
The Internet Backplane Protocol: Storage in the Network

James S. Plank Micah Beck Wael R. Elwasif Terence Moore Martin Swany Rich Wolski

Department of Computer Science
University of Tennessee

Knoxville, TN 37996

[plank,mbeck,elwasif,tmoore,swany,rich]@cs.utk.edu

Appearing in:
NetStore ’99: Network Storage Symposium

Seattle, WA, October, 1999
http://dsi.internet2.edu/netstore99

http://www.cs.utk.edu/˜plank/plank/papers/NS99-IBP.html

Abstract

For distributed and network applications, efficient manage-
ment of program state is critical to performance and func-
tionality. To support domain- and application-specific op-
timization of data movement, we have developed the Inter-
net Backplane Protocol (IBP) for controlling storage that
is implemented as part the network fabric itself. IBP al-
lows an application to control intermediate data staging op-
erations explicitly as data is communicated between pro-
cesses. As such, the application can exploit locality and
manage scarce buffer resources effectively. In this pa-
per, we discuss the development of IBP, the implementa-
tion of a prototype system for managing network storage,
and a preliminary deployment as part of the Internet-2 Dis-
tributed Storage Initiative.

1 Introduction

The proliferation of applications that are performance lim-
ited by network speeds leads us to explore new ways to
exploit data locality in distributed settings. Currently, stan-
dard networking protocols (such as TCP/IP) support end-
to-end resource control. An application can specify the
endpoints associated with a communication stream, and
possibly the buffering strategy to use at each endpoint, but
has little control over how the communicated data is man-
aged while it is traversing the network. In particular, it

is not possible for the application to influence where and
when data may be stored (other than at the endpoints) so
that it can be accessed efficiently.

To support domain- and application-specific optimiza-
tion of data movement, we have developed the Internet
Backplane Protocol (IBP) for managing storage within the
network fabric itself. IBP allows an application to imple-
ment interprocess communication in terms of intermediate
data staging operations so that locality can be exploited and
scarce buffer resources managed more effectively.

The design of IBP illustrates the tension between two
different approaches to the design of large-scale distributed
systems, the functional (or behavioral) model, which hides
the internal state of each element, and the shared-memory
model, which exposes a portion of that state. The advan-
tage of the functional approach is that it is both robust and
scalable. In this model, the failure of one element results
only in the failure of current interactions and the future un-
availability of that element, and the size of the system is
limited only by the ability of elements to communicate.
By contrast, the shared memory approach introduces long-
lived dependencies between elements that can compromise
both robustness and scalability. A failure that corrupts the
shared state will be visible to any future reader, and the
size of the system is limited by the ability to coordinate the
sharing of state correctly. However, the shared-memory
model does allow the application to have direct control
of resources so that domain- and application-specific op-
timization of memory usage can be implemented.



In the case of the Internet, a large distributed system
providing a communication service to systems at its pe-
riphery, such considerations of robustness and scalability
led its designers to choose a stateless model, which is the
networking equivalent of the functional model of compu-
tation. Routers perform stateless data transfer operations
and control is calculated by routing algorithms which re-
quire only that the routers behave correctly, not that they
maintain shared state. Indeed, the end-to-end model of IP
networking has served the Internet well, allowing it to scale
far beyond its original design while maintaining stable lev-
els of performance and reliability. Why then would we
seek to challenge this stateless approach?

To begin with, it is important to note that the designers
of large-scale information systems often follow a shared-
memory model because the functional model puts unde-
sirable limitations on performance and control. It is dif-
ficult to express the management of stored data in func-
tional terms, and resource management is key to high
performance. Moreover, people think naturally in terms
of processes, not just computations, and persistence is
the key to defining a process. Increasingly the design
of Internet-based information systems is moving toward
shared-memory approaches that support the management
of distributed data, rather than just access. A rapidly grow-
ing global industry is being built up around the caching and
replication of content on the World Wide Web [8] and mas-
sive scientific datasets [2, 10, 20] are being distributed via
networked systems of large storage resources.

But the management of shared state in such systems is
in no way a part of the underlying network model. All such
management is consequently pushed up to the application
level and must be implemented using application-specific
mechanisms that are rarely interoperable. The result has
been a balkanization of state management capabilities that
prevents applications that need to manage distributed state
from benefiting from the kind of standardization, interoper-
ability, and scalability that have made the Internet into such
a powerful communication tool. We have defined the Inter-
net Backplane Protocol (IBP) in order to provide a uniform
interface to state management that is better integrated with
the Internet. In this paper we will motivate and describe the
IBP API and present some examples that show its strategic
potential for the builders of distributed applications.

Because IBP is a compromise between two conflicting
design models, it does not fit comfortably into either of
the usual categories of mechanisms for state management:
IBP can be viewed either as a mechanism to manage either
communication buffers or remote files and both characteri-
zations are equally valid and useful in different situations.
If, in order to allow our terminology to be as neutral as
possible, we simply refer to the units of data that IBP man-

ages as byte arrays, then these different views of IBP can
be presented as follows:

IBP as buffer management. In communication be-
tween nodes on the Internet, which is built upon the
basic operation of delivering packets from sender to
receiver, each packet is buffered at each intermediate
node. In other words, the communication makes use
of storage in the network. Because the capacity of
even large storage systems is tiny compared with the
amount of data that flows through the Internet, alloca-
tion of communication buffers must be time limited.
In current routers and switches, time-limited alloca-
tion is implemented by use of FIFO buffers, serviced
under the constraints of fair queuing.

Against this background, IBP byte arrays can
be viewed as application-managed communication
buffers in the network. IBP allows the use of time-
limited allocation and FIFO disciplines to constrain
the use of storage. These buffers can improve com-
munication by way of application-driven staging of
data, or they may support better network utilization
by allowing applications to perform their own coarse-
grained routing of data.

IBP as file management. Since high-end Internet
applications often transfer gigabytes of data, the sys-
tems to manage storage resources for such applica-
tions are often on the scale of gigabytes to terabytes
in size. Storage on this scale is usually managed us-
ing highly structured file systems or databases with
complex naming, protection and robustness seman-
tics. Normally such storage resources are treated as
part of a host system and therefore as more or less
private.

From this point of view IBP byte arrays can be viewed
as files that live in the network. IBP allows an applica-
tion to read and write data stored at remote sites, and
direct the movement of data among storage sites and
to receivers. In this way IBP creates a shareable net-
work resource for storage in the same way that stan-
dard networks provide shareable bandwidth for file
transfer.

This characterization of IBP as a mechanism for the
management of state in the network supplies an opera-
tional understanding of the approach we are proposing, but
it does not provide a unified view that synthesizes storage
and networking together. In order to arrive at this more
general view, we say that routing of packets through a net-
work is a series of spatial choices that allows for control of
only one aspect of data movement. An incoming packet is



sent out on one of several alternative links, but any partic-
ular packet is held in communication buffers for as short a
time as possible.

IBP, on the other hand, allows for data to be stored at
one location while en route from sender to receiver, adding
the ability to control data movement temporally as well as
spatially. We term this generalized notion of data move-
ment logistical networking, drawing an analogy with sys-
tems of warehouses and distribution channels commonly
used in the logistics of transporting military and indus-
trial material. Logistical networking can improve an ap-
plication’s performance by allowing files to be staged near
where they will be used, data to be collected near its source,
or content to be replicated close to its users. But to see how
IBP implements this concept of logistical networking, we
need to look at the API in detail.

2 IBP Structure and Client API

IBP has been designed to be a minimal abstraction of stor-
age to serve the needs of logistical networking, i.e. to man-
age the path of data through both time and space. The fun-
damental operations are:

1. Allocating a byte array for storing data.

2. Moving data from a sender to a byte array.

3. Delivering data from a byte array to a receiver (either
another byte array or a client).

We have defined and implemented a client API for IBP
that consists of seven procedure calls, and server dae-
mon software that makes local storage available for remote
management. Currently, connections between clients and
servers are made through TCP/IP sockets. As we experi-
ment with IBP, we plan to explore other networking proto-
cols (e.g. UDP) that can move IBP functionality closer to
the network.

IBP client calls may be made by anyone who can at-
tach to an IBP server (which we also call an IBP depot
to emphasize its logistical functionality). IBP depots re-
quire only storage and networking resources, and running
one does not necessarily require supervisory privileges.
These servers implement policies that allow an initiating
user some control over how IBP makes use of storage. An
IBP server may be restricted to use only idle physical mem-
ory and disk resources, or to enforce a time-limit on all al-
locations, ensuring that the host machine is either not im-
pacted at all, or only impacted for a finite duration. The
goal of these policies is to encourage users to experiment
with logistical networking without over-committing server
resources.

Logically speaking, the IBP client sees a depot’s storage
resources as a collection of append-only byte arrays. There
are no directory structures or client-assigned file names.
Clients initially gain access to byte arrays by allocating
storage on an IBP server. If the allocation is successful, the
server returns three capabilities to the client: one for read-
ing, one for writing, and one for management. These ca-
pabilities can be viewed as names that are assigned by the
server. Currently, each capability is a text string encoded
with the IP identity of the IBP server, plus other informa-
tion to be interpreted only by the server. This approach
enables applications to pass IBP capabilities among them-
selves without registering these operations with IBP, and
in this way supports high-performance without sacrificing
the correctness of applications.

The IBP client API consists of seven procedure calls,
broken into three groups, defined in Figure 1. We omit
error handling for clarity. The full API is described in a
separate document [18].

2.1 Allocation

The heart of IBP’s innovative storage model is its approach
to allocation. Storage resources that are part of the net-
work, as logistical networking intends them to be, cannot
be allocated in the same way as they are on a host system.
Any network is a collection of shared resources that are
allocated among the members of a highly distributed com-
munity. A public network serves a community which is
not closely affiliated and which may have no social or eco-
nomic basis for cooperation. To understand how IBP needs
to treat allocation of storage for the purposes of logistical
networking, it is helpful to consider the problem of sharing
resources in the Internet, and how that situation compares
with the allocation of storage resources on host systems.

In the Internet, the basic shared resources are data trans-
mission and routing. The greatest impediment to sharing
these resources is the risk that their owners will be denied
the use of them. The reason that the Internet can function
in the face of the possibility of denial-of-use attacks is that
it is not possible for the attacker to profit in proportion to
their own effort, expense and risk. When other resources,
such as disk space in spool directories, are shared, we tend
to find administrative mechanisms that limit their use by
restricting either the size of allocations or the amount of
time for which data will be held.

By contrast, a user of a host storage system is usually
an authenticated member of some community that has the
right to allocate certain resources and to use them indefi-
nitely. Consequently, sharing of resources allocated in this
way cannot extend to an arbitrary community. For exam-
ple, an anonymous FTP server with open write permissions



Allocation:

IBP_cap_set IBP_allocate(char *host, int size, IBP_attributes attr)

Reading / Writing:

IBP_store(IBP_cap write_cap, char *data, int size)
IBP_remote_store(IBP_cap write_cap, char *host, int port, int size)
IBP_read(IBP_cap read_cap, char *buf, int size, int offset)
IBP_deliver(IBP_cap read_cap, char *host, int port, int size, int offset)
IBP_copy(IBP_cap source, IBP_cap target, int size, int offset)

Management:

IBP_manage(IBP_cap manage_cap, int cmd, int capType, IBP_status info)

Figure 1: The IBP Client API

is an invitation for someone to monopolize those resources;
such servers must be allowed to delete stored material at
will.

In order to make it possible to treat storage as a shared
network resource, IBP supports some of these administra-
tive limits on allocation, while at the same time seeking
to provide guarantees that are as strong as possible for the
client. So, for example, under IBP allocation can be re-
stricted to a certain length of time, or specified in a way that
permits the server to revoke the allocation at will. Clients
who want to find the maximum resources available to them
must choose the weakest form of allocation that their ap-
plication can use.

To allocate storage at a remote IBP depot, the client
calls IBP allocate(). The maximum storage requirements
of the byte array are noted in the size parameter, and addi-
tional attributes (described below) are included in the attr
parameter. If the allocation is successful, a trio of capabil-
ities is returned.

There are several allocation attributes that the client can
specify:

Permanent vs. time-limited. The client can spec-
ify whether the storage is intended to live forever, or
whether the server should delete it after a certain pe-
riod of time.

Volatile vs. stable. The client can specify whether the
server may revoke the storage at any time (volatile) or
whether the server must maintain the storage for the
lifetime of the buffer.

Byte-array/Pipe/Circular-queue. The client can
specify whether the storage is to be accessed as an
append-only byte array, as a FIFO pipe (read one end,

write to another), or as a circular queue where writes
to one end push data off of the other end once a certain
queue length has been attained.

We anticipate that applications making use of shared
network storage, (storage that they do not explicitly
own), will be constrained to allocate either permanent and
volatile storage, or time-limited and stable storage.

2.2 Reading / Writing

All reading and writing to IBP byte arrays is done through
the four reading/writing calls in Figure 1.

These calls allow clients to read from and write to IBP
buffers. IBP store() and IBP read() allow clients to write
from and read to their own memory. IBP remote store()
and IBP deliver() allow clients to direct an IBP server to
connect to a third party (via a socket) for writing/reading.
Finally, IBP copy() allows a client to copy an IBP buffer
from one server to another. Note that IBP remote store(),
IBP deliver() and IBP copy() all allow a client to direct an
interaction between two other remote entities. The support
that these three calls provide for third party transfers are
an important part of what makes IBP different from, for
example, typical distributed file systems.

The semantics of IBP store(), IBP remote store(), and
IBP copy() are append-only. IBP read(), IBP deliver()
and IBP copy() allow portions of IBP buffers to be read
by the client or third party. If an IBP server has removed
a buffer, due to a time-limit expiration or volatility, these
client calls simply fail, encoding the reason for failure in
an IBP errno variable.



2.3 Management / Monitoring

All management of IBP byte arrays is performed through
the IBP manage() call. This procedure requires the client
to pass the management capability returned from the ini-
tial IBP allocate() call. With IBP manage(), the client
may manipulate a server-controlled reference count of the
read and write capabilities. When the reference count of
a byte array’s write capability reaches zero, the byte array
becomes read-only. When the read capability reaches zero,
the byte array is deleted. Note that the byte array may also
be removed by the server, due to time-limited allocation or
volatility. In this case, the server invalidates all of the byte
array’s capabilities.

The client may also use IBP manage() to probe the
state of a byte array and its IBP server, to modify the time
limit on time-limited allocations, and to modify the maxi-
mum size of a byte array.

3 Application Strategies with Logis-
tical Networking using IBP

For application developers, logistical networking means
having the power to manage the temporal aspects of the
trajectory that data takes through the network. IBP pro-
vides explicit control over these characteristics through the
use of capabilities. While this control makes possible a
range of logistical networking strategies that is seemingly
limitless, it will take time and experience to determine
which approaches yield the greatest improvements in ap-
plication performance, application functionality, or overall
resource utilization. To provide some preliminary idea of
the potential value of IBP, however, below we present a few
straightforward strategies for logistical networking and de-
scribe some representative applications that can make use
of them.

3.1 Storing Data Near the Sender: Memory
Servers for Distributed Sensor Data and
Checkpointing

When transmission of data across a wide area link is slow,
a nearby IBP-enabled storage server can act as a surrogate
receiver, freeing the sender from the need to buffer the data.
This strategy can also be used to implement lazy data trans-
mission when wide area transfer may be unnecessary.

For instance, the Network Weather Service (NWS) is a
system that monitors network resources and predicts their
future behavior [34]. It is one of many applications that
manage and collect distributed sensor data. Performance
data is periodically gathered from a distributed set of ”sen-

sors” and kept in persistent storage for later processing.
When a prediction of future performance is required (e.g. at
scheduling time) the NWS applies a set of numerical fore-
casting models to the most recent performance data and
makes a prediction of available resource response. The
monitoring part of NWS typically stores data near the
sender of monitoring information since performance mea-
surement is usually much more frequent than forecast gen-
eration. Moreover, the dynamically changing performance
response of networks, CPUs, and memory systems makes
old data obsolete. The NWS persistent storage servers are
structured like the circular queues of IBP — the monitors
append data to the end of the queue, pushing data off the
front of the queue if the queue has reached a prespecified
size. When a NWS client needs to make a forecast, the sys-
tem reads a limited history of the monitoring data held in
the relevant persistent storage servers and applies the fore-
casting models. The result is passed to the client via an
explicit message.

Currently, the persistent state servers used by NWS are
special-purpose and NWS-specific, which makes deploy-
ing the system more difficult. The plan for the next revision
of NWS includes employing IBP buffers as the persistent
state mechanism. In part this is being done to simplify the
code of NWS, and in part to leverage the deployment mo-
mentum of IBP (via I2-DSI as described in Sec 4). More-
over, using IBP will make it possible to experiment with
and implement different replication and consistency strate-
gies more easily than with the current implementation.

Of course the collection of distributed sensor data is one
instance of a more general problem: the collection and
maintenance of continuously produced data from various
distributed sources. Most distributed data management fa-
cilities (e.g. LDAP [37]) are implemented to optimize the
performance of queries and not the performance of up-
dates. For facilities gathering dynamic performance data,
however, the speed of updates is critical and data lifetime
is limited.

A similar type of application that can benefit from the
presence of distributed, IBP-enabled memory servers is
checkpointing. Checkpointing — the saving of program
state to some external storage medium — is the most
successful mechanism for fault-tolerance in all areas of
computing. Typically checkpoints are stored on disks on
a local area network [1, 16, 24]. However, for reasons
of performance, migratability, availability and extra fault-
tolerance, it is often useful to employ a more flexible stor-
age medium [27]. IBP is a natural facility for managing
this storage, providing most of the necessary primitives for
this task. As checkpointing is added to core parts of the
NetSolve server software library (see section 3.4), IBP will
be used to manage the storage [25]. In this way, the loca-



tion of the checkpoints can be managed by the client or
agent in a manner that is independent of the checkpoint-
ing mechanism and server software. This in turn should
facilitate process migration and scheduling in addition to
fault-tolerance.

3.2 Storing Data Near the Receiver: IBP
Mail and Speculative HTTP

One strategy for improving the delivery of large byte arrays
from a sender to a receiver is to stage the data close to the
receiver in advance, allowing the storage server to act as a
surrogate sender. IBP is tailor-made for such an approach.
A relatively simple but powerful example is provided by
the way IBP can be used to enhance the familiar scheme
by which digital objects are attached to mail messages.

The standard implementation of MIME-encoded attach-
ments incorporates the encoded object into the SMTP
stream flowing from the sender to the receiver. Because
mail is an asynchronous mechanism, and because it must
pass through various gateways and firewalls, the mail mes-
sage and its attachments must be stored in “spool areas”
at various points along its path. Because these spool areas
are owned by some particular host, the amount of storage
dedicated to spool areas is usually limited. Consequently,
so is the size and sometimes the duration of any particular
mail message.

Despite the evident success of MIME attachments, the
current scheme is encumbered by various problems, not
least of which is the fact that very large digital objects usu-
ally cannot be attached to e-mail messages. Video files
and scientific data sets are still routinely sent on magnetic
tape rather than over the network, even when network ca-
pacity allows it. Moreover, the need to move all kinds of
large objects on a routine basis is growing rapidly. How-
ever, unless additional storage resources are made publicly
available by another protocol (e.g FTP), the Internet does
not provide resources for asynchronously transmitting such
large objects. Moreover, existing protocols and administra-
tive mechanisms make it difficult for storage to be securely
and flexibly used from arbitrary points on the network. Fi-
nally, if a mail message with a large attachment is sent to
a number of recipients, the problem is multiplied by the
number of paths along which the mail must flow.

If the system is enhanced with IBP, however, the sender
can simply store the file in an IBP buffer and include the
IBP capability for accessing it in the mail message. Upon
receiving the mail, the recipient downloads the file from
the network. In the meantime, the file may be copied to
an IBP buffer close to the receiver. IBP Mail has been
implemented and is described in detail in a separate doc-
ument [17].

Speculative transfers present a similar kind of optimiza-
tion opportunity for IBP. Speculative transfers can be used
to improve throughput in any information processing sys-
tem where the latency of data transfer is much greater than
the time it takes to process that data. In the case of the
World Wide Web, for instance, speculative HTTP transfers
involve moving objects that have not yet been requested.
Attempts have been made to implement this approach by
using a client-side cache making anticipatory transfers.
But while this approach can be effective, it has failed to
gain acceptance for two main reasons: it increases the load
on already busy Web servers and Internet links, and it bur-
dens the local resources of the client. An IBP-based im-
plementation of the same strategy would allow the server
to retain control of the process, transferring speculatively
only when it is otherwise idle. It would also allow the
server to transparently include objects stored in geographi-
cally dispersed depots into a given transfer. Finally, if spec-
ulative transfers targeted local IBP depots rather than the
client’s storage, there would be no impact on the client’s
own resources.

In fact, a system for using shared storage in the net-
work can allow more sophisticated management of state in
a session of any protocol that involves predictable future
transfers. Our plan to develop a Logistical Session Layer
protocol, described below, is intended to show that this is
so.

3.3 Buffering Data at Network Boundaries:
The Logistical Session Layer

When sending data directly from a sender to a receiver,
it is sometimes possible to identify locations where, due
to mismatches in transmission characteristics across net-
work boundaries, it would be advantageous to increase the
buffering of the data in FIFO fashion. This allows the stor-
age server to act as both surrogate sender and surrogate
receiver, giving rise to new optimizations of familiar and
typical uses of networking.

We call one version of this strategy that we intend to ex-
plore the Logistical Session Layer (LSL). LSL is an appli-
cation of logistical networking designed to address prob-
lems of bulk data transfer over networks with high band-
width/delay products. Despite the many advances in TCP
that have been made to address this situation, there is still
a fundamental cost associated with buffering unacknowl-
edged segments for retransmission. Moreover it is clear
that the problem is only exacerbated as network speeds in-
crease. For instance, sufficient buffering to support a TCP
stream that half fills an OC-48 link from the east to west
coast must be on the order of 15 megabytes, likely much
higher. Following an approach which is similar to that pro-



posed by Salehi et al for use in multicast video transmis-
sion [29], LSL will make use of IBP depots to insure that a
packet loss need not require a retransmit from the original
source, but rather may do so from an intermediate location.

LSL will be a “session” layer (layer 5) in terms of the
OSI protocol model. Implementation of this architecture
has the benefit of utilizing existing protocols beneath it.
A connection that is initiated through the LSL can pass
through a number of IBP depots. In this scenario these de-
pots can actually be thought of as ”transport layer routers.”
Recall that a transport layer conversation consists of mul-
tiple hops of network layer conversations. In an analogous
fashion, we envision a session layer conversation to consist
of multiple hops of IBP data transfers.

The LSL interface will closely mimic the Berkeley
socket interface. In this way, existing programs that might
benefit from this intermediate buffering can be easily mod-
ified to take advantage of it. These logistical sockets will
initially be half duplex, and both the source and destination
port of such a half-duplex connection will be assigned by
the initiator. This will necessitate that the lsl bind() on the
recieve side be performed without specifying a local port.

When an LSL connection is initiated, a predicted path
may be specified or local forwarding decisions may be re-
lied upon. To specify a path explicitly, the sender will use
the strict source route options with the LSL socket. In fact a
combination of local and global forwarding strategies may
be employed by specifying a loose source route in the same
fashion.

3.4 Optimizing Producer/Consumer Trans-
fers: State Management in NetSolve

When implementing distributed computation in a wide area
network, data can be produced at any location in the net-
work and consumed at any other, perhaps after a significant
delay. Part of the difficult job of scheduling remote com-
putation is making an intelligent choice of location for the
producer, the consumer, and possibly for the buffer needed
to connect them. High performance requires that both pro-
ducer and consumer be kept close to the data whenever
possible, and fulfilling this requirement can involve com-
plex strategies for maintaining copies.

We are using NetSolve [11] as an experimental envi-
ronment for exploring the potential of logistical network-
ing for addressing this common problem. NetSolve is a
software environment for networked computing that is cur-
rently in use at many institutions. Its design allows clients
to access computational servers across the network using
a familiar procedure call interface from a variety of pro-
gramming languages and computational tools (e.g. Mat-
lab). NetSolve uses a client-agent-server paradigm as de-
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picted in Figure 2. NetSolve users are the clients, and the
computational resources are the servers. A server may be
a uniprocessor, a MPP (Massively Parallel Processor), or a
networked cluster of machines. When a user wants a cer-
tain computational task to be performed, he/she contacts
an agent with the request. Each agent maintains informa-
tion such as availability, load, and supported software, on
a collection of servers. When a request from a user comes
in, the agent selects a server to perform the task, and the
server responds to the client’s request.
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Figure 3: Scheduling consecutive NetSolve calls with a
common argument. (a) No state management, (b) Storing
temporary results in IBP near the computational servers.

NetSolve’s computation model is functional: servers re-
ceive arguments from the clients, and then return results
to the client. We are working with Dongarra (at the Uni-
versity of Tennessee), and Berman and Casanova (at the
University of California, San Diego) to augment the Net-
Solve model to allow values to be stored in IBP depots and
to then co-schedule storage and computation. As a simple
example, consider a result produced by a call to a server
and returned to the client, only to be sent as an argument



to a subsequent call (Figure 3(a)). If the two calls can be
scheduled on a single server or two nearby servers in the
proximity of an IBP depot, the value that passes between
them can be stored at the depot and wide area data transfer
can be reduced (Figure 3(b)).

This example of two consecutive NetSolve calls is very
simple. In general, the problem of state management in
NetSolve may be represented by expressing the relevant
calls in a computational graph, and then using the graph
to schedule the computation and data movement. There
are significant complexities in both expressing computa-
tions as dataflow or dependence flow graphs, and schedul-
ing them in complex and changing environments.

There is a vast body of work on scheduling distributed
computations [5,6], and scheduling computations based on
dataflow graphs [30,35,36] and dependence flow graphs [3,
28] which we intend to use as the basis for NetSolve co-
scheduling strategies. These range from dynamic strategies
based on caching algorithms to allocation schemes based
on graph partitioning. All such approaches exploit some
ability to use and manage state in the network, and thus are
relevant applications for IBP. Since NetSolve applications
exist in forms that can be reduced to computation graphs,
NetSolve will provide an excellent proving ground of IBP
on real-world applications.

4 The L-Bone: Cooperative Logisti-
cal Networking

While data communication facilities are found in all infor-
mation systems, internetworking has been especially im-
portant in creating a common infrastructure for diverse ap-
plications throughout the world to communicate with one
another. Rather than connecting one application at a spe-
cific site to another application at another site, the Internet
connects all IP applications at any connected site to all ap-
plications at any other connected site. Applications that
use IBP are no different. While it is possible to provision
the network with sufficient storage depots to meet the spe-
cific needs of communication between two endpoints, we
believe that the power of logistical networking can only re-
ally be felt throughout the network when depots are widely
deployed and storage can routinely be allocated in any part
of the network were it is needed. We are now building an
infrastructure to put this belief into effect.

The Logistical Backbone (or L-Bone) is a collection of
IBP servers deployed in the Internet for the specific pur-
pose of offering network storage to applications. The L-
Bone will initially make use of some of the resources of the
servers being deployed by the Internet2 Distributed Stor-

age Infrastructure (I2-DSI) project [4].1 These currently
consist of five servers donated by IBM with 72GB of disk
storage and 900GB of tape storage each and one server do-
nated by StorageTek with 700GB of disk. Each site runs
an IBP server that offers at least 20 gigabytes of storage for
time-limited and/or volatile allocation. Additional systems
will be added by I2-DSI, the University of Tennessee and
other IBP project participants. Note that this storage capac-
ity, if properly managed, can be used to augment endpoint
storage that may be in short supply. In other words I2-
DSI resources can be temporarily committed to overcome
a shortfall at either endpoint of a desired communication.

The IBP server software has been designed so that any
machine can become an IBP depot, serving up limited
quantities of memory and/or disk storage, as determined
by the machine owner, with the restrictions of time-limited
or volatile allocation. The intent of this design is to encour-
age machine owners to donate the spare resources of their
machines to the L-Bone. It is well known that most com-
puters are not consistently or continuously utilized, and
this has led to the successful implementations of cycle-
stealing programming environments such as Condor [32]
and Cosmic [14]. Our intent is for the L-Bone to be com-
posed of dedicated storage resources, such as those allo-
cated on the I2-DSI deployment machines, and contributed
resources from individual and institutional machine own-
ers. This mirrors the design of the academic Internet, with
shared backbone links and peripheral links contributed by
individual institutions. For more information on L-BONE
participation, see http://icl.cs.utk.edu/ibp.

5 Related Work

Metacomputing systems are those that tie together large
numbers of heterogeneous processing elements, perhaps
across a wide area, in order to achieve high performance.
Examples are Globus [19] and Legion [23]. Part of the
Globus system is a storage management system called
GASS [7], which manages movement of input and output
files from system to system, as well as pre-fetching of in-
put files and write-back of output files. More recent de-
velopments in Globus storage management are detailed in
research on the Data Grid [12]. A separate project is an ac-
tive meta-data management system [13] from Northwest-
ern University, where programs access and manage dis-
tributed data with the help of an agent. This can be viewed
as the NetSolve methodology applied to storage.

All of the above projects require remote storage re-
sources to be managed and accessed in much the same

1I2-DSI is a joint project between Internet2 (a project of the Univer-
sity Corporation for Advanced Internet Development), the University of
Tennessee, Knoxville and the University of North Carolina at Chapel Hill



way as IBP. We are exploring the use of IBP as underly-
ing middleware for these projects, thus broadening their
resource bases, and likely increasing portability. This en-
deavor should also give us insight into ways in which the
IBP interface needs to be modified.

IBP draws to a certain extent on the experiences in
the field of networking through its history. Store and
forward connectivity has been used for quite some time
in the networking community and there are many situa-
tions in which data transfer need not be synchronous or
connection-oriented. SMTP [15,26], USENET [21] and its
successor NNTP [22] all use hop-oriented, connectionless
paradigms to achieve their goal.

The end-to-end model holds that all network state must
be contained in the end nodes. However, even this has
once again become an open issue in light of recent dif-
ferentiated services work [9]. Further, the need to impose
arbitrary network topologies over physical ones has been
identified [33].

As a management system for network buffers, IBP is
closely related to the Detour Project [31] underway at the
University of Washington. It’s primary focus has been to
study the effects of ”intelligent” packet routing strategies
to improve network performance. IBP is certain to benefit
from Detour results as they become available.

6 Conclusion

The Logistical Networking project seeks to expand the re-
sources shared by applications communicating over the In-
ternet to include storage as well as transmission of data.
This approach opens up the temporal characteristics of the
trajectory of data through the network for control. IBP has
been designed as a minimal abstraction of storage in the
network which we are using to experiment in a number of
application areas. In order to experiment with IBP applica-
tions in a wide area setting, it is necessary to devote storage
resources widely in the Internet. The L-Bone is a project
that seeks to deploy IBP servers widely enough to create a
realistic testbed in at least some parts of the network.

Assuming that applications see the anticipated benefits
of logistical networking, the L-Bone is expected to grow in
voluntary and cooperative manner so that applications that
need storage close to a particular site can get it consistently
via time-limited or volatile allocation from the L-Bone. If
successful, the L-Bone and IBP will have a significant im-
pact on the way that applications view and make use of the
Internet. Instead of being a public data transmission net-
work connecting private storage elements, it will be viewed
as a public communication and storage network.
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