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Angles, Area, and Perimeter Caught in a Cubic
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Abstract. The main goal of this paper is to establish sharp bound$iéoangles
and for the side ratios of any triangle of known area and petém Our work is
also related to the well known isoperimetric inequality.

1. Isosceles triangles sharing area and perimeter

Suppose we wish to determine all isosceles triangles, if ahyrea3 and
perimeterl0 — a problem that is a bit harder than the corresponding weiikn
problem for rectangles!

Let = be the length of the base agdthe length of the two equal sides, <
2y. Then the height of the isosceles triangles we wish to deterns equal to

Vy? — 2. Thusz+2y = 10while £, /y2 — 22 = 3. HenceZ /(5 — £)? — 2% =

3, which leads tdhz® — 2522 + 36 = 0. The positive roots of this cubic are
r1 ~ 1.4177 andzs ~ 4.6698, so thaty; ~ 4.2911 andy, =~ 2.6651. Thus there
are just two isosceles triangles of aeand perimeteiO (see Figure 1).

y ~ 4.2911 z 7 4.2911

Yy ~ 2.6651 z ~ 2.6651

x ~ 1.4177 x ~ 4.6698
Figure 1. The two isosceles triangles of aBeand perimeteit0

Are there always isosceles triangles of arkand perimetetP? A complete
answer is provided by the following lemma and theorem.

Lemmal. Letz be the base of an isosceles triangle with given atesnd perime-
ter P. Then
2Pz — P22% +16A4% = 0. 1)
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. . . . P— 2 _
Proof. Working as in the above special case, we obgaia =~ and$ 4 /y? — 4- =

A; substituting the former condition into the latter, we agrat (1). a

Theorem 2. There are exactly two distinct isosceles triangles of areadperime-
ter P if and only ifP? > 12v/3A. There is exactly one if and only#? = 121/34
and the triangle is equilateral. The vertex angles < ¢, of these two isosceles
triangles also satisfy; < 5 < ¢2.

Proof. Let f(x) be the cubic in (1). We first show that it has at most two distinc
positive roots. Indeed the existence of three distincttpesioots would yield, by
Rolle’s theorem, two distinct positive roots f@gf(z) = 6Pz — 2P?z; but the
roots of /() arex = £ andz = 0.

Notice now thatf”(z) = 12Pz—2P?, hencef”(0) = —2P* < 0andf”(%) =
2P? > 0. So f has a positive local maximum di6A% atz = 0 and a local
minimum atx = § (Figure 2). ltis clear thaf has two distinct positive roots
o1 < L < apifandonlyif f(£) < 0;but f(£) = — L2 + 1642, s0f(£) < 0is
equivalent taP? > 12v/3A.
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Figure 2. 2Pxz3 — P?z% + 16A% for A = 3andP = 10

Moreover, f(£) = 0 if and only if P2 = 121/34, implying thatf(z) = 0 has
precisely one (‘tangential’) positive solution if and orifyP? = 12v/3A. As it
turns out, the cubic is then equivalent(®x — P)?(6z + P) = 0, and its unique
positive solution corresponds to the equilateral triarm_l’;leideg.

As also noticed in [1], the vertex anglés andg, of the two isosceles triangles
of area A and perimeterP (that correspond to the positive roots and x, of
(1)) do satisfy the inequalitieg; < 5§ < ¢»2. These inequalities follow from
x1 < % < xy Since, in every triangle, the greater angle is opposite teatgr side:
indeed in every isosceles triangle of perimeatebaser, vertex anglep, and sides
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y = z, the inequalityz < £ impliesy = = > £, so thaty = z > x; therefore
;%‘z’ > ¢, thus¢ < 3. In a similar fashion one can prove that> g impIieDs
> 3.

Remark. That the cubic in (1) can have at most two distinct positivetsanay
also be derived algebraically. Indeed, the existence egthlistinct positive roots
x1, T2, x3 would imply that the cubic may be written ase — x1)(z — z2)(z — 23),
with ¢(z1x2 + zoxs + x321) being thepositive coefficient of the first power of
z. That would contradict the fact that the cubic being analyas zero as the
coefficient of the first power of.

2. Theisoperimetric inequality for arbitrary triangles

We have just seen that the inequald? > 121/3A holds for every isosceles
triangle, with equality precisely when the triangle is dgtgral. We will prove
next that thigsoperimetricinequality ([5, p.85], [3, p.42]) holds for every triangle.

First we notice that for every scalene triandgk&’ D, there exists an isosceles
triangle EC'D with BE parallel toC D (see Figure 3). Let be the line through
B parallel toC'D and F' be the symmetric reflection of D with respectftoLet
E andG be the points of on CF and DF, respectively. ClearlyEG|/C' D and
|FG| = |DG| imply |[FE| = |CE|. Moreover, triangle"GE and DGE are
congruent by symmetry, therefofE E| = | DE|. We conclude that triangl&€C D

is isosceles WithCE| = |DE)|.
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Figure 3. Reduction to the case of an isosceles triangle

It follows immediately fromBE||CD that AECD and ABCD have equal
areas. Less obviously, the perimeterdFC D is smallerthan that ofABCD :
|CD|+|DE|+|EC| =|CD|+|FE|+|EC| =|CD|+|FC| < |CD|+|FB|+
|BC| = |CD| + |DB| + |BC|, with the last equality following from symmetry
and the congruency & FGB andADGB.

So, given an arbitrary scalene triangd” D of areaA and perimeter”, there
exists an isosceles triangléC' D of areaA and perimete) < P. SinceQ? >
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121/3A, it follows that P? > 12v/3A, so the isoperimetric inequality for triangles
has been proven.

We invite the reader to use this geometrical technique toeléne isoperimetric
inequality for quadrilateral§P?> > 16A for every quadrilateral of ared and
perimeterP), and possibly for other-gons as well.

It should be mentioned here that the standard proof of theersmetric inequal-
ity for triangles (see for example [2, p.88]) relies on Hésarea formula (which
we essentially derive later through a generalization offét)arbitrary triangles)
and the arithmetic-geometric-mean inequalilty.

3. Newton'’s parametrization

Turning now to our main goal, namely the relations among antjie’s area,
perimeter, and angles, we first find an expression for thessiden triangle in
terms of its area, perimeter, andeangle. To achieve this, we simply generalize
Newton’s derivation of the formula = g — %, expressing a right triangle’s
hypotenuse in terms of its area and perimeter; this work ajggein Newton’s
Universal Arithmetick, Resolution of Geometrical QuastidProblem IlI, p. 57

([6, p.103]).

Figure 4. Toward ‘Newton’s parametrization’

24 - moreover,
n¢

si

Observe (as in Figure 4) thadt = Jzysin ¢, soy? = Py—ay—

the law of cosines yieldg? = Px + Py — zy + 2‘2;—’12‘1’ — B2 It follows that
P 2A [1+cos¢
pr— = — — 2

extending Newton’'s formula fod < ¢ < w. Of course we need to ha\@ >

4 (“gﬁf;d’) for x to be positive, so we need the conditie@) > 0, where

P?sin ¢
s(¢) = A1 +oosd) A. €))
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Oncez is determinedy andz are easily determined vigz = smd) andy + z =
7 Ly2d (w) : they are the roots of the quadratfc— ( +2 (1+C°S¢>)

sin ¢ sin ¢
sm¢> = 0, provided that,(¢) > 0, where
(P  2A (1+cos¢ 2 8A
M9) = (5 * P < sin ¢ >> sin ¢ @

is the discriminant; that is; = y(¢) andz = z(¢) are given by
B £+é 14 cos¢ i} £+% 14 cos¢ 2_ 8A
“Y=\37P sin ¢ 2 2 P sin ¢ sing’
5)

Putting everything together, and observing thay, z as defined in (2) and (5)
above do satisfy the triangle inequality and are the sidestoéngle of aread and
perimeterP, we arrive at the following result.

Theorem 3. The pair of conditionss(¢) > 0 and h(¢) > 0, wheres(¢) =

s Aanano) = (543 (5550))" 2, s cquvalent o e

existence of a triangle of area A, perimeter P, sidé$) y(6), z(¢p) as given in
(2), (5) above, and angl® between the sideg, z; that triangle is isosceles with
vertex anglep if and only ifh(¢) =

Figures 5 and 6 below offer visualizations of the three sigasametrizations
by the anglep and of the two functions essential for the ‘triangle comif’ of
Theorem 3, respectively.

The ‘vertical’ intersections of/(¢) andz(¢) with each other in Figure 5 occur
at¢ ~ 0.33166 ~ 19.003° and¢ ~ 2.13543 =~ 122.351°: those are the pos-
itive roots of h(¢) = 0, which are none other than the vertex angles of the two
isosceles triangles in Figure 1. There are also intersestibx(¢) with z(¢) at
¢ ~ 1.40485 ~ 80.492° and ofx(¢) with y(¢) at¢ ~ 0.50305 ~ 28.822°; which
are again associated, via side renaming as needed ang Wwéing abaseangle,
with the isosceles triangles of Figure 1.

As we see in Figure 6s andh cannot be simultaneously positive outside the
interval defined by the two largest roots/o{¢ ~ 0.33166 and¢ ~ 2.13543): this
fact remains true for arbitraryl and P and is going to be of central importance in
what follows.

4. Angles‘bounded’ by area and perimeter
We are ready to state and prove our first main result.

Theorem 4. In every non-equilateral triangle of area A and perimeterevery
angle ¢ must satisfy the inequality; < ¢ < ¢2, whereg; < 5 < ¢, are the
vertex angles of the two isosceles triangles of area A andnater P; specifically,

P? - 2Pz — << P? —2Pxy — 13
arccos arccos s
P?2 — 2Pz + 331 P? — 2Pz + 3
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Figure 5. The triangle’s three sides parametrized doyfor 19.003° =
0.33166 < ¢ < 2.13543 = 122.351° atA =3,P =10
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Figure 6. s(¢) andh(¢) for 0.1 < ¢ <2.3atA=3,P =10
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wherez; < £ < z, are the positive roots &fPz? — P?z% + 1642 = 0.

Proof. As we have seen in Lemma 1, the cubic (1) yields the basieeach of the
two isosceles triangles of arehand perimete?; and the formula above for the
vertex anglep of an isosceles triangle follows fron? = 2y — 2y cos ¢ (law of
cosines) ang = £5£.

So it suffices to show that the inequality < ¢ < ¢- is equivalent to the pair of
conditionss(¢) > 0 andh(¢) > 0, wheres(¢) andh(¢) are defined as in Theorem
3; for this, we need four lemmas.

Lemmab. For somey in (0, ¢1), s(v) = 0.

Proof. Notice thatlim,_,y+ s(¢) = —A < 0. On the other hand, the existence of
an isosceles triangle with vertex angle guarantees that(¢;) > 0 (Theorem 3).
By the continuity ofs on (0, 7), there must exist) such that) < ¢ < ¢; and
s(y) =0. O

Lemma 6. The functions is strictly increasing or{0, w) and, for¢ > ¢1, s(¢) >
0.

Proof. Since the derivative/(¢) = 4(1+P70i>8¢) is positive on(0, ), s is strictly
increasing; it follows thak(¢) > s(¢1) > 0 for ¢ > ¢;. O

Lemma7. For ¢ > ¢, h(¢) < 0.

2
Proof. Recall thath(¢) = (% +24 (1+°°S¢>> — B4 By L'Hospital’s rule,

sin ¢ sing*
we havelimg, . “52¢ = lim, ., <32 = 0; it follows thatlimy_.- h(¢) =
£ limg ., % = —00. Suppose:(¢p) > 0 for someg > ¢o. Thenh(ps) =0
for some¢s > ¢, because is continuous or{0, ) andlim_, .- h(¢) = —oo.
At the same timeg(¢3) > 0 (Lemma 6). Then by Theorem 3, there exists a third
isosceles triangle of are& and perimetel?, which is impossible. O

Lemma8. Thereis napin (0, 7) for whichh(¢) = h'(¢) = 0.
Proof. Supposéi(¢) = h'(¢) = 0 for somee in (0, 7). It follows that

2
<P+%<1—|—COS¢>> 8A and P+% <1—|—cos¢>_2Pcos¢

= n = .
2 P sin ¢ sin ¢ 2 P sin ¢ 14 cos¢
Squaring the latter and dividing it by the former expressi@getP? = %.

2
Substituting this expression fd?? into (g +24 <1+C°S¢>) = 24 we arrive

sin ¢ sin ¢
. 1+ 2 2A(1+ 2A cos? :
at the equatlorﬁg‘sfin (;225;) =+ (Sincd‘)’s ¢ 4 Lcos ¢ — 24 which reduces to

(cos ¢ — 1)(2cos ¢ — 1)(2cos? ¢ + 5cos ¢ + 1) = 0. The only roots in0, ) are
given by¢ = Z and¢ = arccos (‘5+T\/ﬁ) It is easy to see that'(¢) < 0 for

¢ > 5, sOarccos (‘5+T\/ﬁ> is an extraneous solution. Moreover,= % turns
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p2 = 240tcos )P neg p2 _ 19,/3 A, contradicting the fact that the given trian-

sin ¢ cos? ¢
gle was assumed to be non-equilateral. We concludeftfydt = 2'(¢) = 0 is
impossible.

Completing the proof of Theorem 4.
Claim(a) For ¢; < ¢ < ¢, 5(¢) > 0 andh(¢) > 0, withh(¢) > 0 for ¢; < ¢ <
P2

Recall from Lemma 6 that(¢) > 0 for ¢ > ¢;. So it remains to establish
h(¢) > 0for ¢; < ¢ < ¢o. We will argue by contradiction.

Of courseh(¢1) = h(¢2) = 0. Notice thath(¢) = 0 for ¢1 < ¢ < ¢o is
impossible for this would imply (by Theorem 3) the existeiéa third isosceles
triangle of aread and perimeterP. If h(¢3) < 0 for somegs strictly between
¢1 and ¢, then continuity ofh, together with the impossibility of(¢) = 0 for
P1 < ¢ < ¢, impliesh(p) < 0 for all angles strictly between; and ¢,. But
we already know from Lemma 7 tha{¢) < 0 for all angles greater thapy. It
follows thath has a local maximum at = ¢9, S0 thath(¢2) = h'(¢2) = 0,
contradicting Lemma 8.

Recalling the statement immediately before Lemma 5, welssdhe proof of
Theorem 4 will be completed by establishing
Claim(b) At least one of the conditiong¢) > 0 andh(¢) > 0 fails when either
¢ < ¢10r P> .

Of course the failure of(¢) > 0 for ¢ > ¢2 has been established in Lemma 7,
so we only need to show eithefs) < 0 or h(¢) < 0 for ¢ < ¢5.

Lemma 5 asserts that there exigt$n (0, 7) such that) < ¢; ands(v)
Consider now an arbitrary < ¢ . If ¢ <« then by Lemma 6(¢) < s(¢) =
so we only need to pay attention to the possibitity > ¢ > ¢ ands(¢) > 0. I
that case we show below that¢) < 0, arguing by contradiction.

The failure ofh(¢) < 0 implies, in the presence a{¢) > 0, thath(¢) > 0:
indeedh(¢) = 0 ands(¢) > 0 would yield a third isosceles triangle of ardaand
perimeterP, again by Theorem 3. The same argument applies in fact toglksa
betweeny and¢;. But we have already established through Claim(a) thetstric
positivity of i for all angles betweer; and¢,. We conclude that has a local
minimum at¢ = ¢, so thath(¢1) = h'(¢1) = 0, contradicting Lemma 8. This
completes the proof of Theorem 4.

Having completed the proof of Theorem 4, let us provide amgpta: the bases
of the two isosceles triangles of ar@and perimeted0 (Figure 1) have already
been computed as the positive roots of the cébit — 2522 + 36 = 0 it follows
then thatall angles ofeverytriangle of aree8 and perimetefl 0 must be between
about19.003° and122.351°, the angles shown in Figure 5.

Remark.It can be shown that; and¢, are the two largest roots of

(P?sing +4A + 4Acos ¢)? — 32P? Asing = 0
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n (0, ), and that they also satisfy the equation

1)’ 2\’
sin ¢o <1 + sin 7) = sin ¢ (1 + sin 7) .

5. Heron’scurve

Theorem 4 establishes bounds for the angles of every teasfgiiven area and
perimeter; appealing to the law of sines, we see that it alds/bounds for the
ratio of any two sides. Determiningharp bounds for side ratios relies on some
machinery we develop next.

Instead of looking for isosceles trianglés = y) of areaA and perimeterP,
let us now look for triangles of ared and perimetel” where two sides have ratio
r (§ = r); without loss of generality, we may assume> 1. (Observe here - as
in fact noticed through Figure 5 and related discussiont-tha 1 does not rule
out the possibilitiess = 2 (with r ~ 3.0268 at A = 3, P = 10) or x = y (with
r~1.7522atA=3,P= 10) ) Extending the procedure of Lemma 1 to arbitrary

triangles, fromy? — 2?2 = r2y? — 23 andz = x5 & z; (Figure 7) we find that

Figure 7. The case of an arbitrary triangle

zy = LAyt )y +2° |n view of £ 2Vy?—af = Aandy = f  further algebraic
manipulatlon Ieads toan equatlon that generallzes theeﬂstnangle s cubic (1):

8rPr3+4(r? —3r+1)P22? —4(1—7r)? P32+ (1—r)2 P*4+16(1+7)2 A% = 0. (6)

Appealing to Rolle’s theorem as in the case of the isoscaksgle, we see that
this cubic cannot have more than two positive roots. Indewdad the derivative’s
roots, ( —(r=Sril) T4_7"2+1) P, is negative sinc@2 — 3r + 1| < vrf —r2 + 1
forr > 1.

Unlike the case of the isosceles triangle, however, theeidmetric inequality
P? > 12¢/3A does not guarantee the existence of two positive roots. &e th
can beat mosttwo triangles of aread and perimeterP satisfying the condition
i =r>1

Settingr = P —y — zandr = 5 in the cubic (6) leads to

PY—4P3(y + 2) + 4P%*(y* 4 3yz + 2%) — 8Pyz(y + 2) + 1642 =0, (7)



22 Angles, area, and perimeter caught in a cubic

which can be shown to be equivalent to Heron’s area formule graph of this
curve forA = 3 and P = 10 (Figure 8) illustrates the fact established above by
(6): for every pair ofA and P, there can be at most two triangles of aréand
perimeterP satisfyingg = r > 1. Indeed, the three unbounded regions shown
in Figure 8 correspond to < 0 (first quadrant)y < 0 (second quadrant), and
z < 0 (fourth quadrant), hence it is only the boundary of the baghagion that
corresponds to triangles of ar@and perimeteti 0; clearly, this boundary that we
call Heron's curve(Figure 9) may be intersected by any line at most twice.

z

Figure 8. Graph of (7) fod = 3andP = 10

Rather predictably, in view of its symmetry about= y, the triangles corre-
sponding to Heron's curve’s intersections with (for exag)pl = 2y andz = 4
(see Figure 9) are mirror images of each other (about the $itiex’s perpendic-
ular bisector); so it suffices to restrict our computatioms t> 1, sticking to our
initial assumption. These triangles are found by first sm\the cubic (6) when =
2 and are approximately3.0077,2.3307,4.6615} and{4.5977,1.8007, 3.6015};
they are associated with parametrizing angles of aB®329° and112.315°, re-
spectively.

6. Sideratios ‘bounded’ by area and perimeter

We present now the following companion to Theorem 4.

Theorem 9. In every non-equilateral triangle of ared and perimeterP, the ratio
r of any two sides must satisfy the inequality< r < 79, wherer; < 1 < ro,
riro = 1 are the positive roots of the sextic

32P*A%(2r% — 3r* — 3r2 +2) — P32 (r — 1)2 + 69124%2(r +1)2 = 0. (8)
Proof. Figures 8 and 9 (and the discussion preceding them) makesit that not

all linesz = ry intersect Heron’s curve: such intersections (correspantti trian-
gles of aread and perimetel satisfying§ = r) occur only at- = 1 and a varying
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z

z =2y

33.529° 2=y

z =2y X\ 112.315°

I
Il
ke

33.529°

Figure 9. Heron’s curve fod = 3 andP = 10

interval around it depending af and P by way of (6). To establish sharp bounds
for such ‘intersecting’r, we observe that these bounds are none other than the
slopes of the linetangentto Heron’s curve; in the familiar casé = 3, P = 10,
these tangent lines are shown in Figure 8. But aline ry is tangent to Heron’s
curve if and only if there is precisely one triangle of arkand perimetel” satis-
fying § = r; that is, if and only if the cubic (6) has a double root.

It is well known (see for example [4, p.91]) that the cubic® + ba? + cx + d
has a double root if and only if

b2c? — dac® — 4b3d — 27a%d? + 18abed = 0.

(The reader may arrive at this ‘tangential’ condition indegently, arguing as in
the proof of Theorem 2.) So we may conclude that the slopdsedtfto lines tan-
gent to Heron’s curve and passing through the origin are tiséipe roots of the
polynomial S(r) = —64P2(r + 1)2Q(r), whereQ(r) is the sixth degree polyno-
mial in (8).

It may not be obvious buf), and therefores' as well, must have precisely two
positive roots, as they ought to. This relies on the follayfacts (which imply
a total offour real roots forQ): the leading coefficient of) is positive and its
highest power is even, $m, .+, Q(r) = +o0; Q(—1) = —4P%—64P* A% < 0;
Q(0) = 64P* 42 > 0; Q(1) = —64A42(P* — (12v/3)242) < 0; Q(L) = LD for
r # 0, so thatr is a root ofQ if and only if L is. O

In the familiar example oA = 3 and P = 10, the two positive roots of are
r1 =~ 0.3273 andry ~ 3.0551. As pointed out above, these two roots are inverses
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Figure 10. Graph of (6) fod = 3, P = 10, andr ~ 3.0551

of each other: this is geometrically justified by the fact tte two roots are the
slopes of the two tangent lines in Figure 8, which are of ecungror images of
each other about the diagonat y. Moreover,; andr, lead to thesamgmodulo
a factor) cubic in (6).

We conclude that the side ratios of every triangle of éead perimeten0
must be between approximately3273 and3.0551. To obtain the unique (modulo
reflection) triangle of ared and perimeteil0 where these ratios are realized, we
need to determine its third side It is the double root of the cubic (6) ferequal to
approximately3.0551 (Figure 10). It turns out that equals approximately.2048.

The triangle is now fully determined through ~ 10=22048 1 4991 and

3.0551+1
z ~ 3.0551 x 1.4291 =~ 4.366 (upper ‘corner’ in Figure 9). The angle-parameter

(between sideg andz) at that ‘corner’ is now easy to find asccos %) ~

74.079°. The triangle obtained, approximately.2048, 4.3661, 1.4291} (see Fig-
ure 11), is the furthest possible from being isosceles -tberahe furthest possible
from being equilateral! - among all triangles of agand perimetet 0.

A

2z~ 4.3661
y ~ 1.4291

B z & 4.2048 ¢

Figure 11. The unique extreme-side-ratio triangle of &ead perimetei0

Our findings are confirmed in Figure 12 by a graphg%, wherez(¢) and
y(¢) are the Newton parametrizations of sideandy in (5). That graph shows
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a maximum value of abo@t055 for Zgig with ¢ approximately equal t®.293 ~
74.08°:

Figure 12. ygj;; for 19.003° = 0.33166 < ¢ < 2.13543 ~ 122.351°, A = 3

andP =10
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