaneously exploit co-design across all three stages. [40, 52] most resemble FARSI as they conduct all three

stages simultaneously; however, they lack multi-workload considerations, and furthermore, their heuristics, i.e.,

genetic algorithms and ILPs, lack architectural reasoning, which, as detailed later, lowers their convergence rate.

Please note that the current version of FARSI only deploys a first come, first serve scheduling algorithm, which we

plan to augment in the future work using the more advanced list and table-based schedulers provided in [5, 84].

Other works capture domain-specific designs that run multiple concurrent applications and apply cross-workload

optimizations. [90] extracts functional and structural similarities among applications, and [86] determines applica-

tion combinations that improve the system performance. Although they exploit cross-workload opportunities, both

said works only focus on the mapping stage, and thus, in contrast to FARSI, they can not exploit cross-design-stage

opportunities.

Architectural Reasoning: SoC DSE should use architectural insights such as bottleneck relaxation and par-

allelism/locality exploitation instead of blind exploration to accelerate the convergence. Various heuristics have

been used for SOC DSE such as simulated annealing [14, 19], integer linear programming [30, 60], particle swarm

[63], genetic algorithms [17, 64], and reinforcement learning [46]; However, these heuristics’ generality, i.e., lack

of understanding of the design space, degrades their convergence rate. Solutions have been proposed to improve

said heuristics with domain knowledge/reasoning. [25] uses Fuzzy logic for efficient space pruning, and [91]

augment GA’s mutation/cross-over with domain knowledge to increase solution quality. However, both of these

solutions only target a more limited single component optimization of processor and NoC design, respectively.

Others like [70] augments GA with special mutations according to task-hardware affinity, and [83] filter out sym-

metrical designs in GA to prune the space efficiently. However, both works focus on a more limited single-stage

(mapping) optimization. In contrast, FARSI’s architectural reasoning is applied across all three design stages for all

components.

Development Awareness: Economic thinking has been deployed within the architecture community, and many

works focus on minimizing silicon fabrication cost. [78] considers component cost, [18] considers 3D IC cost,

and [13] shows the financial risk of process uncertainties on chip seller’s profit. Others such as [11, 31, 32] focus

on minimizing the data centers operating (electricity) cost. None of these target “development costs” and hence,

complement FARSI.

Other works have modeled the development cost. [23] uses VHDL line of code, [2] uses the number of in-

dependent paths in the control data flow graph, [24] uses internal I/O signals and component count and [3] use

engineering and new protocol cost as development cost. These works focus on modeling and, thus, in contrast to

FARSI, do not provide DSE heuristics for cost reduction. [62] minimize the development cost and is the closest

work to us. However, they target a more limited only processor optimization problem and thus do not address

development reduction for other system components. In contrast, FARSI targets system-wide development cost

reduction necessary for DSSoCs by lowering the heterogeneity and customization/allocation among all components.

ACM Trans. Embedd. Comput. Syst.
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3 METHODOLOGY

In this section, we detail FARSI DSE’s methodology. FARSI is comprised of four stages (Figure 2), (1) database

generation, (2) system simulation, (3) system generation, and (4) system selection. The first stage characterizes our

workloads, collects (in isolation) IP performance/power/area (PPA) estimates, and populates our software/hardware

database. This database is then continuously queried by our system simulator, system generator, and system selector

as they work together to generate new systems and improve them. This process iteratively continues until the

design’s budgets (i.e., performance, power, and area) are met. FARSI’s main contribution is in the last three stages

as prior work such as [47, 74, 89] sufficiently addresses the first.

3.1 Database Generation

This stage populates a database with the characteristics of the domain’s workloads and the PPA estimates of

individual IPs. Both of these components are then used to estimate the system behavior.

Workload Analysis (Software Database): This involves generating a task dependency graph (TDG) shown in

Figure 6. A task is the smallest unit of optimization and is typically selected from the computationally intensive

functions since they significantly impact the system behavior. Selecting functions to build TDG is highly important

as they determine the design space knobs. For example, separating functions that can run concurrently in different

tasks exposes the workload parallelism, while fusing serial functions into one task lowers data movement and thus

energy consumption. Note that such optimal task selection and automated task dependency identification is outside

of this work’s scope, and thus, for these efforts, we rely on application developers’ insights. Concretely, we have

asked ILLIXR [37] (the benchmark used in this paper) developers to identify important tasks and further specify

the dependency among them.

Once the tasks are selected and the TDG is built, TDG’s nodes are augmented with computational characteristics

(e.g., loop iteration and instruction counts), while edges augmented with communication data movement of tasks.

For this effort, we profile our tasks using existing tools such as perf [57], AccelSeeker [89] and HPVM [47].

IP Analysis (Hardware Database): This involves PPA estimation of each task for different hardware mappings

(e.g., to general-purpose processors or specialized accelerators). We build on top of an existing toolset called

AccelSeeker [89] and collect PPA estimates for each mapping. Note that other pre-RTL tools such as Aladdin [74,

76] also can be deployed for this stage. We augment our database with many memory and NoC widths and

frequencies.
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Fig. 2. FARSI’s end-to-end methodology.
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Variable Type Variable Description

Hardware

Peak bandwidth (bytes/sec)

           ,    Actual memory, NoC bandwidth (bytes/sec)

Peak performance of CPU (ops/sec)

           , Actual CPU, IP performance (ops/sec)

Peak acceleration (unitless)

Number of links for a NoC (unitless)

Software

Task

Task’s work for an IP (ops)

Task’s work for CPU (ops)

Total task’s data transferred (bytes)

Burst size for a task (bytes)

Completion time of task T (sec)

Timing Duration of a phase (sec)

Bpeak

PCPU_peak

Apeak

fCPU

BMem BNoC

PCPU PIP

fIP

ΦDuration

L
T

D
Burst

CT

Fig. 3. Analytical model parameters.

3.2 System Simulation

This stage raises the view to the system level and enables holistic analysis. System view is necessary since profiling

components in isolation cannot accurately measure their overall impact within complex and accelerator-rich

DSSoCs. This stage considers computation (general-purpose processors and accelerators) and communication IPs

(NoCs and Memory) as the lowest abstraction unit.

We deploy a hybrid estimation methodology combining analytical models and a lightweight phase-driven

simulator. The former enables agile traversal and thus an extensive design space coverage. The latter improves the

simulation fidelity by capturing the system dynamics. Here we discuss each.

Software Analytical Models: We build on top of Gables SoC-level roofline models [34]. These models, along

with other roofline-based models, have been gaining traction for various DSEs such as CNN design [65] and

cyber-physical co-design [48]. Gables combine bottleneck analysis and high-level computational/communication

estimates to capture the system performance. Their simplicity yet capability to capture the system-level behavior

makes them a prime candidate for DSSoCs. We augment Gables with the following improvements:

• Finer Computation/Communication Granularity: We lower the smallest execution unit from workload to

task. This captures the workload’s lower-level compute, memory, and communication characteristics and

further provides extra within-workload optimization opportunities. Also, we introduce a communication

burst size parameter that captures NoC congestion behavior more accurately.

• Task Dependencies: The Gables model assumes parallel execution of all workloads/tasks for simplicity. We

use TDGs to model task-level parallelism (TaLP) accurately.

• Computation/Communication Breakdown: We augment Gables with loop iteration count and thus loop level

parallelism (LLP). We also break down � into read and write operational intensity (����� , ������ ) as modern

routers/memories support separate channels for each.

Hardware Analytical Models: Gabels models hardware with peak performance (����� ) and bandwidth (�). It

assumes a single NoC with a single channel. Our improvements include:

• Computation/Communication Resource Sharing: We integrate CPU’s multi-tasking models (pre-emptive

scheduling), and multi-channel routers for master-slave combinations.

• Topology Improvement: “many NoC” topology systems are used to improve congestion/locality.

Deploying Analytical Models: Our analytical models estimate each task’s completion time by calculating its

hardware blocks’ processing rates, i.e., instruction per second for processors and bandwidth for memory/NoC.

These rates are detailed in equations 1 through 4 with � and ����� denote a task and its burst size, �����_��� and

ACM Trans. Embedd. Comput. Syst.
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���� denote a general-purpose processor’s peak and actual performance, ����� and ��� denote peak accelerator

speedup and its actual performance, �����_��� , �����_��� , ���� , ���� denote memory and NoC peak and actual

bandwidth, ���� denotes number of initiators in a NoC, and | | denotes the cardinality (e.g., |� | denote number of

running tasks).

To calculate the processing rate of CPU (Eq. 1), and IP (Eq. 2) per task, their peak rate is divided by the number

of tasks running on them. This is because preemptive scheduling of CPU/IP will allocate the rate equally among the

tasks. To calculate the NoC’s bandwidth (Eq. 3), its peak bandwidth is divided among the number of initiators (e.g.,

processors). This is because NoC’s equal arbitration allocates the bandwidth equally among initiators.1 Furthermore,

for an initiator that runs concurrent tasks, each task’s bandwidth is scaled proportionally to its burst size.2 Memory

bandwidth modeling follow NoCs (Eq. 4).

���� =

�����_���

|� |
(
���

���
) (1) ��� =

����� ∗ �����_���

|� |
(
���

���
) (2)

���� =

�����_���

( ������∑
� �����

) ∗ |���� |
(
����

���
) (3) ���� =

�����_���

( ������∑
� �����

)
(
����

���
) (4)

�� = max(
���

���
,

�

����
,

�

����
, ...) (���) (5) Φ�������� = min

�
(��� ) (���) (6)

Once each block’s processing rate per task is determined, the completion time of the task is determined by

its slowest block (Equation 5). � and �, and ��� denote a task, its completion time, and its work for an IP. Each

component in the tuple calculates the execution time of a different block where each block’s work (e.g., data or

� for memory) is divided by its execution rate (e.g., bandwidth for memory). The maximum function finds the

slowest of blocks, and the number and type of its inputs are determined by the blocks hosting the task.

Phase-driven Simulation: Gables is a static model that cannot accurately capture the dynamic flow of com-

plicated task graphs. So we wrap our analytical models with a lightweight phase-driven simulation. A phase is a

flexible time quantum with which we advance the simulation. It specifies the longest interval that the system behav-

ior stays constant; Since our models use bottleneck analysis to estimate the system behavior, a new phase emerges

when any task’s hardware bottleneck either shifts or its processing rate changes. Such a change is triggered when

new tasks are scheduled in or old ones scheduled out, resulting in an increase or relaxation of NoC/Memory/PEs

pressure (Figure 4b). A phase duration is determined by the current fastest running task and thus estimated by the

minimum of all tasks’ completion times (Equation 6). Φ�������� , and �� � denote the phase duration and the task i’s

completion time.

The phase concept is fundamentally different from transactional models, whose agility has made them a prime

candidate for DSEs. For transactional models, the simulation advances one transaction at a time, thus scaling

according to the transaction count. In contrast, a phase can contain many transactions if the bottleneck stays

constant across many transactions, allowing us to tick through them quickly. This flexibility of phase enables agility

when moving through many transactions at once and otherwise, provides accuracy when the bottleneck shifts a few

transactions at a time. We quantify these characteristics later in detail.

Hybrid Estimation: Our hybrid approach estimates the SOC performance by combining the said analytical

models and phase-driven simulation as shown in Figure 4a. Blue color boxes denote stages where analytical models

are deployed, while red boxes denote stages where the phase-driven simulator moves the simulation forward. At

the beginning of each phase, the simulator schedules all the tasks whose dependencies are satisfied.3 Then, our

1We assume a star topology if multiple initiators talk to the same target, otherwise a point to point one.
2Our models can be easily extended for cooperative scheduling and non-equal arbitration; Details are left out for brevity.
3Note that for our simulated designs, task to hardware mapping is determined at design time and provided to the simulator as an input. Thus,

scheduling involves only determining the time to run the task, not the hardware block to run it on.
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Fig. 4. FARSI’s simulation. It is based on the concept of phase (right) where each tick moves the simulation forward

one phase. Analytical models shown in blue boxes estimate the phase duration/task progression rate and red-boxes

schedule out/in old/new phases.

analytical models determine each task’s completion time and use it to calculate the current phase duration (stages 1,

2, and 3). Once said duration is calculated, the simulator moves the simulation tick to the end of the phase, updates

each task’s progress according to the duration (stage 4), schedules out the completed task (stage 5), and schedules

in ready tasks (stage 6). Currently, stage 6 models an OS with a first-ready, first-serve scheduling policy with tasks

being scheduled upon being ready. It further models preemptive scheduling with equal time-sharing across tasks.

Other scheduling policies can be easily incorporated into this stage if needed.

Power/Area Modeling: For power and area of IPs, we use the verified AccelSeeker [89] estimations, and for

NoCs and memory, we have fully integrated CACTI [58] into FARSI.

3.3 Exploration Heuristic: System Generation

This stage exploits architectural insights to explore the design space. Without the loss of generality, we use

simulated annealing (SA) as the search heuristic base as this classic search is used in many DSEs [20, 41, 41, 50].4

We augment SA with various architectural insights. To explore the design space, we greedily generate a number

of designs’ neighbors (candidate designs in SA), simulate them and select the best one until the constraints are

met (Figure 2). A design’s neighbor, is a design whose mapping, allocation or topology has been incrementally

modified (Figure 5a). For example, designs B and C are design A’s neighbors as the former has an allocation change

(an extra IP) and the latter a mapping change (Task 2).

We generate neighbors by selecting a five-tuple, i.e., a Metric, a Direction, a Task, a Block, and an Optimization

Move to improve the said components.

Metric/Direction: To generate a neighbor, we target one metric per iteration (e.g., performance). We typically

pick the metric farthest from its budget as it contributes to the distance (to goal) the most. Note that this metric can

vary from iteration to iteration as we improve said metrics. Overall, FARSI currently targets performance, power,

4Note that we are not limited to SA, and our ideas can be deployed in other heuristics, e.g., Tabu Search [27].
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Fig. 5. Neighbour generation with “Optimization moves” supported in FARSI. Each move incrementally modifies the

design. We have provided a move for allocation/customization (Swap), topology generation (Fork/Join) and software

to hardware mapping (Migrate). PE = processing elements like CPU or accelerator (IP). Mem = Memory.

and area. In addition to the metric, we also target a direction to improve the metric with (e.g., decrease or increase

if we have overshot).

Task/Hardware Block: To generate a neighbor, we target a task/block to improve, typically the one causing the

highest distance to budget. For example, if targeting latency, the highest latency task and its block bottleneck are

selected.

Optimization Move: Move is an optimization on a task/block to improve a metric. FARSI supports high-level

optimizations such as hardware customization/allocation, topology generation, and software to hardware mapping

and provides a move primitive for each, concretely swap, fork/join, and migrate.

Swap: Impacts allocation and enables customization by replacing a hardware block with a more specialized one

(Figure 5b). For example, we replace an ARM core with an accelerator or a narrow bus with a wider one. Table 1 de-

tails our swap options. Note that the swap only incrementally modifies the original block (e.g., 100MHz→200MHz

instead of 100MHz→800MHz) to minimize the impact on competing metrics (e.g., performance vs. power).

Fork/Join: Impacts the topology by duplicating an existing block and migrating some of its tasks over (Figure 5c).

Duplication relaxes the block pressure, e.g., cutting down a NoC traffic and relaxing congestion. Join is the opposite

of fork.

Migrate: Modifies software to hardware mapping by migrating a task from one block to another (Figure 5d).

Migration improves data locality (moving data closer to where it is used), load balancing (mapping to an idling

processor), and relaxes buses/memory pressure (mapping to bus/memory with the lower congestion). Currently,

mapping is done statically.

Using Architectural Reasoning for Move Selection: FARSI’s exploration heuristic is equipped with architec-

tural reasoning, concretely the capability to apply parallelism, locality, and customization according to the system

needs to improve the convergence rate. For example, to improve power/performance, it automatically detects if

a task’s data is multiple hops away and chooses “migrate” to bring the data closer (spatial locality reasoning).
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Table 1. Swap types. PE=processing element, GPP=general purpose processors, Acc = accelerator.

Block

Type
Subtype

Freq

(MHz)

Bus Width

(Bytes)

Loop

Unrolling

PE GPP⇆Acc [100,...,800] N/A
According

to the task

NoC N/A [100, ,...,800] [4, ..., 256] -

Mem DRAM⇆SRAM [100,...,800] [4, ..., 256] -

Furthermore, to improve performance, it automatically recognizes if a block runs concurrent, parallel tasks and uses

“fork” or “migrate” to relax the pressure/congestion (parallelism reasoning). Alternatively, if the metric to optimize

is power, it uses “join” to “serialize” to improve power or reduce area. This automatic capability to reason about

system/targeted metric and applying appropriate optimizations improves the convergence rate and is necessary for

complex design spaces of DSSoCs.

At a high level, to select optimization moves (Algorithm 1), FARSI first applies architectural reasoning to find

moves that can improve the design (step I), prioritizes them according to their development cost (detailed in next

paragraph) (step II), and probabilistically samples and applies the move (step III). This approach improves the

random neighbor generation (or move selection) of SA and increases its convergence rate by more than an order of

magnitude (section 4.3.2). Note that said reasonings is not tied to a specific search heuristic, and although this work

applies them to simulated annealing, they can improve other heuristics’ convergence rate. Also, note that FARSI

users, i.e., system designers and architects, can easily extend said reasonings with their architectural insights to

improve FARSI’s intelligence.

Move Symmetry: Our optimization moves are symmetrical to enable backtracking and prevent the navigation

from getting stuck. For example, we can swap up followed by a swap down (e.g., first widen and then narrow the

bus), migrate back and forth, and join-in after forking-out.

Development-cost Awareness: Since highly customized SoCs are complex and thus financially costly to develop,

we embed various policies into our heuristic to keep the development-cost low:

• We introduce move-precedence to select low-effort moves over the expensive ones. For example, we prioritize

join over other moves as it reduces the hardware complexity by eliminating a hardware block. Furthermore,

we prioritize software moves (migrate) over the hardware ones (fork, swap) as software manipulation is

cheaper. Finally, within hardware moves, we prioritize fork over swap for processing elements as the former

only requires duplication, whereas the latter involves porting (or hardening), which is more expensive. For

memory and NoCs, the swap is prioritized if it does not increase the system heterogeneity, for example,

creating a system with NoCs of different Frequency. A snipped of our move precedence is shown in

move_precedence of Algorithm 1.

• FARSI starts with a very simple base design (one general-purpose processor, a NoC, and one DRAM bank)

and advances its complexity incrementally only if needed. Since every new allocation or customization

is costly (the former introduces new hardware and thus increases the development effort while the latter

contributes to the system heterogeneity), we only apply one move at a time and thus incrementally modify

the design. Furthermore, our moves are designed to only modify one knob at a time, e.g., migrate only one

task. Overall, this approach allows us to increase the complexity in small steps and only if the design has not

met the budget, thus keeping the development effort low.

We detail the impact of our development-aware policies in a case study (Section 5.1).
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Algorithm 1 Optimization move selection.

// Step I: Apply reasoning based on parallelism, locality and customization to find optimization moves that can

improve the design.

if������ = "latency" then

if ����� has parallel tasks then

������������_����� ← ["migrate", "fork"]

else

������������_����� ← ["swap", "fork_swap"]

if������ = "power" then

if task can run in parallel with other blocks’ tasks then

if ����� has no parallel tasks then

������������_����� ← ["migrate"]

else

������������_����� ← ["join"]

else

������������_����� ← ["swap", "fork_swap"]

if������ = "area" then

if ����� = "PE" then

������������_����� ← ["join", "swap"]

else

������������_����� ← ["migrate", "join", "swap"]

// Step II: Prioritize moves based on their development effort.

move_precedence: join > migrate > fork > swap > fork_swap

// Step III: Select moves.

����_�ℎ����← probabilistically choose from ������������_�����, based on����_���������� order

PS: fork_swap is simply a fork followed by swap, and is introduced to accelerate navigation.

3.4 Exploration Heuristic: System Selection

We select the best of the generated and simulated neighbors. Neighbors’ fitness is quantified using their design’s

(metric) normalized distance to budget with a dampening factor to the metrics already meeting the budget

(Equation 7). �, ���� , ���� and � denote, a metric, design value for the metric, budget value for that metric, and

dampening factor when the budget is met.

�������� �� ������ =
︁

�

� ∗
(���� − ����)

����
� ∈ {��� � �������, �����,����} (7)

If no improved designs are found, we inform the system generation stage to target the task/block with the next

highest distance (comparing to the last) in the next iteration. In addition, similar to SA, a standard Metropolis

acceptance criterion [55] is used to choose the sub-optimal designs. This criterion uses a probability value based on

temperature and distance to budget to sample a worse design. Temperature is dynamically lowered as the search

advances to tighten the exploration perimeter.
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4 EVALUATION AND RESULTS

This section sheds light on FARSI’s components’ fidelity and scalability. We start with our experimental setup

and simulation/heuristic baselines, detail our workload benchmarks, and finally quantify FARSI’s improvements

compared to our baselines.

Simulation Baseline and Experimental Setup: We validate our simulation framework against Synopsys

Platform Architect (PA) [66], a widely used industry-grade performance simulator. Like FARSI, PA’s approximately

timed (AT) mode targets agile/early-stage system-level estimation. For processors, PA uses a task-driven model with

the task’s cycle count acquired as an input parameter according to the processor mapping. It further uses first-ready,

first-served with preemptive/equal time-sharing scheduling. For NoCs and memories, PA uses TLM-2.0 based

AT models where system components communicate based on function calls with a payload instead of individual

signals [33]. This reduces the number of synchronization points and improves simulation agility.

Our fidelity studies examine designs generated for our representative workloads and synthetic ones. Concretely,

(1) we validate our simulator for 250 SoCs of different complexity for our representative workloads, namely Audio

Decoder, CAVA, and Edge Detection. These designs are generated by FARSI’s heuristic while converging to the

tight AR constraints. Their complexity range from 1 to 13 processing elements, 1 to 8 memory blocks, and NoCs

with 1 to 3 routers, with an execution latency ranging from 5 ms to 52 s (Table 3b). Then, (2) we conduct a series

of experiments using synthetic designs/workloads where we vary software/hardware knobs such as the number of

parallel tasks and routers in a NoC to dissect the cause of error further.

Heuristic Baselines and Experimental Setup: To measure FARSI’s heuristic’s agility, we compare it against

simulated annealing (SA) and Multi-Objective Optimistic Search (MOOS) [16]. SA’s greedy search generates

new design points at random and accepts them if they minimize the distance to the objectives or based on

Metropolis acceptance criterion [55]. We choose SA since it is a classic heuristic used in many hardware design

explorations [20, 41, 41, 50].

MOOS [16] is a modern heuristic that learns to find optimal starting points for its greedy search. Concretely, a

tree model is used to select an optimal starting point from a Pareto front. Then a local greedy search updates the

Pareto front and expands the set of starting points. These two steps repeat in a loop until convergence. Starting

points’ optimalities are measured based on their impact on Pareto front expansion (measured in Pareto Front

Hyper Volume [85]) and are maintained and continuously updated in a tree. We have selected this heuristic due

to its ability to learn and adapt to the search space. In addition, it has shown improvements over other Machine

learning-based algorithms such as MOO-STAGE [42].

For our heuristic comparison studies, we envision a system running all three workloads with performance, power,

and area budget according to [80], and [37] as shown in Table 3a. Concretely, [80] specifies the required power and

area of augmented reality glasses, and [37] provides workloads’ latency to meet AR application’s quality. Please

refer to the appendix (Section C) for further calculations associated with the budget specs.

All data are collected on a Xeon Skylake Machine with 2.00 GHz frequency, and PA’s time interval 10 µs (∼

1000-10000 cycles of our hardware blocks) for high accuracy.

4.1 Workloads

We evaluate FARSI for the Augmented Reality domain. However, note that FARSI’s methodology is general and

can be applied to other domains without modifications.

Augmented Reality (AR) Workloads: AR spans across many sub-domains and workloads. In this work, we

target the primitive workloads, i.e., audio and image processing, as they are present in almost any AR applications

[28, 29, 56]. Note that this work leaves out Facebook’s proprietary internal workloads and only resorts to open-

sourced libraries.
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Fig. 6. Our workloads’ task dependency graphs (TDGs).

Audio Decoder (Audio) [37] is used to playback the audio based on the user pose. Concretely, said pose, obtained

from the inertial measurement unit (IMU) integrator, is used to rotate and zoom the soundfield, which is then

mapped to available listeners.

CAVA simulates a configurable camera vision pipeline and is used to process raw images (pixels) from sensors

to feed the vision backend (e.g., a CNN). The default image signal processing (ISP) kernel is modeled after

Nikon-D7000 camera [1] and is developed by Harvard [? ].

Edge Detection (ED) [47], one of the key steps in image analysis and computer vision, processes the image and

finds sharp changes in brightness to capture significant events and changes in properties of the world.

Workload Characteristics: To characterize each workload’s execution flow, we split them into a set of tasks

(e.g., Tone Map task in CAVA workload) where a task is the smallest unit of simulation and is selected from the

workload’s functions. The execution dependency between the tasks is captured in the task dependency graph (TDG),

where each node specifies tasks and edges specify their dependencies. Figure 6 provides each workload’s TDG.

Audio has the most tasks (15), while Edge Detection has the least (6). In general, this distribution of tasks is in line

with several internal proprietary workloads.

To characterize the tasks, we use Gables [34]. For the first time, we provide a Gables profile of a set of AR

workloads. Gables is a set of abstract analytical models that captures high-level software computational and

communicational characteristics. Concretely, it models each task’s computation with its work (� = instruction

count) and its communication with operational intensity (� =operation count per memory access, which is split to

����� and ������ corresponding to read and write respectively). Table 2 quantifies each workload’s Gable relevant

variables with each value averaged over all the tasks of a workload. TaLP and LLP values quantify (Ta)sk (L)evel

and (L)oop (L)evel parallelism, respectively. The former quantifies the number of task combinations that can run in

parallel, and the latter quantifies the average number of independent loop iterations. As seen, Audio uses both loop

and task-level parallelism (highest TaLP among all), CAVA only uses loop-level parallelism, and Edge Detection

has task level and highest LLP. Edge Detection is also the most communication-intensive benchmark. The task by

task details for all workloads is in the appendix.

4.2 FARSI’s Simulator Evaluation and Analysis

We validate our simulator fidelity and speedup for 250 SoC designs of different complexity levels for our AR

workloads.

ACM Trans. Embedd. Comput. Syst.



FARSI: An Early-stage Design Space Exploration Framework to Tame the Domain-specific System-on-chip Complexity • 15

Table 2. Gables-based characteristics. K=kilo, M=million.

Workload Audio CAVA ED

� (M.ops) 13 24,252 1,098

(����� , ������ ) (ops/byte) (8, 12) (67K, 74K) (126, 1.23M)

Average Data

Movement (M.bytes)
0.19 0.33 7.01

Average LLP 2,392 151 1,365,376

Average TaLP 48 1 4

Overall Fidelity Results: Table 3b illustrates our simulation fidelity averaged over the said designs. We achieve

high accuracy of 98.5% on average with a low standard deviation of 2.5% compared to PA. This is due to our

hybrid methodology that deploys the phase concept to improve analytical models and capture system dynamics. To

dissect this error further, Figure 7a details the error scalability with respect to the quantity/type of hardware blocks.

Processors (PEs) and memory modules exhibit a minimal error (less than a percent) regardless of their count. We

believe this error is due to a lack of modeling certain features such as “moving between clock-domains.” NoCs,

however, seem to impact the error the most. Increasing the number of routers in the NoC to 3 can result in as much

as 5% error. Next, we investigate the cause of such high relative error.

NoC’s Error Studies: We use synthetic workloads/designs to investigate the NoC’s error systematically. We

target software/hardware knobs that impact the NoC’s behavior, collectively examining the system’s communication

boundedness (hardware + software knob), NoC size, hop count, hop latency (hardware knobs), and workload

parallelism (software knob) impact on the error. For the hardware studies, we keep the synthetic workload simple

with a fully serial task graph similar to CAVA, while for the workload parallelism studies, we examine more

complex graphs. Also, unless otherwise stated, our system is simple, containing one processor, NoC, and memory

module to isolate studying one variable at a time.

Communication-boundedness Impact: Since NoCs are communication blocks, we examine the impact of

communicationally bounded tasks, i.e., tasks bottlenecked by NoC/memory, and observe a direct relationship with

error. This study uses a serial task graph similar to CAVA (Fig. 6(b)) with 7 tasks and with task’s data movement

mimicking “Denoise” if communicationally bounded (∼500 KB) and “Scale” (∼50 KB) otherwise. Initially,

we force all the tasks to be computationally-bounded, i.e., to mimic Scale, and measure the simulation fidelity.

Incrementally, we increase the number of tasks that are communication-bounded in the workload by swapping

Scale tasks with Denoise, and measure the simulation fidelity. The heat map in Fig. 7b shows the impact on the error

with the y-axis denoting the percentage of the workload’s tasks that are communication-bounded. For example, the

second column (indicated with 30) has a workload where 30% of the tasks are communication bounded (i.e., mimic

Denoise) and 70% are computation bounded (i.e., mimic Scale). Increasing the communication boundedness from

Table 3. Workload’s budget and validation results.

(a) Workload’s budget (5nm node).

Workload Audio CAVA ED

Latency (ms) 21.0 34.0 34.0

Power (mW) 8.737

Area (mm2) 17.475

(b) Validation results.

Error 

(%)

Speed 

Up

Workload 

Execution 

Latency (s)

Avg Std Avg Min Max

1.5 2.5 8,400x 0.005 52
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Fig. 7. Error scalability with respect to various hardware/software knobs. All values in the heatmaps are percentage

error. Comm=communicatoin, Par=parallel, Ser=serial
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Fig. 8. System template for Hop/NoC studies. E.g., Task1 (T1) requires 4 hops while T2 needs 3.

0% to 100% (left to right) increases the error from .01% to 3.02% (first row) since more communication-bounded

tasks stress the NoCs longer, thus increasing the error. Next, we study this error’s root cause.

Hop Latency Impact: We examine and observe that NoC’s hop latency has a direct relationship with error

(Figure 7b). Hop latency is the propagation delay associated with a router within a NoC. As shown in the heatmap,

increasing hop latency from 1 to 4 (top to bottom) can increase the error from 3% to 11% (last column). This is

because current FARSI’s NoC models (Eq. 4) do not capture this variable; thus, the error increases with an increase

in variable value. Note that when communication boundedness is zero, i.e., the first column, the error is constant as

the NoC is not the bottleneck to impact the error.

Hop Count and NoC size Impact: We examine the impact of Hop count and observe a direct relationship with

error (Figure 7c). Hop count is the number of hops traversed by a task and depends on NoC size, number of routers

in a NoC, and task mapping. For example in the NoC system of Figure 8, Task1 (T1) traverses 4 hops due to its

mapping while T2 traverses 3. For Hop-NoC studies, we use a system template similar to Figure 8 while sweeping

the NoC size and hop counts independently. We also use a 7 task, fully communicationally bounded workloads,

to stress test the system. Increasing the number of hops from 1 to 4 (Figure 7c, top to bottom) increases the error

from 3% to 6.3% since the aforementioned lack of hop latency modeling accumulates per hop. Increasing the NoC

size for the same number of hops (left to right) does not increase the error. This establishes lack of hop latency

modeling as the main cause of the error. Note that we plan to investigate the cause behind the small error reduction

observed while increasing the NoC size.

Parallelism Impact: Finally, we examine the impact of workload parallelism and observe an inverse relationship

with error (Figure 7d). Template task graph of Figure 9a is used to vary parallelism while maintaining similarity

with our 3 representative workloads. Concretely, tasks can be added, (1) in parallel with node 2 (Figure 9b) to

achieve audio alike parallelism with a short hammock; (2) in serial with node 2 (Figure 9c) similar to high serialism

of CAVA, and (3) simultaneously in serial with node 1 and 2 (Figure 9d) similar to Edge Detection parallelism with

a longer hammock. We use a 4 hop scenario with fully communication-bounded tasks to stress test the system. The
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Fig. 9. Synthetic task graph templates for parallelism studies. ED= Edge Detection.

heat map of Figure 7d shows the results for audio style parallelism as we increase the number of parallel tasks (left

to right) and CAVA style serialism as we increase the number of serial tasks (top to bottom). Increasing the number

of parallel tasks and reducing the number of serial tasks reduces the error from 6.52% to 2.39. We postulate this is

because more parallelism or less serialism hides NoC latency as overlapping concurrent tasks hide each other’s

latency at the workload level. Edge detection style parallelism shows the same trend and is left out due to brevity.

Performance Speed up/Scalability: We achieve an average simulation speedup of 8,400× over Synopsys PA

(Table 3b). We owe this agility to our hybrid estimation methodology that combines analytical models and flexible

phase-based simulation. To further investigate our simulator speed, we measure its sensitivity with respect to the

number of blocks (system complexity), the number of tasks (workload complexity), and workload execution latency

(Figure 10).

We incur a small 3× slowdown for a 20× increase in the number of blocks (Figure 10a). More blocks increase

the analysis time required for bottleneck detection, thus magnifying the simulation time. For Synopsys PA, we do

not see a meaningful relationship as the simulation time sometimes lowers and then plateaus with a higher number

of blocks.

We observe a linear relationship between number of tasks and simulation speed (Figure 10b). For this study, we

use our synthetic workloads and sweep the number of parallel (Fig. 9b) and serial (Fig. 9c) tasks. Both FARSI and

PA exhibit linear scalability. For FARSI, increasing the number of tasks by 5× scales the simulation time by around

11×, from 5ms to 55ms, exhibiting around a 2× scalability. This is because FARSI’s simulation time scales with

the number of phases, and an extra task can increment the phase count by two, one for scheduling it in and one for

scheduling it out. PA’s simulation time also scales by about 4×. We did not see a simulation time difference when

increasing the number of serial tasks vs. increasing the number of parallel tasks in the workload.

Finally, Figure 10c shows a direct relationship between simulation time and workload’s execution latency. PA

shows a high sensitivity to this variable where an increase of .005(s) to 50(s) of execution latency raises the

simulation time from 101(s) to 814(s). FARSI also experiences a slow down of .018 (s) to .21(s) for the same

increase, still maintaining high agility.

4.3 FARSI’s Exploration Heuristic Evaluation and Analysis

As FARSI manages the design space complexity by using (1) agile system-level simulation, (2) architecture

awareness, (3) heavy use of co-design, and (4) domain awareness, we quantify the impact of each. We envision

SoCs running all three workloads together with budgets of Table 3a.

4.3.1 Simulation Agility’s Impact on Convergence: Here we quantify the impact of FARSI’s agile simulator

on the convergence time and fast coverage of the design space. Note that convergence time is defined as the time

taken for the DSE to meet the design budgets. We compare two DSEs using the same heuristic, but one using

FARSI’s simulator and the other using PA. For the latter, we estimate the convergence time by increasing each
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(a) Block count vs scalability. (b) Task count vs scalability. (c) Workload latency vs scalability.

Fig. 10. Simulation time scalibility.

(a) Simulation Agility.

Metric MOOS FARSI

Quality


Gain (%)
70 99

Speedup 1.7 62

PHV 1.10 1.12

(b) Heuristic comparisons.

Speedup

Quality 
Gain

(c) Heuristics’ example runs.

Fig. 11. FARSI’s agility. Convergence comparison to PA simulator (left, log-log scale) and heuristics example runs

(right, linear-log scale). Middle table shows heuristic improvements with respect to SA.

iteration’s time by the slow-down mentioned in Table 3b. This is because, as we will show, actually running PA

takes too long and is infeasible.

Figure 11a shows the difference in the convergence time with y-axis and x-axis, showing the distance 5 to the

goal or budget (Equation 7) and time to convergence, respectively. FARSI takes 3 hours to converge by exploring

more than 750 designs, and PA takes more than 3 years. Note that by the time FARSI has converged, PA has only

looked at 4 designs. FARSI’s simulation agility makes it an ideal candidate for a DSSoC DSE as it enables high

coverage of the complex/big design spaces. Authors grant that FARSI’s simulation error can result in suboptimal

design decisions, thus degrading the converged design’s quality. However, resorting to more accurate/low agility

simulators like PA is infeasible in large design spaces. We suspect that a hybrid methodology that uses FARSI to

aggressively prune the space followed by PA examining certain neighborhoods with higher accuracy can provide

an alternative solution. We leave the investigation of this thread to future work.

4.3.2 Architecture Awareness: Given the number of knobs across topology generation, allocation, and mapping,

the design space is too great to be navigated blindly. For example, a system with 6 tasks and 2 knobs per

processor/memory/NoC results in more than a million design points, and our AR complex with more than 28 tasks

results in a space greater than the number of stars in the universe. Thus, optimal navigation demands architectural

insights for guidance.

To highlight the importance of architecture-awareness, we compare FARSI against the classic simulated annealing

(SA) and more modern MOOS. The former samples the space at random and greedily selects the best neighbor,

while the latter’s data-driven approach continuously learns to adjust the search starting point. We evaluate FARSI’s

5Normalized city block distance to budget across all metrics.
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efficiency across 3 metrics, i.e., quality gain, speedup, and Pareto Hyper Volume (PHV). We use SA as the baseline

for all metrics, thus normalizing w.r.t SA; Furthermore, since all heuristics are sampling-based and thus exhibit

stochastic behavior, we collect and average the data over 15 runs per heuristic.

Quality Gain: For a design’s quality, we use its city block distance to the budget (Equation 7) as a proxy. Thus,

the quality gain is the difference between a heuristic’s quality of the best solution and the baseline’s counterpart,

normalized to the baseline (�−���������
���������

, with � denoting city distance).

Speedup: The number of iterations to convergence for baseline (SA) over the corresponding value of FARSI or

MOOS. The iteration count is measured for the best solution uncovered by the baseline.

PHV: Pareto Hyper-Volume (PHV) [92], i.e., the size of the objective space dominated by the Pareto set solutions,

is often used [16, 42, 45] to evaluate the Pareto front’s quality. We normalized this metric to the baseline’s PHV

( ���
�����������

). Bigger values are better.

Figure 11b quantifies the heuristics efficiencies using the said metrics averaged over all runs, and Figure 11c

provides an example run for each heuristic. For Quality Gain, MOOS exhibits a 70% improvement over SA

(Fig. 11b) as its data-driven model learns from past search iterations, penetrates the space deeper, and thus uncovers

higher quality solutions. However, as seen in the example runs of Figure 11c, MOOS, similar to SA does not zero

the distance to budget and cannot meet AR’s tight constraints. In contrast, FARSI uses its architectural awareness

(e.g., use of locality and parallelism) to improve the design quality even further by 99%, and meet the budget,6 thus

making it more ideal for DSSoCs with tight constraints.

MOOS shows a 1.7X speedup over SA (Fig. 11b). It prunes the space faster than SA by continuously selecting

efficient starting points for its greedy search. As shown in the example run, this approach provides an overall more

steady reduction in distance and thus faster convergence. In contrast, SA often gets stuck in local optimum and

relies on random sampling to be pulled out. FARSI achieves a much higher speed up, up to 62X. Its exploitation of

architectural insights in neighbor generation exposes it to more high potential neighbors, which accelerates the

convergence.

Finally, for PHV, MOOS and FARSI generate higher quality Pareto fronts over SA with bigger normalized

PHVs, 1.10 and 1.12, respectively. Note that FARSI’s improvement is not much bigger than MOOS because it

prioritizes exploitation over exploration. Concretely, FARSI’s reliance on architectural knowledge (instead of

random sampling) for finding improved neighbors lowers its exploration degree. This, in turn, suppresses its

capability to expand the Pareto front much beyond MOOS, specifically for neighborhoods farther away from the

targeted budget, consequently observing an incremental improvement. Please note that we have not provided a

plot of our heuristics’ Pareto fronts since they are 5 dimensional (with the axis of the area, power, and 3 different

performance for each workload) and thus can not be visualized.

4.3.3 Co-design: A DSE without a co-design cannot exploit cross-boundary optimization opportunities neces-

sary for convergence. For example, without a cross-workload co-design, a DSE misses on area reduction enabled

by inter workload memory sharing. FARSI uses co-design by not being fixated on one optimization for too long

and rather continuously moving from one optimization to another. Our co-design occurs within each of the fol-

lowing vectors: (1) across metrics (i.e., among power, performance, area), (2) across high-level optimization (i.e.,

among mapping/allocation/customization), and across low-level optimizations (frequency modulation, bandwidth

modulation, hardening, etc.), (3) across computation/communication, and (4) across workloads. Here we quantify

their impact.

Figure 12a as an example shows FARSI’s co-design progression across two of these vectors, i.e., metrics and

workloads. X-axis and y-axis show iteration count and each metric’s distance to the goal (log-scaled), respectively.

To emphasize when FARSI targets a metric/workload, we make the color of its curve bold; otherwise, make it

6When the budget is met (distance=0) in the plot, we set it to 10
−2 (as 0 cannot be shown with log).
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(a) Co-design over time across metrics and workloads.

(b) Co-design deployment rate. (c) Co-design resulted convergence rate.

Fig. 12. Co-design impact and rate. H.Opt=high-level optimization, L.Opt=low-level optimization,

CM=communication/computation, WL=workload.

see-through. As shown in the figure, the exploration goes through various zones (A through H), each with a different

exploration focus. For example, zone A mainly targets latency and exploits cross-workload opportunities between

Edge Detection and CAVA. Zone C shifts its focus toward system power and area co-design. Note that Audio

latency is also targeted (although already met) as it can be increased to help with power/area. Finally, FARSI

splits its attention between latency (of Audio and CAVA) and system area in zone E. Note that different metrics

meet their budget (reach 10
−2) throughout the exploration at different times, but a continuous trade-off between

them is exploited until all distances are zero. Such co-design exploitation is a significant contributor to the fast

convergence previously shown in Figure 11c. Note that Figure 13 shows the normalized iteration breakdown of our

other co-design vector, namely high- and low-level optimizations. However, their co-design progression plots are

left out due to space limitations.

Figure 12b shows how often (deployment rate) co-design occurs within each of our vectors. For example, a

co-design rate of .2 for workloads means that FARSI changed its focus from one workload to another 2 times

every 10 iterations on average. Note that these rates are not tuned by the tool user but determined dynamically by

FARSI as it explores the space. For example, if FARSI sees that one workload demands more attention (i.e., its

distance to the PPA budget is high), it will select and focus on it long before switching to others. FARSI applies

co-design across both high-level (topology generation, allocation, and software to hardware mapping) and low-level

(frequency modulation, memory allocation, etc.) optimization options the most. Concretely, it changes its focus
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between these options around every 4-5 iterations. The workload co-design rate is lower, indicating a difference in

each workload’s convergence difficulty. Finally, FARSI applies even a longer attention length (>10 iterations) for

computation and communication, indicating their higher imbalance. Note that both SA and MOOS deploy a higher

co-design rate for all vectors as they randomly generate neighbors; however, next, we show that this strategy is not

optimal.

To quantify the impact of the said co-design approaches, we measure the average convergence rate (i.e., an

average of improved distance per iteration) resulted from each. Figure 12c reveals that computation/communication

co-design leads to the highest improvement, i.e., an average convergence rate of 35%. Overall on average, co-design

improves the distance by 32%. Note that the MOOS convergence rate due to co-design is very small, as co-design

is not systematically embedded in the heuristic, and the search rather stumbles on it from iteration to iteration. SA’s

convergence rate due to co-design is even worse, in fact, negative, as a complete random switching between, for

example, workloads can hurt the distance. This shows that a principled co-design is necessary.

4.3.4 Domain Awareness: DSEs that target domain-specific SoCs need to be domain aware, i.e., 1) extract

workloads’ characteristics and then 2) direct their optimizations to exploit workload’s inherent opportunities (e.g.,

TaLP). Here, we first detail our workload’s characteristics and then showcase FARSI’s awareness of them. We run

each workload individually and lower their latency to their limits to stress test FARSI toward exploring all possible

optimization opportunities, e.g., Task Level Parallelism (TaLP) and Loop Level Parallelism (LLP).

Figure 14 (table on the right) sheds light on each workload’s computation and communication characteristics,

concretely, parallelism (loop- and task-level), and data movement. Edge Detection (ED) has the highest LLP and

data movement, and Audio has the highest TaLP. Figure 14 (left) further details the computation/communication

boundedness of each workload. The y-axis shows the (normalized) breakdown of the hardware bottlenecks FARSI

encounters during exploration. This information guides the DSE in selecting their target stage (i.e., communication

or computation). CAVA is the most computation bounded while the other two show more balanced boundedness.

Figure 15 illustrates FARSI’s response to the above characteristics. Concretely, Figure 15a shows FARSI’s uses

of parallelism (in the number of iterations). TaLP denotes the number of iterations that task-level parallelism is

exploited to improve the design either through a new topology or software to hardware mapping. LLP denotes

iterations where loop unfolding has been exploited, and customization denotes hardware customizations such as

frequency tuning, bus width tuning, etc. FARSI applies task-level parallelism on Audio the most and CAVA the

Fig. 13. FARSI’s use of high- (top) and low-level (bottom) optimizations. Alloc = Allocation, Mod = Modulation,

Freq = Frequency, PE = Processing Element, Mem = Memory.

ACM Trans. Embedd. Comput. Syst.



22 • Boroujerdian et al.

Work-


load
Audio CAVA ED

Data


Movement (MB)
0.190 0.325 7.000

Average


LLP
2,392 151 1,365,376

Average


TaLP
48 1 4

Fig. 14. Communication(comm)/computation(comp) boundedness (left) and Task (TaLP) and loop-level (LLP)

parallelism (right), of each workload. ED shorten for Edge Detection.

(a) Parallelism sensitivity. (b) Communication(comm) / com-

putation(comp) boundedness sen-

sitivity.

Fig. 15. FARSI’s domain awareness. FARSI exploits workload characteristics such as TaLP, LLP and computa-

tion/communication boundedness for convergence.

least, as Audio’s TDG provides the highest TaLP opportunities and CAVA provides none. FARSI targets loop-level

parallelism for Edge Detection more than Audio correlated with their LLP. Note that FARSI’s excessive use of LLP

for CAVA is inevitable as it has no other parallelism option. Moreover, Figure 15b shows FARSI’s relative focus on

computation and communication as a response to these bottlenecks. CAVA has a high computation boundedness

tendency, and thus, FARSI targets its computation the most while a more balanced approach is used for the other

two according to their needs. FARSI’s focus on communication is correlated with each workload’s data movement,

with Edge Detection having the highest (7 MB on average) and Audio having the least (0.18 MB on average) data

movement.

5 CASE STUDIES

To show FARSI’s capability with the design challenges of complex SoCs, we provide two case studies. First, we

show how FARSI’s cost-aware methodology balances “system complexity” (and thus the development effort) with

the product quality. Then, we shed light on the inefficiencies of the “divide and conquer” approach often used to

tame the complexity and discuss FARSI-enabled optimal designs. For both case studies, we assume a system that

runs all three workloads simultaneously.
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(a) IP count. (b) Number of NoCs.

(c) Scratchpad memory size. (d) NoC average frequency.

Fig. 16. System implications for different budgets. FARSI lowers block count and thus lowers design complexity

when the latency and power budgets are relaxed by 2× and 4×. FARSI is also careful about keep hardware knobs

low such as memory size/frequency when possible.

5.1 Budget Implications on Development Effort

Since a DSSoC requires a high-development effort, an optimal DSE framework must use various trade-offs to

lower this design effort. An example of such a trade-off is the product quality and development effort. Concretely,

an optimal DSE must lower the development effort whenever a product quality is relaxed. This study showcases

FARSI’s capability in this balancing act. To this end, we proxy the product quality with performance/power/area

(PPA) budgets. This is because for example, in AR, performance budget, e.g., frame-rate, directly impacts user

experience as it determines how smooth user-world interactions are; power budget impacts battery life and thus

determines whether AR glasses can be reasonably operational; and finally area impacts the die cost and thus the

overall product cost. We also proxy development effort by the number and the variation (heterogeneity) of hardware

blocks as increasing either magnifies the development effort. We relax Section 4.3 PPA budgets (Table 3a) with 1×,

2×, and 4×, run FARSI for each budget showing how it lowers hardware block counts and variations when faced

with larger budgets (e.g., 4× budget).

Component Implications: Figures 16a and 16b show the impact of different budgets on IP and Network-on-

a-Chip (NoC) subsystems. Increasing the latency budget from 1× to 4× reduces the IP and NoC counts (NoCs

belonging to different subsystems, e.g., audio subsystem, or image processing subsystem) by 15% and 60%

respectively, which implies that FARSI lowers the block count when system budgets are relaxed. In addition, this

indicates that NoC design/integration should be prioritized in delivering performance, as the performance has a

higher sensitivity to NoC than IP count. We also observe that a power budget increase of 1× to 4× results in a

26% and 37% reduction in IP and NoC count. This means that IP’s impact on power reduction is higher than

performance. However, the reverse is true for NoC’s. We do not observe a meaningful relationship with the area.
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(a) NoC’s link count. (b) Scratchpad size. (c) NoC frequency.

Fig. 17. System heterogeneity. FARSI lowers the block heterogeneity and thus design complexity when the latency

and power budgets are relaxed by 2× and 4×.

Figure 16c shows memory size sensitivity to the budgets. Increasing the latency and power budget from 1× to

4× results in a total on-chip scratchpad memory size reduction of 22% and 17%, respectively. This is because the

relaxed budget can tolerate higher global data movement latency and energy of DRAM. However, for the same

budget increase in area, the (low-density) SRAM area can be freely increased by 25% to move the data back locally.

System designers can use FARSI and conduct such studies to find optimal memory allocations across SRAM and

DRAM.

System designers can also use FARSI to investigate the impact of budget on NoC Frequency. Figure 16d details

this sensitivity. Concretely, we observe that as the latency budget is relaxed to 4×, NoC frequency is scaled down

by 78%. This is because lower performance budgets do not require high-frequency operating NoCs. In contrast,

relaxing the power budget by 4× instead scales up the frequency by 70% since for higher power budgets, the system

can tolerate higher frequency NoCs. Overall, we show that FARSI exploits system-budget trade-offs and tunes the

design accordingly.

System Heterogeneity: System heterogeneity (block variations) is also a determinant of the design complex-

ity/development effort. To quantify a system variable’s heterogeneity (e.g., scratch pad size variation), we use the

coefficient of variation (�� =
�������� ���������

����
) [59] which captures the variable’s deviation from its mean. Higher

CV means higher variation; for example, in Figure 17b, the height of leftmost bar, i.e., 1.1, indicates a 110% mean

variation of the system’s scratchpad sizes.

Figure 17a shows that increasing the performance or power budgets by 4× lead to 82% and 60% reduction in

the link (channel) count heterogeneity among NoCs i.e. lower variation in the number of links across NoCs. This

lowers the design effort as variation in NoC design increases the design complexity. We also observe that higher

NoC customization is necessary for the power budget compared to performance budget variations. This is because

the lowest and the highest power budgets (1× and 4×) tend to cause more heterogeneity than their corresponding

latency scaling values.

A similar trend can be observed in both memory size (Figure 17b) and NoC frequency heterogeneity (Figure 17c).

The former experiences a 54% and 32% variation reduction as a result of relaxing the system performance and

power budget. The latter experiences a 15% and 73% reduction for relaxation of the same metrics. This renders

memory variation more critical for latency delivery while bus frequency variation more critical for power. Note

that memory size and NoC frequency variations impact complexity as the former increases the optimization or

customization effort, and the latter increases the clock tree and PLL complexity.

Overall, we see that FARSI lowers system heterogeneity in response to budget relaxation. In addition, system

designers can use FARSI to investigate the product quality impact on system heterogeneity and make various

product decisions while keeping the development effort in mind.
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(a) Accelerator-level parallelism. (b) Scratchpad memory traffic. (c) Scratchpad memory reuse.

Fig. 18. System dynamics. FARSI guides decision making by profiling various system dynamics.

System Dynamics: We provide designers with system dynamics analysis to guide the design planning. Figure 18a

quantifies the accelerator level parallelism, i.e., the average number of accelerators that run in parallel [35]. As

shown, an increase of 8% and 13% are needed to meet the tighter 1× performance and power budgets compared to

4×. Such parallelism increases the local traffic by 23% and 31% (Figure 18b) and demands a 107% increase in

memory reuse (how many times a memory module is re-accessed, measured in bytes) to keep the memory size

small, specifically when power efficiency is required (Figure 18c). However, to deliver for performance, FARSI

requires lower memory reuse of 65% to prevent memory contention. Note that the reuse’s opposite direction

between performance and power indicates the importance of memory mapping and its delicate balancing act. Such

optimizations can only be achieved using an agile (rather than manual) methodology with a holistic system-level

lens to explore sufficient scenarios.

5.2 Divide and Conquer Suboptimality

Lack of access to holistic design methodologies forces designers to tame the complexity by taking a divide and

conquer approach. This means splitting the system into subsystems (one for each workload), imposing ad hoc

(estimated) power and area budgets on each, and finally using best efforts to reach them in isolation. This is common

in domains that consist of a diverse set of sub-domains, such as AR (video, audio, graphics, ...); however, our

results show that it leads to sub-optimal designs due to myopic budget estimations (Problem 1) and optimizations

(Problem 2).

Problem 1, Myopic Budget Estimation: In the absence of automated DSEs, each workload’s power/area budget

is decided manually using architects’ insights and back-of-the-envelope estimates. If the estimates for a workload

are too tight, the entire chip budget needs to be expanded to incorporate the workload’s best design. However,

if a workload’s budgets are too loose, optimization opportunities targeting a tighter budget are left unexploited.

(Note that the extra budget can then be redistributed to the other workloads in need). We emulate this problem by

setting the power budgets as per isolated power estimates provided in [37] while for the area, we use power as a

proxy and budget each workload’s area according to its relative power. Further details are provided in the Appendix

(Section C). Latency values are set similar to previous sections to ensure a high-quality user experience. FARSI

finds a design that meets this pre-determined budget for each workload.

Problem 2, Myopic Optimizations in Isolation: Focusing on each workload in isolation misses out on the

cross-workload optimization opportunities such as memory sharing. To isolate this issue and relieve the said

budgeting problem (problem 1), for each workload, we sweep all budget values from 0 to the SoC budget with

increments of 5%. For each workload in isolation, we run FARSI with the mentioned budget sweep and generate

a power/area Pareto front. Then, final SoCs (running all workloads) are put together by combining the designs’

permutations of the workload’s Pareto Fronts.
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Workload Audio CAVA ED

Norm


Distance


(%)

Power 16 113 -9

Area -35 0.6 -41

Fig. 19. Divide and conquer sub-optimality. Myopic optimization/budgeting (left) and details (right).

System Degradation Associated with Problem 1 and 2: Here we quantify the degradation by comparing the

methodology used in Problems 1 and 2 with full-fledged FARSI. Note that at the high level, full-fledged FARSI

automatically solves problem 1 as it does not require individual workload budgets. Instead, it finds the optimal

sub-budgeting as it explores the space. Furthermore, FARSI circumvents Problem 2 by conducting cross-workload

optimizations.

Figure 19 illustrates the suboptimality of both approaches, with the x-axis and y-axis denoting the power and

area associated with the designs generated for each methodology. Myopic Budgeting predictably does the worst

with its point (far top right) experiencing an average power and area degradation of 56% and 52% respectively,

compared to FARSI’s Pareto Front points. The table investigates this issue by presenting the distance between

Myopic Budgetting’s best design and its pre-determined budget (normalized and multiplied by 100). Negative

values mean the design never met the budget, and thus, the budget was too tight and vice versa. As shown, the

power/area budgets for Edge Detection and the area for Audio were too tight. However, CAVA’s area budget was

optimal, and the power budget was set too loose and should have been distributed across the other two workloads.

Myopic Optimization (Myopic Opt) provides suboptimal solutions as well. Both its Pareto Front and all generated

designs are less optimal compared to full-fledged FARSI (Figure 19). Concretely, points on the Pareto Front, on

average, experience a 27% and 21% power/area degradation compared to FARSI. Myopic optimization cannot

use cross-workload mapping solutions to share memory and save area or keep the congestion low and improve

performance without improving frequency.

6 CONCLUSION AND FUTURE WORK

This work presents FARSI, a DSSoC DSE equipped with an agile system simulator and an automated heuristic

with built-in and expandable architectural reasoning. We identify critical ingredients of an optimal DSSoC DSE

and quantify their impact on the convergence time, and further show FARSI’s heavy use of them. We achieve

8,400×, and 98.5% simulation speed up and accuracy compared to Platform Architect. We also achieve 62× and

35× convergence speed up exploiting architectural reasoning and co-design compared to simulated annealing and

MOOS, respectively. We further present two case studies show-casing FARSI’s importance in the design challenges

of future complex systems. Going forward, we plan to apply FARSI to other domains such as autonomous vehicles

and robotics and further investigate multi-SoC designs where the computation is distributed across multiple chips,

for example, in a distributed chip network within a car.
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Workloads Audio Decoder -

Tasks Rotator Set Psycho Filter Rotate Order 1 Rotate Order 2 Rotate Order 3 -

�� 216 2,645,938 219,130 663,496 1,611,608 -

����� 0.00387 10.651 3.216 8.692 19.066 -

������ 0.00387 10.651 17.833 32.397 56.208 -

Workloads Audio Decoder -

Tasks Zoomer Set Zoomer Process FFT_left FIR Filter_left IFFT_left -

�� 54 2,918,392 658 1,358,412 833,970 -

����� 0.218 15.154 0.00502 4.124 2.532 -

������ 0.218 11.127 0.00200 4.124 2.532 -

Workloads Audio Decoder -

Tasks Overlap_left FFT_right FIR Filter_right IFFT_left Overlap_right -

�� 81,916 658 1,358,412 833,970 81,916 -

����� 0.249 0.00502 4.124 2.532 0.249 -

������ 19.999 0.00200 4.124 2.532 19.999 -

Workloads CAVA - -

Tasks Scale Demosaic Denoise Transform - -

�� 46,221,100 33,528,040 696,574,288 94,791,760 - -

����� 507.629 92.056 1,912.552 260.265 - -

������ 126.907 92.056 1,912.552 260.265 - -

Workloads CAVA - - -

Tasks Gamut_map Tone_map Descale - - -

�� 162,608,100,840 41,367,960 6,244,079,520 - - -

����� 446,465.522 113.582 17,144.080 - - -

������ 446,465.522 113.582 68,576.318 - - -

Workloads Edge Detection

Tasks Gaussian Smoothing Laplacian Estimate Compute Zero Crossing Compute Gradient Compute Max Gradient Reject Zero Crossing

�� 3,234,201,600 842,137,600 874,905,600 855,244,800 29,498,368 753,664,000

����� 246.746 128.500 133.500 130.500 4.501 115.000

������ 246.750 128.500 133.500 130.500 7,374,592.000 115.000

Table 4. Gable specification of our workload set.

Table 5. Workload’s budget.

Workload Audio CAVA ED

Latency (ms) 21.0 34.0 34.0

Power (mW) 8.737

Area (mm2) 17.475

Appendices

A DETAILED WORKLOAD CHARACTERISTICS

Table 4 gives the detailed Gables-based characteristics of each task of the workloads. � denotes the instruction

count of a task, and � denotes operation count per memory access, which is split into ����� and ������ corresponding

to read and write, respectively.

B WORKLOAD’S DATA DEPENDENCY

Variations in the workload’s input can influence the processing payload and thus the system’s latency, energy, and

power. We identify two input factors that impact the system’s computation and communication payload.

Input Parameters: Input parameters such as image size and resolution can impact the payload size. In this

paper, we used each workload’s input dataset provided by the benchmark developers ([37, 47? ]). These datasets

came with pre-determined, statically set parameters. Note that integrating a new dataset with different parameter

values does not require a modification to our general methodology.
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Systems such as AR glasses can experience payload variations by deploying runtime frameworks that dynamically

adjust said parameters to improve system efficiency. This paper mainly targets systems without such flexibility and

leaves these optimizations to future work.

Operating Environment: Changes in the system’s operating environment can result in payload variations. For

example, variation in the number of traceable objects in an environment can impact SLAM’s processing latency.

To accommodate for this, we need to repeat the workload analysis stage in Database Generation (Section 3.1)

for a sequence of input samples. This generates a sequence of TDGs with different instruction counts and data

movement (payload) for nodes and edges, respectively. We then simulate each TDG and collect corresponding PPA

values. Finally, we can apply a statistical function such as max (e.g., for worst-case design) or average to reduce

each metric result to a scalar value. In this paper, our workloads are not prone to such variations. We leave the

exploration of workloads with such a dependency to the future work.

C BUDGETING

The latency budgets for the workloads are set according to the values suggested by [37] and [? ]. The maximum

target SoC power and area budgets are set to 0.1 W and 100 ��2 according to [80]. However, these values assume

an AR system containing 9 different workloads, whereas our system only contains 3 of such workloads. Thus, the

following steps are taken to adjust the power/area budget. We profiled the power consumption of each workload

in ILLIXR[37] individually on a desktop. The ratio of Audio power over all 9 workloads is then used to estimate

Audio’s budget in a .1W system. CAVA and Edge Detection power budget is also deduced according to their relative

power consumption to Audio. System power is then calculated as the sum of all three workloads’ power. For area

budgets, we use power as a proxy and similarly use the breakdown in [37] to guide the budgeting. Note that these

values are specified for the target technology of 5nm TSMC.

System Generation

79.9%

System Selection

1.2%

Simulation

18.9%

(a) FARSI system breakdown.

Design Duplication

98.4%

Metric & Direction &

Task & Block & Move


1.6%

(b) System generation details.

Phase Scheduling

29.6%

Task Update

12.9%

Phase Calculation

57.5%

(c) System simulation details.

Fig. 20. FARSI time breakdown.

D PERFORMANCE BREAKDOWN

We profile FARSI’s last three iterative stages to show what needs to be sped up. Note that the first stage (Database

Generation) occurs only once, does not change across different runs, and further requires a minor annotation effort.

The two tools used within this stage, i.e., accelSeeker and HPVM populate the database in less than a second.

Figure 20a shows the time breakdown of the last three stages. Most of the time (79.9%) is spent on the system

generation stage. Further breakdown of this stage (Figure 20b) reveals that sub-stages such as task, block, or metric

selection that do actual system modifications only consume a small percentage (2%<). Instead, design duplication,

which copies the original design object to be modified/improved, consumes the most time. This step can be sped up

by lowering the memory footprint for a faster memcpy. Simulation time breakdown is also shown in figure 20c.

“Phase Interval Calculation” consumes most of our simulation time since it heavily uses the analytical models to

iterate through the running tasks and corresponding hosting blocks, finds their bottlenecks, and calculates the phase

duration accordingly.
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Fig. 21. Heuristic scalability with respect to the task count and system constraints.

E HEURISTIC SCALABILITY

We measure our heuristics scalability with respect to the workload complexity and system constraints. We use the

number of tasks as the proxy for the former, and for the latter, we use the PPA budgets. In these studies, we use

Edge Detection as the workload template to stress test the system as we have found experimentally that FARSI has

the most difficulty converging for this workload. For workload complexity studies, we start with a system that runs

one instance of Edge Detection (with 6 tasks) and incrementally increase the number of workloads and thus tasks

running on the system. For system constraints studies, we start with the budget shown in table 5 and incrementally

relax it, i.e., increase the budget across PPA by a scaling factor.

Heat map 21a shows the impact of these two variables on FARSI’s convergence efficiency, measured in the

number of iterations to convergence. Increasing the workload complexity by increasing the number of tasks (top to

bottom) increases the number of iterations to convergence. On average 4× increase in this variable results in a 12.5×

increase in the number of iterations. This is intuitively understandable as more tasks require more optimization

for convergence. Similarly, tightening the budget (right to the left) increases the number of iterations. On average,

4× tightening of this budget results in a 1.7× increase in the iteration count. This is intuitively understandable as

stricter constraints demand more system optimizations to meet the tighter budgets.

To go beyond intuition and concretely understand the relationship between these variables and convergence,

we need to observe their impact on the “neighborhood size” of the designs encountered. A design’s neighbor is a

design whose mapping, allocation, or topology has been incrementally modified (please refer to the paper for more

details). Thus, a design’s neighborhood includes all the designs reachable through said incremental optimizations.

The cardinality of this variable depends on (1) the number of tasks in the system (workload complexity) as each

task can be incrementally optimized and (2) the number of IPs in the system (system complexity) as each IP can be

optimized.

Since FARSI improves the design by greedily searching through neighbors, larger neighborhoods lead to more

extensive search and thus higher iterations. Heatmap 21b shows the impact of task count and budget on the

average neighborhood size encountered by FARSI while searching the space. Increasing the number of tasks by

4× on average results in a 14× increase in the number of neighbors. As we discussed in heatmap 21a, this in turn

results in 12.5× increase in the number of iterations. Similarly, tightening the budget by 4×, increases the average

neighborhood size by 1.2×, leading to 1.7× increase in the number of iterations.
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